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Duality in Nonlinear Programming

1. Introduction. An ordinary nonlinear program in n variables
may be defined as a problem of minimizing a quantity f,(x) sub-
ject to constraints fi(x) 0, ---,fa(x) =0, where fo, +++, [ are
certain real-valued functions of the vector x= (xy, -, x,) & R"
The problem may be interpreted broadly or narrowly, however.

In the narrower sense, one is only interested in the infimum
of a certain function given on a subset 8 of R". The elements x
of the subset & are the so-called feasible solutions to the problem.
Typical questions are the following. Is the infimum finite? Do
there exist optimal solutions, i.e. feasible solutions at which the
infimum is attained? Is there only one optimal solution? One
seeks conditions which guarantee “yes’ answers to these questions,
as well as algorithms for actually computing the infimum and
optimal solutions.

In the broader sensze of the probelm, one is also concerned with
the sensitivity of the infimum and optimal solutions to slight
changes in the constraints. This is where duality and Lagrange
multipliers come in. Let p(u, -+, u,) denote the infimum of falx)
subject to fi(x) £ uy, -+, fu(x) Su,. Each u=(u, -+, u) € R”
corresponds to a certain perturbation of the given problem and
p gives the infimum in the perturbed problem as a function of u.
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One is interested in the properties of p near u = 0. For instance, is
p continuous or differentiable at © = 07?

It is especially important to look for numbers uf, ---,u; such
that

p{uh"'yum) gp(os "'50) _u'l*u"l_ SR T ur:um,s
v{uls "'sum) eRm'

Such numbers can be interpreted as “equilibrium prices” if the
objective function f; is interpreted as a cost function. Suppose
that in trying to minimize cost we are allowed to perturb the
given problem in the above sense by any amount (uy, -+, u,),
but that this perturbation must be paid for, the price being u}?
per unit of variable u;,. The minimum cost attainable in the prob-
lem perturbed by (uy, - -+, u,), plus the cost of this perturbation, is

(1.1)

Pl « oo up) Fufu; 4+ - uiu,.

If the prices satisfy (1.1), this is never less than the minimal cost

p(0,++-,0) in the unperturbed problem, so all the incentive for

perturbation is neutralized and there is an “equilibrium”.
Observe that (1.1) is satisfied if and only if

(1.2) fo(x) + ufus + ugtn 2 p(0, ---,0)

for every choice of x and (u;, --.,u,) such that fi(x) =u; for ¢
=1,.+-,m. Assuming p(0,---,0) is finite, (1.2) is equivalent to
the condition that w/ =0 for i =1,-.--,m and

folx) +uiffilx) + -+ u fulx) 2 p(0,---,0), YxE R™

(If u were negative for some i, (1.2) would fail for high wvalues
of u;.) In other words, the equilibrium prices are the same as the

nonnegative Lagrange multipliers w©*, --.,u,; such that the un-
constrained infimum of f,+ uff, + -+ + ulf, coincides with the
infimum of f; subject to the constraints fi(x) =0, .., /.(x) =0.

These reflections on the nature of an ordinary nonlinear program
lead us to propose a concept of a generalized nonlinear program
as not just an isolated problem of minimizing a given function
over a given set, but such a problem together with a particular class
of perturbations. In such a program, one is to study not only the
infimum in the problem corresponding to zero perturbation, but
also the sensitivity of the infimum with respect to perturbations
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to the “neighboring” problems. The Lagrange multipliers are to
be the ‘“‘equilibrium prices” for the perturbations.

The terminology of “bifunctions” is useful in describing the
dependence of an abstract minimization problem on a perturba-
tion. Suppose that for each vector u & R™ we are given a pair
(Su, Fu), where Su is a subset of R" (possibly empty) and Fu is
a function on Su with values in [— o, + J The correspondence

F:u— (Su, Fu)

will be called a bifunction from R™ to R". A bifunction is to be
regarded as a generalization of “multivalued mapping”: the image
of u under F is not just a set, but a set with a distinguished
function attached to it. One can interpret the function Fu as
assigning a relative cost (Fu)(x) to each element x of the set Su.

For any bifunction F from R™ to R", we define a generalized
program (P): minimized the function F0 on the set S0. The prob-
lem is to include the local analysis of the properties of the function
p=iInfF at u =0, where

(inf F) (1) = inf} (Fu) (x)| x € Su}.

(By convention, an infimum is + « if the set over which it is
taken is empty.) A vector x & R" will be called an optimal solu-
tion to (P) if (infF)(0) is finite and attained at x. If (infF) (0)
is finite, we define a Kuhn-Tucker vector for (P) to be a vector
u* & R™ such that

(nf F) (w) + (u*,u) = (inf F) (0)

for every perturbation u & R". (Here (-, -) denotes the ordinary
inner product of two real vectors.)

Observe that, if F is extended by setting (Fu)(x) = 4+ = for
all x g Su, the corresponding (P) is essentially the same. No
generality is lost, therefore, if one considers only cases where Su
= R" for all u.

