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GRADIENTS OF CONVEX FUNCTIONS

E. ASPIUND AND R. T, ROCKAFELLARC)

L Inftoduction. This paper is concerned \lith relationship between three
notions: the .lirferc tiabilit! of a convex function I the ntundiir of tlre convex
fLrnction s conjugate to I xnd lhc rcntinuit! of ihe subdjf€reDtial mapping ,/
(\1hlch reduces to the g.adienl mapping Vwhere /is ditrerentiabl€). These notions
a.e considered in the context of \arious adnissible topologies on paired vector

wrcn /is the a Banach sprce X, ot f:(112) . ,. our resLllrs are
comparable to the theorenrs ol Smllyan ll9l. Cudia t6l and others about lhe
reiationship between the dif€rentiabilit], of ' , the rotundiry of the dual unit
ball in I+ and the contiDuity ofthe spherical or exiended spherical nappings from
X to X+: see AspluDd [2]. Our resxlts also contain As a special case some recenr
results of Lcsca et [9] on the strong conr uity of sradient mappings ln Banach
spaces. Tlrey are stronger than, but do not quite conrain. the theorems ol Moreau

[]21, [13] abort rhe upper semicontinuity ol e/and a^/Gee the rcnark followins
Proposition 5).

We rould like to thank Professor J. J. Moreax for sone very helpful suggesrions
wilh regard to an earlier version of rhjs paper.

2. Basic d€finitions, Throughout thjs paper,,Yand rwill denoie vector spaces
orer the rcai nrnnber system R paired by a bilinear form (...), wilh respect to
uhich X distirguishes ihe polnrs of y aDd y distirguishes rhe poinrs of X We
dcnotc by L(.Y, D and r(X, I), respecrively, the weak and strong topologies
induced on ,Y by rj similarly '( r, I) and r( r, X) on L Ditrerentiability proper-
ries i n the space X will be shown to be duai ro roiundily properties in the space r.

Let / bc an extended-real-lalued lunction on -Y (i.e. an elerywhere-delined
funclion wilh aalues in R ! { r.o}). Ler ,.1 be any oonempty subset of X We shall
say t\at f is A-dirferentiarle at r given jr e ,Y if tis finile ar : and there exists a

]E I such that

Q.t) lim sup 1,J+^u) f(x) - u'r :O
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ihcre/'irr &) is the orr-sitled directional dethatl,e of/at i with respcct to ,.
IfI is a collection olnonempry s bscts olx, \1e shall say tl\atf i\ 4-dilfere ti'

a,/e at jr when there erists a l, such ihdt -l is an l-gradient of/at i! for eve.y

lf ir' consists of all singleton subseis of ,Y Gubsets corsistirg of a single point),

"</-diferentiability is callc/J GAleaL1r dillerentiabilit]. If )a is a nonncd linear space,

v: X* (thc dual of x, in the crnonical pairing, of course) and i/ consists ofjust
rhe unit ball of x, /-ditretenti^bil;ty is F dpt diJfetentiabilitr.

ID whar follows, Jr' ivill always denote { collectjon ol nonempty subsets of ,r

(a) each A E.d is $(x, l-bounded,
(b) U I,1 I €..r'} eenerates .Y alsebraically,
(c) AEJ/ knp]],es Ae 4.

Assumptions (a) and (b) euarantce that a locrlly convex Haxsdorff topology is

induced on I by uniform convergence of the linear function.rls ( , _r) on subscts

in.r/:thistopologyonlwillbedenotedby4Assumption(b)impljesby(2.2)thar,
for a givcn jr€1. there is at nost a e le r slLch that ) is an,1 gradient ollat jr

for evcry ,1 =.1 The |niqre _r, ifit eists, is called the.jr'-gradierr of/at -r. Assump-
lion (c) implies rhat, for an,./-gradienr r, the limiis in (2.1) can be raken in the
two'sided sense as I .,0. rrlhcr than merely as ) i 0.

We shall mosLly bc iDlclcsted in thc cise wlrere l js a .o,,e.t tunction on I, i.e.

where the epigraph

epi/: {(.t, F) xEx.FeR.pZf(.x)\
is a conven ser tu I O R. If l(:r) > -dr fo. cvery x and/Ir) < +o: for at least one j.
$e say ihat /i\ a /roler con!ex function. Wc denotc by .lorn l tl1e erafe.t il:e donaik
ofl, which is the conrex set

{xEr /(-Y) < -ca}.
A \'ector ), E I is said to be a rrl.qddr€rr oil at r il
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In thls evenr I is called xr A Eta.li?nt af fat x, xnd I satislles in particular

(.2.2) f'lx;u) : <u, y',', YUE A.

(2.3) J6+l) > JG)+<11, !>, \ue x.

The sel of subgradients ol/at r is denolcd by a/(-y). and rhe multilalued mapping
;i j. :/(r) from r to | 1\ cdled the suhdiiere tial ol J. The definition implies
that ;/(ir) is a (possibly empty) u(v, r)'closc.L coDvex subser of r for each ir.

Assuning tis a convex function turite at r, one has ,r E al(:r) ir and only il
(.2.1) (u, r> 

= 
J'6tu), Yuex.

For the general theory of convex functions and subgradicnts, we .eler the reader

to I4l, Ilil, I131, tl7l.
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(2.5) <u, t> : t'G; u) = f'Q; tl

(2.6) {u s(r+D)-s()) ix, r') 
= 

8} c .,

(2.7) s()+,, > g(r)+(-Y,,), v. + 0,

4:15

We shall denote by rad/ the set of points at \rhich the convex set don] I is

tu.{ial, i.e. the set of all ,t€don/ such lhat every half-ljie crn.rnaiing tuom -r
contains points of doml besidcs r..

Pioposlrlo^- 1. Let f be a o rcx liln.rion on X, an.l let x he a point rherc I is
.r/4i|Jerektiable. Then J is propet and x E tad l. Morcater, al6) consists af a sinsle
t:ectot !, the ../-stodie t aff at x. This ! is in Ntticular the GAftaux gtadient ofJ'

Proof. Let U:U {l ,4 e/}; by oLLr assumption (b) above, every vector in L
can be expresscd as a linear combination ol vectors in U. The ../-gradienr -|

lbr ever] , E U. Sirce I is oonvexj ir follows, as ls well knorn (e.s. scc ll7, Theoren
25.21), that (2.5) holds lor every u hich is a linca. combination of vectors
1lr, . . .. ri in a/. Thus (2.5) holds lbr evcry ! E I, so thar dom /is radiaL at )., and

] is tlle Gatcaux gradient. Then J, 
js lhe unique subgradient at x, since it ls lhc

only vector satisfyins (2.a), and/is proper by (2.3). This finishes rhe proot:
whencver l71j) consisls ol exactly one element '}, (as in the case of Proposition

l). we shall denore thls ] b), ll(r). The nappins vi jr + r/(ir) will bc cxlled the

a/l].r'crl mapping associdted with t (The domain of Vis thus thc scr of points
-r E X such that t/ir) is nonempty and conrains no nore than onc clcDrcnr. \hereas
the range of Vl is a subset of Y.)

Rotundily properties will now be dellned. Lcr a bc an extended real-valued-
function on v, and 1et 3 be a srbset of l' Wc shall say rhat g is B+ohtnd a1, a
given I E r relatile to a given x E X il g(]J is fi nite and, for every s>0, lhere
e\..r' a 5 0llcirhx.

We shail say that I is .r+atun.l at -]. rclatiyc to r if A is t-rotund lor every
./-neighborhood A of the origin. Since t is a Hausdorff topology on r, rlris
condilion inrplies that

ancl hcrice in particxlar th.rt -r € fg(_r).
Thc concept ofj--rotundity is usefui in the stlldy ofvarious extrenum problems.

An cxtended-real-vahcd function , on I is said ro auain its ninimum over a
subset C of y at I s//o,glt ttith rcspect /o .f if (,4 att.ins irs infimum over C at
the point } and) every scquence -r1! '},,,. . -, in C with

lim n(/J : inf /'



(2.8)

IMav

is .t-conlergent to J. (Here ,/-convergcnce of sequenccs actually implies 'z-
convergencc of all ncrs.) It is easy to see that g is ,t-rotund at ] rclatile to jr if
and only if the infimun of thc function g- (r, .) ovcr y is linite and attained a! )
stKrngly wilh respect (o ;/- Tlrus, for example, whcn g is rhc htdicatot of a subset

C of r. i.e.

