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Duolity Nonlineor Progrommingtn

1. Iniroduction. An ordinary nonlinear program in n variables
may be de{ined as a problem of minimizins a quantity i(:r) sub-
ject to constraints f,lr) =0, 

..,f^(r) 
= 

0, wh€re t'", 't'"' ate

certain realvalued functions of the vector r: (r1, ,r^) €R^.
1'he problem may be inteereted broadly or narrowlv, however.

In the narower sense. one is o y interested in ihe intimum
of a certain tunction given on a subset S of fi"fhe elements ;r

of the subset S are th€ so-ca]]ed leasible soluiions to the problem.

Typical quesiions are the iilloiving. Is the infinum llnite? Do
there exist optimal solutions, i.e. feasible sotutions at which the

infimum is attained? Is ther€ only one optimal solution? One

seeks conditions which guarantee "yes" snswers to these qr.restions,

as *'e11 as algorithms for actually computing the infimum and

optimal solutions.
In the broader sense of the probelm, one is also concerned with

the sensitivity of the infimum and optimal solutions to slight
changes in the constraints This is where dualitv and Lagrange

muitipliem come in. Let p(uj, ' ,l,/.) denote th€ infirnum or /0(r)
subject to 1,1:r)5.,1,..,t(x)=&,,. Each u:(u1, ,u)€R"'
corresponds to a certain perturbation of the given problem and

p gives the infimum in the perturbed probiem as a function of t

r .Ilis wort was suDporied i. plr by sranr AF AFOSR-rrOr 6? lion, rhc
Air l.r.e Ofii.p .r S.ienlini. R.seaich.
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One is interested in the properties of p near & : 0. For instance, is
p continuous or diferentiable at L : 0:

It is especially important to look for numbem tif,...,aj such
that

plub...,u^) 
=p(0,.,0) uiq .. u:,u,,.

(1.1) V(u, . ,uJ € R".

(1.2) /o(r) + kirri +.r;&. 
= 

p(0,...,0)

Such numbers can be interpreted as "equilibrium prices" if the
objective function /0 is intepreted as a cost function. Suppose
that in trying to minimize cosi we are allowed to pe.turb the
given problem in ihe above sense by any arnount (&1, ..,u,,),
but that this pedurbation must be paid for, the price being &I
per unit of variable L,. The minimum cost attainable in the prob-
iem perturbed by (LL, .., u.), plus the cost of this perturbstion, is

p(u.,...,u^) + ui q + ... + ulu^.

Ifthe p ces satis!'(1.1), this is never iess than ihe minimal cost
p(0,. .,0) in the unperturbed problem, so all the incentive for
perturbation is neutralized and there is an "equilibrium".

Observe that (1.1) is satislied if and oniy if

for every choice of r and (l,,, ..,r..) such that ,(r) 
= 

ui for i
:1,...,n. Assumins p(0,. .,0) is tinite, (1.2) is equivalent to
the condition that t,I 

= 
0 for i - 1, . .., r? and

fiki + ui hkJ + .. . + ui,t',,lx) 
=p(0, 

. ,0), V,€fi".
(If ui' were nesative for some i, (1.2) would fail for high values
ofui.) In other words, the equilibrium prices are the same as the
nonnegative Lagrange multipliers ui,...,a; such that the un-
constrained infimum of t',+uif'+ . +rr;L coincides with the
infimum of li subject to the constraints i(r) 

= 
0,. .,L(r) 5Cr.

These rellections on the nature of an ordinary nonlinear program
lead us to propose a concept of a generalized nonlinear program
as not just an isolated problem of minimizing a given lunction
over a given set, but such a problen togettur uith a particuLar class
af pertuhatians. In such a program, one is ro study nor only the
intimum in the problem corresponding to zero perturbation, but
also the sensitivity of the infimum with respect to perturbations
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to the "neighboring" problems. The Lagrange multipliers are to
be the "equitibrium prices" for the perturbations.

The terminology of "bifunctions" is useful in desc bing the
dependence of an abstract minimization problem on a perturba'
tion. Suppose that for each vector u€-E'we are given a pair
(Su, Fu), where Su is a subset of R" (possibly empty) and ,FL is

a function on SL with values l" I -, + -1. The correspondence

F. u_ (Su, Fu)

wili be called a bifunctian liom R'' to -&^. A bilunction is to be
regarded as a generalization of "multivalued mapping": .he image
ol & undd -P is not just a set, but a set with a distinguish€d
lunction attached to it. One can interpret the function -Ft as

assigning a relative cost (FL) (r) to each elenent t of the sel Su.
For any bifunction -F lrom ,R'' 1() R", we define ^ 

generulized

progtam (P)t minimized the lunction F0 on the set S0. Th€ prob-
Iem is to inciude the local analysis of the properties of the function
p: infF at L :0, where

(infF) (r,) : infl (ru) (rl r € s& I.

(By convention, an infimum is + o if the set over which it is

taken is empty.) A vector:!€n'ei]] be ca ed 
^n 

optinaL salu'
tion io (P) if (infF) (0) is frnite and attained at r. If (infl') (0)

is frnite, we def\ne a Kuhn-Tucket Dectnt fot (P) to be a vector
L" € fi"' such that

(inf/) (&) + (u', u) 
= 

(inf-F) 10)

for every perturbation &€R"'. (Here ( , ) d€notes the ordinary
inner product of two real vectors.)

