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MONOTONE OPERATORS ASSOCIATED WITH
SADDLE.FUNCTIONS AND MINIMAX PROBLEMS

R. 1'. RockaJellm·1

1. Introduction. Let X be a locally convex Hausdorff topological vector space
over the real number system R, and let X* be the dual of X, with (x, x*) written
in place of x*(x) for x E X and x* E X*. A multivalued mapping T: X -+ X* is
called a (nonlinear) monotone operator if .

(1.1)

when < E T(x1) and xi E T(x2). It is called a maximal monotone operator if, in
addition, its graph

(1.2) {(x, x*) I x* E T(x)} c X X X*,

is not contained properly in the graph of any other monotone operator T': X -+ X*.
One of the main classes of examples of monotone operators from X to X*

consists of the subdifferential mappings of of the proper convex functions f on X.
For T = of, the solutions x to the relation

(1.3) o E T(x),

which plays a fundamental role in monotone operator theory, are the points where
f attains its global minimum on X. It is known that of is a maximal monotone
operator whenf is finite and continuous throughout X (Minty [5]), or when X is a
Banach space and f is (proper and) lower semicontinuous throughout X (Rocka-
fellar [12], [15]).

The purpose of this paper is to present a new class of examples, the monotone
operators associated with saddle-functions on X (i.e. functions which are partly
convex and partly concave in a sense explained below). For such a monotone
operator T, the solutions to (1.3) are the saddle-points in a certain minimax
problem. It will be proved that T is maximal when the saddle-function from which
it arises satisfies continuity conditions comparable to those in the case of oj.

The monotone operators associated with saddle-functions are of theoretical
interest because they are closely related to extremum problems, even though
they are not actually generalized gradient operators. The maximality theorems to
be proved below for such operators open up a new area of applications of the theory

1This research was supported in part by the Air Force Office of Scientific Research under
grant AF -AFOSR-1202-67.
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of evolution equations involving monotone operators. These applications have a
significance in mathematical economics.

2. Saddle-functions. A convex function on X is an everywhere-defined
extended-real-valued function f (i.e. a function whose values are real numbers or
± 00) whose epigraph

(2.1) {(x, (l) I x EX, {l E R, (l :?f(x)},

is a convex set in the space X EB R. Such a function is said to be proper if itris not
indentically +00 and if it nowhere has the value - 00. A subgradient of a convex
function f at a point x E X is an x* E X* such that

(2.2) f(x') :?f(x) + (x' - x, x*), "Ix' EX.

The (possibly empty) set of all such subgradients at x is denoted by of (x), and the
multi valued mapping of:x -->- of (x) from X to X* is called the subdifferential off.

It is known that, when f is everywhere Gateaux differentiable, of reduces to
the (single-valued) gradient mapping Vf from X to X*. More generally, if f is
finite and continuous at x, of (x) is a nonempty weak* compact convex subset of X
and

(2.3) f'(x; x') = max {(x', x*) I x* E of (x)}, "Ix' EX,

where

(2.4)
f'(x; x') = lim [f(x + AX') - f(x)]/A

).~o

= inf If(x + AX') - f(x)]/A.
),>0

For proofs and further details, see Moreau [7], [8], [9].
An extended-real-valued function g on X is said to be concave if -g is convex.

It is said to be a proper concave function if -g is a proper convex function, i.e. if g
is not identically - 00 and g nowhere has the value + 00.

We assume henceforth that X = Y EB Z, where Y and Z are locally convex
Hausdorff topological vector spaces with duals y* and Z*. We identify X* with
y* EB Z* and write

(x, x*) = (y, y*) + (z, z*)

for x = (y, z) E X and x* = (y*, z*) E X*.
Bya saddle-function on X (with respect to the given decomposition X = Y EB

Z), we shall mean an everywhere-defined extended-real-valued function K such
that K(y, z) is a concave function of y E Y for each z E Z and a convex function of
z E Z for each y E Y. A saddle-function K will be called proper if there exists at
least one point x == (y, z) such that K(y', z) < + 00 for every y' E Y and K(y, z') >
- 00 for every z' E Z. The set of all such points will be called the effective domain
of K and denoted by dom K. Obviously K is finite (i.e. real-valued) on dom K,
and if K is finite everywhere one has dom K = X.
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As an example, let L be any finite saddle-function on X, let G and D be non-
empty convex sets in Y and Z, respectively, and let

(2.5)

K(y, z) = L(y, z)

= +00

= -00

if Y E C and zED,
if y E G and z ¢ D,

if Y ¢ G.