Under simple convexity assumptions on the bifunction F, a
comprehensive duality theory is possible for generalized programs,
as will be explained below. A dual program (P*) may be con-
structed which is of the same type, except that it involves maxi-
mization rather than minimization. The dual of the program (P¥)
is in turn (P). The extrema in (P) and (P*) are generally equal.
The optimal solutions to (P*) are generally the Kuhn-Tucker
vectors for (P), while the optimal solutions to (P) are the Kuhn-
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Tucker vectors for (P*). The pairs of optimal solutions to (P)
and (P¥) are the saddle-points of a certain Lagrangian function.

An intriguing mathematical feature of the theory to be ex-
plained is that it constitutes a new “‘convex algebra’” closely paral-
lel to linear algebra. The convex bifunction F plays a role analo-
gous to that of a linear transformation. Duality is obtained by
the construction of an adjoint bifunction F* in terms of Fenchel's
conjugacy correspondence. Whereas a linear transformation and
its adjoint are related by a bilinear funection, a convex bifunction
and its adjoint are related by a concave-convex function. The
formula (Fu,x*) = (u, F*x*) (in which (-, -} denotes a generalized
inner product to be defined in §4) appears as an ““inf = sup”
theorem for a dual pair of programs. Minimax theory is associated
with the “inverse” operation for bifunctions.

The results in this paper are based on the general theory of
convex functions and especially on the very important notion
of conjugacy due to Fenchel [17]. The elementary facts about
convex functions are reviewed in §2. Further details can be found
in the works of Fenchel, Brgndsted, Moreau and Rockafellar
listed among the references.

The complete proofs of the new duality theorems and of the
theorems about bifunctions are all contained in a forthcoming
book |44]. Some of the main ideas have already appeared in pre-
vious papers, however. A perturbational approach to duality
theory has been given by the author in |43 and [38]. The corres-
pondence between concave-convex functions on RE™ X R® and
convex functions on R™'" (here the graph functions of convex bhi-
functions as defined in §3) has been established in [38]. A “con-
vex algebra” for multivalued mappings has been developed in
[36] and presented in [37].

Some applications of Fenchel's theory to general nonlinear
programming have also been described by Ghouila-Houri [2],
Dennis [7], Dieter |8, |9], Falk and Thrall [15], Karlin [23], and
Whinston [46].

An excellent discussion of Lagrange multipliers as “equilibrium
prices’ has been given by Gale [19] in the case of concave maxi-
mization problems depending on parameters. Our idea of a “gen-
eralized program” is essentially derived from Gale’s paper, but
the dual problems we speak of are quite different.

2. Convex functions and their conjugates. The object of the
finite-dimensional theory of convex functions is the study of
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pairs (C,f), where C is a nonempty convex set in R" and f is a
real-valued convex function on C, ie. a function from C to R
satisfying

(21) AQ-=Nx2+2) s 1A -Nf)+My), 0<A<],

for any x & C and y & C. There are technical advantages, how-
ever, in representing each such pair by a function which is defined
on all of R” but which may have infinity values, namely the function
obtained by defining f(x) to be + = for x¢ C.

In general, let f be any function defined on all of R" and having
values which are real numbers or = «. The epigraph of f, denoted
by epif, is the set of pairs (x,x) in R*™' such that x& R", y ER
and u 2 f(x). (Thus epif can be regarded as the set of all “finite”
points lying on or above the graph of f.) We define f to be a convex
function on R" if epif is a convex subset of B"'% If there is no x
such that f(x) = — «, this definition of convexity is equivalent
to inequality (2.1) being satisfied throughout R" with the obvious
rules for manipulating + e. (If f takes on — = as well as + =,
(2.1) cannot be used, because it might involve the undefined es-
pression « — w«.)

If f is convex, the set

domf=|x| f(x) < + = |,

which is the projection of epif on R is convex; it is called the
effective domain of f. A convex function f on R" is said to be proper
if domf is nonempty and f is finite on dom/; in other words, if f
is not the constant function + = and there is no x such that f(x)
= — , The restriction of f to C = domf is then a pair (C,f) of
the type mentioned above, and every such pair arises in this way.
Thus the study of the pairs (C,f) is replaced by the study of the
proper convex functions f on R"

Convex functions which are improper can arise naturally as
the result of certain operations, and they do have some technical
uses. The fundamental fact about an improper convex function
fon R"is that f must be identically — = on the interior of dom /.

A useful example of a convex function is the indicator function
8(+|C) of a convex set C in R", where é(x|C) =0 for x& C and
6(x|C) =+ = if xg C. If f, is a finite (i.e. real-valued, rather
than extended-real-valued) convex function on R”, the convex
function f = f, + 6(-| C) agrees with f, on C and is + = elsewhere.
Minimizing f, on C is equivalent to minimizing [ over all of R".
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We shall use this device to re-express all constrained extremum
problems as formally unconstrained problems.

