Fa) L \ 'i_,.j

Reprint from

Lecture Notes in Operations Research and Mathematical
Economics, Vol. 11

Mathematical Systems Theory and Economics |

Springer-Verlag Berlin Heidelberg New York 1969

Printed in Germany. Not for sale

R. T. Rockafellar

Convex Functions and Duality in Optimization Problems
and Dynamics



Everyone is aware of the importance of convex sets in the study of optimization

croblems, Much of the modern theory of convex functions is less well known, however,
and for this reason has not sufficiently been exploited, This is true especially of
Fenchel's theory of conjugacy [11], which ought to be made the vehicle for all results
involving duality. Fenchel's theory and some of its consequences will be described
below,

Elementary facts about convex functions, their conjugates and their continuity
and differentiability properties are set forth in §1, 2, and 3. Proofs of these facts
in the finite-dimensional case may be found in {12] and the forthcoming bock [39] . For
the extensions to infinite dimensionzl cases, see the papers of Brgndsted, Moreau and
Rockafellar listed in the biblioaraphy.

The approach which we take to convex programs has been suggested by a paper of
Gale [14], It leads to a concept of "generalized convex program” in §4 for which an
extensive duality theory is possible. This duality theory, explained in §5, 1s new

and 1s being announced here for the first time.

*preparation of this manuscript was supported in part DY U.S. Air Force Grant

AF-AFQSR-1202-67 at the Department of Mathematics, University of Washington, Seattle.
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The details are contained in the author's book [39].
In §6, certain applications of conjugate convex functions to control theory, the
calculus of variations and Hamiltonian dynamics are discussed., Publication of the

proofs of the new results announced in this section has not yet been fixed.

1. Definition of a Convex Function.
Let E be an arbitrary vector space over the real numbers R. Let C be a

convex set in E , According to the classical definition, a function £ frem C to
R is convex 1f

£(1-a)x+dy) < (L=a)€(x) + Af(y) , O < 2 <1,
for every x and y in € , The geometric meaning of this definition is that the
set of points in E @ R 1lying "on or above" the graph of f 1is a convex set,

It is convenient to extend a given convex function £ on C to all of E by
defining f(x) = += for x g C . In general, a function € on all of E whose
values are real numbers or += or =-= 1is said to be convex if the set

epl £ = {(x, u)|x e E, ve R,y ;f{x)},
which is called the epigraph of f , is convex as a subset of the vector space E gR .,
The projection of epi f on E , which is the set

dom £ = [x|f(x) « « ),

is then convex too, It is called the effective domain of £ ., The convex functions £

on E obtained by extending finite convex functions on non~empty convex subsets of E
by += are precisely those such that f(x) < += for at least one x and f(x) > ==
for every x , Such an £ 1s said to be a proper convex function. Improper convex
functions are not really of interest in themselves, but they are technically useful in
the general thecry.

An important example of a convex function is the indicator function &(+|C) of a

convex set C , which is defined by
1IF X eiQ
§(x|c) =
+= if x E’ [ 228
If fo is a finite convex function on E , the convex function £ given by

f(x) = £ (x) + &(x|C)
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corresponds in a certain sense to the restriction of fo to C . Observe that mini-
mizing f_ over C 1s equivalent to minimizing £ over E . By this device, con-
strained —inimization problems can be represented formally as unconstrained problems,

T =x=—=2l=, in the case of minimizing fo(x) subject to fl(xJIEO,...,fm(x) <0,
whers :.....,fm are finite convex functicons on E (the type of problem we shall

zs zn ordinary cecnvex program), one takes C to be the intersection of the

Ci = {K|fi{x) :O} ¥ i= lyswerm o
It z=culd be kept in mind below that such cases are included when we speak simply of
minimizing a convex function £ owver E ,
There are many useful operations which can be performed in the collection of all

ccavex functions on E . If f and g are propar convex functions, then f + g is

sonvex, Of course, f + g might be identically += (and hence improper), because the

10

s

dom(f+g) = dom £ (] dom g

=ight be empty. The reason we ask that £ and o be proper when forming £ + g , is
that this is a simple way to ensure that f({x) + g{x) is not == , The combination
= = = is undefined, like division by zero, and is carefully avoided,

If f 1is a convex function and i > 0 , then Af 1is conwvex.

Given a collection ¢f convex functions {Fi[i ¢ I} on E , where I is an
vitrary index set, the pointwise supremum £ of the collection, given by

f(x) = sup {fi(x}|i e Il

iz a convex function, The convexity of f is obvious from the fact that epl f is

the intersection of the convex sets epi £ The convex function which is the point-

i e
wise supremum of the collection of all convex functions g such that g « fi for
avery 1 g I 1s ecalled the convex hull of {fi|i e T} + Its epigraph is essentially

the convex hull of the collection of convex sets 2pi fi .

One of the most interesting operations is infimal convolution. The infimal con-

volute foD g of two proper convex functions f and g is defined hy

(fo g) = infy {fix=y) + giv)} .
The epigraph of fo g is obtained essentially by vector addition of epi £ and epl o
in E @& R, whence its convexity. Infimal convolution is a commutative, assoclative

operation.
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As an example of infimal convolution, consider the case where E = 2" p E(x)} = |x]|
{the Euclideen norm) and o(x}) = §(x|C) , where C is a convex set., Then
{(fo g) (x) = infY {|2-y] + s({y]e)} = inf {|x-y||v e C} .
This convex function gives the distance of x from ¢C ,
For another example, let L be any subspace of E and let g(x) = §(x|L) . For

any convex function f on E , we have

(fog) (x) = inf [fix+z) | z ¢ L} .
Thus f0 g gives the infimum of £ over the affine set x + L as a functicn of the
translation x .