ObseNe that, if -F is extended by settins (Fu)(!): + - lbr
aU r€SL, the correspondins (P) is essentiaily the same No
generality is lost, therelbre, if one considem only cases rvhere Su
: -B' lbr ail u.

Under simple convexity assumptions on the bifunctio. F, a

comprehensive duality theory is possible tbr generalized programs,
as will be explained below. A dual prosram (P-) may be con
structed which is of the same type, except that it involves niaxi'
mizaiion rather than minimization. Th€ dual of the program (P.)
is in turn (P). The extrema in (P) and 1P") are generallv equal.
The optimal solutions to (P+) are generally the Kuhr-Tucker
vectors for (P), while the optimal solutions to (P) are the Kuhn
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Tucker vectorc for (P'). The paim of optimal solutions to (P)
and (Pr) are the saddle-points of a certain Lagrangian function.

An intriguing mathematical featur€ of the theory to be ex-
plained is that it constitutes a new "convex algebra" closely paral-
Ie1 to linear algebra. The convex bilunction F ptays a rote analo-
gous to that of a linear translbrmation. Duality is obtained by
the construction of an adjoint bilunction I'* in terms of Fenchel's
conjugacy correspondence. Whereas a linear transformation and
its adjoint are related by a bilinear t'tlnction, a convex bilunction
and its adjoint are related by a concave convex furction. The
lolmula (I.,,r.): (u,F"r") (in which (.,.) denotes a generalized
inner product to be detined in $,1) appears as an "inf: sup"
theorem fbr a dual pair of progra]ns. Minimax theory is associaied
with the "inverse" operation for bifunctions.

The results in this paper are based on the general theory of
convex functions and especialy on the very important notion
of conjugacy due to Fenchel Ll?]. The elementary facts about
convex functions are reviewed in $2. Futher details can be found
in the works of Fenchel, B4ndsted, Moreau and Rockai'eltar
listed among the references.

The complete prools of the new duality theorems and of the
theorems about bifunctions are all contained in a tbrrhcoming
book 1441. Some of the main ideas have already appeared in pre
vious papers, however. A perturbational approach to duality
theory has been given by the author in 1.131 and 1381. The colles-
pondence between concave convex funcrions on R'X R' and
convex functions on R' ' (here rhe gmph lunctions of convex bi,
tunriions as defined in $3) has been established in 1381. A "con
vex algebra' for multi',,aiued mappings has been developed in
136l and presented in 1371.

Some applications of Fencbel's theory to general nonlinear
programmins have also been described by Ghouila Houd [2],
Dennjs [7], Dieter l8l, Lel, Fark and Thrall llsl, Kariin 1231, and
whinston la6l.

An excellent discussion of Lagrange muitipliers as "equilibrium
pices" has been given by Gale Jrg] in the case of concave max!
mization problems depending on parametem. Our idea of a "gen,
eralized progranf' is essentially derived ftom cale's paper, but
the duat problems q,e sp€ak of are quite difrerent.

2. (lonrex functions and their conjugates. Th€ object of the
frnite-dim€nsional theory of convex functions is the srudv of
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pairs (C,r, where C is a non€mpty conlex set in R" and I is a
real-valued convex function on C, i.e. a function liom C to ll
satislying

(2.1) l((1 -r)r+ry) 5(i r)l(r) +^/(y), 0<r<1,
for any r€C and f,€C. There are technical advantages, how-
ever, in repr€senting each such pair by a lunction which is defined
on all of -R' but which may have irfinity values, namely the function
obtained by deinins /(r) io b€ + - fol, G C.

In general, ler I be any function defined on all of R^ and having
values which ar€ real numben or + -. T}].e epiEraph of /, d€noted
by epil, is the set of pairs (r,r) in F" r sr.rch that r€ tl', r!€.R
and a 

= 
l(t). ('l'hus epil can be regarded as the set of all "finite"

points lying on or above the graph of l.) We define I to be a canuex

lunctian on i?" if epi/ is a convex subset oI .,1"'r. If there is no t
such thai l(r): -, this delinition of convexity is equivalenr
to inequality (2.1) being satisfied throughout ft' with the ob\;ious
rules lbr manipr.tlating + -. (Il / takes on - 6 as well as + ,!,
(2.1) cannot be used, because it might involve the undehned es-

Pression - - $.)
Il I is convex, the ser

dom/: lr /(r) < r -, l,
\thich is the pmjection of epi/ on .tl', is convex; it is call€d lhe
elfectirv damain olt A convex function I on R" is said to be praper
if dom/ is nonempty snd I is finite on doml; in other words, il /
is not the constant function - o and there is no :! such that l(r)
: - o. The r*t ction ofl to C: doml is then a pair (C,, of
the type mentioned above, and every such pair a ses in this say.
Thus the study of the pairs (C,l) is r€plac€d by the 6tudy of thc
proper convex functions I on fi".

Convex functions which are improper can a se naturally as
the result of ceftain operations, and they do have some technical
uses. The fundamental iact about an improper convex lundion
lon R'is rhat / must be id€n.icauy - - on rhe inteior of dom/.