Let f be a convex function on R®, and let D) denote the collec-
tion of all pairs (x*, u*) such that x* & R", u* = R and

flx) = (x,x%) — u*, YxER™

The pointwise supremum of the corresponding collection of af-
fine functions A(x) = (x,x*) — u* is called the closure of f and
is denoted by clf. Thus by definition

(2.2) (clf) (x) = sup | (x, x*) — p*| (x*, %) € D},

When clf =f, one says that f is closed. If f is proper, it can be
shown that the epigraph of clf is simply the closure in R*'! of the
epigraph of f. Then clf is a closed proper convex function on R"
and

(2.3) (clf) (x) = lim inff(y), Vx&R"

¥—x

¥

In particular, a proper convex function is closed if and only if
it is lower semicontinuous, i.e. has the property that the convex
level set {x|f(x) =u} is closed in R" for each real .

For a proper convex function f, (clf) (x) must actually coin-
cide with f(x) for every x in the interior of domf or outside the
closure of domf. Thus f— clf may be regarded as a regularizing
operation which simply redefines f at certain boundary points
of its effective domain, so as to make f lower semicontinuous.
For an improper convex function f, clf is the constant function
— o or the constant function + «, depending on whether or
not domf is nonempty.

Fenchel's important notion of conjugacy is obtained by further
consideration of the set D introduced above. Clearly D consists
of the pairs (x*,1*) in R*'' such that x* = f*(x*), where

(2.4) Fr(x*) = sup {(x,x*) — f(x) |x E R"|.

Thus D is the epigraph of a certain function f* on R". This f* is
called the conjugate of f.

It can be seen that f* is a closed convex function on R", proper
if and only if f itself is proper. The conjugate f** of f* is in turn
given by

f**(x) = sup {(x,x%) — f*(x*) [x* € R"}.
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But this supremum is the same as the supremum in (2.2). Thus
[** = ¢clf. In particular, if f is closed it is the conjugate of its
conjugate [*.

Conjugacy therefore defines a one-to-one symmetric corre-
spondence in the class of all closed convex functions on R".

As an example, the conjugate of the indicator function é(-| C)
of a convex set C in R" is given by

6%(x*|C) = sup {{x,x*) — (x| C) | = sug to, x®).
xCRM xel
The function 6*(:| C) is called the support function of C.

A convex function f on R" is necessarily continuous on the
interior of its effective domain. It is differentiable almost every-
where on any open set where it is finite.

Assume that x is any point where f is finite. The (one-sided)
directional derivative
(2.5) f(x;y) = lim fx+2) = fx)

Al A
exists and is a convex function of y (possibly with the values
+ =). Of course, if f is actually differentiable at x, we have

(2.6) fxy) =(Vix),y),
where V f(x) is the gradient of f at x,

viw = (L@, o @) .

ax, dx,

If f is not differentiable at x, the directional derivatives can
still be described in terms of ‘“‘subgradients”. A subgradient of f
at x is a vector x* & R" such that

(2.6) f(2) 2 f(x) + (z — x,x*), VzER"

This condition means that the graph of the function h(z) = f(x)
+ (z — x,x*) is a nonvertical supporting hyperplane in R"'' to
the epigraph of f at the point (x,f(x)). The set of subgradients
x* at x is a certain closed convex (possibly empty) set denoted
by df(x).

The case where df(x) consists of just one x* is precisely the
case where f is finite and differentiable at x, the unique subgradient
then being V f(x). It can be shown that, if x is actually an interior
point of domf, df(x) is nonempty and compact, and

(2.7 f'(x;y) = max {(x",y)|x* € df(x) | = 6" (y|9f(x))
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for each ¥ € R™. In general, df(x) is empty if and only if f'(x:¥)
= — = for some y.

When §f(x) is nonempty, one necessarily has (clf) (x) = f(x).
On the other hand, when (clf) (x) = f(x) one has x*&df(x) if
and only if x € df*(x¥). Thus the multivalued mapping df*: x*
— df*(x*) is the inverse of the multivalued mapping df: x— df{x),
when [ is a closed proper convex function.

Note that 0 € df(x) if and only if [ attains its minimum (over
R") at x. We shall use this fact later in a slightly different form:
when (clf) (0) = f(0), the vectors x* in df(0) are the same as
those for which 0 € ¢f%(x¥), i.e. for which f* attains its minimum.

The conjugate of a differentiable convex function f on R" is
closely related to the Legendre transform of f. Let C* be the set
of all gradients x¥ of f, i.e. the image of R" under the mapping x
— YV f(x). Given any x* & C*, the vectors x for which the supre-
mum in (2.4) is attained are precisely those for which x* = V f(x);
thus

(2.8) F*(x*) = (x,x*) — f(x) when x* = V[(x).
If the mapping YV is one-to-one, we get
(2.9) Frx%) = UVA 20,2 — VA ), ¥ Eel”

The right side of (2.9) is the formula for the Legendre transform
of f.