S(]):0 il.IeC,
: +€ if -rdC,

s is.jz'"rotrnd rrl t relative to x if &nd only ilthe supremun of the linear f nctional

1r, . ) o!'er C is Il ne and atiained at -r, strongly with respect to Z
The following result wjll enable us to concentrale our investigation ofrotundity

on the case ol convcx functions,

PRoFosITIo^_ 2. Let 8 he an exte ded+eal- lued lunction on Y,andlettandy
be elenents al X antl Y, respectit:elr. such that sb') is fini|e, Let E be the v(y, X)-
Io|et seni.ahti uau! canter lull oJ g (i.e. the poih'llis? suprctnum of the collection
oIa ']1Y, X)-lo\et senicontitluout onrcxfut.lioks on Y hajorizd bt g). Suppose

that therc exists a:/--hounde.l rcnrcx set C containihg the otigin in y such that

(2.91 liminfl(1.,t)rnfi,q(r-.r-arr)-r,rll>0.

Then g is ,7ratun.] ot .r telatirc to x if ahd onlf if I is ,f-b\pr setniconlinuous at y
and E is l+olun.l at 1 relathe to x. lu this ercnt, E b keces:arib, prcper a d
t(.v):c(.l.).

Proof. Repl^cing I if n"'cessnry by

i'(') : s(I+r)-s(rr- (.r, .),

\!c can reducc the prool to the ctse wherc

E, ASPLUND AND R, T, ROCKAFELLAR

-t - 0, r:0, s(r): s(0) :0.

i(tQr) < 8(4, v, € r,

lin infi(,\)/.\ > 0,

(2.10)

Assume that a is.:r-rotund at 0 relalivc to 0. Le! I be &ny closcd convex sym-

metrjc t-neighborhood of 0 in 1., and let ,' be thc gauge ol4 i.e.

do) : irf{I > 0 j.€ r8}.

Delinej on [0, +.o) by

j(i): inf{s(r') p(,) : )}.

Clearly I is a nondecreasing function such that

(2,t1)

and by (2.9) we havc

(2.12'
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The .Z-rotundjty ofA implies that

(2.13) i0) = 0, but/)) > 0lor every ) > 0.

Lerj be the lower scnlicontinuous convex hull of I on [0, +..), Le. thc poinrwise
supremum of !h€ collection ol all lower seniconrinuous co.\cx iunctions on

[0, +co) majo.ized by j. ]t follo$s easily tionr (2.12) and (2.13) rhrt

(2.11) /(0) : 0, butj()) > 0lor every.\ > 0,

.nd this implies by ihe con\cxity ofj !hat j is increasing. The furclion

(2.1s) r(i : dr(r))

is convex and r(r, X)-lower semicontinuous on t a.d k 
=.q 

by (2 II).Thercldc
k 5s 

=s. 
since

0 = k(0) : .s(0) : 0.

we hale a(0):8(0):0, inrplynlg rha! s is !( y, ,Y)-lowcr scmiconiinuous ar 0, and
hence in particuiar.jt-lower senjconiinuons al 0. Fo. eler)r 3> 0, we alvr hrle

(2.16) 1. sct s 3] - {ri k(ri 
= 

3l

Given any.>0, there crists, by (2.14) and tbe monotonicity olJ. some ;>0 such
thar I,\): d inplies ,\<.. Then,4(.)= I i plicsr(rJ5., so rhai by (2.16)

{r 8Q) 5 3l - {r ip(, 
= 

€l :.8.
This sho$s that E ;s A,rotxnd at 0 relatilc to 0, a.d since .? has a loca base
consisljng of y{ y, X),closed convex symmeh.ic sels like , we ma} conclude that .a
is r-rotxnd at 0 relative to 0- In pa.ticular F majorizes the conltrir lunction 0,
so that g is a proper convex tuDction.

On thc other hand, assume that g is -Z,lower semicontinuous ar 0. and lhxt t
is .7-rotund ai 0 relalivc to 0. we have

(2.i1) inlso) : inrs0, = a(0) E R

(because gsg and rhe constant lunctions maiorized by s ere br definiiion al\o
majorized by s), and ror each 3 > 0 $e have

(2.18) lri st) 
= 

s(0)i8l - Ii,ls(.) 
= 

s(0)+31 + . .

In \icw of the .iz-rotundity olg ai 0 relarive to 0. ihc sers in (2. t8) car be made to
lic in any given.T neighborhoodol0b]choosing;sufllcienltysnatl.Thisimptics
furthermo.e, by the.Zlower semicontinuity ofg at 0, that K(0):g(0):0. Thercfore
8 is.Z-rotund at 0.

RrvARK. Condition (2 9) nr Proposition 2 is sitisned trivia y when the sel 01'

pojnls whc.e g does nol have the lalue +d) is .7,bounded.
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3. Duality b€tweeD differentiability and rotundity. The.oritgdle ofan exiended-

real-valued function I oD r (with respect to the pairing between X and r) is the

function / on X defined by

(3.1) /(r): sup{(r,r)-g(r) r'E I'l

As js known,/is a w(L, D-lower semicotltinuous corlvex function on ,r' Ifg is a

(v, X)-lorver senicontinuous proper convex function, then/is proper and I is in
turn the conjugate ofl i.e. one has

(3.2) s()) : sup {(j', }) -/(t) jf e .r}.

In this case,

(3.3) yea.f3)+xeaej)+(i,r)-./(')-g(]):0
The followhg fundamental result about polars of level sets of conjugate convex

functions is irnplicith contained in a paper of Moreau [10]. As usual, we derote

by Co the polar of a set C- f, i.e.

co:luexl<u,x> s l, vu e c).

PRolosrrloN 3. Let f and g be prcpet conuex funct ia s cokjugate to each othet on

X and v, rcspediDel!. Let xe X axd ye v be such that the ( onpositiue) quantitr

d: inf {r'(r, +,) -g(r) <x,r)\: <x.!> f(x) s(y)

is linite. Then, for an], 3>0,

^. r gt!t /r grjr- r.,'bloco :rlnx u) Itxt tt.v 'h\(r'41 2,lgu+rl-grt" .x., = a+dto

Proof. The proper convex lunciions

fiG) : t/(}+ 3.2) t(x)-(62,)):31/3,
go(,J : ts(r,+,)-s(/) <J',,)-d+61/6,

are coniugate io each other (as can be verified by direct calculation), and thev

satisfy

(3.s) 1:infso5so(0)< +cc,

(3.6) l:.fo(0) u infi > -,,o.

In tcrrns of these functions we can re\rrite (3.4) a.s

(3.7) {r sJ,)sgo(0)+l}o-c-2{,1c"(")<2}0,

c:{zlfa@=o\'
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Here C is a r(,Y, I')-closed convex subset of X containing the origin, so that
Coo:C. Thus (3.7) (and Proposition 3) will follow if re show that

(3.8) {l, so(,) s so(0)+l} > co > (l/2)1,lso(,) 
= 

2}.

I er l denote rhe .Lpporr lLn( ion ol C on ), i.e.

h(u): sup {o, r) zecj.

According to [14, Corollary 4B], ,{ is related to a0 by the formula

(3.e) l(u) : inf .\g.()-1,).

In particular r=so by (3.9), so that

{, go(,)=2}<lN h(L) 
=2j:2{r,)h(a) =1\ -2ca.

This establishes the risht hatf or (3.8). To esrabthh the lefr hatf ot (3.8), it sunices

(3.10) {,lrr(D < 1} c {, go(,) s go(0)+U,

since the lr( y, xiclosLrre oi the set on rhe left in (3.10) is

{, ,(,) s 1}: co,

whereas the ser on the right in (3.10) is r(r, x)-c1osed. civen any, such rhat
/?(r)<l,there exists by (3.9) sorne )>0 such thar Iso(r 1r)<1. Sinceso() 1r)>l
by (3.5), this ) nust actually satisfy 0< ) < 1. The convexiry of s,o implies rten rha!

sd(,) < 0-))so(0)+)so() rr) < so(O)+ L

Thus (3-10) holds, and the proof of Proposilion 3 is compleie.
The furdamenial duality between difi'erentiabitity and rorundiry can now be

proved by means of Proposition 3.

