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GRADIENTS OF CONVEX FUNCTIONS

BY
E. ASPLUND AND R, T. ROCKAFELLAR(")

. Introdnction. This paper is concerned with relationship between three
notions: the differentiability of a convex function f, the rotundity of the convex
function g conjugate to f and the continuity of the subdifferential mapping é&f
(which reduces to the gradient mapping V/ where f'is differentiable). These notions
are considered in the context of various admissible topologies on paired vector

spaces.

When fis the norm ||- | on a Banach space X, or f=(1/2) - |2, our results are
comparable to the theorems of Smulyan [19], Cudia [6] and others about the
relationship between the differentiability of |- |, the rotundity of the dual unit

ball in X* and the continuity of the spherical or extended spherical mappings from
X to X*; see Asplund [2]. Our results also contain as a special case some recent
results of Lescarret [9] on the strong continuity of gradient mappings in Banach
spaces. They are stronger than, but do not quite contain, the theorems of Moreau
[12], [13] about the upper semicontinuity of &f and &, [ (see the remark following
Proposition 3).

We would like to thank Professor J. J. Moreau for some very helpful suggestions
with regard to an earlier version of this paper.

2. Basic definitions. Throughout this paper, X and ¥ will denote vector spaces
over the real number system R paired by a bilinear form -, . >, with respect to
which X distinguishes the points of ¥ and Y distinguishes the points of X, We
denote by w(X, Y) and s(X, Y), respectively, the weak and strong topologies
induced on X by ¥; similarly w(¥, X) and s(¥, X) on Y. Differentiability proper-
ties in the space X will be shown to be dual to rotundity properties in the space Y.

Let / be an extended-real-valued function on X (i.e. an everywhere-defined
funetion with values in R W { zoc}). Let 4 be any nonempty subset of X. We shall
say that fis A-differentiable at a given x = X if £ is finite at x and there exists a
y e ¥ such that
2.1) lim sup f(x_%—)m;}—_f({)

A0 ucA

- <u’ y:) = (.
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444 E. ASPLUND AND R, T. ROCKAFELLAR [May
In this event y is called an A-gradient of fat x, and p satisfles in particular
(2.2) Fxw) = u, vy, YVuesAd,

where f'(x; u) is the one-sided directional derivative of [ at x with respect to u.

If &7 is a collection of nonempty subscts of X, we shall say that fis o/-differenti-
able at x when there exists a y such that y is an 4-gradient of f at x for every
Ae

If .o consists of all singleton subsets of X (subsets consisting of a single point),
«7-differentiability is called Gdteaux differentiabiliry. If X is a normed linear space,
Y= X* (the dual of X, in the canonical pairing, of course) and =7 consists of just
the unit ball of X, «/-differentiability is Fréchet differentiability.

In what follows, =/ will always denote a collection of nonempty subsets of X
such that

(a) cach 4 =.%7 is w(X, Y)-bounded,

(b) {4 | A e .o/} generates X algebraically,

(¢c) Ao/ implies — A c .o
Assumptions (a) and (b) guarantee that a locally convex Hausdorff topology is
induced on ¥ by uniform convergence of the linear functionals (-, y> on subsets
in «# ; this topology on ¥ will be denoted by 7. Assumption (b) implies by (2.2) that,
for a given x € X, there is af most one y = Y such that y is an 4-gradient of fat x
for every A = 24 The unique y, if it exists, is called the «/-gradient of fat x, Assump-
tion (¢) implies that, for an «/-gradient y, the limits in (2.1) can be taken in the
two-sided sense as A — 0, rather than merely as A | 0.

We shall mostly be interested in the case where f'is a convex function on X, i.e.
where the epigraph

epif={(x,p) [ xEX, pe R, p z f(x)}
isaconvex set in X &) R, If f(x) = —oo for every x and f(x) < +oc for at least one x,

we say that f'1s a proper convex function, We denote by dom f'the effective domain
of £, which is the convex set

xeX|f(x) < +ook
A vector y e Y is said to be a subgradient of f at x if
(2.3) Flx+u) z f(x)+Gn yr, Yue X,

The set of subgradients of fat x is denoted by @/(x), and the multivalued mapping
éf: x — f(x) from X to Y is called the subdifferential of f. The definition implies
that &f(x) is a (possibly empty) w(¥, X)-closed convex subset of Y for each x.
Assuming 7 is a convex function finite at x, one huas y € ¢f(x) if and only if

(2.4) ¥y = fllxyu), Yue Xo

For the general theory of convex functions and subgradients, we refer the reader
to [4], [11], [13], [17].
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We shall denote by rad f the set of points at which the convex set dom f is
radial, i.e. the set of all x € dom f such that every half-line emanating from x
contains points of dom f besides x.

PrRoPOSITION 1. Let f be a convex function on X, and let x he a point where f is
</ -differentiable. Then f is proper and x = rad f. Moreover, &f(x) consists of a single
vector y, the «/-gradient of f at x, This y is in particular the Gdteaux gradient of |
al x.

Proof. Let U={_J {4 | A € 57}; by our assumption (b) above, every vector in X
can be expressed as a linear combination of vectors in {/. The ./-gradient y
satisfies

(2.5) S yy = xiuw) = —f(x; —u)

for every u £ U. Since fis convex, it follows, as is well known (e.g. sce [17, Theorem
25.2]), that (2.5) holds for every u which is a linear combination of vectors
by, ooty in UL Thus (2.5) holds for every u € X, so that dom fis radial at x, and
¥ is the Gatecaux gradient. Then y is the unique subgradient at x, since it is the
only vector satisfying (2.4), and fis proper by (2.3). This finishes the proof.

Whenever ¢f(x) consists of exactly one element y (as in the case of Proposition
1), we shall denote this ¥ by Vf(x). The mapping V/: x — V/(x) will be called the
gradient mapping associated with £ (The domain of Vf is thus the set of points
x £ X such that ¢f(x) is nonempty and contains no more than onc clement, whereas
the range of V/fis d subset of ¥.)

Rotundity properties will now be defined, Let g be an extended real-valued-
function on ¥, and let B be a subset of Y. We shall say that ¢ is B-rofund at a
given y € Y relative to a given x ¢ X if g(3) is finite and, for every >0, there
exists a 6> 0 such that

(2.6) {v|g(y+v)—g(y)—<{x, 1> 2 3} < «B.

We shall say that g is J -rotund at y relative to x if g is B-rotund for every
7 -neighborhood B of the origin. Since .7 is a Hausdorff topology on Y, this
condition implies that

i gr+0) > g(N+<x, 0y, Vo 40,

and hence in particular that x = ég(y).