A useful erample of a convex function is the indicdlol function
6( lC) of a convex set C in R", where a(rlo) :0 for x€C and
D(r C) : + - if r+C. If lo is a linite (i.e. leal valued, rather
than €xtended-real-valued) convex function on 1i', the convex
funclion l: /o + 6(. I C) agrees with i on C and is + - elsewhere.
Minimizing /0 on C is equivalent to minimizing / over all of 8".
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W€ shall use this device to re-express all consrrained extremum
problems as formaly unconstrained problems.

Let / be s convex function on R', and let , denote the coilec-
tion of all paim (r*,/.") such that r* € R", p* € fi ard

f @ z t,x,x.) p*, Yt€ R".

The pointwise supremum of the corresponding collection ot af-
line functions h(r.): \r't*l p' is calied the clos&r€ of I and
is denoted by cll. Thus by definition

12.2) (crn (r) : sup I (x, '.) - p'\G", p*) € D I.

When cll:/, one says that f 1s closed. 1t f is prcper, it can be
shown that the epigraph of cl/ is simpty the closure in ,R"r, of the
episraph ofl. Then cll is a closed proper convex tunction on i",
and

(2.3)

In particular, a proper convex function is closed if and onty if
1l is Lauer semicontituor.s, i.e. has the propertv that the convex
level set {rll(:) = 

ri is closed in B' for each reai r.
For a proper convex function l, (c1, (x) must actualy coin-

cide with l(r) for every .r in the interior of dom/ or outside the
closure of dom/. Thus l-cll may be regarded as a regularizing
operation which sirnply redelines I at certain boundary points
of its efiective domain, so as to make I lower semicontinuous.
For an impropei convex function l, cll is the constant tunction

- or the constant function + -, depending on whether or
not dom/ is nonempty.

Fenchel's important notion of conjugacy is obtained by further
consideration of the set , introduced above. Clearly , consists
ofthe pai$ (r",p.) in ,l?"r'such that !*>/*(r*), where

(cI, (x) : lin inflo), Vr€R'.

(2.4) l'(r*): sup 1(r, r*) f@ r€R"i.
Thus D is the epigrsph of a cerain lunction l* on Ji,,. This l* is
called the ?anjugate of f.

It can be seen that l* is a ciosed convex function on R', proper
if and only if / itself is proper. The conjugate 1"" of l+ is in turn
given bv

/--(r) : sup l(r,.r.) l-G-) l:r'e n'1.
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But this suprcmum is the same as the supremum in (2.2). Thus
f" : clf. ln particular, if / is closed it is the conjugate of its
conjugate /*.

Conjugacy therefore delines a one-lo-one symmet c corle-
spondence in the class of all closed convex fudctions on .al^,

As an exemple, the conjugate of the indicator tunction 6(.1 C)
of a convex set C in R" is given by

6"(r'lC) - 5up l\,r,r'l - 6(rlC,l sup\r.r-).

The ftrnction 6"( l C) is caued the support funclion ol C.
A convex function I on R" is necessariiy continuous on the

interior of it6 effective domain. It is differentiable almost ev€ry-
where on any open set where it js 6nit€.

Assume that x is any point where I is 6nit6. The (one-sided)
directional de vative

(2.5) ". .. f(.r + 
^v) - frr)t(ri'):ltm+

f(z) Z fk) + \z - t,r+ ), Yz€R'.

exists and i6 a convex firnction of J (possibly with lhe values
+ @). Of couNe, if / is actually differentiabie at .!, we have

(2.6) f'('t y) : \v f\'),y),
where V/(r) js the gradient of I at r,

. ldf af \vl(.r) = I --- (r). . .. ;- (r) I.\d-rr dt" ./

If / is not differentiable at r, the directional derivatives can
still be described in terms of "subgladients"- A subgrad.ient of f
at x is a vector ,.4 ft' such that
(2.6)

This condition means that the glaph of the function h(,2) : l(r)
+\z-t,t+) is a nonveltical supporting hyperplane in li'r' to
the epigraph of / at the point (r,/(r)). The set of subgradients
t* at r is a certain closed convex (possibly empty) set denoted
bv aful.

The case where d/(r) consists of just one r* is precisely the
case where / is 6nite and differentiable at r, the unique Bubgradi€nt
then beine V/(r). It can be shown that, if.I is actually an interior
point of doml, ,l(r) is nonempty and compact, and

(2.7) /'(r;y) - mar 1(r.,y) lr+ € afk) | - 6+@)al?))
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for each r € 1l'. In seneral, al(r) is empty if and onlv if l'(.r: v)
: - for some y.

When ,l(r) is nonempty, one necessarily has (clr(r):l(r)
On the other hard, when (clR(r) :l(') one has ''e al(r) ir
and only if ,€rl+(r'). Thus the mr.rltivalued mappins d/+:r+
+rll*(r+) is the inverse of the multivalued mappins df r.-af(t),
r,vhen I is a closed proper convex function.

Note thai 0 € d/(r) if and onty if I attains its minimum lover
R') ai r. We shail use this fact later in a slightly ditrerent fbrm:
when (c1D(0):l(0), the vectors '* in a/(0) sre the same as

those for which 0 € d/*(r"), i.e. tbr which /' sttains its minimum
The conjusate of a difierentiable convex function I on R" is

closely rclated to the Legendre transtbm ofl. Let C+ be the set

of ali gradients r' ol f, i.e. the image of R" under the mapping r
- V/(r). Giv€n any {* € C", the vectom r for which the supre

mum in (2.a) is attaineC are precisely those for which r*: V/(r);
thus

(2.8) l+(tr') : \.r.n-l l(r) when r-: V/(r).