PnoposrrroN 4. Ler ia dI be propet co uex functio s conjugate to each othet on
X and y, rcspectirehr. Let A be any no enptf subset of X, and let B be the potar ol
A in L Let x e x and J e af,). The11 J k an A-srudient of f at x if a d only if s is
B+otund at ! rclati\e to x.

Proof. By definltion, since } € a/(jr) and (2.3) holds, l, is an l-gradient ar ji if
and oniy if, for elery .>0, ihere exists a p>0 such that

(3.?) !.g {4{a+@ <,,r>} 
= ", o < .\ 5 P.

Since y(r+,\?l) /(x)l/,\ is a nondecreasins function of ) > 0 by lhe convexiry ofl
we can $rite (3.7) as

e tA c e \p 1{u f(x+ u) -.tut)- <u, D < p.\.
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It follows liom Proposition 3 (with d:0. xs ildicated by (3.3)) rhat I is .rn -'{-

gradicnl at ,r il and only if. lor every .>0. rherc ciists a ; >0 such that

(3.8) " ',.1 . lf s(l,+r) s()) ijr, rt 
= 

3i!.

Taking polars, \'e ca. cxpress (3.11) equivalently as

€a- iu s.(r+r) s(j, (r, fr 5 3].

Thrs r js an ,!-sradieni if and oDly ifs is ,'rotun.l 1l l, relative to ir'

TtftoREM ). Let.f and g he raryr ftnLex functio .oniqate to ea(h othet on X
and v, resre.th e+. Then I is .4-dilJbrentiabl. at x rith r:fflr) iI dnd ar']I il s is
.7+otund at ! relatie to x.

Proof. If-r ls the../-gradient ofI at r. we have ] E if(-y) nr pa.lic'rlar. b) Prop-

osilion 1. On thc olher hand, ifg is -Z rotund lt ] relalive ro r $e havc t € :s(r).
xnd hcDcc l, E al(x). Thus in eirher case Proposltion ,l is applicable, and it follow\
that I is ,q/-dilTerentixble ai r with /-gradient -r il .rDd oDly il s is B-rolund at r
relatile to .r for every a € rr, whc.e I consisls of all the polars of scrs il] .4 The

laite. condjtion is equivalent to A being.7-rotund 3t I relative to r. sincc thc scls

B: ,\rBr. 
^ 

1.8",, it>0, Bte4,

are r local base for .4 and since g js ,-rolund lbr such a , if and oDly ii 8 is

-Brrotund lor l: l,. . ., r7.

CoRoLLARy l. Let f arul g be ropet @t e:t Jinctians canjugate Io ea.h othet a

X and v, relpectirclr. Then.f it GAkaux .li|fetektiable at x fith r:\l(x) il an.l

an, ij s is x(Y, X)-totund at r rclatitie to x.
In panitulat,l is Gatuaux diferentiabte at o v ith !=rf(o) if ancl onu il s axains

its i Jinun oret v at ! ttton?l)' r,ith respect to the v(v, X)-topolog.

Proof. Take .!r' to be the coliection of all singleton subsets of .r.

CoRoLLARy 2. Let X he a omerl li ear space, antl let Y: X* (i the canonicdl

pani"g). Let l and g be ptopet co texlufictions conjugate b ea.h ather on X ahtl Y.

rcspe(tiQlr. Then f is Frichet .rilfere tilble at x |irn r:l/('') if a d o U if I i'
orn ratun.l (i.e. rctad trhh revect ta the ,otk1 tapolagy) at y reldtire to .t.

In patticulat,l is Ft!.het di.fercntiahle at 0 with !:\t(0) if and onb, if s att.lins

its injniun aftt y at ! lttanglt rith resry.t ta the notrl topolog!.

Pfoof. Ler.,/ consist ofjust the lll]it ball in L
CoRoLLARy 3. Let f be an), 

"(X, 
vJ-laret setnico tinuous tropet contcx functio

o X. I11 is ./ dilferentiable at x, then I is aclualtf .d'-diferentidble at x, wherc :.r''

& sists ol all the kanenpty.r'-?quicokli uous subsets aJ X.
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Proot The topology induced on I by uniform convergcnce oftinear functionals
on subsels of /' is rhe same as Z Hence the .c1'-difcrentiabiliry ot/at :r js the
sarne as the t/-ditrerentiabilily oflat jr by Theo.em 1.

Corollary 3 implies in particular thar (iflis any r(I, I)-lower scnrjconrinuous
proper con\er fxnctioli oD Xl /is Gareaux ditrerentiable ar ,r if and only it I is

act0ally .4-differentiable at jr, rvherc .q is the collecrion of all nonempty r,rs
dl,re,rioral boundcd subsets of -r.

C.JRoLI-ARY 4. Let I he a.r(.X, Y)-lowet semicantiruaus ptoper c.)nrcxJinttion ot1

X. Supryse therc exists an r/-bou le.l lineat funct ional k ot1 X such th.ft,l& a pil:en

x e x, l\x) is fnite and

in 're I 
nx ^/) nr''-ri,r 

I - o. ,r 4 .d
,!.1

h y is .rronplete, then thete exists a )E y luch ihat k(u):<u, ),.) fot ererr
u e X, sa that f is attually -diferentiable at x.

Proof. Ler Z be the space of a1l rr'-bounded linear functjorals on ,Y. Under rhe
canonical pairing between X and Z (with respect ro which the scts in r/ a.e all

'(x, Z)-bouDded), we nay regard y as a r,(Z -y)-dense subspace otz which by
-Z-completeness is .t-closed (the .Z-topology on Z being, of course. lhe ropotogy
of unilorm convcrgence on the sets in .c/). Let g be rhe convex funcrion or Z
conjugate tol Then/is rbe conjugare ots with respect ro the pairing bctween I
aDd Z. and at rhe sane rime / is rhe conj ugate of rhe restriction of I to I with
respect ro the pairing between Iand y. Theinfirnu otg (jr, )overZisrhus
the same as the infimum of g (r, ,' over r, namety /(j'). Lct ),r, ),, . . . bc a
sequence iD y such that g(tj.)-(t*, jr) dec.eases to this infimum. By Theorcm t.
g is .Z-rotund relative to ir ar the poinr ot Z corresponding to f, so that ,r .Z-
con\crges ro this poinr. Since L is ./-ctoscd in Z, ihis point nusi acrualty betonq

CoRortARy 5. Let Y be a Ba ach space. and let X:y*. Let Ibe a X. y)-
lorer senicatltinuous rrropet coner fuktion on X. If.l is l:tichet diiercntiabte at ,,
the Ft!.het gradient a.nta ) belonls t.) y (rc rs than Nerel! to y**). Thus f is
FNthet di|fercktiable at x il a"l onty if the.fundian s <x, .) A,herc s is the ca -
jugote oJ atains its itljmum orcr y :trong[r fith rcspe(t to the notm topatosf.

Prool Apply Theorem I and the preceding coroltary in lhe case rvhere r,/
consists ofjusr the unit balt of x,

ID the case of Corollarj, 5 where/is the norm on X: y*, g is rhc i.dicator oflhc
unit ball C of y as in (2.8), and one gets a ctassicat resuh ot Snulyan ttgl: the
norrn on r* is Fr6chct differenriabte at jr if and only it the linear tunctionat
(r., -\ ariails its supremum over C srrongly with respect 10 the norm topoiosy.
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Th€orem I calr be exiended by means of P.opositioD 2 to cases where g is not
. r\e\ ore\er)sle,e.(). Y)-loqe-.emicor r'nroL..