The concept of Z -rotundity is useful in the study of various extremum problems.
An extended-real-valued function 4 on Y is said to attain its minimum over a
subset C of Y at y strongly with respect to 7 if (h attains its infimum over C at
the point y and) every sequence yi, Ja. ..., in C with

lim A(y;,) = infh
E—om [
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is 7 -convergent to y. (Here J -convergence of sequences actually implies -
convergence of all nets.) It is easy to see that g is .7 -rotund at y relative to x if
and only if the infimum of the function g —<{x, - » over Y is finite and attained at y
strongly with respect to 7. Thus, for example, when g is the indicator of a subset
Ciof ¥, i

gy)=20 ifxeC,

2
28) = +w ifxé(,

gis g -rotund at y relative to x if and only if the supremum of the linear functional
{x, -5 over C is finite and attained at y strongly with respect to 7.

The following result will enable us to concentrate our investigation of rotundity
on the case of convex functions.

PROPOSITION 2. Let g be an extended-real-valued function on Y, and let x and y
be elements of X and Y, respectively, such that g(y) is finite. Let g be the w( Y, X)-
lower semicontinuous convex hull of g (i.e. the pointwise supremum of the collection
of all w(Y, X)-lower semicontinuous convex functions on Y majorized by g). Suppose
that there exists a 7 -bounded convex set C containing the origin in Y such that

(2.9) lim inf [(1/A) mf {g(y+0v)—g(y)—<x, p_:.}] > 0.

A=+ @
Then g is 7 -rotund at y relative to x if and only if g is 7 -lower semicontinuous at y
and g is .7 -rotund at y relative to x. In this event, g is necessarily proper and
gy)=g(y).
Proof. Replacing g if necessary by
h(v) = g(y+v)—g(»)—<{x, 2,
we can reduce the proofl to the case where
(2.10) x=0, y=0, g(3)=¢g(0)=0.

Assume that g 1s 7 -rotund at 0 relative to 0. Let B be any closed convex sym-
metric .7 -neighborhood of 0 in ¥, and let p be the gauge of B, i.e.

p(v) =inf{A 2 0| v AB}.
Define j on [0, +o0) by
J(A) = inf {g(v) | p(v) Z A}

Clearly j is a nondecreasing function such that

.11 Jp) £ g(0), Vee,
and by (2.9) we have
(2.12) lim inf j(A)/A > 0.

A=t ®
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The 7 -rotundity of g implies that
(2.13) J(0) =0, butj{A) = 0 for every A > 0,

Let J be the lower semicontinuous convex hull of j on [0, +20), i.¢. the pointwise
supremum of the collection of all lower semicontinuous convex functions on
[0, +e0) majorized by /. It follows easily from (2.12) and (2.13) that

(2.14) J0) =0, butj(A) > 0forevery A = 0,
and this implies by the convexity of  that J is increasing. The function
(2.15) k(v) = j(p(v))

is convex and w( ¥, X)-lower semicontinuous on ¥, and k<£g by (2.11). Therefore
kZ£g<g. Since

we have g(0)=g(0)=0, implying that g is w( ¥, X)-lower semicontinuous at 0, and
hence in particular .7 -lower semicontinuous at 0. For every 8> (0, we also have

(2.16) {v]gw) = 8 = {v|k(x) = 8}

Given any >0, there exists, by (2.14) and the monotonicity of 7, some §>0 such
that j(A) 3 implies A=<e, Then k(1)< § implies p(r) = e, so that by (2.16)

14

0| 8() £ 8 = {¢ | p(r) < ¢} = eB.

This shows that Z is B-rotund at 0 relative to 0, and since 7 has a local base
consi%ting of w(¥, X)-closed convex symmetric sets like B we may conclude that &
is Z -rotund at 0 relative to 0. In particular g majorizes the constant function 0,
so that g is a proper convex function.

On thc other hand, assume that g is 7 -lower semicontinuous at 0, and that z
is Z-rotund at 0 relative to 0. We have

(2.17) infg(r) = inf g(v) = g(0)e R
PEY vel

(because g=g and the constant functions majorized by g are by definition also
majorized by g), and for each 80 we have

(2.18) {v]ar) = g0)+8 = {v]gl) = g0)+8 £

In view of the Z -rotundity of g at 0 relative to 0, the sets in (2.18) can be made to
lie in any given J -neighborhood of O by choosing & sufficiently small, This implics
furthermore by the .7 -lower semicontinuity of g at 0, that g(0)=g(0)=0. Thercfore
g is F -rotund at 0,

Remark. Condition (2.9) in Proposition 2 is satisfied trivially when the set of
points where g does not have the value +oc is F-bounded.
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3. Duality between differentiability and rotundity. The conjugate of an extended-
real-valued function g on ¥ (with respect to the pairing between X and Y) is the
function f on X defined by

(3.1 f(x) = sup{<x, > —g(y) | ye Y}

As is known, fis a w(X, Y)-lower semicontinuous convex function on X. If gis a
w(Y, X)-lower semicontinuous proper convex function, then fis proper and g isin
turn the conjugate of £, i.e. one has

(3.2) g(») = sup {Kx, W —f(x) | xe X}.
In this case,
(3.3) yedf(x) = xedg(y)={x, y—fx)—gly) = 0.

The following fundamental result about polars of level sets of conjugate convex
functions is implicitly contained in a paper of Moreau [10]. As usual, we denote

by C° the polar of a set C< ¥, Le.
C'={ueX|<{wy=1, Yoel}

PROPOSITION 3. Let f and g be proper convex functions conjugate to each other on
X and Y, respectively. Let x € X and y € Y be such that the (nonpositive) quantity

e = inf {g(y+v)—g(y)—<x, )= <%y —f0)—g(»)
is finite. Then, for any 8>0,

{v|e(y+0)—g()—<x ) = 8° = 8~ Hu | f(x+u)—f(x)—<u, y) = 8

(3.4)
< 2o | gly+0)—g(y)—<xn 0> £ @

il
i
8o
Proof. The proper convex functions

fo(2) = [f(x+82)—f(x) — <8z, y>—=8]/3,

go(t) = [g(y+v)—g(¥)—<x, vp —a+3]/3,

are conjugate to each other (as can be verified by direct calculation), and they
satisfy

(3.5) 1 =infg; £ 20(0) < 4o,

(3.6) —1 = f3(0) z inf £, > —o0.

Tn terms of these functions we can rewrite (3.4) as

(3.7) {v] go(®) = g +1}° = C = 2{v | go(®) £ 2}°,
where

C={z|fo(2) £ 0}
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Here C is a w(X, Y)-closed convex subset of X containing the origin, so that
C% =C. Thus (3.7) (and Proposition 3) will follow if we show that

(3.8) {v] go(v) = go(0)+1} = C° = (1/2){v | go(v) = 2.
Let / denote the support function of C on Y, ie.

h(r) = sup{{z,v> | ze C}.
According to [14, Corollary 4B], 4 is related to g, by the formula

(3.9) h(r) = inf Agg(A=10).
A0

In particular =g, by (3.9), so that
{v]go®) = 2} = {v|hv) = 2} = 2{v| () = 1} = 2C°.