These examples illustrate the fact that, in certain minimization problems depending
on parameters, the infimum 1s a convex function of the parameters. A very important
case concerns perturbations of zn ardinary convex program. For each vector

o= { Ugreass um) e BN , let plu) = ol Upreaes um)
denote the infimum of £, subject to the constraints fi{x) Suy pi=l000m
(whare fi is a finite convex function on E for 1 =0, 1l,..., m), The given problem
corresponds to u = 0 , and other values of u are conceived of as perturbations away

from O ., We shall call p the perturbation function for the program, Lagrange

multipliers, as we shall explain in §4, can be studied in terms of the differentiability
properties of p at u =0, The fundamental and easily proved fact about p is that
P 1s a convex function on r" + Note that dom p consists of the vectors u such
that the inequality systen

(%) < o

fI{x) iulf‘°" fI"l 2 Ym0

is satisfied by at least one x ¢ E , whereas the interior of dom p consists of the
vectors u such that the inequality system
flfx) S Uyseeny fm{x) < v

is satisfied by at least one x ¢ E, If O ¢ dom p , the program is said to be con-

sistent, and if © ¢ int (dom p}) it is said to be strictly consistent,

[3%]

1



ures and Conjugates,

L=t E° be a real vector space in duality with E with respect to a
certzin Dilinear form <+ ,+> , and let E and E® be provided with locally convex

zooolosiss compatible with this duality., Thus E and EF are henceforth to be locally

topological vector spaces, and <x,x* 1s to be a (separately) con-

=i=--—= Fzmczion of X e E and x* g EY , such that the continuous linear functions on
=== functions of the form x +<x,x*> and the continuous linear functions on E*

ions of the form x* =+<x,x*»> , In particular, of course, one may take

with the ordinary topology and <x,x*> as the ordinary inner product of
—wc =mmerical vectors x and x* ,
=z £ be any convex function on E . The pointwise supremum of the collection

11 the continucus affine functions

hi{x) = <x,%x%> - u* , u¥ ¢ E* , u* ¢ R ,
=zc= that h < £ 1is called the glosure of f and is denoted by cl £ ,

The epigraph of ¢l £ 4is the intersection of the "non-vertical" closed half-spaces
= E 2 R containing the convex set epl £ , and this is the same as the closure of
=zi £ if £ is proper and E is finite-dimensional (Fenchel [lﬂ 1, or if £ |isg
zocundsd from below in a neighborhood of some point of dom £ (Brgndsted [2] ).

A function f from E to [ -=, += ] is said to be lower semi-continuous if the

== (x[f(x) <u }l , w e R, are all closed., This condition is actually eguivalent to
=== spigraph of £ being a closed set in E ® R, Thus 2 proper convex function is
zZ2==2 1% and only if it is lower semi-continuocus.

The nature of the closure cperation is seen clearly from the following example,

== - e a closed (Euclidean) disk in R2 . Let f(x) =0 for interior points x of

izl = += for points x £ C , and assiqn arbitrary non-negative wvalues to f(x)

ints of C . Then £ is a preoper convex function on Rz + One obtains

o

' P

of ¢l £ in this case bv closing the epigraph of £ , and this amounts to
Z=fininz £({x) to be O on the boundary of C .,

T can be shown that for any proper convex function f , if epi f has a non-empty
, or if E 1is finite-dimensional, ¢l f agrees with £ everywhere exXcept

-=r=zos on the houndary of dom £ ., The closure operation may thus be regarded as a

tmless regularization procedure for making a given convex function lower semi=-
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continuous,

Continuity is almost as easy to come by,

THEOREM 1. Let £ be 2 convex function on E . Suppose that epi £ has a non=

empty interior, or that = 1is finite-dimensional, or that epi £ 4is closed and E is

a Banach space (or a tonnelé space), or that there exists a point at which f is finite

and continuous, Then f is necessarily continuous at all points other than boundary

points of dem £ , and in particular f is continuous on any open set on which it is
finite,

This theorem is classical and well-known, except for the case where £ 1is closed
and E is a Banach space, whiech is due to Brgndsted {2}. [The extension to tonnelé
spaces, and hence to all non=-Banach reflexive spaces, such as those in the theory of
distributions, is due to the author [23],)

The importance of Thecorem 1 in optimization problems stems from fact that such
problems often give rise to convex functions in a manner which should not in general be
expected to ensure continuity, For example, the perturbation function p of a classical
convex program is a convex function on g™ ; and 1f the program is strictly consistent
the interior of the effective domain of p contains the origin, It follows then from
Theorem 1 that the infimum p{u) is a continuous function of the perturbation u in
some neighborhood of u =0 ,

Almost all of the rich duality which pervades the thecory of convex functions flows
from Fenchel's notion of conjugacy. Let f be a closed convex function on E , On the
one hand, we can describe { in terms of the collection of all points (x,u) ¢ E & R
such that u > f(x), i,e, the epigraph of f , But there is also a dual description,
Since f 1is the pointwise supremum of the collection of all continuous affine functions
h such that h < £ (by definition of £ being closed), we can describe f in terms
of the points (x*,u*) ¢« E¥ @ R such that

<x,x%> = y% < £(x) ,¥xe E,
What Fenchel noticed was that this collection of points (x*,u*) forms the epigraph of
a certain function £* on E* ,

£x(x*) = sup,, {<x,x"% = £(x)} .
This £% is called the conjugate of £ , The formula expresses £% as the pointwise

supremum of a collection of continuous affine functions of x* , so £* is a closed

"
i

i
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convex function on E* , The conjugate f£%* of £ 1is in turn given by

7% (%) = sup,. {«x, %% = £%(x%})}
i,2, =** is the pointwise supremum of the continucus affine functions «<+,x*> = u* on
= === oTmat ot o> £%(x*) . But this supremum is f , by the definition of €% , Thus

=% = £, Condugacy is therefore a symmetric one-to-one correspondence between the

_-==Z ooowex functions on E and the closed convex functions on E¥ , Of course, the

s=-<=z=z== oF a2 convex function £ which is not closed may be defined by the same

. ©On= then has £%* = (cl f)*, and conseguently £** =¢l £ ,

T-o- =xz=ple, if £ is the indicator of a convex set € in E , the conjugate of

I (x*) = sup, {ext,2%> = a(x|C)} = sup [<x,x*>|xc C 1} .