CoRoLL^Ry 6. Let g be an extended real-Ml ed functio an Y, and let f he the

canjugat e o.f e on X. Le t x akl y be eletnents ol X a d Y, rcsr.tire b, skh tltat g is

Jinite 1nJ.7-larer senitontinuous at ). Stepo\e therc exisls a rJ)ounded contex
sel C tontahing the arigin in Y su(h nt

im in. l(r ,r i I {s(r +,)-c(rJ- '.' }l 0
oll

(rhichisnueinpa iculu ifg has the ual e +''. et:ery\,hete autsirle af a ceftain
r-bouhde.t subset af r). rhett f is .l-dilJerentiable at x ilh r-\f(x) if a d anlr
if g is.7-totund at r relatbe to x.

Proof. L€t E be the r( r, X) lower s€micon tin uous conver hull ol I. Oi course.

I is .rlso the conjusate ot[', and if either/or g is proper s is in rurn the conjugate
of/: The ar''diferentiability of/at .x implies the properness of/by Proposition l,
whereas rhe ,--rorundity of g at _r relative to jr inplies the properness oi F by
Proposition 2. The result is lhus imrnediate from Theorern I and Proposition 2.

:1. Diflerential continuity. We shall now explore tlre relrtionship between the
dilTerentiabiliiy of a r{-r', 4lower semicontinuous proper convcx function/on
x and the continuity of the subdifi'erential mappins ay': r > a/x). More generally,
r e .5a I con. oer co rl rr r iry pn,perr e. of rhe rrJppirg

(.,', .l) + ,^/(x), jr E x, .\ € R,

where a"(r) is thc set of lectors r, e v such that

f(.x+u) > U(.,) 
^)+<u, 

yr, Yue x.

NoIe that al is thc restriction of the Iatter mapping to ):0.
One ias

a^/(x): {r s(r)-(jr-r) 5 B+,U,

where g is the conjugate of/and

P: inf{s(}) (jr, -1,)} : /(ir).

Thus a^/():) is always a '(r, ,Y)-closed conlex subset of /, nonempry in particular
when jr € dom /and ,\ >0 (but enpty when j' + don/or ,\<0).

Throxghout llis section, I will denote a topology on -Y which is a locally
convex HausdofT lopology having a local base consistiig of lr(I, I)-closed (con-
vex) sets (polars of certanr (r, I)-bounded subsets of I).

lf the conlcx set dom/ has a nonempty interior with respect to 4 this interior
is of cou.se rad/ (as defined just pdor to Proposition l). If dom/ happens to be

closed with respect to lr(X, -f), then rad /is by definition the r(I, r)-interior oi



domll Actually, even whcn dom /is ror ''(r. v)-ciosed, rad/is the r('r'' v)-

interior of dom / by the con\exity and r'(-\'. v) li']wer semiconinruirv of I (see

Corollary I belov).
Tbe following resuhs will be needed.

THEoREV 2 (MoREAU IlO,l3l Letfbe a\(X. Y)'lottet ietniontitluou! ptoler

conuex fltnctiotl o X.
(a) Suppase that f has a fnite uruet boun.l in sane't neishbothood of sorne paint

of X. Then ?^f(x) is a s-eguiconti|luoLts sublet ol Y fot ete x efld f 'okl 
i 

" 
R'

hfact, gi.-e an)'xeftdf arlan)P'R.thercexistsa l neishborhood U of th'

ar;sin such that the sels a^1lx+11 ate u lbmttt E'eq icontnnlous lor u' U anl

19691 GRADIENTS OF CONVEX FUNCTIONS

(4.1)

i! .E-equiontihuout.

\J !\4,f6+ uJ t) u = U, i 
= 

pJ

(!.2)

hold for

(4.3)

whcnever l. p, r and.t, are such that rr >0. /(r) < +'o' g(-r) < +" 3nd

(4.4) ,\ p :/(i)+s(r)-(r.,r).

(b) O the othq hand, snppose that, far sane xe X and sone )>0. ai t(jr) is

no empry a rl f-equicantinuous. Then xeftdl,a.lJ is f'rc tn ous thtoughout

ftd f, sa that (a) aryties a .l ndf is lE .'t-nneriot ol ta]l.,f

Proot This can be d€duced from Proposition 3 and the wcll-known fact [3,

Chapter ll, p. 921 that a linite con\cx fxnction on an open convcx set lilis coll-

tinuous throughout l/ if it is merely bounded above in a neighborhood ol some

poir L ol P opo.ilio'r J sd\\ l.nr lne ,c r.iol'

ltrf@)- lla ' c - 2L?"1(.r) rl'

C : p rtu l6+u)-1(:() <u. r') : s\

S'rppose that/has a finite upper bouDcl in some l{cighborhood of somc point

of ,Y, as hypothesized h (a). Then dom I has a nonenprv l-interior' *hich nust

be rad I andl is l-continuous ilrroughout this irrlerior. Fix anv ], ' I snch that

g(r) is linite. Since g is conjLrgate to, we have

.q()) : (r, -r) /(r)
for every r E X; ihus lhe ljre.rr function ( , r') on ,Y is majorized bv a function of

the fonn /+const, inlplying that ( .]) has.linite upper bound in somc '7'-
neighborhood ol some point of ,Y and hence thit i ,],) is l-contnluous The

/(a+4) /h) ,, r,
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in (1.3) iherefore depends .7' conlinuoxsly on ir and l], as lons as r E .ad / and

'+, F rad I lt follows rhat, give. any -r E rad/ and any real nxnber a > 0, therc

exisl l-neighborhoods U and I/ of lh€ origin itr ,Y such that

IG' +u) f(x')-<u, ],) < t1

whcnevc. -r'-r E U rnd e E p t', or in oiher words

u ltu tG'+ ) t6'J <u. ),> 
= 

pl - ,'

wheiever r'-,rE U. By the second inclusion in (4.2), wc thcD havc

rl _ 21e,16'),rlo

whenever.r'r€U.Thus

arJ6+u) - aJ(x+u) - 2vt+v

lor every r/ E U and lsll. Sincc r is an l-neighborhood oi tlre origii, and th.
linear lunction (, 1) is v' continuous, rhc sct 2tl0+f, is 9' €quicontinuous in v
and (r) is cstablislred.

To prove (b). suppose no\r rhat.r E ,Iand l>0 are such that ail(jf) is nonernpi)
aDd lr'equiconrinxous. Then/(.!) < +.o. Choose any l E ,i/():) such that actually

/(i) +s(I) (i,]) < )

(as is possible by (3.1), since /is the conjugate ofs), and define a by (4.4). Then
(4.2) holds. Sjnce l belonss to the t'-equicontinuous set ail(i), the linear funciion
( , ]) js .v'-conrinxous and the translate arl(jr) , is again an t"-equiconrinuoirs
set. The polar of ,i/(x) -| in ,Y is therefore an .f-neighborhood of the origin.
Then, by the firsl inclusior in (1-2), the convex function

h(u) : f(x+u) /(jr) <,, -1,)

is bounded above in some ,f-neighborhood of the o.igin aDd hcncc is t con
tinuous at the origin. This impli€s that tis l-continuous at jr, and thc conclusioD

of (b) is inmediate.

CoRoLLARy I (cF. RoCKAFELL^R I]1'l. Let J he a w(X, Y)-lottet seniLontinuaus
propet cohL.xfu"ctian a X. Thenfis s(X. Y) continuou.s thtoushaut adJ (so that

Iadf is ik pa iculat the s(X, v)-interiot of dof.f). Moteouet

G) a 
^lQ) ^ 

a v( v. x)-bounded suble t of v fot et e t ) x E tad f and 
^ 

e R. In.fac t,

gircn anr r€rad1 and a , pe R, therc exists an s(X, v)4eighbo lood U of the

otisitl su.h that the sets trJG+u) arc unifuml! \|(Y, X)-bounde.l lbr ue U ard
i=p, i.e.

is rI Y, x).bounded.

U la^f(.x+u) lue u,I 
= 

p\



(b) On the othet hand, i:f x is su.h that 4.fG) is no enpty atltt y. XJ,hountted

Jot sone 
^>a, 

fien x E ftd 1.