Then K is a proper saddle-function on X with

(2.6) domK = G EB D.

In particular, L here could be any function of the form

(2.7) L(y, z) = g(y) + h(z) + bey, z),

where g is a finite concave function on Y, h is a finite convex function on Z and b
is a bilinear function on Y X Z. .

The elementary but fundamental fact which motivates this paper is stated in the
following theorem. This fact has previously been observed by Dantzig-Cottle [4]
in the special case where X is finite-dimensional and K is a (finite) quadratic
function (so that T is a linear operator).

THEOREM 1. Let K be a proper saddle-function on X = Y EB Z, and for each
x = (y, z) in X let T(x) = T(y, z) be the set of all x* = (y*, z*) in X* = y* EB Z*
such that y* is a subgradient of the convex function -K(·, z) at y and z* is a subgradient
of the convex function K(y, .) at z. The multivalued mapping T: X ->- X* is then a
monotone operator with

PROOF.

{x I T(x) =1= 0} c dom K.

Let (y~, zi) E T (Yv Zl) and (yi, zi) E T (Y2' Z2). By definition,

-K(y, Zl) ~ -K(Yl' Zl) + (y - Yl' yiJ, YY E Y,
K(y!> z) ~ K(Yl' Zl) + (z - Zv zi), yz E Z,

-K(y, Z2) ~ -K(Y2' Z2)+ (y - Y2' y:), yy E Y,

K{Y2' z) ~ K(Y2' Z2)+ (z - Z2' z:), yz E Z.

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

Since in particular (y, z) could be a point of dom K, we have ·-K(yv Zl) < +00

by (2.9) and K(Yl' Zl) < +00by (2.10). Thus K(Yl' Zl) is finite, and by (2.9) and
(2.10) we have (Yl' Zl) E dom K, establishing (2.8). By the same argument,
K(Y2' Z2) is finite. Taking y = Y2 in (2.9), z = Z2 in (2.10), Y = Yl in (2.11) and
z = Zl in (2.12), we get, by adding the four inequalities,

o ~ (Y2 - Yl' yi) + (Z2 - Zl' zi) + (Yl - Y2. Y:) + (Zl - Z2' z:).

In other words
o ~ (Yl - Y2' yi - Y:) + (Zl - Z2.zi - z:),

and this means that T is a monotone operator.
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The mapping T in Theorem 1will be called the monotone operator associated with
K. (It should be noted that T depends, not only on K as a function on X, but on
the given direct sum decomposition X = Y EB Z, which must be specified before
the concept of "saddle-function" has meaning. There may be some othl}r de-
composition X = Y' EB Z' with respect to which the same K is a saddle-function
but has a different monotone operator T': X ~ X* associated with it. The de-
composition X = Y EB Z is fixed throughout the present discussion.)

The monotone operator T associated with a saddle-function K is closely related
to the subdifferential mapping aK which we have introduced elsewhere [10] in
connection with minimax theory: namely, aK is given in terms of T by

(2.13) aK(y, z) = {(-y*, z*) I (y*, z*) E T(y, z)}.

For this reason, properties of T have a bearing on certain extremum problems, as
we shall now explain.

A point (y, z) E X is called a saddle-point of a saddle-function K if

(2.14) K(y', z) ~ K(y, z) ~ K(y, z'), Vy' E Y, Vz' E Z,

i.e. if the concave function K(', z) attains its maximum at y and the convex function
K(y, .) attains its minimum at z. It is well-known that (2.14) implies

(2.15) K(y, z) = sup inf K(y', z') = inf sup K(y', z').
lI'eY zeZ zeZ v'eY

In the case where K is of the form (2.5), it is not hard to see that (y, z) is a saddle-
point of K if and only if (y, z) is a saddle-point of L with respect to 0 X D, i.e.

(2.16) L(y', z) ~ L(y, z) ~ L(y, z'), Vy' EO, Vz' ED,

in which event

(2.17) L(y, z) = sup inf L(y', z') = infsup L(y', z');
v'eO zeD zeD v'eo

see [10].

Suppose now that T is the monotone operator associated with a proper saddle-
function K. According to the definition of T, the relation (y*, z*) E T(y, z) can be
expressed equivalently as

(y', y*) - (z, z*) + K(y', z) ~ (y, y*) - (z, z*) + K(y, z)

~ (y, y*) - (z', z*) + K(y, z'), Vy' E Y, Vz' E Z.