=iz fumction is known as the supnort function of C ;, since it may be used to describe

ik

11 === (closed) supporting hyperplanes to C . Note that, in general, £* is closely

to the support function of the convex set epi £ in E & R, in that £#(x7)

Ze supremum over epl f of the linear function

{%;u) » <%, ¥%> + ay
i= the normalized case where a = =1 ,
Znother case of conjugacy, which we would like to mention for its beauty, occurs
and
£x) = (/P ex, 0%, 1 <p <o,
csing a symmetric n X n positive definite matrix, Then f is a closed proper
—=owvex function and
Fr ) = (/@) <0 tat,xn2 1 c g e,

== (i/p) + (1/g9) =1 .

z R Tirsctional Derivatiwvesz and Subgradients.
Let £ be a conwex function on E and let x be a point where £ is
fimize, It can be seen that the one=-sided directional derivative

' (x:y) = lim [£(xhay) = £(x)] /2
A 40

sxizzs for everv v e E (4= and == being allowed as limits), and f£'{x;y) is a convex



function of y which is positively homogeneous (of degree one), If f£'(x;v) is
actually a continuous linear function of y , i.,e. if there exists a vector x* ¢ EY
such that

Y {x;y) = <y,x7> , ¥y e 2,
then f is said to be differentiable at % in the sense of Giteaux, and x* is said
to be the gradient of f at =x and is denoted by VE(x) . It iz a classzsical theorem
about convex functions that, if E is finite-dimensional, G&teaux differentiability is
equivalent to differentiability at x 1in the sense of Fréchet, Fré&chet differentia -
bility requires that

- cx¥®, Ze=x>

lim £{z) - ?if =0,

).
Z+X %
A more general concept of gradient can be exploited by convexity methods. & vector
x* ¢ E* 1is called a subgradient of £ at =x if
flz) > £(x) + <z-x,x*> ,¥Yxe E ,
This inecquality means that graph of the affine function
hi{z) = £(x) + <z=x,x%>
1s a supporting hyperplane to the convex set epl f at the point (x £(x})) . There

may be more than one subgradient at =x or none at all., At all events, the subgradients

x* at x form a closed convex set in E* which is denoted by 3

(x) « If af(x) # @ ,

£ is said to be subdifferentiable at x . Theorems about subdifferentiability are

easily deduced from well-known theorems about the existence of supporting hyperplanes.

THEOREM 2. Let f Dbe a convex function on E , and let x be a point vhere f

is finlte and continucus (cf. Eheorgg 135 Then f is subdifferentiable at x , and

Fllx;y) = sup { <y,x*> | %% ¢ 3f(x)}<= ,Vy c E,

The set 3f(x) consists of a unique x* 4if and only if f is Giteaux differentiable

at x , in which case x* = Vf(x) ,

THEOREM 3, Let f be a convex function on E , and let x be a point where f

is finite. Then f fails to be subdifferentiable at x if and only if the directional

derivative function £'(x;+) is unbounded from below in every neighborhood of the
origin of E ., If E is finite-dimensional, this condition actually implies the
existence of a vector y such that £'(xy) = == ,

The wvalue of these theorems can easlly be appreclated in connection with Lagrange

1

i
Iy



Zzzl numbers Aprerver Ay are gaid to be Lagrange nmultipliers for a given

> 0 for i = 1l,,..;, m and the infimum of the convex

-
on E is the same as the infimum of 50 subject to

F x <« T , i=1,,44py m ., (We assume in what follows that the latter infimum, which
= - T,...,0) , is finite.) It is easy to see that, in terms of the perturbation
“—-=--= o= Zor the program, this condition is eguivalent to having
P(0)eeayD) € DUy peenpv ) + hjuy Foaat Ao P T ugreearug

Setrizs uwt = (Al,...,Am) you = (Ul""'um) , we can write this as

plu) = p{0) + <u,-u"> s Vue RT,
= =e=ans that -u* ¢ 3p(0) . Thus u* ¢ R" is a Lagrange multiplier vegtor if
=ly if =u¥* 1is a subgradient of p at O .
It Zeollows that all guestions about the existence or interpretation of Lagrange
—=lzizliers in an cordin&rfy convex program correspond to questions about the subgradients

= convex function on =™ , According to Theorem 2, a Lagrange maltiplier vector

=s if the program is strictly consistent, since then 0 ¢ int (dom p) and p»n is

nuous at 0 . Moreover, in this case Lagrange multiplier vectors completely

Zzscribe the directional derivatives of p at © , i.e. the rates of change of the in-

—o= In ths progam with respect to different directions of perturbation. The Lagrange