Proof. For any ,r € rad i the '({ 
y)-closcd convex ser

{1] l/(j:+,) 
= 

/(r)+ r}

is radial at thc origin, and hence it is by definition an i(X. y)-nejghborhood ot rhe
origin. It follows fron the conrinuhy laci ciied at the beginning ot the proof of
Theoren 2 that/is r(x, l),continuous rhroughout radl Thc coroltarl, is rhen
obrained by specializing ,, ro r(x, y) in Thcoren 2.

CoRoLLARy 2 (MoREAU [10], t13l). Let l be a t(X, y)-to||d semiftntuluous
Nropet conrcxfunction o X, strch t hat f has a finite upper baund in sane .t -ne ighbot-
hooll ofsat e point oJ X. Assune that :l is colnpatible vith the duqtity bebeen X
ancl y. 'fhen .f(.x) is a tlonenpr: f(Y, X)-conpoct (conL)ex) subset of y Jbt eL,ery
x E tad X. In fa.t, sbeh an! x E tad f. thete extl'l an ll-neiglbothaad U of the
otigin such that the set

u {a{:r+,, ,-. u}
is telatitelr t4Y, X\-compact.

Proof. Since .7 is compatible $ith rhe duality. .y-eqrjcontinuous sers are
relatlvell, (I, y)-comp.lct. Then, tor jr € radl ay'(jr) is noDempry, because a/(x)
i' e i.lre-.c.rion o',lenorenp, r,J. \ r-ct^,ed ,-.q,.on. n,"-. "..."i,.,.t>0.

It can be shown, incidenrally, that under rhe hyporhesis of Corojtarv 2 one has
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('1.5) f'(x) u) : ]max lt.u, r) | ), e.,16)J

,Jir) - sup (jr, r).

for evcry jr F rid /. In rhis evenr, ot course, I is cateaux difi-erentiabte ar _r jf
x E rad /and a71j.) conl.ins jusr one vecror r. (See Moreau Il0l.)

Wc shall dcnote by tthe collection ofali uonempry (y, X)-ctosed bounded
convex subsets of r. According ro Corolary t, ,il(x) is an element ot ifor every
jr E rad I and )>0.

By the 7-topalog! at t, we shall mean the ropotogy in which, for each C. a
thc sets of thc forn]

IDe yiD- C+BardC- D+Bj
constitute a lundamental syslen of neighborhoods oi C as B ranges ovcr all
v -nerghborhoods ofthe origin in r. Otcourse, whcn yis regarded as a subser of
i rhe rclatile .t-topology induced oD f is rhe s.me as rhe -Z-topotogy atready

Thc .z{opology on t can atso be obiained in a {:illnt way. For each C E I,. tet
hc d.nate rhe suppott fundion at C on X, i.e.
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As is weil known [7], the correspondence Ce rc is one{o-one between i'and the

collection of all finite D(r, D-lower semiconrinuous positively honogeneous
convex functions on ,Y, and it preserves addition and nonnegative scalar multi
piication. (This is a natural extension ol the correspondence between points ol r
ana :r edr h nc.ions on Y.) lt i' not hard ro.low rh4- rhe.7 - opolog) on t s rle
same as the topology on tinduced by uniform convergence of the support func-

tions i. on all ./-equiconthuous subsets of )4.

\ore llr' r :cqreice ol .er' D. D".... ;n t /-con ercer ro a ooirr u )

(regardcd as a singleton s€t in it) il and only if, for every t-neighborhood B ot
th€ origin in f, there exists an intcger n such that ,!-t+B for a1l k>rr. Thus

th€ conjugate g of/is.Z-rotund at I relative to r if and only if the nonempty
r( f, x)-closed convex sets

y+\" s(y+ti) (r', ri) < s(r)+rl, ,\>0,

arc (I, l()-bounded and 7'-converge in I to / as r I 0. Since (3.3) holds and

arf?): r+lr g(r+,) (',,) < (ir,I) /(x)+)],

the conclusion ofTheorem I can therefore be stated as folla\\,s: f i .4 -ditbtentiahle
at x vith t:VG) if atld onhr if the set! arfk) arc nanenpry a .t bounde.l fot 

^>o(i.e. x = ftd f) and aLfG) l-conrerges in f ro I ar ,\ I 0.

PRopostrroN 5. Let.f he a v(X, Y)-lo\,et semi.antinuour troryr cont:ex function
on X, such that I has aJinite upper bou d in sane !t- eishborhood of sone loint of
X. Assut e ilat a tlrc sets in !r' arc q'-bomded (vllich is tuue in pa iculat l ei Er
I or U is cotnpatible with the dualit) between X and Y). The napping

(j', .\) + aJ(jr)

is the ca tinuaus,on (tadnx!, +6\ i lhe g-topolas (i.e. the pradud of the

't-,opolost on 
"d 1 ant rr" onltnarl ,op6l6g1, o rlp re-t iarcirl \o. :.., 'a I

Proof. Choose any jr€radl any 5>0. and any llf,,Y)-closed convex .z
neighborhood B ofthe origin in y. Let U be an .l-neighborhood ofthe origin i.
-tr sllch t!.1, for F:23, the set in (4.1), whjch we shall denote by,l/, is -Z-equi-
continuous. Since t.he sets in..r' are all v'bounded in l: v-equicontinxous sets

are allil -bounded in ]. Thus we can find a real number p >23 such that

(1.6)

Choose an s>0 such that

(4.7) 2" < 3/(p+ l).
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Since/is v-continuous at jr (Theorern 2), there exists an f-ncjghborhood itl of
the origin, ,/- U, such that

(4.8) .f(x+u) 
^x+u,)l = 

el2, vqew,Yl,Efi,,
and

(4.9) L(l,, r) 5./4, vwew,YleM.
We shall demonstrate thai

arf?+u) - td.fk)+B and. aJQ) c aJ6+11)tB

for arbilrary !l€ ttl and le 16-€,5+.1, and ihis will establish the desired con-
tinuiiy at the point (r, 6).

In what follows, d and p denote real numbers such that d <p. For any ,1 and ,,
in (dorn/) jr, a./(r+ur) consists of the elements / E rsuch that, for every z € Xj

f(z\ > f(x+u)+<.z x-ub)>,a
: f(x+u,)+ <z-x-u,, y>

-Id+f(x+u,) f6+u1)+(u, uL !)1.
Ir qe t4/, u, e W, a=23 and B-4: s, every I € a,/(n+"J belongs to M, so rhat
by (1.8) and (a.e)

d +f(' + u,)-f' +u\) + (.u2- u, y ) 
= "+(4r)+ ("11)+ ("lq 

= 
p,

a,fG+d c a,f6+u,).

It follows in particular that

(1.10) a^ lr) . aJ(r+,) c a^+"/(.r), Vl/ € t /, v.\ S 23.

On the other hand, for any ,> I we have

" : (.110)y+lt (Il9)lP ror y : P+s(e-b -- a,

so that

(4.1r) (t lqal@) + tt - (t lqla B:f(x\ - a41G).

fle latt<r i"clusion lolo\( I om lhe facIhat

aJG): lt h(t) 
= ^1,

where , is a certain proper convex function on y, namely

h(y) : f(x\+sO)-<x, y)
(s being the conjngare of/). tf 0 < d <p=26. and A> r is such rhat ),> 0, i.e.

(4.12) 1< 0 < Bl(F-as,
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se l-\e b\ ld ll,.1d (/6)

ir,/(.{) - Il -(li r)l tIa,JI.x) (110)a,1J)1

: ii"/(i)+ [i(d r)]ta'l(.r) a,/{-rl
. e,lli,:) + [p(, - 1)]8.

This calculxtion uses the lxct that, since a"/(ir) is I convex set, onc has

a.f!) : Ll- (11q)li 
"f(x) 

+ (l ia)a,,f(x)

lf e:5 2. and t:6, (1.12) is sarisfied for 0:p+l bv virtue of (4.7)' rnd con-

(4.r3) atf?) - at,,"l(x)+B.

Similarly. if ":3 and ,:6+2s, (4.12) is satisfied lbr ,: p+ 1, so rhat

(4.11) t,,,"|(r). e,ft)+ B.