If Vf is not one-to-one, we can still conceive of parameterizing
C* in terms of x by means of the nonlinear substitution x* = V f(x);
the substitution yields the formula

(2.10) FE(V fx) = {x, ¥V f(x)) — [ (x).

This function of x is one which is commonly mentioned in the
literature of nonlinear programming. It is generally not convex,
of course, and it generally does not express f* completely, since
it only gives the values of f* on C*. The set C* need not be convex
in R", and there may be points outside of C* where f* is finite
but the Legendre transform is undefined.

It will be convenient in what follows to place concave func-
tions on an equal footing with convex functions. A function g
from R" to |— =, + « ] is said to be concave, of course, if f= — ¢
is convex. All the above facts and definitions for convex functions
have obvious analogues for concave functions, in which the roles
of + =, inf and = are interchanged with those of — =, sup and
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=z. In particular, the conjugate of concave function g is defined

by
g*(x*) = inf{(x,x*) — g(x)|x € R"}.

It should be noted that g% is not the same as — f*, where f= — g.
Instead one has g*(x*) = — f*(— x7%).

3. Dual programs and adjoint bifunctions, By a convex bifunction
from E™ to R", we shall mean a correspondence F which assigns
to each u € R™ a function Fu from R" (= Su) to |— =, + =],
such that (Fu) (x) is a (jointly) convex function of (u,x}) on R™™"
This function on R™"" is called the graph function of F. We shall
say that F is closed, or proper, according to whether its graph
function is closed or proper, respectively. The effective domain
of F' is defined to be the convex set which is the projection on E™
of the effective domain of the graph function of F, i.e.

domF = | u|3x, (Fu)(x) < + = |.

If F is closed, proper and convex, then in particular Fu is a closed
convex function on R" for every u, proper for u&domf but
identically + = for u & dom F.

For example, let f,,fi, -, fn be finite convex functions on R",
and for each w = (u, ---,u,) define the function Fu by

(Fu) (x) = folx) if fi(x) = uy, -, fulx) = un,

= + « otherwise.

(3.1)

It is easily demonstrated that F is a closed proper convex bi-
function. Note that dom F consists of the vectors u such that the
corresponding inequality system

f‘l(x} 5 Uy, = "fm(xj = Uy

has at least one solution x.
For another example, let A be a linear transformation from K"
to R" and let

(Fu)(x) =0 if x= Au,

(3.2) -
=+ o if x = Au.

This F is a closed proper convex bifunction which we ecall the
indicator bifunction of A. We shall see that the “convex algebra”
below reduces to ordinary linear algebra when the bifunctions
are taken to be such indicator bifunctions.
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Henceforth we assume for simplicity that F is a certain closed
proper convex bifunction from R" to R

The program (P) associated with F, as in the introduction,
is that of minimizing FO on R" Of course, minimizing ¥0 on R"
is equivalent to minimizing FO over the convex set dom (F0),
since FO has only the value + = outside this set. The elements of
dom (F0) will be called the feasible solutions to (P). This is sug-
gested by the case of (P) where F is given by (3.1), which we
refer to as the case of an ordinary convex program. Feasible solu-
tions to (P) exist if and only if 0 & dom F, in which event we say
(P) is consistent. If 0 is actually an interior point of domF, we
say (P) is strictly consistent. In the case of an ordinary convex
program, (P) is strictly consistent if and only if there exists an x
such that fi(x) <0 for i=1,.--,m,

The fundamental and easily proved fact on which our analysis
of (P) depends is that the extended-real-valued function infF
on R™ defined by

(inf F) (u) = inf (Fu) = inf{ (Fu) (x)| x € R"|

is a convex function (not necessarily proper) whose effective do-
main is the same as dom F. The theory of closures, conjugates,
directional derivatives and subgradients of convex functions can
therefore be applied to the study of infF at u = 0.

For example, if (P) is strictly consistent, 0 is in the interior
of the effective domain of infF, so we may conclude at once that
(inf F) (1) depends continuously on u for sufficiently small per-
turbations u.

Assume that (inf F)(0) is finite. By definition, u* is a Kuhn-
Tucker vector for (P) if and only if

(inf F) (w) = (inf F) (0) — (u,u*), Yu & R".
in other words if — u* is a subgradient of infF at 0, i.e,
(3.3) —u*E a(inf F) (0).

If (P) is strictly consistent, so that O is an interior point of
dom (inf F), we know from the general theory that d(infF)(0) is
a nonempty compact convex set in R™ whose support function
is the directional derivative function

HH& (inf F) (Au) — (infF) (0) ,

A

(3.4) (inf F)"(0; u) = Y
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In particular, a Kuhn-Tucker vector u* = (uf, ---,u;) does exist
when (P) is strictly consistent. This u™ is unique if and only if
inf F' is actually differentiable at 0, in which case one has

(3.5) uF — gd (TR a0 A N pe—

i

(Thus, for example, in an ordinary convex program the “equi-
librium" values of the Lagrange multipliers, if unique, give the
rates of change of the infimum in the program with respect to
changes of the constant terms in the corresponding constraint
inequalities.)