3ltipliers Ai are unique if and only if p is actually differentiable at 0O , in

w=ich case one has
- i 1= 1yuwey m o

MET I lu=o0
Iz zznsral, by Theorem 3, Lagrange multipliers fail to exist if and only if there exists
sector with respect to which p has directiconal derivative -= at the origin. 1In

rcumstance, the program is highly unstable, in the sense that there is a direction

ci

=Z perturbation in which the infimum drops off infinitely steeply. Thus, apart from
==i= unstable case, Lagrange multiplier vectors always exist.

agrange multipliers can alsoc be interpreted as "equilibrium prices", Let us think

L

the given problem as one of minimum cost, If we could perturb the problem by
zltering the constraints from £,(x) <0 to f,(x) 2 v; for a certain choice of
Sirsaapuy oy We might be able to achieve a lower cost, Suppose perturbations can be

ouznt at prices Ay per unit of wariable Uy o The minimum cost in the perturbed

crchlem, plus the cost of this perturbation, is then
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P(‘le-lopum) + AL s S e ) &)

171 m m
The perturbatien u = (ul,...,un) is worth buying only if this total cost is less than
the minimum cost in the unperturbed problem, which is the amount »{0,...,0} . Thus,

according to the analysis above, Lagrange multipliers are precisely the prices Ai
which have the property that no perturbation is worth buying, For such prices there
is an equilibrium, in the sense that the incentivs for perturbation is neutralized.

The subgradients of a closed convex function £ and its conjugate f* are related
in a simple way: one has x* ¢ 3f(x) if and only if x e 3f (x¥) . 1In other words,
the multivalued mappings 3f and af* are the inverses of each other.

Fenchel's conjugacy correspondence can be regarded as a generalization of the
classical Legendre transformation, which is so important in Hamiltonian dynamics and
the calculus of wvariations, and this is the idea behind the applications to be described

; . : n Al
in §6, Let f be a differentiable convex function on R . By definition, for each

n - E ; -
x* e R, £*{x¢) is the supremum of «<x,x*> - f(x) as a function of x , This is a

differentiable function, and its supremum is attained (if at zll) at the peints where
the gradient, which is x* - Vf(x) , vanishes. Thus

£5({x*) = <x,;x%> = £(x) if and only if V£(x) = x7,

If the gradient mapping V£ is actually one-to-one from R' onto R , i,s, if the

equation VE(x) = x* has a unigque solution =x for each x% , we have
i =
Er(xs) = <(TH) Hx%), xo - £((VAH T(x)), ¥z .
This is the function which is called the Leqendre transform of £ , The general theory

of conjugate convex functions implies that the Legendre transform, if it ewists, is
another differentiable convex function whose Legendre transform is turn £ . The
gradient mapping of the Legendre transform of £ is (V’F]_l .

Observe that, even if Vf is not one-to-one, it is still true that

P E()) = <x, VE{x)> = F(x) ,Vx .,

The expression on the right is a common one in the convex preogramming literature, It
is generally not a convex function of x , of course, and it only expresses the values
of the conjugate function on the range of the mapping Ve .

We refer the reader to fBGj and [39] for more details ahout the relationship

between coniugacy and the Legendre transformation,

n
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%s we have seen, in an ordinary convex program one is concerned with mini-

= csrtain convex function (possibly infinity-valued) over E , This function is

=m==23=2 in 2 natural way in a whole class of functions depending on a parameter vector
= , w-icn =av be regarded as a perturbation. Lagrange multipliers evaluate the effects
= -iven class of perturbations. We shall take these notions as the starting point
oz = muz2ch mere general theory of convex programs.

= D and D* be two more topoleglcal real vector spaces paired together as

the beginningof §2, just like E and E¥* ,

By a

==z o each u e D a convex function Fu on E in such a way that the function

convex bifunction from D to E , we shall mean a correspondence F which

{uyx) + (Fu) (x) ,
w=_c2 we call the graph function of ¥ , is convex on the space D & E . Obviously each
coovex function on D & E  is the graph function of one and only conveg.ﬁifunction r .
T== bifunction is the graph function broken down into two stages:

F:u + Fu ¢ ®x » (Pu)ix) .
The reason why we introduce the conceot of "bifunction", instead of dealing directly
wizth functions on D & E is the same as the reason why one speaks of multivalued
mz-oinags from D to E  instead of the corresponding subsets of D @ E (their graphs),

W= want to stress certain analogies with ordinary mappings, particularly linear trans-

Note that if A 1is a linear transformation from D to E and
8] if » = Au ,
(Pul(x) = ¢(x|au) =
+x if x # Au ,
<hen F  is a convex bifunction, We call this ¥ the convex indicator bifunction of A&,
3v the convex program ({P) associated with a convex bifunction 7 from D to E,
w= shall mean the problem of minimizing the convex function FO in E , as viewed in
=== context of the whole class of problems in which, for different cheices of u , Fu
= =inimized over E . The vector u is regarded as a perturbation, Thus a general

—onvex program (P} , in our conception, is not just an isolated minimization preoblem

== 2 minimization problem with a specified class of perturbations. The perturbation

P ettt

{B) is the function p = inf F on D defined by



{inf ) (u) = inf(Fu) = infx(Fu){x) .

A vector u* ¢ U* is called a Lagrange multinlier vector for (P} if (inf F) (0)

{the infimum in (P)) is finite and
(inf F)(0) < (inf F) (w} + <u,u™> ,Yue D,
{3uch a ¥ can be interpreted as an equilibrium price vector for perturbations,) A

vector % £ E is called an optimal seclution to {P) , of course, if the infimum of FO

iz finite and attained at x .

An ordinary convex program corresponds to a bifunction F  from D = Bt Lo T
of the form
f_{x) if A% & Togwuny FolXR) 20 ]
o - "1 m - m
(Fu) (x) = :
+e= if not,
where fo' fl"“’ fm are finite convex functions, It is easily wverified that such an

® is a convex bifunction.
By virtue of the follewing theorem, all the results which have been described for
Lagrange multipliers of ordinary convex programs can immediately be extended to general

conveX programs.