For any,€ ttl and I; F-e, 3+.1, \\e hare,\<23 Gince e<5) and

e,,',f(a) - i:t^ ,l(r)' a"-",f(:r) - a,-,"/(x),

atl(.x) c e,fG+ )rB
by (4.10) and (4.13), wlrile

?^f(x+u) - ?6f!c)+B

by (4.l0) and (,1.14). This compleres the proof of Proposilion 5

CoRoLLARy L€I l 6e .l \\lX, Y)'lowet setnico tinuolls prcPet cont'e\ fundion ot1

X. .{ssut . eithet thdt X is d banellel spacc in sarne toPologf such that v= X+, o,
tat 'l is a baftelled \Ne h sonle topalagy su(h thdt X: Y+. Then tlrc ntapping

f - ., .ll,.r trc' '.]d tt '0. a t . t\ r)- I t''apotol' to \

in the s(Y, x)1opalogf.

Proof. Invoke Corollary I of Theorcm 2 along with the facr that. in a barrelled

space or ils dual. rhe re.tkly bounded sets are the slme !J ihe strongLv bounded

sels [3. Chrprer Illl.
Proposition 5 and ihe results below should be compared with a recent theorem

ol MoreauIl3, IIdl.Thisresultsaysrhat(underlhesamehvpoihesisabout/asin
Proposition 5) if .7 is compatiblc with rhe duaiity between y and v and t is the

bpology of uniform corvergence on ./-compact subsets of X, then the mapping

(-r, r) - e/(-y) is ,ffer ieni.ontinuous as a mdtivalued mappins froln Gad/) x R

in t hc /-iopology to v in the .7-'ropology. h lhis casc. a/ is in particular ( Z .t)-
uppe. semiconrinuous from rad/to r, so ihat the stadient napping v/is (.2 Z)-
continuous (and consequcntly (tl l'( v. !)-conlinuous) where it exists.
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(4.l5) L r:+.ra) -/(.r)l/.\ <u, t) : 2e, Yue A,vr e..f(x).

Let B:,14 a ( l)0. Then Bis a synmetric convex.Tjeiehbo.hood olrhe origi.
in r. and

(4.r6) (u,x)) < 1. Vue A,w e B

Let U be an v-neighborhood of i such that

I f / ]s ;r'-differentiable at.y and thc hypothesis of Proposirion 5 is satisfied, ii
follows from Proposition 5 aDd the observarion prec€dins iL thlt iittA ,-con-
verges to V(:\-) in 7as; l-converges ro,r and )10. This implies in turn thar
,/(:-) ./-converg€s to W.I) as : .'"-converses to x in thc ser

D:l.zeftdf ?,14+tl.
Thus ihe napping ly'irom , ro Iis (vl .Z)-continuous ai r. Whcn 7 js compatible
wiih the dnality bet\reen Iand y, we have D:rad/by Corollar), 2 ofTheorem 3.

and a st.onger result may be siated.

THE1RE\I 3. Let .[ be a r(X, y tloyer sen]i.onti uou., trcFr canrcx fu".tian on
X, suth that J has a trnite uppt bau"l it1 sone I tleighbathood af sone Nint of X.
Assune 1at 9 is rcn?arible rith the dualitr betrec X an.! Y (.iee tlrc rcndrk
betor). rhen, i, ar.Jet that the thanins x-UG) tan ftdf to y be (1 /j
rcntinuaus at x, it is ne.etsatf ahd sufii(ie t that I he .t/ difercntiabte at x.

Proof. The suliiclency oi the condition has jLrst beeD explained. To p.ove the
necessity, fix any r e rad /at which ihe mapping in question is ( { .Z)-coDtinuous.
It is cnough to show that, giren any .>0 and ary I E j4 therc cxists a )>0 such
that

(4.l7)

(4.18)

af6+\,\ - tf(x)+"8, vv e u,

iif(x) - atk+wJ+eB. Vt e U.

Since .l is compaiible with the dualiry, the ser I, bcing x({ y)-bounded by
assumption. is actually .l bounded, and we can choose a )>0 such that ),.1. U.
Let u e A. tl t' e af6+ ir), we have by definition

li') :/(jr+)'l)+(i (.Y+ L). r),

(4.re) U(x +,\a) {ir)li) <u,!) 
= 

(.u,r),(.u,)),

for any,y€ y. When -r € a/(r). the lelr side of (4.19) is nonnegati\e, so thar
<u, t):<u,."). Since the latLcr holds for any'l E.,/(r) and r € irl1.j.+.1,). we musr
have

(4.20) .up{ r'.d ! , 
"rr' nrt D , ,ttt- \r)r.
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On thc other hand. since iu- iA- U, k\' ^ 
y t ebl (x+r,) w€ hale

(1.21)
(r, r.: 

= 
sup {(rr, r) I I e iy'(-r+ }!)l

5 sup {(ll, ,r) tr E a/(jr)} +.

bv {1.17) and (.1.16). wlrile lor any.r € {t(i) we hare

(1.22)
(,, -r) : inl {(,, r) | e i/(.r)l

: infl( , r') r e.ll-t+),)l e

by (1.18) xnd (4.16). Conbinins (4.20), (4.21) and (422), wc see rhat, for xnv

r € 4t(i+ r,?) and I e i'l(r),

(,,.) 
=inf{('], ) r'€rt({+),)}+s

= <u' !)+2"
in (4.19), and the irequtlity (4.15) holds as desired

REMARK. The c,:'mpatibiiity assumptioD on.l in Theor€m 3 was used onlv {t)

ensure thnt rll the sets in./ are .l-boundcd, and that if(:)+,, tbr everv: in

some .7'-ne;ghborhood of rhe poinl .!eradl whe.e continuity was in question.

Therelbre the co.clusion olTheoren 3 remains ralid when the latte. conditions

arc satisiied, even if .l is not compalible with the du.rlity bet\reen ,{ and f
CoRoLL^Ry l. LetIbe a r(X, Y)'lavet senicanti tnu! ptopet unrcx ftnction

on X. Suppase thal X is d barrclled spuce ifl sane topolos! sttch that v=X+ ln

order that fbe Catuaux.lilfere tidbleatx,it is trc.essarf and sufricient thataeftCLf
arul that ttp ntapping tf frot t^dfto v be continuous at x fran the s(.X. v) topatas!

to the 4Y, X)lo/alog),.

Proof. Take !':s(x,:l) atd 7:\|(r,x). The hypothesis implies that I is

cornpilible wirh the duality bei$een ,Y lrnd v 13, Chapter ltll Moteovcr, / is

v''contiDuous on rad/ by Corollary 1 of Theorem 2. so Theorem 3 is applicable

(lf rad / werc empiy, /could not be Galeaux difierentiable rnvwhere in view of

Proposition l, so that ihe presert corollary would be vacuous )

CoRor.r ARy 2- Let X be a omed lineat spdce rilh f: X+. a d let f be a Ptupet

.anftx filnctio an X toret seniontinuous *ith tcspect to the notht torylag! In
atulet that.f be Fft.hel dlIercntiable at x, it x necessarr and sufrcient that x c ftd f
a l that the naNpitis a.IItan ftIl J ta I be cotltrluous .lt x fton the notnl toryLogj

to the narflt topolog.

Proof. we notc {irst that tis actxaily l'(.Y, )')-iower senicontinuoxs, since lower

senricontinuity depen.ls only on the closedness olthe convex lelcl sets l). /(r)=d].
and the closed con\ex sets in ,f.rre the same in rll lopologies compaiible $ith the

duality betwee. -Y and v. Apply Theorem 3 as in the proof of the preceding

corollary, but with t:s(I, I).



r9691

CoRoLLARy 3. Let X he a hamed linet :pace rith \f:X*, and let I be a

f(X. v) lover senircntinuous prap$ can)ex Jltnctian ot1 X. Let U he a nonenpry

nbset ol X ore *ilh rcspect ta the otm tarylas! Suppase thdt.lbr edch xe U,
.lG) totlsists afa.,ia.le elene of t'(.lenotedb \J(.x\' Thenfis Geteaux diJferch-

tial)le thrcushaut U, and p srudient na?pit|g \.ffron U into v i: contilluous fiotlj
the no ]1 tapotos), ta the tr(Y, X)'topalosr' In oftlet that J ddua .t' be Ft;.het

lifere tiabte rcushout U, it i., e.essart a l !!frcient that \f be "o 'to'nom
co titntaus ftot U ihta Y.