This establishes the right half of (3.8). To establish the left half of (3.8), it suffices
to show that

(3.10) {v| k() < 1} = {v ] go(0) = £o(0)+1},
since the w(Y, X_)-c]osure of the set on the left in (3.10) is
{v]h(e) 21} = C°,
whereas the set on the right in (3.10) is w(Y, X)-closed. Given any v such that
h(v) < 1, there exists by (3.9) some A> 0 such that Ago(A~'v) < 1. Since g,(A~ )= 1
by (3.5), this A must actually satisfy 0< A< 1. The convexity of g, implies then that
go(®) £ (1-2go(0)+ Ago(A70) < go(0)+ 1.

Thus (3.10) holds, and the proof of Proposition 3 is complete.
The fundamental duality between differentiability and rotundity can now be
proved by means of Proposition 3.

ProrosiTION 4. Let [ and g be proper convex functions conjugate to each other on
X and Y, respectively. Let A be any nonempry subset of X, and let B be the polar of
Ain Y. Let x€ X and y € 8f(x). Then y is an A-gradient of f at x if and only if g is
B-rotund at y relative to x.

Proof. By definition, since y € df(x) and (2.3) holds, y is an 4-gradient at x if

and only if, for every >0, there exists a > 0 such that

(3.7) sup {W—?—_@—\’a, y}}é 5, 0<AZa

usd

Since [f(x+ Au)—f(x)]/A is a nondecreasing function of A>0 by the convexity of f,
we can write (3.7) as

e < e u | fx+u)—f(x) = <u, > £ ps)
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1t follows from Propesition 3 (with ¢«=0, as indicated by (3.3)) that y is an A-
gradient at x i’ and only if, for every &> 0. there exists a 80 such that

(3.8) e A < (o] gly+u)—gy)—<x, 00 = O
Taking polars, we can cxpress (3.8) equivalently as

eB> {v|gly+r)—gly)—<{x v, £ 3}
Thus y is an A4-gradient if and only if g is B-rotund at y relative to x.

TuroreM 1. Let / and g be proper convex functions conjugate to each other on X
and Y, respectively. Then [ is o -differentiable at x with y=N{{x) i and only if g is
T -rotund at y relative te x.

Proof. If yis the ./-gradient of f at x, we have y £ ¢f(x) in particular. by Prop-
osition 1. On the other hand, if g is Z -rotund at p relative to x we have x e cg(y),
and henee y € ¢f(x). Thus in either case Proposition 4 is applicable, and it follows
that fis .o/-differentiable at x with &/-gradient y if and only if g is B-rotund at »
relative to x for every B € 4, where # consists of all the polars of sets in ./ The
latter condition is equivalent to g being 7 -rotund at y relative to x, since the scts
of the form

B'= MB, Mot 4By N30, Bed,

are a local base for .7, and since g is B-rotund for such a B if and only il g 15
Berotund fori=1, ..., n.

COROLLARY 1. Ler f and g be proper convex functions conjugate ro each other on
X and Y, respectively. Then [ is Gdteaux differentiable at x with y=Nf{(x) if and
only if g is w(Y, X)-rotund at y relative to x.

In particular, [ is Gateaux differentiable at 0 with y=Nf(0) if and only if g attains
its infimum over Y at y strongly with respect to the w(¥, X)-topology.

Proof. Take 7 to be the collection of all singleton subsets of X,

COROLLARY 2. Let X be a normed linear space, and let Y=X* (in the canonical
pairing). Let " and g be proper convex functions conjugate to each other on X and Y.
respectively. Then [ is Fréchet differentiable ar x with y=N{f(x) if and only if g is
norm rotund (i.e. rotund with respect to the norm topology) ar y relative fo x.

In particular, f is Fréchet differentiable at 0 with y=VN/f(0) if and only if g attains
its infimum over Y at y strongly with respect to the norm topology.

Proof. Let .2/ consist of just the unit ball in X.

CoROLLARY 3. Let f be any w(X, Y )-lower semicontinuous proper convex function
on X. If f is o/ -differentiable at x, then [ is acrually «7'-differentiable at x, where <7
consists of all the nonempty 7 -equicontinuous subsets of X,
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Proof. The topology induced on ¥ by uniform convergence of linear functionals
on subsets of /" is the same as 7. Hence the .o/'-differentiability of f at x is the
same as the o7-differentiability of f at x by Theorem 1,

Corollary 3 implies in particular that (if £'is any w(X, Y)-lower semicontinuous
proper convex function on X) fis Géteaux differentiable at x if and only if f is
actually #-differentiable at x, where & is the collection of all nonempty finite-
dimensional bounded subsets of X,

COROLLARY 4. Let fbe a w(X, Y)-lower semicontinuous proper convex function on
X. Suppose there exists an «Z-bounded linear functional k on X such that, for a given
x e X, f(x) is finite and

lim sup
AL, D ued

[Et W70 _kay| =0, vaew

If Y is T -complete, then there exists a ye Y such that k(u)=<u, y) for every
ue X, so that f is actually o7 -differentiable at x.

Proof. Let Z be the space of all .2/-bounded linear functionals on X, Under the
canonical pairing between X and Z (with respect to which the sets in =7 are all
w(X, Z)-bounded), we may regard Y as a w(Z, X)-dense subspace of Z which by
7 -completeness is 7 -closed (the 7 -topology on Z being, of course, the topology
of uniform convergence on the sets in 7). Let g be the convex function on Z
conjugate to f. Then fis the conjugate of g with respect to the pairing between X
and Z, and at the same time f is the conjugate of the restriction of g to ¥ with
respect to the pairing between X and Y. The infimum of g—<{x, -> over Z is thus
the same as the infimum of g—<{x, -» over ¥, namely —f(x). Let y,, Woeuris DEA
sequence in Y such that g(y;) —<{»,, x> decreases to this infimum. By Theorem 1,
g is F-rotund relative to x at the point of Z corresponding to &, so that ViiT s
converges to this point. Since Y is 7 -closed in Z, this point must actually belong
to Y.

COROLLARY 5. Let Y be a Banach space, and let X=Y*, Let [ be a w(X, ¥)-
lower semicontinuous proper convex function on X. If f is Fréchet differentiable ar x,
the Fréchet gradient actually belongs to Y (rather than merely to Y**). Thus [ is
Fréchet differentiable at x if and only if the function g—<x, - (where g is the con-
Jugate of f') attains its infimum over Y strongly with respect to the norm topology.

Proof. Apply Theorem 1 and the preceding corollary in the case where .o/
consists of just the unit ball of X,

In the case of Corollary 5 where f'is the norm on X= ¥*, g is the indicator of the
unit ball € of Y as in (2.8), and one gets a classical result of Smulyan [19]: the
norm on ¥* is Fréchet differentiable at x if and only if the linear functional
(X, - > attains its supremum over C strongly with respect to the norm topology.
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Theorem 1 can be extended by means of Proposition 2 to cases where g is not
convex or everywhere w( ¥, X)-lower semicontinuous.