But this means that (y, z) is a saddle-point of the proper saddle-function (', y*) -
(., z*) + K. In particular, the solutions (y, z) to

(2.19) (0,0) E T(y, z),

(2.18)

are just the saddle-points of K, if any. It follows that general results about the
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domain and range of T can be interpreted as results about the existence of saddle-
points, i.e. minimax theorems.

Although we shall not pursue the point here, we should like to mention that,
in view of Theorem 1, the theory of monotone operators has a further bearing on
minimax theory when X is a Hilbert space, namely through the study of the
general "evolution equation"

(2.20) -x(t) E T(x(t)) for almost all t,

where t -+ x(t) is (in a suitable sense) an absolutely continuous function- from
[0, + 00) to X with derivative t -+ x(t). It can be shown that, in certain cases
where X is finite-dimensional and T is the monotone operator associated with a
saddle-function K of the form (2.5) with C and D polyhedral and L differentiable,
(2.20) reduces to the Arrow-Hurwicz differential equation [1, p. 118). This equation
and its generalizations are of interest in mathematical economics and game theory,
because they describe evolution towards a state of "competitive equilibrium."

An elegant theory has already been developed concerning the existence and
uniqueness of solutions to the "evolution equation" (2.20) and the convergence
of such solutions to points satisfying (1.3)-see the papers of Browder and Kato
in this volume. This theory requires only that T be a maximal monotone operator.
The maximality theorems established below will therefore make it possible to
apply this theory to a new area, the study of saddle-points via generalizations of
the Arrow-Hurwicz differential equation.

3. Maximality theorems. We shall now prove our main results, which give
conditions under which the monotone operators in Theorem 1 are maximal.

THEOREM2. Let K be a finite (i.e. everywhere real-valued) saddle-function on
X = Y <:BZ such that K(y, z) is everywhere separately continuous in y and z. The
monotone operator T associated with K is then maximal. Moreover, for each (y, z) E

X, T(y, z) is a nonempty weak* compact convex subset of X*.

PROOF. By definition, (y*, z*) E T (y, z) if and only if y* E C (y, z) and z* E

D(y, z},where C(y, z) is the set of all subgradients of -K(·, z) at y and D(y, z) is
the set of all subgradients of K(y, .) at z. Since the convex functions -K(·, z) and
K(y, .) are finite and continuous by hypothesis, C(y, z) and D(y, z) are nonempty
weak* compact convex subsets of y* and Z* respectively, as indicated at the
beginning of §2, and hence T(y, z) is a nonempty weak* compact convex subset of
X*. Now fix any (Yl' Zl) E X and any (y;, z;) E X* such that (y;, z;J ~ T(Yl> Zl)·

We shall show that there exist a (Y2' Z2)E X and a (y;, z;) E T(Y2' Z2) such that

(3.1) (Y2 - s.. yi - yi) + (Z2 - Zl' zi - zi> < 0,

and this will establish the maximality of T.
Let k be the real-valued function on X X X defined by

k(y, z ; y', z") = max {(y', y*) + (z', z*) I (y*, z*) E T(y, z)}
(3.2)

= max {(y', y*) I Y* E C(y, z)} + max {(z', z*) I z* E D(y, z)}.
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We note that, in view of formulas (2.3) and (2.4) (applied to the convex functions
-K(·, z) and K(y, .)),

k(y, z ; y', z') = lim [-K(y + AY', z) + K(y, Z)]/A
;.jo

+ Jim [K(y, Z + AZ') - K(y, Z))/A
Aio

(3.3)
= lim [K(y, Z + AZ') - K(y + AY', Z)]/A

;.~o

= inf [K(y, Z + AZ') - K(y + AY', Z))/A.
l>O

Since T(Yl' Zl) is a nonempty weak* closed convex set not containing (yi, zi), we
can strictly separate (yi, zi) from T(Yl, Zl) by some weak* closed hyperplane in
X*. Thus by (3.2) there exists some (y', z') E X such that

(3.4) k(Yl' Zl; y', z') < ts', yi) + (z', zi)·

Consider the function

(3.5) p(8) = k(Yl + 8y', Zl+ Bz"; y', z'), 8 E R.