If the mappins Vl is one-to-one, we get

l"(x") : ((vn r(r.),r-) l((v, r(r')), r* € c'

(2.10) /- (v/(r)) : (ir, vl(r) ) I (r).

(2.9)

The sht side of (2.9) is the formula tbr the LeEendre translorm
of f.

If V/ is not one-to-on€, we can still conceive o{ parametedzing
C* in terms of r by means of the nor inear substitution r* : Vl(r) ;

the substitution yields the formula

This function of r is one which is commo.ly mentioned in the
Iiterature of nonlinear programming. lt is gercraliy not convex.

of course, and it generally does not express l. completelv, since

it only gives th€ values oI l* on C'. The set C* need not be convex

in ?l', and there may be poirts outside of C" where /' is finite
but the Legendre transform is undefned.

It will be convenient in what folows to place concave func-
tions on an equal lboting with convex functions A function g
from R" to | -, + - ] is sald Lo be cancaue, of course, if /: g
is convex. AI the above facts and definitions for convex functions
have obvious analogues lbr concave functions, in which the rol€s

of + -. inf and 
= 

are interchansed with those of - -, sup and
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by
I$ particular, the coniusate of concave function g is defined

(3.1) : * - otherwise.

c"(r'): inf l(', r.) s(x)lr€n"|.
It should be noted that g* is 4ol the same as 1", where l: g-

Instead one has S"(r") : /*( jr*).

3. Dual prograns and adjoint bifunctions. Br a conLvt bifunction
liom R'to ,R', we shall mean a conespondence F which assigns
to each L€R'a function -Fu from 1?" (:Su) to | -,+ -],
such that (FL) (r) is a (jointly) convex function of (u,r) on R' .

This function on n'+' is called the Eruph functian of "F. lVe shall
say thai a is closed, or proper, according to whether its graph
tunction is closed or proper, respectively. 'lhe ejfectiue danain
of -E is defined to be the convex set which is the projection on ,E'
of the etrective domain of the graph function of F, i.e.

dom-E: l ul l.t, (Fu)(r) < + - 1.

If -F is closed, proper and convex, ihen in pariicular -F& is a closed
convex tunction on R" lbr every .., proper for a€dom-t'bui
identicaily + - for u€doma.

For example, let fu,t'".. ,f^ be 6nite convex functions on ft',
and for esch u:|ub ..,u",) defne the function Fu by

(.lta) (r) : lo(.r) n hlx) 
= 

u,, . ..,f,,lxJ 
= 

u^,

It is easily demonstrated that -a is a closed proper conver bi-
functiod. Note that dom -F consists of the vectors L such that the
corrcsponding inequality system

hG) =u', ",1^\r') =u-
has at least one solution r.

For another example, let,4 be a linear transformation ftom /i'
to -R' and let

(3.2)
(F&)(r):0 if r: At.

: + - 1l xt Au.

This -F is a closed proper convex bilunction which we cail the
indicator bifunction of A. We shall see that the "convex algebra"
below reduces to ordinary linear algebra when the bilunctions
are taken to be such indicator bitunetions.
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Flencelbrth we assume lbr simplicity that -E is a certain closed

proper convex bilunction from ,q' to fi'
The program (P) associated with F', as in the introduction,

is that of minimizing F0 on /?". Of course, mininizing -F'0 on i'
is equivalent to minimizing F0 over the convex set dom(Fo)'
since -F0 has only the value + - outside this set The eiements of
dom (-F-0) will be called the feasible solutians to (P). This is sus-
gested by the case of (P) where F is civen by (3 1), which we

r€fer to as the case of an ordinorJ canLvr program Feasible solu-

tions to (P) exist if and only if 0 € domF, in which event we say
(P) is consisaal. If 0 is actually an interior point o{ domF, we

say (P) is siricrly consisr"nt. ln the case of an ordinary convex
program, (P) is stdctly consistent if and only if there erists an ,
such thst L(r) <0 fot i:1,. ,m.

The fundsmentai and easily proved fact on which our analvsis
ol (P) depends is that the extended real-valued tunction inf-P
on R'" delined by

(infa) (L) : inf (I'rl) : inf I (Fu) (r)i .r € F'I
is a crnrer function lnot necessadly proper) whose efective do-

main is the same as domF. The theory of closures, conjugates,
directional derivatives and subgradients of convex lunctions can

therefore be applied to the study of inla at &:0.
For example, if (P) is st cily consistent, 0 is in the interior

of the efective domain of infF, so we may conclude at once that
(infJ') ('r) depends continuously on & for sufrcienuy small per-

Assume that (inl,F)(o) is linite. By detinition, u+ is ^ Kuhn'
Tuchet uector lbr (P) if and only if

(infa)(L) 
= 

(infF) 10) - t,u,ut), Vu€R^.
in other words if a* is a subgradient of inf.p. at 0, i.e.

(3.3) L+ € a(infF) (o).