COROLLARY 6. Let g be an extended-real-valued function on Y, and let f be the
conjugate of g on X. Let x and v be elements of X and ¥, respectively, such that g is
Jfinite and T -lower semicontinuous at y. Suppose there exists a 7 -bounded convex
set C containing the origin in Y such that

lim inf [(1,.-"(\) inf {gly+uv)—g(y)—{x, 1/}:| >0
] vEAC
(which is true in particular if ¢ has the value +oo everywhere outside of a certain
F -bounded subset of Y). Then [ is <7 -differentiable at x with y=Nf(x) if and only
if g is T -rotund at y relative to x.

Proof. Let 7 be the w( ¥, X)-lower semicontinuous convex hull of g. Of course,
fis also the conjugate of g, and if either for g is proper £ is in turn the conjugate
of /. The «/-differentiability of /" at x implies the properness of /by Proposition 1,
whereas the # -rotundity of g at y relative to x implies the properness of § by
Proposition 2. The result is thus immediate from Theorem 1 and Proposition 2.

4. Differential continuity. We shall now explore the rclationship between the
differentiability of a w(X, Y)-lower semicontinuous proper convex function f on
X and the continuity of the subdifferential mapping éf: x — &f(x). More generally,
we shall consider continuity properties of the mapping

(x, X) = 8, 7(x), xeX,AeR,
where &, f(x) 1s the sct of vectors y € ¥ such that
Jx+u) 2 (/(x)—)+<u, )y, VuelX.

Note that ¢f is the restriction of the latter mapping to A=0.
One has

Il

af(x) =y | g(y)—<x »

where g is the conjugate of /and

8 = inf {g(»)—<x 1} = —f@).

B+ A},

,

Thus &, f(x) is always a w( ¥, X)-closed convex subset of Y, nonempty in particular
when x £ dom fand A>0 (but empty when x ¢ dom f or A<0).

Throughout this section, % will denote a topology on X which is a locally
convex HausdorfT topology having a local base consisting of w(X, ¥)-closed (con-
vex) sets (polars of certain w(¥, X)-bounded subsets of ).

If the convex set dom f has a nonempty interior with respect to .% this interior
is of course rad f (as defined just prior to Proposition 1). If dom f happens to be
closed with respect to w(X, ¥), then rad fis by definition the s(X, ¥)-interior of
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dom £ Actually, even when dom f is not w(X, Y)-closed. rad fis the s(X, Y)-
interior of dom f by the convexity and w(X, Y)-lower semicontinuity of f (see
Corollary 1 below).

The following results will be needed.

TueoreM 2 (MoreauU [10, 13]). Let fbe a w(X, ¥ )-lower semicontinuous proper
convex function on X.

(a) Suppose that [ has a finite upper bound in sonte F-neighborhood of some point
of X. Then &, f(x) is an ¥ -equicontinuous subset of 'Y for every x erad [and A€ R.
In fact, given any x € rad [ and any p € R, there exists an F-neighborhood U of the
origin such that the sets &,f(x+u) are uniformly F-equicontinuous for us U and
AZu, Le. such that

(4.1) o Sfx+u) | us U A £ )

is F-equicontinuous.

(b) On the other hand, suppose that, for some x € X and some A=0, ¢, f(x) is
nonenipty and F-equicontinuous. Then x € rad [, and #is F-continuous throughout
rad f. so that (a) applies and rad f is the F-interior of dom f.

Proof. This can be deduced from Proposition 3 and the weil-known fact [3,
Chapter II, p. 92] that a finite convex function on an open convex set W is con-
tinuous throughout W if it is merely bounded above in a neighborhood of some
point of W. Proposition 3 says that the inclusions

(4.2) [0, /(%) =y° = C = 2[6,f(x)—»]°
hold for
(4.3) C=uYu| fx+w)—f0)—<u,y> £ p}

whenever A, u, x and y are such that >0, f(x) < +20, g(¥) < +C and
(4.4) A—p = f(x)+g(r)—<x p0.
Suppose that f has a finite upper bound in some #-neighborhood of some point
of X, as hypothesized in (a). Then dom f has a nonempty F-interior, which must
be rad /, and fis &-continuous throughout this interior. Fix any y ¢ ¥ such that
g(y) is finite, Since g is conjugate to /, we have

g(y) 2 x> —fx)
for every x € X; thus the linear function (-, ¥, on Xis majorized by a function of
the form f+const, implying that (-, > has a finite upper bound in some -

neighborhood of some point of X and hence that {-, v is Z-continuous. The
expression

Flx+ ) =)=, 3
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in (4.3) therefore depends .%-continuously on x and w, as long as x erad f and
x+uerad /. It follows that, given any x erad fand any real number p =0, there
exist “-neighborhoods {7 and ¥ of the origin in X such that

S +u)—f(x) =, y) 2 p
whenever x'—x ¢ U and v e pV, or in other words
pHu | S )= =y 22V
whenever x"—x € U. By the second inclusion in (4.2), we then have
Ve 206,/(x) -y
whenever x"'—x e U. Thus
Gflx+u) = 8. f(x+u) = 2V +y

for every ue U and A=p. Since Vis an % -neighborhood of the origin, and the
linear function <-, ¥, is -continuous, the sct 2F%+y is S -equicontinuous in ¥
and (a) 1s established.,

To prove (b), suppose now that x € X and A> 0 are such that 4, f(x) is nonempty
and % -equicontinuous. Then f(x) < +oc. Choose any y € &, f(x) such that actually

SG)+g(p)—<x, p> < A

(as 1s possible by (3.1), since fis the conjugate of g), and define » by (4.4). Then
(4.2) holds, Since y belongs to the .%-equicontinuous set &, /(x), the linear function
¢+, ¥, is F-continuous and the translate &, f(x)— y is again an .-¥-equicontinuous
set. The polar of &,/(x)—y in X is therefore an % -neighborhood of the origin.
Then, by the first inclusion in (4.2), the convex function

hu) = J(x+u) =) =<, y>

is bounded above in some -#-neighborheod of the origin and hence is % -con-
tinuous at the origin. This implies that fis %-continuous at x, and the conclusion
of (b) is immediate.

COROLLARY | (CF. ROCKAFELLAR [14]). Let f be a w(X, Y)-lower semicontinuous
piroper convex function on X. Then fis s(X. Y)-continuous throughout rad f (so that
rad [ is in particular the s(X, Y)-interior of dom f). Moreover

() @ f(x) is a w( Y, X)-bounded subset of Y for every x erad fand A € R. In fact,
given any x erad f and any € R, there exisis an s(X, Y)-neighborhood U of the
origin such that the sets &, f(x+u) are uniformly w(Y, X)-bounded for we U and
AZp, le,

U{eaflx+u) |uel, A <y}
is w(Y, X)-bounded.
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(b) On the other hand, if x is such that &, f(x) is nonempty and w( Y, X)-hounded
Jor some A=0, then x erad f.

Proof. For any x ¢ rad f, the w(X, ¥)-closed convex set
{u| fx+u) £ fx)+1}

is radial at the origin, and hence it is by definition an s(X, ¥)-neighborhood of the
origin. It follows from the continuity fact cited at the beginning of the proof of
Theorem 2 that fis s(X, Y)-continuous throughout rad /. The corollary is then
obtained by specializing % to s(X, Y) in Theorem 2.