THEOREM 4, The perturbation function in F of a general convex program (P} 1is a

convex function on D . When (inf F)(0) 4is finite, the Lagrange multiplier vectors

for (P} are precisely the vectors u* such that -u” a subgradient of inf F

|UI

at 0,

It follows from Theorem 3, for example, that a Lagrange multiplier vecdtor exists
for (P} as long as (P) is reasonably stable under the given perturbations (and the
infimum in (P) 4is finite),

Theorem 2 can be applied to 1nf F to get results atout Lagrange multiplier vec-

tors for (P) when inf F is continuous at O . Here is one criterion for continuity,

THEOREM 3, Suppose there exists a vector x, € E such that, for some real number

a and some open neighborhood U of © in D , one has

(Fu) (x ) <& ,TueU.
Suppose also that inf F) (D) }s finite, Then inf F is f&nite Egﬁ_continuous at
every point u e U , and in particular continuous at u = 0,
proof, The condition implies that the epigraph in D & R of the convex function

u o+ (Fu}(xo} contains an open set whose projection on D is U . This epigraph is



[

RE

in the epigraph of inf F , Apply Theorem l. ||

‘) has a unique Lagrange multiplier vecter u”* , for instance, and the
~==Z:i=i~= in Theorem 5 18 satisfied, then -u* is the Gateaux gradient of inf F at

and one has

LD [ing B) ) = (dnf 2 (0)] /3 = =emputs , Vu .

Tos Dual of a Convex Program.

The results above concerning Lagrange multipliers can be dualized to results
== cotimal solutions to convex programs., This is made possible by the fact that each
=1 convex program (F) has a certain "dual", which is a "concave" program (P¥) .
=--zZ1v speaking, the optimal solutions to either program are the Lagrange multiplier
w=czors for the other program.

2 function o on E is said to be concave, of course, if =g is convex. We

===11 find it convenient to place concave functions on an equal plane with convex

—c=zions in what follows. The theory of concave functions is a mirreor image of the
=orv of convex functions, of course. The symbols < , inf , += , are everywhere
i==z=rchanged with >, sup , == , There is no need for us to write down the definitions

- Zomg, clyg, 3g, etc,, when g is concave, These definitions are all obvious.

= iz a possible source of confusion, however, in the case of conjugates. The

comdugate og¥ of g is defined by

g*{x*) = inf { ex,x%> = g(x)} ,
==3 what needs caution is the fact that g* # -(=g)® , (Instead one has
g¥ (x*) ==(-gi*(=x*),)
4 concave bifunectien G from D to E is associated with a concave program

, in which one maximizes rather than minimizes, The perturbation function for this

is denoted accordingly by sup G @

{sup G) (u) = sup(Gu) = supx(cu)(x) .

A

The dual of a convex program is defined in terms of a notion of ths adjoint o

—onwvex bifunction., Let P be a convex bifunction from D T E . We shall assume
Zor simplicity that F is closed, i.e, that the graph function of F 1s closed, We

Z=Zine the adjoint of F to be the bifunction F* from E* tg D* given by
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(Ffx*) (u*) = inf { (Fu){x) = <x,x* + <u,u¥>} .
u,x

Tt is not difficult to show, from the basic facts about conjugacy, that F¥ is a closed
concave bifunction, The adjoint of a concave bifunctien is defined in the same way,
except with "sup" in place of "inf", and it is a convex bifunction, nne has F** = F ,

This definition of " adjoint" may be regarded as a generalization of the adjolint
of a linear tranformation, Convex bifunctions from D to E and their adjoints
correspond to concave-convex functions on D x E* much as linear transformations from
D to E correspond to billinear functions on D x E* , See [39}.

Let F be a closed convex bifunction from D to E and let (P) be the
associated convex program, The concave program (P*) associated with the adjoint
bifunction F* is defined to be the dual of (P} . The dual of (px) 1is (P} again,
inasmuch as F#*¢* = F , In (P) , one minimizes the convex function FO on E in the
context of minimizing "neighboring" functions Fu corresponding to various pertur-
bation vectors u e D . In (P%) , one maximizes the concave function F¥0O on D¥* in
the context of maximizing “neighboring" functions F*x* corresponding to various
perturbation vectors x* ¢ E*¥ , The "optimal value" in (P} is {inf F) {(0) , while
the "optimal value" in (P*) is (sup F*) (0) .

This concept of "qual program" reduces to the familiar one in the case of linear

programs, Suppose D = D* = R™ and E=E*=R'", Let A be a linear transformation
from RT to R" y let a ¢ " and a*e R® . Define
_ <xX,a*> 1if = >0, Ax > a - u,
(Fu) (x) [ +en if not.
m n

Then F is a convex bifunction from R to R' , and in the program (P) associated
with F one minimizes <x,a*» subject to x > 0, Ax > a . By a straightforward cal-
culation, 1t is seen that the adjoint of F is given by

<g;u*> if u* > 0 , A*ur < a* = X¥ ,
- if not,

(F*x*) (u¥*) = {
where A% is the adjoint of A (corresponding to the transpose matrix), In the dual
program (P*) , therefore, one maximizes <a,u® subject to u* > 0, A*u¥* < a¥

In general, we shall say that (P) is normal if the functien inf F coincides
with its closure at O , Assuming that (inf F)(0) < 4= , this is equivalent to the

natural stability condition that
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1iﬁ+énf L(J_nf ) (u)] = {inf F} (O} .