If (P) is strictly consistent, so that 0 is an intedor point of
dom(infI), we know from the seneral theory that ,l(infF) (0) is

a nonempty compact corvex set in R^whose support function
is the directional de vative function

:lim(3.4) (infF)'(0; u)
(inf ,I.) (^'r) - (inm) (o)
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ln particular, a Kuhn-Tucker vector L': (ui, ..,u,*) does exisi
when (P) is st ctly consistent. This u" is unique if and only if
inf,E'is actuslly differentiabie at 0, in which case one has

(3.5) "i:#utntot, i:1, "'n.

(3.6)
(F"r') (l/-)

: infl(Fu)(') G,'+) + (u,u+)lue R^,r€ R'1.

('I'hus, for exanple, in an odinary convex prcgram the "equi-
lib um" values oI the Lagrange multipliers, if unique, give the
mtes of change of the infimum in the program with respect to
changes of the constent terms in the conesponding constraint
inequalities.)

By the general theory of subgradients, a Kuhn-Tucker vector
fails to exist for (P) if and oniy if there exists a & such that
(inf,E)'(o; L) : -. The interpretalion of this case is that there
is some direction of perturbation in which the "minimal cost"
drops olf inlinitely steeply, so that no finit€ ''prices" for the
perturbation varisbles can bring about a state of equilibrium.

To get the program which is dual to (P), we need to introduce
the adjaiftt of the convex bifunction l.. This is the bitunction -P+

from R" to fi'' given by r**1"r*, where

DUALIIY IN NONLINEAR PROGRAMM]NG

Note that, in terms o{ the graph tunction I of -F, one has

(F'r-) (u") : supl (u, &-) + (r, r.) /(&,, I

: - f-(- u",a.),

where l* is the conjugate ol f on R, ". Thus F' is a cLased praper
.lrncou€ bifunction in the obvious sense.

The adjoint of a concave bifunction is delined as in (3.6), except
of course that "sup" replaces "inl". Thus the adjoint i.*' of J'"
is delined in tuln by

(I'++a)(r) : supl(I'*,+)(&+) (u,tl*)+ (',:r")lr"€fi',u.€n'"1
: supl (u, &*)+ (r, r', f.(u',rrl:f"'\u,n.

Since /'":l under the conjugacy correspondence, we have
-F*": r'.

It is easy to see that, when .p' is the convex indicator bifunction
of a linear transformation A from R^ to R".-F* is the concave



112 R.T,ROCKAFETLAR

indicator bifunction of th€ adjoint linear translbrmation ,4* from
-R" back to fi' (corresponding to the transpose matrix), i.e.
(i".r") (L.) is 0 if u. : A"r' and - -ilu'+A'a*.Inthissense,
the adjoint opeiadon for bifunctions generalizes the one for linear
transformadons. l'urther justification of the "adjoint" tenninology
will be given in the next section.

We deline the dual program (P+) to be that of maximizing rhe
concave lunction f'0 on R'. In (P") we are also interested in rhe
properties of the lunction supF- at .r':0, where supa: is the
tunction on R" denned by

(sup a.) (x.) : sup(.i'*ri) : supl (F.t') (u.) lu" € R"'l.
'l'hus r' is taken !o be the perturbation vadabte in (P"), while
u: is the vector variable over which one maximizes. Of course,
supj" turns out to be a concave lunction. Everything that has
been said about infF in {P) applies to supF} in (P*) with only
the obvious changes. The dual of rhe generatized program (P*)
is in turn (P), inasmuch as I.**:4.

As an example, Iet A be a linear transformation lrom R" to .R',
fix o f R"' and o. € R', and 6et

(3.7)
= + ', otherwise.

(This is the case of (3.1) where the functions l, are all affine.)
Minimizing F0 in (P) is ther the same as minimizi$g (r, a*) subiect
to r 

= 
0 and Ar ] o, so (P) is a typical Iinear program. By a

straightlbrwad calculation from the definition of F*,

- - (F'x )\u't: p,u 1, iI a u and A u' So' x ,(3.8)
: _ _, il not.

Maximizing a+0 in (P") is the same as maximizing (o, u.) subject
to L' : 0 and A"u* 

= 
a*. Thus (P*) b the dual Iinear program.

The dual programs of Fenchel, exrended by the author in 1431,
may also be represented as a special case of the above. Again let
A be a linear transformation fiom F'to .R'', let F be a closed proper
convex lunction orr Rd and let I be a closed proper concave function
on n'. Define F by

(3.9)

(Fu)(a): p,a"), if r>0 and Ar.aa-u,

(I'u)\r) : lG) E6/ + u).

Then I'i6 a closed proper convex bifunction, and (P) consbts of
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minimizing l(r) g(Ar) in r€fi". Note that the perturbation &

here corresponds to a translation of th€ function g on ft''. By
elementary cslculation,

(3.10) (F*r")(u') _s*(I,") _ /*(A"u" + t*),
so that (P*) consists of maximizing g'lu.) l'(A-u-) in u* € R'.
Fenchel's originat programs are obtained by taking A to be the
identity tranEfbrmation.

For an ordinary convex program, the adjoint bifunction is given by

(F-.r-)(u-): - Uo+ Lin + ..+&;/,)"(x'),
iI u" : (ui" "'u*) > 0'

:--, if u*+ 0.