By the general theory of subgradients, a Kuhn-Tucker vector
fails to exist for (P) if and only if there exists a « such that
(inf )’ (0; u) = — =. The interpretation of this case is that there
is some direction of perturbation in which the “minimal cost”
drops off infinitely steeply, so that no finite “prices” for the
perturbation variables can bring about a state of equilibrium.

To get the program which is dual to (P), we need to introduce
the adjoint of the convex bifunction F. This is the bifunction F*

from R" to R™ given by x*— F*x*, where
e, R } } | |
= inf} (Fu)(x) — (x,x") + (u,u*}|lu E R",x E R"|.

Note that, in terms of the graph function f of F, one has
(F*x*) (u™) = —sup{(u, —u™) + (x,x7) — flu, x) |

== f i l—ut, "),

where f* is the conjugate of f on R™™". Thus F* is a closed proper
concave bifunction in the obvious sense.

The adjoint of a concave bifunction is defined as in (3.6), except
of course that “sup” replaces “inf". Thus the adjoint F** of F*
is defined in turn by

(F**u) (x) = sup} (F*x*) (u*) — {(u,u™) + (x,x*)|x* € R", u* & R"|
= sup{ (&, u*)+ (%, %) — fF ", %) | = [*"(u, ).

Since f**=f under the conjugacy correspondence, we have

F*=.F.

It is easy to see that, when F is the convex indicator bifunction
of a linear transformation A from R™ to R", F* is the concave
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indicator bifunction of the adjoint linear transformation A* from
R" back to R"™ (corresponding to the transpose matrix), i.e,
(F*x*)(u*) is0if u* = A*x* and — = if u” = A*x". In this sense,
the adjoint operation for bifunctions generalizes the one for linear
transformations. Further justification of the “adjoint” terminology
will be given in the next section.

We define the dual program (P*) to be that of maximizing the
concave function #*0 on R™ In (P®) we are also interested in the
properties of the function sup F* at x* = 0, where sup F* is the
function on R" defined by

(sup F*) (I*} — sup(F*I"J . sup{ (F*I*} (L-:'-*) I u.-& E Rm}_

Thus x* is taken to be the perturbation variable in (P¥), while
u”® is the vector variable over which one maximizes. Of course,
sup ¥ turns out to be a concave function. Everything that has
been said about intf F' in (P) applies to sup F* in (P*) with only
the obvious changes. The dual of the generalized program (P*)
is in turn (P), inasmuch as F** = F,

As an example, let A be a linear transformation from R" to R™,
fix a € R"™ and a* & R", and set
3.7 (Fu)(x) = (x,a™), if x=20 and Ax=a —u,

7

= + =, otherwise.
(This is the case of (3.1) where the functions f; are all affine.)
Minimizing F0 in (P) is then the same as minimizing (x,a*) subject
to x=20 and Ax=a, so (P) is a typical linear program, By a
straightforward calculation from the definition of F*,
(F*2*)(u*) = (a,u*), if u*=0 and A*u* <a* — x*,

(3.8)

= — o, if not.
Maximizing F*0 in (P*) is the same as maximizing (a,u") subject
tou*20 and A"u* <a* Thus (P*) is the dual linear program.
The dual programs of Fenchel, extended by the author in [43],
may also be represented as a special case of the above. Again let
A be a linear transformation from R" to R™, let ¥ be a closed proper

convex function on R" and let g be a closed proper concave function
on R™. Define F by

(3.9) (Fu) (x) = f(x) — g(Ax + u).

Then F is a closed proper convex bifunction, and (P) consists of
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minimizing f(x) — g(Ax) in x © R". Note that the perturbation u
here corresponds to a translation of the function g¢ on R™ By
elementary calculation,

(3.10) (F*x*)(u*) = g*(u”) — f*(A*u™ + x¥),

so that (P*) consists of maximizing g*(u*) — f*(A*u*) in u* & R"™,
Fenchel’s original programs are obtained by taking A to be the
identity transformation.

For an ordinary convex program, the adjoint bifunction is given by

(F*x*) (™) = — (fo+uifi+ -+ unfn) *(x%),
if u¥= (uf,---,u) 20,
=, furg 0

Thus the dual program (P*) is to maximize — (fo+ ulfi+ ---
+ Unfu) *(0) subject to u*=0, i=1,---,m. To calculate the
conjugate of f = fy+ uffi + --- + uif. explicitly, one would have
to know more about the given functions f;,. However, if every f; is
differentiable one can apply the Legendre transformation in the
weakened form of (2.10) to f to get a problem which is “almost”
equivalent to (P*). Since — f*(Vf(x)) =f(x) by (2.10) when
Vf(x) =0, and

Vi=Vi+uVi+ 4+ usVin,
the problem is essentially that of maximizing
fo(x) + uffi(x) + «++ + Unfa(x)
in u*E R™ and x & R" subject to the constraints
u*20, Vfy(x) +ufVi(x) + - - +uaVia(x) = 0.