‘=) is said to be normal if the concave function sup F*¥ agrees with its

© ., We then can state a basic general fact about the relaticnship between

5, The following three conditions are equivalent:

5 (P*} is normal;

(?) is normal;

c {inf F) (0) = {sup #*)(0) 1.2, the extrema in (P) and (P®*) are equal,

“=: us say simply that normality holds when these equivalent properties are present.

= ==== in particular that normality holds when ¥ satisfies the condition in Theorem 3,
=.=== zhen inf F is actually continuous at © , Likewise, normality holds if F~*

=z=:z“i=s the dual wversion of Theorem 5, It can also be seen easily that normality

= if 2 Lagrange multiplier vector exists for (P} or for (P*) .

TEEZOREM 7. Suppose that normality holds and that the common value for the infimum

ix =) and the supremum in (P*) 1is finite, Then u* 1is a Lagrange multiplier vector

o= () 4if and only if u* is an optimal solutien to (p%¥) , Dually, x is a

—zcrznge multiplier vector for (P#%) 1if and only if x is an optimal sclution te (P) .

This theorem implies, for example, that if F* satisfies the hypothesis of the
=-=1 version of Theorem 5, then (P) has an optimal sclution., Moreover, the optimal
s-lution X 1is unique if and only if =-x is the GEteaux gradient of the perturbation

fznction sup F*¥ at O,

. Hamiltonian Dynamics and Control Theorw,

Some new applications of convex function theory to the calculus of
wzriations will now be sketched briefly, Specifically, we shall indicate how convexity
m=<mods make possible an extension of Hamiltonlan dynamics broad enough to include many
—roozlms of control theory.

In classical Hamiltonian dynamics, of course, the state of a given "system" is

s=oresented by a moving point in R® , The possible trajectories t + x(t) are all



differentiable, and they are characterized in terms of extremal properties of

Ji L(x(t), =(t), t)dt ,

where L 1is a real=valued sufficiently differentiable function on " x ”" x R called
the Lagrangian of the system, The trajectories are thus the selutions to the Euler=-

Lagrange egquations:

(x(t), %(£), t) = 2% (x(t), k(t), €)

wr
e

A

dt

X

a

{where 3L/ 5x 1is the vector in g consisting of the first vartial deriwvatives of L
with respect to the commonents of x , and similarly 3L/ 3% ). The trajectories. are
alsoc characterized as the solutions to the Hamiltonian eguations

3

)e) = =2 (x(v), plt), £) , BlE) = - =& (x(8), p(t), ).

The function H , called the Hamiltonian of the system, is obtained from L by taking
the Legendre transform in % for each x and t . (It is assumed that this trans-
formation is well=defined.,) The vector variable p» in the Hamiltonian equations is
cennected with duality. (In the case of the motion of planets, for instance, x 1is
positien, p is momentum and H is total energy.} The system is completely described
by either its Langrangian or its Hamiltonian.

Ye propose to extend the classical theory by using Fenchel's conjugacy correspon=
dence instead of the Legendre transformation, Differentiability assumpiions are to be
replaced by convexity assumptions. The Lagrangian function is to be convex, so that
its extremals correspond to minima, but it need not be finite everywhere, and this is
what will make the theory applicable to certain problems in control theory. The
Paitrvagin Maximum Principle for such problems appears in the form of generalized
Hamiltonian equations involving subgradients instead of gradients. The paths p(t) turn
out to be the trajectories for a certain "dual system". This duality is an extension
of the theory developed by Friedrichs L13] {see also [5; and [26]) in the case where the
Legendre transformation is well=-defined,

In the following discussicn, we can only scratch the surface of a very large
subject, There are many new results besides the ones we mention here. For simplicity,
we shall keep to autonomous systems of the "nicest" kind.

Let E_ denote the space of all absolutely continuous functions x from the

interval [0, 1] to " (paths in &%), O0f course, E, is a Banach space under the

hii
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. T
|| = |x(0)| + fo |%(£) |at
- 1 . 2n s
== . 2= = closed proper convex function on R . Giwen a path x in E.‘_r y We can
it = ':.'_-=gral

T
I [x] = fo L{x(t), &(t))dt ,

I —=—== o==< that this integral is always well-defined and is never == , In fact I.r

W
(1}
i

convex function on E [32]. The general theory of convex programs can
fste? = : :

)i
1]
|
18]

== zpplied to problems involving the minimization of I _ .

¥
"

suppose one wants to minimize IT subject the boundary conditions
= - - -, =(:) D, wherea C and D are closed convex sets in r® + The set of curves
=--=2 these boundary conditions is a closed convex subset of ET ; so the problem

== -F =inimizing a convex function over a convex set, Existence theorems, transver=

zicns, ect, can ke deduced by convexity methods alone, "Convex" pertur-—

= —=v be introduced, and these lead to wvarious dualities including the duality

2 x and p systems below,

I [x] = += unless the point (x(t), %(t)) belongs to the convex set
== _ ZIzr zlmost every t . The latter conditien is thus an implicit constraint in

=ry oroblem where I is minimized, For instance, if
2y

% T iy P . -
Ry = Lo{x;x) if Li(x,x} < 0, 1 lyvauy My
Foo if not,
#==== L_, Lys.esy L are finite convex functions, then minimizing I is equivalent

JT L, (x(t), (t))dt
o

=zt o the constraints that
Ly (xy%) < Opauey L (x,%) <O,
==r each pair of points & and bk in r" y let ft(a,b} denote the infimum of
T Ix cvar all the paths x ¢ E_ such that x{0) = a and =x(t) =b , Then £, is a
——cw=x function on R2n + Paths along which the infimum defining fT is attained and

= =-z= are called extremals of L . More exactly, an extremal of L is any absolutely

—==zinuous function x from an interval [e«,g] to 8" such that
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8
J L(x(t), k(e))at = £, (x(a), %(8)) < = ,
s f=a

Some limitations on L are needed in order to obtain a good existence theorem for
extremals, We shall denote by W the class of all closed convex functions £ on Rzn
such that, for each x ¢ R" , the convex functien f(x,,) on rRY s proper and has no

non=vertical half-lines in its epigraph.