Proof. Sincc alir) : z lor ir d dom t.r must be coniained ir1 doml and hence

in radl By Corollary I olTheorem 2,/ is norm continuous throughout U, so that
(1.5) holds, implying thrl V(.!) is the Glteaux gradieDt of/at 'r' The rcsult no\r

follovs liom Corollary I .rnd Corollary 2 ibove.
ln licw ol the kno\vn monotonicity propettics of ./ [15], Theorem 3 and its

corollarics mggest that, for a cortinuors conrex function, diferentiability is to be

expected in a large subsel of lhe domain of continuiry. Such results are classical in

the finite-dimensional casc. and they haae also been proved for cerrain classes of
Banach spaces. For deiails, scc Asplund I2l.

5. Gradient homeomorphisms. In this section. we shall characteriz€ certain cases

where lhe gradient mapping !J ]s a homeonorphism between subsets ol .Y and I
i. the srrong iopologies.

T.JEot\L',r 4. Suppose that the stong tapologt- s(X, Y\ on X is conPalihle vith the

dudli4 henreen Xa d v,a dthat viss(Y.X)-cat tleteantl|etfbearorerrc Lex

[un(ti.)n .n X. In arder that \f be a hon]eo,totphism fran GU olJ X onto Y fith
respect to topolosies s(X, Y) and s(,Y, X), it is necessat) and sulrtcient that !(X, v)
be natmable in such a fq that

(.?.) I is Frtchet di.ferc tiahle at eLerf x E X.
(.b) I is narn tutu d rclatne tu rlt) at etetr x e X,

k) f I, !) anai s its minintunl on X lbt etetf ! e I
In this etent. X it a rcfexirc Bana space|ithrcspe(ttothenorninquestian.ttith
v:X*. Mareorct, l1c conrcx fu (tion g an f .anjusate to:f likefise satislies

.:anditio t (1t:). (b) and (c),.nd the sradi?nt nappits \8 is 1e inrcne of \f. The

rcnj sate of s is in tu l.

Proof. Thc exislence of Wir) for €!e.y.r implies that lis the poinr\Yise suprernum

ol the afllne funclions ol the form

r +/(jr) +(:--1. v/(jr)), jrex

so that I i\ r(I, I)lower semicoDtinuous, and/is in trrn the conjugate of8.
Assumc that !/is a homeomorphism as specified. Then by (3.3), Ys is the

inlerse of V. so lhat I.q is a homeomorphism ftom I onto I \rith rcspeci to the

sooDg totologies. Since lhe domains ol rl rnd lg are contained in dom/and
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dom g, respectively, / and I must be finite e\erywhere. Corollary I of Theorem 2
inplies that/ands are€verwhere continxous $ith respcct to rhe strorg ropologies,
and lhal all the sets of rhe forn ,i/(-t) and ars(rJ dre \yeakly bounded. In par,
ricxlar,/ is r(x, /)-continuous ar 0. and for,\:l(0)+s(0) + I ihe sel

..s(0) :1r l{r) < l(0)+ri

is 
'i{I', 

I)-bounded (implying r(t l')-bodnded, bec.use r(,Y, I) is coDrparible
witlr rhe duality), so thar fcontains s(I, y)-Dcighborhoods ofrheo.igin which are
r(X v)-bounded. It fbllo{s rhat r(X, y) is normable. We caD suppose iherelbre
that .Y is a norm€d ljnedr space with I- ,Y + (fie strong topologies o n X and r
being the nornr topologiet. The norn-io-norm conlinuity of f/implies by Thcorem
3 rhai (a) holds. SjnilarlJ, the norm-to-nonn contjnuiry of fslnplics by Theorem 3

and ihe rema.k following it thar a is Frdchet differenriable throughour y, rnd
hence by Theorem t thatl is norn rotund ar Vg(_r) relative to.l for every r. € ta

This yields condition s (b) and (c), becau se x : !s(r) if and on ly lf .r : V(jr).
Conversely, supposc r(-Y, y) is nornable in such a way thar (a). (b) and (c) arc

sarisllcd. By (a) and Theorem 3, i,/ reduces ro rhc sinsle-vatued napping ll an.t
this mapping ]s Dorm-ro-norm conriruous fron all of f liro y. By (c), thc range
or Y/is all of f. By (b) and Thco.em l, s is Frechet dilTerentiable ar /:V(j')
for each x€ X (and hence at cach '}re 

y). Furthermo.e. rhe Frdchet gradienr
mapping Is, which musl bc the inverse of i/1n \iew ol (3.3), is no n to-norJn
conlinuous by Theorem 3. Thus Vis a honeomorphism lrom I onro I wrih
respeci to the norm topologies.

An incomplcle normed linear space cannot be homeomorphic to a Banach space.
as has beer proved by Klee lEl, so thar X, being homeomorphic ro irs duat f.
must be complete. It.emains only to show that L**:,Y. Let i be the conjugate
ola on X** with respect to rhe canonical pairing between I** atrd I+:I
Since g is in p ticular norm roixnd ai r/(0) relalive to 0 (by virruc ot/ behg
Fr€chel diilercntiable at 0), it follows by the du.liry between I and A rhat /r is

Frechel dilTcre.tiable at 0. Hence, by Proposition l, don/ has a nonempry
inlerior in ,Y**. Let, be rhe set olpoinls in,Y** \yhere, has a subgradient coming
fronl I*. According to Brsndsted-Rockafellar [5, Theorem 21, , is dense in dom I
in the norm topology. But D is just the range of lg, which is ,Y. because under the
pairins between I++ al]d ,l'* wc have r E;n(:r) il and only ji x E rs(l); cl'. (3.3).
Thjs shows that th€ noncmply inrerior of dom, in I++ ls contained in X, and
consequendy that Ja**:X, proving Theorem 4.

ln Theoren 4, the finite convex functions/ and s can be expressed in lcrlrls ol
each other by the iorrnulas

E, ASPLUND AND R. T. ROC(AFELI-AR lMa!

8(j,) - ((Y' '(.r)."r) l((r/) '(_r)),

/(:r): <i., (vs) ](ir)) s((f8) ,(Jl)).

(5.1)

(5.2)
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ln orher wo.ds, each is the Legendrc transfom of the other. in Theoren 5, we shall
further extend the theory of Legendre transforns of convex iunctions (scc []61 fo.
the finire-dimensional case) to certaii cxtended-rcal-ralucd functions on rcfl€xire
Banach spaces. The fol1o\ying proposition is necd€d as a pr€lininary.

PRoposIrIoN 6. Let X be a Banach space ttilh Y:X+, a.1 let J be a ratet
canrcx functiotl on X lofet senicantinuaus tith rcspe.t to the narn tapologr.
Suppase therc erists a subset W of X, open in the om roNlog, ch that
W 

^ 
dotr /+ ti and

U {af\) tewl
is boukded it1 Y. Then ra.d. f+ s, a d af(x) is onenpt) akd baunded if and only if

Prool As noted already in the proof of Corollary 2 to Theoren 3, lower semi,
continuitywith rcspect to the normtopology implies "(X, l')lower semicontiuuiry.
The lemma of Brondsted-Rockafellar I5l says that, for a.y j! e )aard any positive

(5.3) aef6).l){?.1(x+^u)|ueU}+G/I)R,

\yhere U is the unit ball in X and B is the dual unit ball in y. lf r E t/^ donrl
and .\>0 is chosen so snall that r+,\Uc ,t/, the rjght side of (5.3) is a bounded
subset of y b)' the hypothesis, implying that t./(.y) is bounded (as wcll xs non-
cmfty). Then j:€radl by Corollary I of Theoren 2, so thrt radllr. On ihe
other hand, suppose rad/+ t. Then rad /is ihe interior of dom I with respect ro
s(r, r), which is the norm topology. Moreover,l js continuous on rad/with
respect to the norm topolo_sy (Corollary 1 ol Theorcm 2), and a/(jr) is nonempry
and bounded ror every -I € rad /(Coroilar] 2 of Theorem 2).