This is the well-known dual problem which was discovered by
Wolfe [47].

It should be pointed out that an ordinary convex program can
be modified in many ways by introducing additional perturbations.
For instance, one can perturb the constraint f;(x) £ u; by a transla-
tion y; to the constraint f;(x — »;) = u;. The dual problem would
then turn out to involve an additional Lagrange multiplier vector
¥” & R" dual to the perturbation vector y;. This would essentially
be the dual problem for the ordinary convex program given by the
author in [40]. The possibilities for perturbation are endless. The
perturbations can be chosen to suit the situation, according to what
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“equilibrium prices” one is interested in. To apply the duality
theory described here, it is only necessary that the perturbations
be “convex’’, in the sense that the dependence of the problem on
the perturbations be representable in terms of a convex bifunction F.
All the results relating the general dual pair of programs (P) and

(P*) are based on one elementary fact, which follows directly from
the definitions: the convex minimand F0 in (P) is the conjugate of
the convex function — sup F* on R", while the concave maximand
F*0Q in (P*) is the conjugate of the concave function — infF on
R This implies that

(F0)* = (— sup F*)** = — cl(sup F¥),

(F*0)* = (— inf F)** = — cl(inf F),
and hence that

cl(sup F*)(0) = — sup {(x,0) — (FO)(x) { = (inf F) (0),

& R7
(3.12) . ;
clinf F)(0) = — inf }(0,u*) — (F*0)(u*) | = (sup F*) (0).
wERM
The infimum (inf F)(0) in (P) is thus always greater than or equal
to the supremum (sup £%)(0) in (P*), and any possible discrepancy
between these extrema is completely explained in terms of the
closure operations for convex and concave functions.
Let us call (P) normal if cl(inf £)(0) = (infF)(0). If (P) is
consistent, this is equivalent to the semicontinuity condition that

lim inf (inf F) (1) = (inf F) (0).
u 0

Similarly, let us call (P*) normal if cl(sup F*)(0) = (sup #7) (0) in
the sense of the closure operation for concave functions. Formulas
(3.12) then vield a duality theorem: (P) is normal if and only if
(P*) is normal. Moreover, the normal case is precisely the one where
the extrema in (P) and (P*) are equal, i.e.

(3.13) (inf F) (0) = (sup F*)(0).

For brevity, we shall say that normality holds when both programs
are normal and the “inf” and ‘“‘sup” are equal. Normality holds in
particular, then, when (P) is strictly consistent (since then infF
is continuous at 0), or when a Kuhn-Tucker vector exists for (P)
(since then d(infF)(0) =@, implying that cl(infF) agrees with
inf F at 0). Likewise, normality holds when (P*) is strictly con-
sistent, or when a Kuhn-Tucker vector exists for (P*).
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Suppose that normality holds, and that the common extremum
value in (3.13) is finite. As we have already pointed out, u* is a
Kuhn-Tucker vector for (P) if and only if u*& d(— infF)(0).
Since (— inf F)* = F*(, this is equivalent to the condition that
0€ a(F*0)(u*), i.e. that the concave function F*0 attain its
maximum at u*. Similarly, the Kuhn-Tucker vectors x for (P*) are
the vectors where the convex function FO0 attains its minimum.
This gives us another duality theorem: assuming that normality holds,
the Kuhn-Tucker vectors u* for (P) are precisely the optimal solutions
(if any) to (P*), while the optimal solutions x to (P) are precisely
the Kuhn-Tucker vectors for (P*). This type of duality has pre-
viously been known only in the linear programming case.

4. Lagrangian functions and minimax theory. We shall now describe
the correspondence between convex bifunctions from R™ to R" and
concave-convex functions on R™ X R" which is analogous to the
correspondence between linear transformations from R™ to R" and
bilinear functions R™ X R". This correspondence gives further
insight into the nature of the adjoint bifunction. It enables us to
construct for each dual pair of programs (P) and (P*) as in the
last section a certain convex-concave function whose saddle-points
correspond to optimal solutions to the programs, much as in the
classical Kuhn-Tucker theory [24].

Let K be a concave-convex function on R™ X R", i.e. a function
with values in [— @, + « ] such that K(u,uv) is concave in u for
each v and convex in v for each u. Closure operations may be applied
to K for the sake of regularization. Let cl,K be the function on
R™ X R" obtained by closing K(u,v) as a convex function of v for
each u. Similarly let cl, K denote the function obtained by closing
K as a concave function of u for each v. Then cl,K and cl,K are
concave-convex functions on R™X R" [35].