According to (3.3),

(3.6) p(8) = inf[K(Yl + 8y', Zl + 8z' + AZ') - K(YI + 8y' + AY', Zl+ 8z')].
;'>0

Now, for any A, the function

is concave in 8 E R for each fl E R and convex in fl E R for each 8 E R. Thus M),
is It finite saddle-function on R (:B R. But a finite saddle-function on a finite-
dimensional space is everywhere jointly continuous; this is proved in [14, §35J.
Therefore MJ.(8, 8) is a continuous function of 8. Similarly,

K(YI + 8y' + AY', Zl + 8z'),

is a continuous function of 8. Formula (3.6) thus expresses p as the pointwise
infimum of a collection of continuous functions, and it follows that p is upper semi-
continuous. Hence by (3.4), since p(O) = k(Yl' Zl; y', z'), we must have

(3.7) k(Yl + 8y',zl + 8z';y',z') < (y',y:) + (z',z:)

for all sufficiently small real numbers 8. Fix any 8 > 0 for which (3.7) holds, and
let

(3.8)

Take any (y:, zi) E T(Y2' Z2)' The definition of k implies that

(y', yi) + (z', zi) ::;;:k(Y2' Z2; y', z').
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Combining this with (3.7), we get

(y', yi - yi) + (z', zi - zi) < 0,

which is equivalent to (3.1) in view of (3.8). This completes the proof of Theo,rem 2.

COROLLARY1. Let K be a finite saddle-function on X = Y EEl Z, and suppose
that X is finite-dimensional. The monotone operator T associated with K is then
maximal.

PROOF. This is immediate from the well-known fact that a finite convex or
concave function on a finite-dimensional space is necessarily continuous.

COROLLARY2. Let K be a finite saddle-function on X = Y EEl Z which is every-
where Gateaux differentiable, and suppose that the spaces Y and Z are barrelled.
Express the Gateaux gradient of K by

VK(y, z) = (V1K(y, z), V2K(y, z)),

where V1K(y, z) E Y* and V2K(y, z) E Z*. The single-valued mapping

(3.9)

is then a maximal monotone operator from X to X*.

PROOF. The monotone operator T associated with K reduces to (3.9), in view
of the Gateaux differentiability of K. For each y, the convex function K(y, .),
being Gateaux differentiable, is the pointwise supremum of a certain collection of
continuous affine functions, and hence is lower semicontinuous. But a finite lower
semicontinuous convex function on a barrelled space is necessarily continuous
(see [11]). Thus K(y, z) is continuous in z for each y. By a similar argument
K(y, z) is continuous in y for each z, and it follows from the theorem that T is
maximal.

To get maximality results in the case of saddle-functions which are not every-
where finite, such as those of the form (2.5), more complicated continuity conditions
must be imposed. These are most easily described in terms of the so-called closure
operation for convex functions.

A convex function on X is said to be closed if it is proper and lower semi-
continuous, or else if it is one of the constant functions + 00 or - 00. Given any
convex function f on X, there exists a unique greatest closed convex function
majorized by f (the pointwise supremum of the collection of all closed convex func-
tions majorized by f). This function is called the closure of f and denoted by cl f.

Given any saddle-function K on X = Y EEl Z, we denote by c12 K the function
on X such that, for each y E Y, (c12K)(y, .) is the closure of the convex function
K(y, .) on Z. Similarly, we denote by cl1K the function on X such that, for each
z E Z, -(cll K)(', z) is the closure of the convex function -K(·, z) on Y. Two
saddle-functions K and K' are called equivalent if cl1 K = cll K' and c12K =

c12K'. A saddle-function K is said to be closed if cll K and cl2 K are saddle-
functions equivalent to K.
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These notions of equivalence and closure of saddle-functions have a natural
significance in minimax theory, as we have shown in [10], [13], [14). For present
purposes, we shall only mention a few pertinent facts. The proofs are all given in
[14] in a finite-dimensional context, but the arguments do not actually rel.y on
finite-dimensionality, so that they carryover immediately to arbitrary locally
convex Hausdorff topological vector spaces.

The facts are as follows. Given any saddle-function K, the closures cll K and
cl, K are again saddle-functions. Furthermore, cl, (c12K) and cl, (clloKl. are
closed saddle-functions (not necessarily equivalent). If K' is a saddle-function
equivalent to K, then oK' = oK (cf. (2.13)). Thus the monotone operator T
associated with a proper saddle-function K really depends only on the equivalence class
containing K. The most important fact is that the formula

(3.10) F(y, z*) = sup {(z, z*) - K(y, z) I z E Z},

defines a one-to-one correspondence between the equivalence classes of closed
proper saddle-functions K on X = Y EB Z and the lower semicontinuous proper
convex functions F on the space Y EB Z*, where the topology on Y EB Z* is taken
to be the product of the given topology on Y and the Mackey topology on Z*.
Moreover, under this correspondence one has

(3.11) (y*, z*) E oK(y, z) <=> (-y*, z) E of(y, z*),

where of is the subdifferential of F. (Here the space of all continuous linear
functionals on Y EB Z* in the cited topology is identified in the natural way with
y* EB Z.) It follows that, if K is a closed proper saddle-function and T is the
monotone operator associated with K, one has

(3.12) (y*, z*) E T(y, z)<=>(y*, z) E of(y, z*)

for the F defined by (3.10). Thus T can be obtained by partial inversion of the
subdifferential mapping of a certain lower semicontinuous proper convex function F
on Y EB Z*. If this subdifferential of is maximal, then T itself must be maximal.