Now lelr be a point of -ra such rhar x 4 rad /but ,/(i) + r; we shall sho\r thar
,y'(jr) is urlbounded, and this will complete the proof of Proposition 6. Since x is

noi an inlerior poini ofthe convex set don1/(and this interior rad/is nonempty),
x can be separated fro doml i.e. there eists a nonzero ii E r such that

(,r. .) 
= 

(2, !), v: € dorn /.

For any ./ e allr) and any ,- e doml we then have

t(.) 
= 

f(x)+<z-x, y)

: /(')+(: jr, r+)r,), v.l : 0.

This also holds rrivially when zFdom/Gince then /(r): +c.). and hence ir
holds for elery z € L Thereforc

t + 
^ti 

e af1\. V/ E a/(jr), V.\ : 0.

and since .+0 it follows that ;/(ir) is not bounded.



IIJL1RE\I 5. Let X be a telexite Banach vtca vith Y: x*, and letfbe a prcper

tunualundion o X\|hithis to*er:enico tinuous with respect to the narm toplosy.
Let

D - lxe xl if(x) + zl.

l atJet 'ha', ! be a o eto-orL $apDinq tron D .nrc Y \L;'h i\ a honeothotp\;'ft
with tespect to the am tapologies, it is necersary and sLdicie t that the foloving
condnio ! be satis|ied (in vhich case af rcduces to the sru.lient nappiry Yf a d
D:.aJ.J):

6)tudf+a,
(b) f is Ftdchet di.fetentiable thtoushout ftd f,
(g f is totu d relatbe to \f(x) in the orn topalosj at each x etadf,

lin (: jr, v/(1-I)jr+,\z)) : -.c.il0

In this e1'ent the con,ea funttio g conjugate to f on y likewise satis.fies conditions
(a), (b), (c) d"lj (d). Furthermorc, the .tonain and ra se of the nappins \f arc the

open on*x sets fttJ. f and ftd g, respecttelJr, and the inue$e of \f k 79.

Proot As noied in the proof of Corollary 2 of Theoren 3,/is actually r(,r, 4-
lorer.eric"r, nroL.. \.rppo,e t 'ar 

\/ i: d \on'eo-ro-ol;.n' fron D rlro t w rh
respect to the norm topologies. Then D:tuJf+t by Proposition 6. The con-

tinuity of r/implies by Corollary 2 of Theorem 3 that tis Frdchet differcntiable
throushout radl so rhai a/rcdxces to 5l Thus Y/is a one-to-one mapping of
rad /into r which is a norm-to-norm homeomorphism. By (3.3), ag reduces to Yg,

and Vajs the inverse of v/(consequently a homeomorphisn). It followsby applying
lhc preceding argument to I in pla€€ ofl (which is pernissible because ,Y is
reflexive) that

F ASPT.I]ND AND R. T. ROCKAFELLAR IMay

(5.4) {v ac(.t) + z\:rads+ r,
and that Ya is a norm-to-norm homeomorphism of rad g onto radl Hence g is
Fr€chet dilTerentjabie at every I € rad I by Corollary 2 ofTheoren 3. By Corollary
2 to Theorem l, /is then norm rotund at !g(l) relative ro I for every -| € rad g.

rhus condirions (a), (b) and (c) hold, alons with
(d') D-Iadf.
Conlersely, suppose ihai (a), (b), (c) and (d') hold. Then 1t reduces to l,

which js by Corollary 2 ofTheorem 3 a norm-to-norm continuous mapping of,
into 1'. The ranee of lfis {r as(})+rj} by (3.3), and for each I in this range

there exists by condition (c) solne jr such that/is norm rotund at r relative to t.
This inplies by Theoren 1 that g is Fr€chet differentiable at.),. The inverse oi v/
is then Vs by (3.3), and vs is norm-to-norm continuous by Corollary 2 ofTh€orem
3. In other words, V/is a nom{o-norm homeomorphism.
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To complete the proof of Theorem 5, ir sumces to show that (d') is equivalent

to (d), assuming ihat (a) and (b) hold. Orcourue, (d') is equivalent nder (a) to the

condition that ;/(,y) = !, for cvery i which is a point of donl / not in radl Let )r

be a partjcular point of dorn/not in radl and let : =radf. For 0<,\= l, the

point (1 ))x+)-u belongs to ftdI since rad.tis the interior ofthc convex sct

dom/in the norm topology uhen rad /+ s. The t€striction of/to the line segmert
joining:r and z is a lower semicontinuous convex fllncdoD, so the directional

/'(l - ))x+,L; z-r) : <:-)r, v/((l -.\)x+ ):))

decreases lo/'(r;:-x) as .\ decreases to 0. We mus! show that ey'(jr) + ., if and

only if /'(r; .r--r)> -co. Onc direc(ior is easy: if zf(-t) cortains an element.}, we

(5,5.) f(x-^(' x\)-f(x)

CRADIENTS OF CONVEX FUNCTIONS

<:-,t, L\ 5 /',(-r; :-.9 : inf

and hence /'(r.: z-)r)> co. On th€ other hand, suppose/'(.r: r-,t)> -.c- Thc
functionll=./'6; ) is, of course, convex and positively hornogeneous on f, and
it satisfies

465

(5.6) Iof-r) =.fl'') /(x), V'i c x
Silce / is norm continuous on rad/ by Corollary I of Theorem 2, ] js hnitely

bounded above on a (norm) nejghborhood of the poidt r--x. Hencc, by the fact
citcd to prove Theorem 2, , is not only linite but norm conlinuous at .z .r. This
implies thatll majorizes at teast one continuous amne function Gee Brondsted [4]),
and since i is positivcly homogeneous the rmne fLrnction can be t*en to be linear.
Thus there exjsts a},€ Ysuch that

(u, r') s l(,) 
= 
f1+tl-ft), vue x.

Thus -L belongs to aF(-r), so ; x)l 3 and lhe p.oof is complcte.

The funclions / and g in Theorcm 5 are givcn in tcrms of each other by the

Legendre transformation fonnulas (5.11 and (5.2) lbr )e € rad/and -r,e rad g. Thus
Theorem 5 tields a certain one-to-one Legeldre correspondenc. bet\reen certain
pairs (, C), where C is rn opcn convex set in ,Y and/is a Fr€chet diFerenliable
coDvex function on c. and pairs (9, D). $here , is at open convex set in f and
g is a Frichet diflerertiable con\.ex funcdon on r. This correspondence can be

described directly, i.e. $ithoui mentioning conjugacy, mxch as in 6l;we leave

the detaih to ihe r€ader.
In the casc $here the gradient homeomorphism is required to map all of xonto

f, Theoreh 5 yields a result which is comparable to lheorem 4 but strongcr due

to the assumption of reflexivity-
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CoRoLr ARy ler d re a refe xirc Banach space h i t h y : X*, and Ie t f be d prary t
cot1rcx function on X. 111 order that the gradient lnappntg \f be d notm-to- ot t

homeomotphisn ,ont X anto Y, it i! De.essat)' antl lufrtient thut the lb o\,ins

(a) .f is Fti.het dillerentiable at et'ery x e X,
(bJ J is nom rotund rc|atirc ta \l{x) at euery x. x,
(c) rimi-.. /(ri!)ir: +.'. fot ercrr trc zercxex.

h1 this etent the canjusate s aff likewise satis.fies colditians (a), (h) and (cJ, a d \s
is the inrctse of \f.

Proof. The existence of V(.r) for every ir implies, as explained it tlre bcginning
ol ihe proof of Theorem 4. th al l is r(X, Dlower scmicontinuo us. Conditions (a)
and (b) of rhe corollarr a.c nccessary and sufficienr, in view of Theorem 5, for V
to be a rorm-to-norm homconorphism from X into L The range of V js thcn
.ad S by Theorcm 5, aDd rad g is the interior of the convex scl donA. Thus the
range of v/is ali of yifand only ifdom s ls,r( I, x)-densc ir y, lvhich is equivalent
to condition (c) according to Rockalellar [1,], Theorcm 58].
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