Thus the dual program (P') is to maximize - (t + &i/, + ...
+ uiH+(o) subject to &l=0, i:1,..',n. To calculate the
conjugate of / - to+ &iL+ ... + u;l^ explicitly, one would have
to know more about ihe given functions t. However, if every li is
differentiable one can apply the Legendre translbrmation in the
wealened form of (2.10) to I to get a problem which is "almost''
equivaleDt to (P*). Since /'(V/(r)):l(r) by (2.10) when
V/(r) : 0, and

vl: vlo+ &j.v^+ .. + u*v/,,
the probleh is essenrially rhaL oi maximizing

/o(,) + uii(r) + ... + uil,(r)
in &'€R^ and .t€,R'r subject to the constraints

',. - 0, vlo(r) + &ivl'(r) + ... - u;Vl^(r) : 0.

Thi6 is the well-knolvn dual problem which was discovered by
Wolfe f471.

It shoutd be pointed out that sn ordinary convea program can
be modfied in many ways by introducing additional perturbations.
For instance, on€ can perturb the conEtraint i(x) S L, by a transla
tion y, to the constraint t(r - yi) S rr;. 'I'he dual problem wouid
then turn out to involve an additional Lagrange multiplier lecror
y,. € Ii" dual to the perturbaiion vecior yr. This would ess€ntially
be the dual problem lbr the odinary convex program given by the
author in 1401. The possibilities for perturbation are endless. The
pelturbations can be chosen to suit the situation, according to what
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"equilibrium p ces" one is interested in To spplv the dualiiv
theory described here, it is only necessarv that the perturbations

be "convex". in the sense that the dependence of th€ problem on

the pedurbations be repres€niable in terms ofa convex bitunction F'
All the results rcIating the general dual pair of programs lP) and

(P') are based on one elementary lact, which fbllows directlv from

ihe definitions: the convex minimand J'0 in (P) is the conjugare of
the convex tunction supI" on -R', while the concav€ maiimand
F'0 in (P+) is the conjugate of the concave function infF on

,R". 'l'his implies that
(.F0)*: ( supF")*': cl(sup-E*),

('.'0)": ( infF)"': c](infl),

and hence that

cl(supF*)(0) : sup l(r,0) - (Fo)(r) l: (infir)(0),

i3 12)
cl'inrFr,0r - in, 10.u ,F0,,r )l- {supF }(0i

The innmum (iafJ')(0) in (P) is thus always grcater than or equai
to the supremum (supi'") (0) in (P"), and any possible discrepancv
between these extrema is completely explained in terms of the
closure operations for convex arld concave functions.

Let us call lP) narmal if c](inf/)(o): (infF)(0). If (P) is

consistent, this is equivalent to the semicontinuity condition that

Lim inf (inf F) (u) : (infI")(0).

Simitarly, let us call (P.) normal if cl(sup F") (0) : (sup a') (0) in
the sense of the closure operation for concave lunctions- Fomulas
(3.12) then yield a duality theorem: (P) is nornal il and onlv if
(P*) is normal. MoreoLpr, the normal case is preciselx thc one where

the efirema in (P) dnd (P") are equal, i.e.

(3.13)

For brevity, we shall say that normality haLds when both prcgrams

are normal and the "inf" and "sup" are equal- Normality holds in
particular, then, when (P) is strictly consistent (since then infF
is continuous at 0), or when a Kuhn-Tucker vector exists for (P)
(since then d(inf F) \0) +4, implyins that cl(inftr') agrees with
inlF at 0). Likewise, normality holds when (P") is si ctly con

sistent, or when a Kuhn-Tucker vector exists for (P").

(inf,r)(0) : (sup -F-) (0).
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Suppose that normality holds, and that the common extremum
value in (3.13) is finite. As we have already pointed out, u{ is a

Kuhn-Tlcker vector for (P) if and only if u+€a( infF)(0).
Since ( inlF)":Iro, this is equjvalent to the condition that
0€r(F"0)(u.), i.e. that the concaee function -F*0 attain its
maximum at &*. Similarly, the Kuhn-Tuck€r vectors r lbr (P') are
ihe vectois where the convex function a0 attains its minimum.
This gives us another duality theoremr aislmingthat notmality hoLds,
thz Kuhn-Trcket LeclDrs u" fot (P) are precisely the optimal solutions
(if any) ta (P*), uhile the optinal salutions r to (PJ arc preciseLr

the Kuhn-Tucker uutarc t'ar \Pt). This rype of duality has pre,
tiously been known only in the linear programming case.

4. Lagrangian functions and minimax theory. We shall now describe
ihe conespondence between convex bifunctions from R'' to rB" and
concave-convex functions on fi'X R' which is analogous to the
conespondence between lin€& transfbrmations flom ,'|1' to F" and
bilinear tunctions E"'XR''. This coDespondence gives lurther
insight into the nature of the adjoint bifunction- It enables us to
construct for each dual pair of programs (P) and (P.) as in the
Iast s€ction a certain convex-concave firnction whose saddle-points
conespond to optimal solutions io the programs, much as irl the
classical Kuhn Tuck€r theory 124].

Lel K be a concave'convex function on Rn X n", i.e. a function
with values in | .,-1 -]such that /{(a,u) is concave in u for
each D and convex in u lor each u. Closure operations may be applied
to K for the sake of regula zation. Let cl,K be the function on
B'X fi'obtained by closing t((&,r) as a codvex functior of , for
each &. Similarly let c1,1{ denote the function obtained by closing
K as a concave tunction o{ a for each u- Then cL-K and cl,K are
concave-convex tunctions on n'X R" [35].