We can proceed now to form the concave-convex functions
cl.(cl,K) and cl,(cl,K). The first of these is called the lower closure
of K (since the final regularization involves lower semicontinuity),
and the second is called the upper closure of K, If K coincides with
its lower closure, it is said to be lower closed, and so forth. It turns
out that cl(cl, K) is itself always lower closed, and cl,(cl,K) is upper
closed, but these two functions may disagree at certain points of
R" X R".

Since the operations cl,cl, and cl,cl, do not quite produce the
same result, there is not a unigue natural closure operation for
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concave-convex functions. Nevertheless, there is an important
phenomenon of pairing of closures. It may be shown that, if K is any
lower closed concave-convex function on R™ X R", then K = c| K
is an upper closed concave-convex function such that ¢ K = K.
Thus there is a simple one-to-one correspondence between the
lower closed functions and the upper closed functions. Corre-
sponding functions K and K cannot differ very greatly from each
other, since the closure operations for convex and concave functions
only redefine functions at special points.

For example, let C and D be closed convex sets in R™ and R"
respectively, and let K be any continuous real-valued concave-
convex function defined on C X D. Set

gK(u bW ifuel and ve D,

)—i—m ifueCand v&E D,
= if ugC,

K (w,v) iftugC and veD,
w if v D,

/ o ifudC and vED.

(4.1)

K{u v) =

Then K and K are lower closed and upper closed concave-convex
functions, respectively, which are paired together in the manner
just described. Observe, incidentally, that

sup inf K(u,v) = sup inf K(u,v) = sup inf K(u,v),
uERM g AR wi RM pe R us (vl

inf sup K(u,v) = inf sup K(u,v) = inf sup K(u,v).

v= " ucRM vER® ue R v uel
Thus the minimax analysis of K with respect to C X D can be
represented by the formally unconstrained minimax analysis of
K or of f“_{or of any extension of K to all of R™ X R" such that
K=<K=K).

In order to apply these facts to the study of bifunctions in a

manner suggestive of linear algebra, we introduce an inner product
notation for the conjugate of a convex (or concave) function f:

(f,x*) = (x*f)=f*"(x7).

This inner product is a true generalization of the ordinary one,
in the following sense: if f is the indicator of a vector x & R", i.e. if
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f(y) =dylx)=0 ify=x
=4 if y##z,
then (f,x*) = (x,x*). Incidentally, by means of Fenchel’'s Duality
Theorem it is possible [44] to generalize further to inner products
of the form (f,g), where f is a convex function on R" and ¢ is a
concave function on R". We shall not need this degree of generaliza-

tion here, however.

For any convex bifunction from R™ to R", we can form
(4.2) (Fu,x*) = (x*, Fu) = (Fu)*(x¥)
as a function of u € R™ and x* € R". Note that, if F is the indicator
bifunction of a linear transformation A: R™— R" as in (3.1), then
(Fu,x*) is simply the bilinear function (Au, x*) associated with A.

The basic theorem is the following. If F is any closed convex
bifunction from R" to R", then (Fu,x*) is a lower closed concave-
convex function on R™ X R". Conversely, given any function K of
the latter type, there exists a unique closed convex bifunction F
from R™ to R" such that K(u,x*) = (Fu,x*), namely the F
given by

(Fu)(x) = sup| (x,x*) — K(u,x*)|x* € R"|.
The upper closed K on R™X R" paired with K is precisely the
concave-convex function associated with the adjoint bifunction
F* 1ie,
K(u,x®) = (u, F*x*) = (F*x*)*(u).
Thus the formulas
cli{Fu, x*) = (u, Fxx¥),
(4.3) _) "
(Fu,x%) = cl,-(u, F*x*),

hold for any closed convex bifunction and its adjoint.
Formulas (4.3) generalize the familiar formula

(Au,x?) = {u, A*xT)

relating a linear transformation and its adjoint. Since the closure
operations in (4.3) merely redefine the functions at special points,
one will actually have

(4.4) {Fu,x*) = {u, F*2*)

for “most’” values of © and x*.
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Observe that (4.4) expresses a duality between two different
extremum problems, because by definition any convex bifunction
F and its (concave) adjoint F* satisfy

(Fu,x*) = mip{ (x,x*) — (Fu)(x) |,

(4.5) (u.’F*x*") = iI{f{ (’u,u*) — (F*x*) (u™) ]

In particular, we have
— (Fu,0) = inf (Fu) (x) = (inf F) (u),

4.6 _ . T o
4.6) — {0, F*x*)y = sup (F*x*)(u*) = (sup F'*) (x¥).

The equality of the extrema in the programs (P) and (P*) in the last
section is therefore expressed simply by

(£0,0) = {0, F*0).

Minimax characterizations of duality are obtained through the
introduction of inverse bifunctions. The inverse of a convex bifunction
Ffrom R™to R"is the concave bifunction F, from R" to R™ defined by

(4.7) (F.x) (1) = — (Fu)(x).