CoROLLARY 2 (MoREAU [10], [13]). Let f be a w(X, Y)-lower semicontinuous
proper convex function on X, such that f has a finite upper bound in some #-neighbor-
hood of some point of X. Assume that & is compatible with the duality between X
and Y. Then ¢f(x) is a nonempty w( Y, X)-compact (convex) subset of Y for every
xerad X. In fact, given any x evad f, there exists an F-neighborhood U of the
origin such that the set

UA{e/(x+u) | ue U}
is relatively w( Y, X)-compact.

Proof, Since % is compatible with the duality, % -equicontinuous sets are
relatively w(X, Y)-compact, Then, for x = rad f, af(x) is nonempty, because f(x)
is the intersection of the nonempty w( Y, X)-closed F-equicontinuous sets &, f(x),
A=0,

It can be shown, incidentally, that under the hypothesis of Corollary 2 one has

(4.5) S w) = max {Cu, y) | y € 8f(x))

for every xerad f. In this event, of course, f is Gateaux-differentiable at x if
x erad fand ¢f(x) contains just one vector y. (See Moreau [10].)

We shall denote by ¥ the collection of all nonempty w(Y, X)-closed bounded
convex subsets of ¥. According to Corollary 1, &, f(x) is an element of ¥ for every
x=rad fand A>0,

By the 7 -topology on Y, we shall mean the topology in which, for each C e b7}
the sets of the form

{DeY|D<C+Band C<= D+B)

constitute a fundamental system of neighborhoods of C as B ranges over all
7 -neighborhoods of the origin in ¥. Of course, when Y is regarded as a subset of
Y, the relative 7 -topology induced on Y is the same as the F -topology already
present on Y.
The 7 -topology on ¥ can also be obtained in a dual way. For each Ce ¥, let
e denote the support function of C on X, i.e.
he(x) = sup <x, y).

VE
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As is well known [7], the correspondence C < /i is one-to-one between ¥ and the
collection of all finite w(X, ¥)-lower semicontinuous positively homogeneous
convex functions on X, and it preserves addition and nonnegative scalar multi-
plication. (This is a natural extension of the correspondence between points of Y
and linear functions on X.) It is not hard to show that the 7 -topology on Y is the
same as the topology on Y induced by uniform convergence of the support func-
tions ke on all .7 -equicontinuous subsets of X,

Note that a sequence of sets Dy, D,, ... in ¥ 7 -converges to a point y£ ¥
(regarded as a singleton set in ¥) if and only if, for every 7 -neighborhood B of
the origin in Y, there exists an integer m such that D,<y+ B for all k>m. Thus
the conjugate g of fis J -rotund at y relative to x if and only if the nonempty
w( ¥, X)-closed convex sets

y+o | gy+o)—<{xn 0> S g(0)+AL A >0,
are w( ¥, X)-bounded and 7 -converge in Y to y as A | 0. Since (3.3) holds and
& f(x) = p+{v | g(r+0)—<x, v) = x> =[O+ A},

the conclusion of Theorem | can therefore be stated as follows: fis .oZ-differentiable
at x with y=N/(x) if and only if the sets &, f(x) are nonempty and bounded for A =0
(i.e. x =rad f) and 6, f(x) T -converges in ¥ to y as A, 0,

ProPOSITION 5. Let f be a w(X, Y)-lower semicontinuous proper convex function
on X, such that f has a finite upper bound in some S -neighborhood of some point of
X. Assume that all the sets in & are S -bounded (which is true in particular if either
¥ or T is compatible with the duality between X and Y). The mapping

(x, }) = 8, f(x)

is then continuous from (rad ) x (0, +oo) in the S -topology (i.e. the product of the
F-topology on rad f and the ordinary topology on the real interval (0, +w0)) to ¥
in the 7 -topology.

Proof. Choose any xecrad f, any 8>0, and any w(?, X)-closed convex 7 -
neighborhood B of the origin in ¥. Let U be an % -neighborhood of the origin in
X such that, for p=23, the set in (4.1), which we shall denote by M, is 7 -equi-
continuous. Since the sets in 7 are all %-bounded in X, -equicontinuous sets
are all 7 -bounded in ¥. Thus we can find a real number p=28 such that

(4.6) M—M < pB.
Choose an >0 such that

4.7) % < 8j(p41).
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Since f'is -continuous at x (Theorem 2), there exists an .%-ncighborhood W of
the origin, W< U, such that

(4.8) |Fx+u)—fx+u)| = e2, Yue W,Vu, e W,
and
(4.9) [Kw, 33| S efd, Ywe W, Yye M.

We shall demonstrate that
& f(x+uw) < é.f(x)+B and &f(x) < & f(x+u)+B

for arbitrary we W and A e [§—e, 8-4+¢], and this will establish the desired con-
tinuity at the point (x, 8).

In what follows, « and 3 denote real numbers such that «<#. For any , and u,
in (dom f)—x, &, f(x+u,) consists of the elements y € ¥ such that, for every z € X,

@)z flx+u)+{z—x—uy, 1> —u
= f(x+ux)+{z—x—uy y>
= [a+/(x+us) —f(x+u) +us—15, p)].

Wue W, upe W, <28 and B—«Z e, every y € 0,f(x+u,) belongs to M, so that
by (4.8) and (4.9)

atf(x+ug) = O+ )+ Qg — 1y, ¥) < a+(e/2)+(ef4) +(e/4) < 8,

and hence

Guf(x+ur) = &5/ (x+uy).
It follows in particular that
(4.10) Goosf(X) € O f(x+u) < 8, .f(x), Yus W, ¥A < 28,
On the other hand, for any #>1 we have

o= (1/@y+[1-(1/)]8 fory = B+8u—B) <

so that
(4.11) (1/8)2,(x)+ [1 = (1/8)]6,/(x) < /().
The latter inclusion follows from the fact that

Of(x) = {y | ay) £ A},
where £ is a certain proper convex function on Y, namely

h(y) = f(x)+8(y)—<x, >
(g being the conjugate of f). If 0<a<B£28, and 6> 1 is such that >0, i.e.
(4.12) l < & < B{(f—u),
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we have by (4.11) and (4.6)
Bof(x) = [ =(1/0)] [ S () = (1/0)8, /()]
= 8, f00)+ 10— D8 S(0) — &,/(x)]
< 8 f(x)+[p/(0-D]B.
This calculation uses the fact that, since &,/(x) is a convex set, one has
8.f() = [1—(1/0Jeaf()+ (/)2 ().
If «=8—2¢ and 8=3, (4.12) is satisfied for #=p+1 by virtue of (4.7), and con-
sequently
(4.13) 8.1(x) © 8y5_0uf(X)+B.
Similarly, if «=8 and =8+ 2e, (4.12) is satisfied for #=p=+1, so that
(4.14) Gy 0:f(X) = E,f(x)+B.
Forany ue Wand \ = [6—e, 8+¢], we have A< 25 (since e< ) and
Bs_0: () © B2 _of(x) S Caeaf(X) & 8500 (),
so that
g./(x) = 8, fx+u)+ B
by (4.10) and (4.13), while
&, flx+u) < 6. f(x)+B
hy (4.10) and (4.14). This completes the proof of Proposition 5.