We can proceed now to lbrm the concave-convex functions
cl,(cl.X) arrd ct"(cl,X). The nrct ol thes€ is called the buer chsure
of l< (since the final regularization involves lower semicontinuity),
and the second is called, the upper closure of K, If 1{ coincides with
its lower closu.e, it is ssl.d Lo be hu:et clnsed, and so forth. It tums
out that cl"(cl,K) is itselfalways lower closed, and ci,(cl,K) is upp€r
closed, but these two lunctions may disagree at cetain points of
R x R..

Since the operations cl,cl" and cl,cl" do not quite produce the
same resuit, there is not a unique natulal closule operation lbr
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concave-convex lunctions. Nevertheless, there is an ;mportant
phenomenon ofpairing of closures. It may be shown that, il'4 is any
lower closed concave-convex lunction on ft'X R", then -I{: cl,4
is an upp€r closed concave-convex tunction such thar c1.K:4.
Thus ther€ is a simple one-to one correspondence between the
Iower closed functions and the upper closed fun(tions. Corre-
sponding lunctions 4 and l( cannot differ very greatly fiom each
other, since the closure operations for convex end concave functions
only redefine funclions at special points.

For example, let C and D be ciosed convex sets in R'' and R",
respectively, and ler L be any continuous rcal-v4lued concave-
convex function defined on C X D. Set

l< lu, u) :
K(u,DJ ir u€C and ,e D,

1o if u{Cand uSD,
- if ue C,

Ktu,u) if u6(: and. u€D,
+ o if uGr,

- if &+C and u€r.

(4.1)

Then { and /i are lower closed and upper closed concave-convex
functions, respectively, which are paired together in the roanner
just described, ObseNe, incidentaily, that

sup inf 4(&, u) : sup inf -(u, u) : sup inf K(u, r),

Klu,u):

inf sup I((u,r) : inf sup L(L,r) : inf supK(L,u).

Thus the minimar analysis of L with respect to C X D can be
rcpresented by the formally unconstrained minimax analysis of
l( or of K (or of any extension ol ll to all of B" X.11" such that
4=Kszi).

In order to apply these facts io the 6tudy of biluncrions in a
manner suggestive of linear algebra, we introduce an inner product
notation for the conjugate of a convex (or concave) function l:

(1,'+) = \r.,f ): f.(\").
This inn€r product is a true gen€ralization of the ordinary one,
in the following sense: if I is the indicator of a vector : € R^, i.e. if
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l(Y) : t(Jl') : o if Y: r'
_+_ ilytr,

then (l,r*) = (i,r*). Incidentally, by means ol Fenchel's Duality
Theorem it is possible [44] to geDerqlize further to inner products
of the form (tg), whele I is a convex function on fi" and I is a

concave function on F". We shail not need this degree of generaliza-
tion he!e. however-

For any convex bifunction from r'i' to 8", we can form

(4.2)

(4.3)

<Fu, rt) : \x", Fu) = (Fu)'(x''

(tu,r*): (u, a*r.)

as a function of u € -R' and r. € fi". Note that, if i' is the indicator
bifunction of a linear transformstion A: R^-R^ as in (3.1), then
(Frr,r*) is simply the bilinear function (AL,r*) associated with A.

The basic theorem is the following. If F is any clos€d convex
bifunction liom -R'' to R", then (f'u,r.) is a lower closed concave-
convex function on R'X R". Conversely, given any function 6 of
the latter tyDe, there exists a unique closed convex bifunction I'
ftom R' to /?" such that 4lu,t')=(Fu,"r, namety the F
given by

(Fu)(r): supl(a,r") {(u,r.) l'" € x"l.
The upper closed F on A'XII^ paircd with I( is precisely the
concav€-convex function associat€d with the adjoint bifunction
f , r,e.

ttu,'") : \u, F'x*t: (I.r')*(&).
Thus the formulas

c],(F&,'*): (&, F"r'),
\Fu,r") : ct,. \u, Fa t"t,

hold ior any closed convex bilunciion and its adjoint.
Formulas (4.3) g€nelalize the famfiar formula

\Au,r'): \u, A"a^l

rclating a linear transformation and its adjoint, Since th€ closure
operations in (4.3) merely redefine the functions at special Doinis,
one will actualy have

14.4)

l()r "most" values of u and :ri
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Observe that (4.4) expresses a duality between two diferent
extremum problems, because by definition any convex bitunction
F and its (concave) adjoint I* satisfy

(Fu,r-): supl(r,r") - (Fu)(r)1,

(u,.8-r.) : inf | (a, u") - (a-r-) (&.) l.
(4.5)

In particular, we have

(.4.1) lF+r)(t/): (liu) (r).

(4.6)
(I'u,0) : inf(Iu) (r) : (infF) (u),

(0, -F.r") : sup (F+r+) (u.) : (supF-) (r-).

The equality of the extrema in the programs (P) arrd (P.) in the last
section is therelbrc expressed simply by

(r'0,0): (0, F*0).