THEOREM B, If L e W , then ET ¢ W for every 1 > O , and the infimum defining

fTEa,b) is always attained by at least one path x ., Moreover, if the point (a,b)

belongs to the relative interior of the convex set dom £ (the interior of dom fT

£ - 1 - i
with respect to the smallest affine set translate of a subspace containing dom ft);

then the path x for which the infimum is attained has a bounded derivative (i.e. the
1

function X belongs to L° rather than to L~ ).

We may think of each L ¢ W as the Lagrangian of a certain "convex dynamical

system". The system always behaves in such a way as to minimize the integrals

B
J Lix(t), %(t))at .
a

The trajectories in r?

representing changing states of the system are the extremals

of the Lagrangian L ., According to Theorem 8, if there exists a path from a at ¢t =20
to b at t = 1t , such that the integral of L along the path is not += , then there
actually exists a trajectory of the system passing from state a to state b in ¢

time units,

For example, suppose the given system is an "economy" whose states are expressed by
gvectors x ¢ R (the components of x being the amounts of various goods that are
present). Let L{x,X) be the cost of producing goods at a rate x ¢ 2" uhen the econo-
my is in the state x ¢ R ., (Certain "production schedules” X may be forbidden by
setting their cost = += ,) The inteqral of L along any given path from a to b is
the total cost of passing from state a +to state b along this path, If we assume that
the economy always behaves so as to minimize total cost, it follows that the state
trajectories of the economy will be the extremals of its Lagrangian L . (In cennection
with this assumption about ideal behavior, one can think of the system as not just the

economy itself, but the economy combined with a perfect controller, Thus the extremals

of L show how an optimally controlled economy would behave, 1f optimality is taken to

mean minimum "cost".)

[
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If I <is the (convex) indicator function of the graph of a linear transformation

B Tum E s R" y then L ¢ W and the extremals of L are just the solutions to

equation % =Ax , 1In this case fT is of course the indicator

Smme==_om of ths linear transformation eTA frem R® to RV s where

e ™ L F§ R Y R b

e ™ ferm a one=parameter group which is a representation of the

of real numbers, i.,e, one has

e{t+a)A - ETAEGR

y ¥r,0e R,
= === sc-called dynamical group of the system with Lagrangian L .
=12 like to mention that "convex dynamical systems" given by Lagrangians

=spond similarly to dynamical semigqroups consisting of bifunctions rather

transformations, It can be shown that the class of all convex bifunctions

S = =o R" whose graph functions belong to W is a (non-commutative) semigroup

= m=_=:iz-lication of bifunctions is defined by

((GF)u) (y) = inf, { (Fu) (x) + (Gx)(y}} .
so===Z1=z to Theorem 8, the bifunctions F given by (F¥a) (b) = fT[a,b] are elements
= =—.= s=migroup, and it happens that

+
F'°? =FF ,¥1>0,Vo>0.

T=z= cns has a one-parameter semigroup whose "infinitesimal generator" is the bifunction
Ziven a "convex dynamical system" with Lagrangian L ¢ W , we define the dual
—==vex dynamical system" to be the one with Lagrangian ™ , where

M(p,p) = L*(p,p) = sup_ {<x,p> + <X;p> = L(x,%)} .
e R

ﬁERn
= z=n be proved that M likewise belongs to W , so that Theorem 8 is applicable :o
=== Zuz2l system. The dual of the dual system is the original system, as follows from
—= swmmetry of Fenchel's conjugacy correspondence.

The integral of M along a path p ¢ E1 will be denoted by J_ (p) . The infimum

Z_ (p)} with respect to all paths p such that p(0) =c¢ and p(1) =d will be

Z==oted by gT(c,d} i

Cbserve that, for any two paths x and p in E1 ; one has



- 136 -

T
1. (x] + 3 [p] = [ lutx(e), k(&) + Mp(e), B(e))]ae
L a

> IT [<x(t), plt)> + <x(t), plt)>]de
[+]

i
=u[o a% <x(t), plt)sdt = <x(1), plr)l> = <x(0), p(0)>,

Therefore, for every a, b, ¢ and 4
ET{a,b) + quc,d} > <b,d> = <a,e> ,
and one has

gT[c,d} 2sup { <a,=c> +<b,d> - £ _(a;b)} = g5 (=g,d) .
a,b

It can be proved that actually gT(c,d} = f*T(-c,d] and fT{a,b) = g*f(—a,b} (at least

whan L e W) .

THEOREM 9. Assume that L ¢ W . In order that a given path X ¢ E_ be an

P e

extremal of L , it is sufficient that there exist a path p e E such that

(5t),ple)) e L(x(E),%(t))

for almost every t , in which case .p 1is an extremal of M . This condition is

necessary, as well as sufficient, if the point (x(0),x(t)) is in the relative interior

of the convex set dom £ .
The subgradient condition in Theerem 9 may be called the Euler-Lagrange condition
for L , since if L is differentiable it reduces to the classical Euler-Lagrange

eguations:

L = 2% (x(e),k(0), pe) =22 (x(0),E(0)) .