If F is closed, F, is closed. The inverse of a concave bifunction is
also defined by (4.7). It is easily seen that F.,=F and (¥*).
= (F,)* The latter bifunction from R™ to R" will be denoted
simply by FZ.

As an example, if m = n and F is the convex indicator bifunction
of a one-to-one linear transformation A from R" onto R" as in
(3.2), then F, is the concave indicator bifunction of A !, ie.
(F.x)(w) is 0 if u=A 'x and — = if u = A 'x. Likewise, F? is
the convex indicator bifunction of A* 7%,

Given any closed proper convex bifunction F from R™ to R", we
define the Lagrangian function of the corresponding program (P)
to be (u* F,x) as a function of u* and x. Since F.x is concave,
we have by definition

(u*, Fox)=inf}(u,u*) — (Fyx) () |
U
(48 = inf] (u,u*) + (Fu)(x) |.
This is, of course, an upper closed concave-convex function on
R™ X R" by the correspondence theory already outlined.
In the case of an ordinary convex program, where F is given
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by (3.1), the Lagrangian is evidently given by

(u*, Fox) = fo(x) + ui fi(x) + - - - + unfulx)
(4.9) if u*=(uf, - -,us 20,
=—o ifu* 0

Except for the convenient concave extension by means of — «, this
is the Lagrangian associated with (P) by the familiar Kuhn-Tucker
theory.
In the case where F is given by (3.9), the Lagrangian function
is given by
(u*, Fox) =f(x) +8%*(®) — (Ax,u*) if f(x) < + =,
=+ o if f(x) = + =,

A saddle-point of the Lagrangian function is, of course, defined
to be a vector pair (u* x) such that

{4-11) (u&!' F*I) ,.—{_ (u*JF&x) é (u’&lr ‘E?acx’)a v u*’l v If'

The main result is this: a vector pair (u*,x) is a saddle-point of the
Lagrangian of (P) if and only if u* is a Kuhn-Tucker vector for
(P) and x is an optimal solution to (P). In this event normality
holds, and the minimax value (u*, F', x) coincides with the infimum
in (P) and the supremum in (P*). Moreover, as explained in the
last section, u* is then dually an optimal solution to (P*), and x
is a Kuhn-Tucker vector for (P¥).

Given any upper closed concave-convex function K on R™ X R"
(for instance a K of the type in (4.1)), there is, as we know, a
unique closed concave bifunction G from R" to R™ such that
K(u*,x) = (u*, Gx). Hence there is a unique program (P) having
K as its Lagrangian, namely the (P) corresponding to F=G..
The inverse operation for bifunctions therefore corresponds to a
general minimax theory for concave-convex functions in the same
way that the adjoint operation for bifunctions corresponds to a
general duality theory for convex programs. It is clear from the
definitions that F and F* are expressible here in terms of K by

(Fu) (x) = sup { K(u*, %) — (u,u") |,
(F*x*) (u*) = inf { K (u*, %) — (x,x%) .

(4.10)

(4.12)

In particular, the minimand in (P) is given by
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(FO) (x) = sup K (u*, %),

and the maximand in (P¥) is given by
(F*0) (u*) = inf K (u*, x).

The dual programs of Dantzig, Eisenberg and Cottle [6]|, Stoer
[45], Mangasarian and Ponstein [26], may be obtained in this
way, for instance by applying the Legendre transformation formula
(2.10) to (4.12) and similar devices; see [38].

The pair of functions (Fiu* x), (u*, F,x), is conjugate to the
pair of functions (Fu,x*), (u, F*x*), in the following sense. If K
is any one of the concave-convex functions such that

(4.13) (Fu,x*) < K(u,x*) < (u, F*x™)

(such functions all being essentially the same), one has, according
to the definitions,

inf sup {(u,u*) 4+ (x,x%) — K(u,x%) } = (u* F,x),
uSRM xRN

sup inf {(u,u™)—+ (x,x*) — K(u,x*) | = (Fiu®, x).

x*ER® uC AW

(4.14)

On the other hand, if K* is any one of the functions satisfying
(4.15) (BiuTay= K W 2 & (%, Fys),
one has in turn

inf sup { (u,u*)+(x,x%) — K*(u*, ) | = (u, F*x"),
Gy R Sl S I e Sl
sup inf {(u,u®y+ (x,x*) — K*(u* x) | = (Fu,x*).

X Bb prC R™
Applying (4.3) to the convex bifunction £} in place of F, we have
el (Fiu®, x) = (u™, F.x),

(4.17) _ .
(Fiu®* x)=clL(u”, F.x),

and this makes possible a detailed comparison of the “infsup”
and “supinf’ in (4.14). In particular we see that these two extrema
are “‘usually” equal; the fact that they can be different in some
cases is exactly dual to the fact that the upper and lower closure
operations for concave-convex functions do not always coincide.
A minimax theory from this point of view has been developed by
the author in [35].
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