COROLLARY Let f be a w(X, Y)-lower semicontinuous proper convex function on
X. Assume either that X is a barrelled space in some topology such that ¥=X%*, or
that Y is a barrelled space in some topology such that X= Y*. Then the mapping
(x, ) - > &, /(x) is continuous from (rad f)x (0, +00) in the s(X, Y)-topology to Y
in the s( ¥, X)-topology.

Proof. Invoke Corollary | of Theorem 2 along with the fact that, in a barrelled
space or its dual, the weakly bounded sets are the same as the strongly bounded
sets [3, Chapter TII].

Proposition 5 and the results below should be compared with a recent theorem
of Moreau [13, 11d]. This result says that (under the same hypothesis about f'as in
Proposition 3) if & is compatible with the duality between X and Y and 7 is the
topology of uniform convergence on .#-compact subsets of X, then the mapping
(x, \) = 8, /(x) is upper semicontinuous as a multivalued mapping from (rad /) x R
in the -%-topology to Y in the 7 -topology. In this case, éf is in particular (4 7)-
upper semicontinuous from rad /'to ¥, so that the gradient mapping Vfis (¢ .7)-
continuous (and consequently (% w( Y, X))-continuous) where it exists.
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If /' is «/-differentiable at x and the hypothesis of Proposition 5 is satisfied, it
follows from Proposition 5 and the observation preceding it that &, f(z) 7 -con-
verges to V/f(x) in ¥ as z #-converges to x and A} 0. This implies in turn that
éf(z) T -converges to Vf(x) as z .%-converges to x in the set

D ={zerad | &f(z) # @}

Thus the mapping é¢ffrom D to Y is (& 7 )-continuous at x. When - is compatible
with the duality between X and ¥, we have D=rad /' by Corollary 2 of Theorem 3,
and a stronger result may be stated.

THEOREM 3. Let [ be a w(X, Y)-lower semicontinuous proper convex function on
X, such that { has a finite upper bound in some S -neighborhood of some paint of X,
Assume thar 5" is comparible with the duality between X and Y (see the remark
below). Then, in order that the mapping x — if(x) from rad f to ¥ be (S 7 )-

continuous at x, il is necessary and sufficient that [ be o/-differentiable ar x.

Proof. The sufficiency of the condition has just been explained. To prove the
necessity, fix any x € rad fat which the mapping in question is (% .7 )-continuous.
It is cnough to show that, given any >0 and any A € </, there exists a A> 0 such
that

(4.15) f(x+ M) —fF(X)A—Cu, ¥) < 2e, Yue A, ¥y e éf(x).

Let B=4° N (—A4)°. Then B is a symmetric convex .7 -neighborhood of the origin
in ¥, and

(4.16) [{u,ey| 21, Yued Yoeh.
Let U be an #-neighborhood of x such that
(4.17) df (x+w) € éf(x)+eB, Ywe U,
(4.18) 8f(x) < df(x+w)+eB, Ywel.
Since & is compatible with the duality, the set A, being w(X, ¥)-bounded by
assumption, is actually %-bounded. and we can choose a A=0 such that A< [,
Let ue A. If v € éf(x+ Au), we have by definition
f(x) 2 flx+ M) +{x—(x+ d), o),
and consequently
(4.19) [f(x+Au) — (A=<, 3> £ Cuy 15—y p0

for any ye Y. When ve@f(x), the left side of (4.19) is nonnegative, so that
{u, y» =<u, v>. Since the latter holds for any p € &f(x) and ¢ £ &/(x+ Au), we must
have

(4.20) sup {<u, wy | we df(x)r < inf {u, w)

woe of (x+ Au)t
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On the other hand, since Auc A4 < U, for any v  ¢f(x+ Au) we have
150 Qg = sup (G v | we f(x+ )}
(4.21) . o
= sup {Cu, vl wedf(x)i+e

by (4.17) and (4.16), while for any y € ¢f(x) we have

Cu, v oz oanl{du, wh | we df(x))
4.22) U, ) ALk ¥ | _( )3 |
= inf {<u, wo | we éf(x+ )} —e
by (4.18) and (4.16). Combining (4.20), (4.21) and (4.22), we see that, for any
v e df(x+ Au) and y e &f(x),

A

Gy vy < inf {Cu, wo | we gf(x+ Ay +e

I14

(¥ +2e

in (4.19), and the inequality (4.15) holds as desired.

RrMARK. The compatibility assumption on % in Theorem 3 was used only to
ensure that all the sets in .7 are .¥-bounded, and that &f(z)= = for every z in
some < -neighborhood of the point x & rad / where continuity was in question.
Therefore, the conclusion of Theorem 3 remains valid when the latter conditions
are satisfied, even if % is not compatible with the duality between X and V.

COROLLARY 1. Let [ be a w(X, Y)-lower semicontinuous proper convex function
on X. Suppose that X is a barrelled space in some topology such that Y=X"* In
order that [ be Gdteaux differentiable at x, it is necessary and sufficient that x e rad
and that the mapping ¢f from rad fto Y be continuous at x from the s(X, Y)-topology
to the w(Y, X)-topology.

Proof. Take % =s5(X, Y¥) and 7 =w(Y, X). The hypothesis implies that # is
compatible with the duality between X and Y [3, Chapter 1LII]. Moreover, f is
% -continuous on rad f by Corollary | of Theorem 2, so Theorem 3 is applicable.
(If rad f were empty, / could not be Gateaux differentiable anywhere in view of
Proposition 1, so that the present corollary would be vacuous.)

COROLLARY 2. Let X he a normed linear space with Y=X*, and let f be a proper
convex function on X lower semicontinuous with respect to the norm topology. In
order that f be Fréchet differentiable at x, it is necessary and sufficient that x ¢ rad f
and that the mapping &f from rad f to Y be continuous at x from the norm tapology
to the norm topology.

Proof. We note first that fis actually w(X, ¥)-lower semicontinuous, since lower
semicontinuity depends only on the closedness of the convex level sets {x | /(x) S,
and the closed convex sets in X are the same in all topologies compatible with the

duality between X and Y. Apply Theorem 3 as in the proof of the preceding
corollary, but with 7 =s(Y, X).
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COROLLARY 3. Let X he a normed linear space with Y=X%* and let f be a
w(X, Y)-lower semicontinuous proper convex function on X. Let U be a nonempty
subset of X open with respect to the norm topology. Suppose that, for each x e U,
tf(x) consists of a single element of Y (denoted by Nf(x)). Then [ is Gdteaux differen-
tiable throughout U, and the gradient mapping Nf from U into Y is continuous from
the norm topology to the w(Y, X)-topology. In order that f actually be Fréchet
differentiable throughout U, it is necessary and sufficient that Nf be norm-to-norm
continuous from U into Y.