Minimax characte zations of duality are obtained through the
introduction of inverse bifunctions. The inuerse ofa convex bifunction
-afrom R"'to,B^ is the concave bitunction .F." from R" to n'd€fined by

If l'is closed, F.. is closed. The inverse of a concave bifunction is
also delined by (4.?). Ii is easily seen that F**: -P and (t'*)"
:(I..)*. The iatter bifunction from R'to R'wil1 be denoted
simply by Fl.

As an erample, if m : n and I' is the convex indicator bifunction
of a one-to-one linear transformation A from ft' onto R" as in
(3.2), then i'" is the concave indicator bitunction of A L, i.e.
(F"r)(t) is0 if &:A Ir and - if utA tr. Likewise, I'j is
the convex indicator bifunction of A+ r.

Given any closed proper convex bifunction }. from -R^ to -8", we
defrne the LoqrunEian fundion ol the corresponding program (P)
to be (L',F-.x) as a functioa of te* and r. Since ,l*r is concave,
we have by d€flnition

(4.8)
(&*, -F..{) : inll ({./, {,*) (}'.x) (a) I

: infl(L,L-) + (F&)(r) l.

This is, of course, an upper closed concave-convex lun(tion on
R^XR' by the couespondence theory aheady outlined.

In the case of an ordinary conver programr where ,F is given
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by (3.1), the Lagrsngian is evidently siven by

4)9

(4.9)

: - if u"+0.
Exc€pt for the convenient concave extension by means of o, this
is the Lagran8ian associated with (P) by ihe i'amitiar Kuhn-Tucker
theory.

In the case where F is given by (3.9), the Lagrangian function
is given by

\u',F,'): Ilr) -8'(x') - (Aj,u') ij /(rr < r -,
t4.1U) :f - ir/r_r)=

A sodd.b-point ol the Lagrangian function is, of co\rrc€, denned
to be a vector pair (&',r) such that

(4.1i) (a.', F.r) S (u*,F * rt 
= 

lu',I'*r.'t, Y u.',Y ''.
The main result is this: ol,€ctorpair \u',r) is a saddk-paint ol the
Lagrangian of (P) if and anly if u^ is a Kuhn-Tucker aectar t'or
(P) and r is an optinaL soLution to (P), In this event normaliiy
holde, and the minimaa value (L-,4.r) coincides with the infmum
in (P) and the supr€mum in (P*). Moreover, as erptained in the
1a6t sectioE, rr* is then dually an optimal solution to (P*), and t
is a Kuhn-Tucker vector for (P").

Given any upper closed concave"convex function B on E" X R"
(for instance a I( of the type in (4.1)), there is, as we Lnow, a
unique closed concave bilunction O from ,R" to 8' such that
R(u*,\): \u.,Grl. Hence there is a unique program (P) having
K as its Lagrangian, namely the (P) coEesponding to F=G..
The inverse operation for bifunctions thereforc coresponds to a
generai minimax theory fo! concave-convex functions in the same
way that the adjoint operation for bifufftions corresponds to a
general duality theory fbr codvex programs. It is clear lrom the
deEnirion. lhar F and t are espressible here in terms of R by

(4.12)
(Fu)(r): sup jl<(r', r) - (u,u')1,

(f+r*) (u.) : inflK(u*,r) (r,") I.

(u*,F"r) : frk) + ui hl'l +. . + u;f^(r)
if L": (&i,...,&;) :0,

In particular, the minimand in (P) i6 civen by
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(F0) (r) : supl.(u", r),

snd the maximand in (P') is given by

(1-0) (u.) : inf r(u", .I).

R.T-ROCKAFELLAR

The dual programs of Dantzig, Eisenberg and Cottle 16], Stoer

1451, Mangasarian and Ponstein [26], may be obtained in this
way, for instance by applying the Legendre transformation fomula
(2.10) to (4.12) and similar devices; see [38].

The pair of tunctions (-El&+,r), (&.,.F-,), is canjuqate to the
pai of tunctions (F&,r*), (,r,4*r*), in ihe followins sense. If K
is any one of the concave-convex functions such that

(4.r3) \Fu, r*J 
= 

K tu, x') S (u, -F.*'*)

(such functions all being essentially the same), one has, according
to the defrnitions,

(4.14)

On the other hand, if K* is any one of the functions satisfying

(4.15) (Jilu",r) 
= 

r"(I1",x) 
=t,u",F"rl,

inf sup l(r,,&+) + (,,r*J K+(ua,rJl:@,r"r.'),
(4.161 ' = 

/'' 
=/l'sup,.int 1."." ' t.) Ktu.xti lu.r

Applying (1.3) to the corvex bifunction .F.: in place of -F, we have

(4.17)
c]..(41&+, r) : (&*, 4.r),

(.flu*, r) : cl.(&*, J'-r),

.3f,,,::8, t (,.,") + \r, x' | - K \u, x +) 
| : \u+, F. r').

sup inf l(&,.,-) + (.I,r-) J((u,x.) I - (-PiL',r).

a$d this makes possible a detailed comparison of the "infsup"
and "supinf in {1.14). In particular we see that these two extrema
are "usualiy" equal; the fact that they can be different in some
cases is exactly dual to the fact that the upper and lower closure
operations for concave-convex functions do not ahvays coincide.
A minimax theory tiom tbis point ol view has been developed by
ihe auihor in 1351.
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