In particular, we get the following result.

THEOREM3. Let K be a closed proper saddle-function on X = Y EB Z, and
suppose that Y and Z are Banach spaces, at least one of which is reflexive. The
monotone operator T associated with K is then maximal.

PROOF. Suppose that Z is reflexive, say. Then Y EB Z* is a Banach space
whose dual may be identified with y* EB Z. Since the F defined by (3.10) is a
lower semicontinuous proper convex function on a Banach space, its subdifferential
of is a maximal monotone operator (Rockafellar [15]). Hence, by relation (3.12),
T is maximal. The case where Y, rather than Z, is reflexive, can be established
similarly by replacing K by - K and reversing the roles of the arguments y and z.

COROLLARY1. Let K be a proper saddle-function on X = Y EB Z such that
K(y, z) is upper semicontinuous in y for each z and lower semicontinuous in z for
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each y. Suppose that Y and Z are Banach spaces, at least one of which is reflexive.
The monotone operator T associated with K is then maximal.

PROOF. The semicontinuity conditions on K imply that K is closed, as is not
difficult to verify using the fact that a lower semicontinuous convex f~nction
which is not proper (or an upper semicontinuous concave function which is not
proper) can have no values other than + 00 and - 00. (Note: not every closed
propcr saddle-function satisfies these semicontinuity conditions, even in-the case
where Y and Z are one-dimensional; see [14, §34] for counterexamples.)-

COROLLARY2. Let K be a saddle-function on X = Y EB Z of the form (2.5),
where C and Dare nonempty closed convex sets in Yand Z, respectively, and L is a
finite saddle-function such. that L(y, z) is upper semiconiinuoue in y for each z and
lower semicontinuous in z for each y. Suppose that Y and Z are Banach spaces, at
least one of which is reflexive. The monotone operator T associated with K is·then
maximal.

PROOF. Here K satisfies the hypothesis of Corollary l.

4. A counterexample. In view of the many connections between monotone
operators and convexity, it might be conjectured that, for every maximal mono-
tone operator T: X -+ X* which is not in Tact the subdifferential of some convex
function on X, there exists a direct sum decomposition X = Y EBZ and a function
K on X which is a saddle-function with respect to this decomposition, such that T
is the monotone operator associated with K. We shall show that this is not true
even when X is two-dimensional.

The counterexample we shall furnish is based on the fact that, in the finite-
dimensional case at least, the set of points (y, z) where aK(y, z) =j=. 0 is dense in
dom K, and dom K is the direct sum of a convex set in Y and a convex set in Z
(see Rockafellar [10], [141). This implies that the closure of the set

(4.1) D(T) = {(y, z) I T(y, z) =j=. 0}

is the direct sum of a closed convex set in Y and a closed convex set in Z.
(Incidentally, we do not know whether D(T) is dense in dom K when X is not
finite-dimensional, although the situation in the case of purely convex functions
[2] would suggest that this might always be true when K is closed and Y and Z
are Banach spaces.)

Let X = R2, and let A be the linear operator from X to X* = R2 defined by

x = (~l' ~2)-+ x* = (-~2' ~l)'

Let B be the closed unit disk in X, and let S be the subdifferential of the indicator
of B, i.e. the lower semicontinuous proper convex function f such that f(x) = 0
for x E B andf(x) = +00 for x f/= B. (Thus S(x) consists of the zero vector alone
when x is an interior point of B, S(x) consists of all the nonnegative multiples of
x when x is a boundary point of Band S(x) = 0 when x f/= B.) Of course A is a
continuous single-valued monotone operator, whereas S is a maximal monotone
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operator whose effective domain is B [15]. It follows (see [3]) that the mapping
T:X -+ X* defined by T(x) = S(x) + A(x) is a maximal monotone operator with
D(T) = B. Since D(T) cannot be expressed as the direct sum of two line segments,
T cannot arise from any saddle-function K, as explained above. On the other hand,
T is not the subdifferential of any convex function f on X by [12, Theorem 1],
because T reduces to A on the interior of B and consequently is not cyclically
monotone.
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