Proof. Since éf(x)= = for x ¢ dom f, U must be contained in dom /, and hence
in rad /. By Corollary 1 of Theorem 2, fis norm continuous throughout U, so that
(4.5) holds, implying that V/(x) is the Giteaux gradient of fat x. The result now
follows from Corollary 1 and Corollary 2 above.

In view of the known monotonicity propertics of &f [15], Theorem 3 and its
corollaries suggest that, for a continuous convex function, differentiability is to be
expected in a large subset of the domain of continuity. Such results are classical in
the finite-dimensional case, and they have also been proved for certain classes of
Banach spaces. For details, sec Asplund [2].

5. Gradient homeeomorphisms. In this section, we shall characterize certain cases
where the gradient mapping Vfis a homeomorphism between subsets of X and ¥
in the strong topologies.

TuEOREM 4. Suppose that the strong topology s(X, Y) on X is compatible with the
duality between X and Y, and that Y is s(Y, X)-complere and let [ be a proper convex
function on X, In order that Nf be a homeomorphism from (all of) X onto Y with
respect to topologies s(X. Y) and s(Y, X), it is necessary and sufficient that s(X, Y)
be normable in such a way that

(a) [ is Fréchet differentiable at every x = X,

(b} £ is norm rotund relative to Vf(x) at every x € X,

(¢) f—<-, ¥ artains its minimum on X for every ye Y,

In this event, X is a reflexive Banach space with respect to the norm in question, with
Y=X* Moreover, the convex function g on Y conjugate to [ likewise satisfies
conditions (1), (b) and (c), and the gradient mapping Vg is the inverse of Nf. The
conjugate of g is in turn f.

Proof. The existence of V/(x) for every x implies that f1s the pointwise supremum
of the affine functions of the form

2= f(x)+{z—x, Vf(x)>, xcX,

so that #is w(X, Y)-lower semicontinuous, and fis in turn the conjugate of g.
Assunic that V£ is a homeomorphism as specified. Then by (3.3), Vg is the

inverse of ¥/, so that Vg is a homeomorphism from Y onto X with respect to the

strong topologies. Since the domains of Vf and Vg are contained in dom f and
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dom g, respectively, fand g must be finite everywhere. Corollary | of Theorem 2
implies that fand g are everywhere continuous with respect to the strong topologies,
and that all the sets of the form &, f(x) and &,g(y) are weakly bounded. In par-
ticular, f'is s(X, ¥)-continuous at 0, and for A=7(0) +g(0)+1 the set

£:8(0) = {x | f(x) £ F(O)+13

is w(X, Y)-bounded (implying s(X, ¥)-bounded, because s(X, ¥) is compatible
with the duality), so that X contains s(X, ¥)-ncighborhoods of the origin which are
s(X, Y)-bounded. It follows that s(X, ¥) is normable. We can suppose therefore
that X is a normed lincar space with ¥=X* (the strong topologies on X and Y
being the norm topologies). The norm-to-norm continuity of V/implies by Theorem
3 that (a) holds. Similarly, the norm-to-norm continuity of Ve implies by Theorem 3
and the remark following it that g is Fréchet differentiable throughout ¥, and
hence by Theorem 1 that f'is norm rotund at Vg(y) relative to y for every y = Y.
This yiclds conditions (b) and (c), because x= Vg(y) if and only if y= Vf(x).

Conversely, suppose s(X, ¥) is normable in such a way that (a), (b) and (c¢) arc
satisfied. By (a) and Theorem 3, ¢/ reduces to the single-valued mapping V/, and
this mapping is norm-to-norm continuous from all of X into Y. By (c). the range
of Vfis all of Y. By (b) and Theorem 1, g is Fréchet differentiable at y=Vf(x)
for each xe X (and hence at cach ye ¥). Furthermore, the Fréchet gradient
mapping Vg, which must be the inverse of V/ in view of (3.3), is norm-to-norm
continuous by Theorem 3. Thus V/ is a homeomorphism from X onto ¥ with
respect to the norm topologies.

An incomplete normed linear space cannot be homeomorphic to a Banach space,
as has been proved by Klee [8], so that X, being homeomorphic to its dual Y,
must be complete. It remains only to show that X**=.X, Let /& be the conjugate
of g on X** with respect to the canonical pairing between X** and X¥*= Y.
Since g is in particular norm rotund at V/(0) relative to 0 (by virtue of f being
Fréchet differentiable at 0), it follows by the duality between 4 and g that £ is
Fréchet differentiable at 0. Hence, by Proposition 1, dom /4 has a nonempty
interior in X**, Let D be the set of points in X** where / has a subgradient coming
from X*, According to Brendsted-Rockafellar [5, Theorem 2], D is dense in dom /
in the norm topology. But D is just the range of Vg, which is X, because under the
pairing between X** and X* we have y = éh(x) if and only if x € 6g(y); cf. (3.3).
This shows that the nonempty interior of dom A in X** is contained in X, and
consequently that X**= X, proving Theorem 4.

In Theorem 4, the finite convex functions fand g can be expressed in terms of
each other by the formulas

.1 g(y) = <)) »> =) ),
(512) f(x) = <x, (F2) ") — (V) "' ()).
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In other words, each is the Legendre transform of the other. In Theorem 3, we shall
further extend the theory of Legendre transforms of convex functions (see [16] for
the finite-dimensional case) to certain cxtended-real-valued functions on reflexive
Banach spaces. The following proposition is needed as a preliminary.

ProposITION 6. Let X be a Banach space with Y=X%*, and let [ be a proper
convex function on X lower semicontinyous with respect to the norm topology.
Suppose there exists a subset W of X, open in the norm topology, such that
Wndom f# 2 and

U {éf(x) | xe W}

is bounded in Y. Then rad f= @, and §f(x) is nonempty and bounded if and only if
xerad f.

Proof. As noted already in the proof of Corollary 2 to Theorem 3, lower semi-
continuity with respect to the norm topology implies w(X, ¥)-lower semicontinuity,
The lemma of Brandsted-Rockafellar [5] says that, for any x € X and any positive
e and A, one has

(5.3) 8.1 (x) = (U {8(x+Au) | ues Ul +(ef B,

where U is the unit ball in X and B is the dual unit ball in Y. If x£ W dom #,
and A>0 is chosen so small that x+AU< W, the right side of (5.3) is a bounded
subset of Y by the hypothesis, implying that &_f(x) is bounded (as well as non-
empty). Then x erad / by Corollary 1 of Theorem 2, so that rad /7 . On the
other hand, suppose rad /% 7. Then rad fis the interior of dom f with respect to
s(X, Y), which is the norm topology. Moreover, f is continuous on rad / with
respect to the norm topelogy (Corollary 1 of Theorem 2), and &/(x) is nonempty
and bounded for every x € rad f (Corollary 2 of Theorem 2).