The Euler-Lagrange conditions for L and M are equivalent: one has (ﬁ,p) e 3L(x,%)
1f and only if (%,%) ¢ aM(p,é) , Paths x and p satisfying these conditions will
be called extremals dual to each other,

It can be shown that extremals dual to each other can be expressed as optimal
solutions to certain dual programs, In the case of an "economy" as above, the dual
system may be interpreted in terms of "market states", with plt) as a price vector.

Given a "convex dynamical system" with Lagrangian L ¢ W , we define the
Hamiltonian H of the system to be the function on R" x R" obtained by taking the

conjugate of L(x,-) for each =x ¢ r® . Thus

H(x,p) = sup_ {<%,p> — L{x,x)}
xeRD
Lix,x) = sup_ (<¥%,p> = H(x,p)} .

peR



—--r=s-ondence between Lagrangians L ¢ E and Hamiltonians H is one~to-
~2n be described completely by specifying H instead of by specifying
us+t what class of functions H is involved here, The answer, proved

32 is perhaps surprising: the Hamiltonians corresponding to Lagranglans

—_— " n n
v the real-valued (everywhere finite) functiens H on R° xR

= . i n
~o— -—=- ='=,n) is a concave function of x for each p e R and a convex function

==ch x e R,

a function H , we denote by 3 Hix,p) the set of subgradients of the

3 j
= =z—ction H{x,-) at the point p , and by - Exﬂ(x,p) the set of subgradients
st .- -2 -—-=—=% ‘unction -H({',p) at the peint x . Thus, when H is actually differen-

- = w= Save

ar
jas]

apH(x,p} =VPH{x,_?>) (x,p)

03

ar
== Rl w]

n
|

axH(x,p} = V;Hix,p) {(x,p) .

)
"

—=z-==v 10, Assume L ¢ W , In order that paths x and » be extremals dual to

===- zz-==r, it is necessary and sufficient that thev satisfy the Hamiltonian conditions

ior

X(€) & 3 (H(x(£),m(t)), = B(t) e D H{x(R),p(0)) ,

== can be proved from the existence theory for solutions to contingent differential
~ns that the generalized Hamiltonian egquations in Theorem 10 have at least one
---=:on proceeding from each choice of the initial point (x(0),pl0)) .

= cannot furnish an adequate explanation here of the relationship between the above
——z-7-= and results in control theory, but the following special example will serve to

_-<--=2-= some of the connections.

== £ be a finite convex function on R" , and let ¢ be a closed proper convex

m ; 2 . =
si~==:2n on R' whose epigraph contains no non-vertical half-lines. We are interested

=z ==aimizing
T "
‘J’ [£(x(£)) + glu(t))]dt
o
-—--=2+ to endpoint conditions x(0) =a , x(x) =b , and the differential equation
X = Ax + Bu ,
-2-= 3 is nxn, B is nxm, xe E_ and u is a function from [0,1] to g"

_-=cing to L~ , Here u may be interpreted as a control for a system whose states



or positions are given by x , and f and g may be interpreted as cost functions.
For each x ¢ R' and % ¢ " , let
Lix,%) = £{(x) + in® {g(w) | w e R" , Bu =% - Ax) .

It can be shown that the infimum is always attained by some u ¢ r™

(whaen the infimum
is not merely +=), Moreover, L ¢ W . The "convex dynamical system” with Lagrangian
L can be interpreted as the original system combined with a system which, for any
position = and velocity % , fixes the control u so as to yield the given velocity
as cheaply as possible,
What are the trajectories for this system, assuming it behaves so as to minimize
total cost? Every trajectory which has a dual (and this includes "most" trajecteries
by Theorem 9) occurs as a solution to the generalized Hamiltonian equations. We calculate

the Hamiltonian H corresponding to L as:

H(x,p) = sup, {<x,p> = £(x) - inf {g(u) | Bu = % = Ax}}

sup, {<Bu + Ax,p> - £(x) =~ g (u)}

<Ax,p> = f£(x) + sup, {<u,B"p> = gfu)}
= <Ax,p>» - £({x) + a*(B*p} ,

where B* is the transposzof B , The assumptions on g actually imply that g* is
finite everywhere, The generalized Hamiltonian equations reduce to

x el{Ax + B 3g=(B¢p)) ,

- e(A%p = 3£(x)) ,
where the first condition can alsc be written as

%X = Ax + Bu , u e 3q *(B¥p) .

To make things specific, let us suppose that m=n , A =0, B =1, £(x) = <x,e>

where e # 0, and

aw = {I2h 2 |2

(For this choice of g , the cost of a contrel function t + uft) is += unless u(t)

b ¢

1
= 1,

belongs to the Euclidean unit ball for almost every t . This ball is the control ragion,

in other words,) The Lagrangian in this case 1s given by

L(x,%) = {j_:rm s el 2g H

1
1,

wha

and the Hamiltonian equations are

X e agh(p) , B = ¢ .

(]
M
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A (p) =max { O, |p|l -1 1,

’ 0 if lp -2 L
am ig¥(p) = {rp|0 < 2 £ 1} if |p| =1,
=1 if pl 1 .
an [pl ™o Ip|
Wees., ==v== 20y points a and ¢ in r" ; there is a unigue dual pair of extremals x
Ey == = s=c= that x(0) =a and p(0) = c , namely
plt) = ¢ + te ,
e x(g) = a + Jt slc + te)d: ,
o
s
—
ulate
0 if je+ te| <1,
s(c + te) = -1
e + te] “(c + te) 1if |e + te| > 1 .
The =—coice of ¢ determines whether a given terminal conditien x(1) =b will be
st Tied,
is
P>
(t)

2gion,
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