Now let x be a point of X such that x ¢ rad f but &f(x)# # ; we shall show that
éf(x) is unbounded, and this will complete the proof of Proposition 6. Since x is
not an interior point of the convex set dom f (and this interior rad fis nonempty),
x can be separated from dom £, i.e. there exists a nonzero v £ ¥ such that

(x, vy =<z, 0>, Yzedomf
For any y € ¢f(x) and any z € dom f, we then have

f@) 2 f()+{z—x, >
2 f)+z—x, p+a), YAZO0.

This also holds trivially when z ¢ dom f (since then f(z)= +c), and hence it
holds for every z € X. Therefore

YA edf(x), Vyedf(x), VA z 0,

and since v#0 it follows that &f(x) is not bounded.
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THEOREM 5. Let X be a reflexive Banach space with Y= X*, and let f be a proper
convex function on X which is lower semicontinuous with respect to the norm topology.
Let

D={xeX|&x)# o}

In order that &f be a one-to-one mapping from D into ¥ which is a homeomorphism
with respect to the norm topologies, it is necessary and sufficient that the following
conditions be satisfied (in which case &f reduces to the gradient mapping Vf and
D=rad f):

(a) rad f# &,

(b) fis Frécher differentiable throughout rad f,

(c) fis rotund relative ro Vf(x) in the norm topology at each x € rad f,

(d) whenever z e rad f and x is a point of dom f not in rad f, one has

lim {z—x, VA{{(1=Nx+Az)) = —c0.
A0

In this event the convex function g conjugate to [ on Y likewise satisfies conditions
(a), (b), (¢) and (d). Furthermore, the domain and range of the mapping V[ are the
open convex sets rad f and rad g, respectively, and the inverse of Vf is Vg.

Proof. As noted in the proof of Corollary 2 of Theorem 3, fis actually w(X, ¥)-
lower semicontinuous, Suppose that Vfis a homeomorphism from D into ¥ with
respect to the norm topologies. Then D=rad f+ = by Proposition 6. The con-
tinuity of Vf implies by Corollary 2 of Theorem 3 that fis Fréchet differentiable
throughout rad £, so that @/ reduces to Vf. Thus Vf is a one-to-one mapping of
rad finto ¥ which is a norm-to-norm homeomorphism. By (3.3), dg reduces to Vg,
and Vg is the inverse of ¥/ (consequently a homeomorphism). It follows by applying
the preceding argument to g in place of f (which is permissible because X is
reflexive) that

(5.4) {r|2e(y) # 2} =radg + 7,

and that Vg is a norm-to-norm homeomorphism of rad g onto rad /. Hence g is
Fréchet differentiable at every y € rad g by Corollary 2 of Theorem 3. By Corollary
2 to Theorem 1, fis then norm rotund at Vg(») relative to y for every y erad g.
Thus conditions (a), (b) and (c) hold, along with

(d") D<rad £

Conversely, suppose that (a), (b), (¢) and (d) hold. Then & reduces to Vf,
which is by Corollary 2 of Theorem 3 a norm-to-norm continuous mapping of D
into Y. The range of Vfis {y | ég(y)# @} by (3.3), and for each y in this range
there exists by condition (c) some x such that fis norm rotund at x relative to y.
This implies by Theorem 1 that g is Fréchet differentiable at y. The inverse of Vf
is then Vg by (3.3), and Vg is norm-to-norm continuous by Corollary 2 of Theorem
3. In other words, Vfis a norm-to-norm homeomorphism.
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To complete the proof of Theorem $5, it suffices to show that (d) is equivalent
to (d), assuming that (a) and (b) hold. Of course, (d') is equivalent under (a) to the
condition that &f(x)= & for every x which is a point of dom f not in rad /. Let x
be a particular point of dom f not in rad f, and let z=rad f. For 0<A=1, the
point (1—A)x+Az belongs to rad f, since rad f is the interior of the convex set
dom fin the norm topology when rad f3 @ . The restriction of fto the line segment
joining x and z is a lower semicontinuous convex function, so the directional
derivative

F(1=Nx+Az; z—x) = {z—x, V(1 = X)x+Az))

decreases to f'(x; z—x) as A decreases to 0. We must show that &f(x)# @ if and
only if f'(x; z—x)> —oco. One direction is easy: if &f(x) contains an element y, we
have

(5.5) (g=x,y) 2 f(x;z—x) = inf fix+ M“Ix))_f ),

and hence f'(x:z—x)> —co, On the other hand, suppose f'(x: z—x)> —0. The
function A=f"(x; ) is, of course, convex and positively homogeneous on X, and
it satisfies

(5.6) hw—x) = fliw)—f(x), VYwe X,

Since fis norm continuous on rad f by Corollary 1 of Theorem 2, 4 is finitely
bounded above on a (norm) neighborhood of the point z—x. Hence, by the fact
cited to prove Theorem 2, /i is not only finite but norm continuous at z—x. This
implies that & majorizes at least one continuous affine function (see Brondsted [4]),
and since } is positively homogeneous the affine function can be taken to be linear.
Thus there exists a y € ¥ such that

(u, yr £ huw) = fix+u)—f(x), YueX.

Thus y belongs to &f(x), so ¢f(x)# @ and the proof is complete.

The functions f and ¢ in Theorem 5 are given in terms of each other by the
Legendre transformation formulas (5.1) and (5.2) for x erad fand y e rad g. Thus
Theorem 5 yields a certain one-to-one Legendre correspondence between certain
pairs (f; C), where C is an open convex set in X and fis a Fréchet differentiable
convex function on €, and pairs (g, D), where D is an open convex set in ¥ and
g is a Fréchet differentiable convex function on D. This correspondence can be
described directly, i.e. without mentioning conjugacy, much as in [16]; we leave
the details to the reader.

In the case where the gradient homeomorphism is required to map all of X onto
¥, Theorem 3 vields a result which is comparable to Theorem 4 but stronger due
to the assumption of reflexivity.
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COoROLLARY Let X be a reflexive Banach space with Y= X%, and let [ be a proper
convex function on X. In order that the gradient mapping N[ be a norm-to-norm
homeomorphism from X onto Y, it is necessary and sufficient that the following
conditions hold.:

(a) fis Frécher differentiable at every x € X,

(b) 7 is norm rotund relative to Vf(x) at every x ¢ X,

(c) lim,_ .. f{AX)/ A= +oc for every nonzero x € X,

In this event the conjugate g of [ likewise satisfies conditions (a), (b) and (c), and Vg
is the inverse of Vf.

Proof. The existence of V/f(x) for every x implies, as explained at the beginning
of the proof of Theorem 4, that f'is w(X, ¥Y)-lower semicontinuous. Conditions (a)
and (b) of the corollary are necessary and sufficient, in view of Theorem 3, for ¥/
to be a norm-to-norm homecomorphism from X into Y. The range of V£ is then
rad g by Theorem 3, and rad g is the interior of the convex sct dom g, Thus the
range of V/isall of Yifand only if dom gis w( ¥, X)-densc in ¥, which is equivalent
to condition (c¢) according to Rockafellar [[4, Theorem 5B).
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