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CHAPTER 7

The Elementary Vectors of
a Subspace of RiY
R. T. ROCKAFELLAR' University of Washington
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1. INTRODUCTION

This paper concerns some connections between convex ana-
lysis. network flows and marrnid theory.

Let K be an arbitrary subspace of R', where R is the
real number system. Regarding K as a chain group in the
sense of Tutte, one can pass to the corresponding matroid.
Combinatorial facts deduced from general matroid theory may
then be reinterpreted in terms of the original vectors in K.
The results so obtained reflect the fact that K is not just a
real vector space, but has further structure because of its par-
ticular disposition within R'. Specifically, the matroid analysis
of J( deals with the way K intersects the special subspaces of
fl' spanned by the canonical coordinate axes. Now, the natu-
ral ordering of R allows one to enlarge the finite category of
intersections under scrutiny to include closed "orthants", and
in general all the polyhedral convex cones generated by the
various positive and negative halves of coordinate axes. The
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combinatorial theory of such intersections IS what we want to
consider here.

One motivation is the question of "orientation" in matroids.
In the elementary cycles and cocycles of a directed linear
g-raph. there is a natural sense in which two elements have
the same or the opposite orientation. There are certain com-
binatorial results. such as Minty's" colored arc lemma". which
involve orientations but are otherwise really assertions about
matroids. Minty has recently presented in [8] an interesting
development of matroid theory, in which certain orientations
are introduced axiomatically in terms of "digraphoids ", so
that abstract generalizations of the graph results are true.
A "digraphoid". he has shown, corresponds to a dual pair of
matroids which are "regular" in Tutte's terminology. There
does exist, then. an abstract theory of "oriented" or "signed"
matroids which implies that the matroids involved are regular.

A much broader theory of orientation ought to be pos-
sible, in our opinion. Regular matroids arise from subspaces
of R', but only subspaces of an extremely special type. For
any subspace K of R', however. there is a natural way of
using the signs of the coordinates of the vectors to introduce
orientations into the corresponding matroid. The study of the
signed matroid amounts to the generalized intersection problem
posed above. We shall demonstrate that. for such sgned
matroids, several theorems are valid which are far from obvi-
ous. and which even have important well-known non-matroid
theorems as consequences.

No attempt is made here to develop a theory of signed
matroids axiomatically. We are concerned, rather. with show-
ing that there are interesting and significant examples which
any such theory ought to encompass.

The paper is partly expository, in that we also aim to
describe a certain bridge between results in convex analysis
and graph theory. Well-known theorems about systems of
linear inequalities can sometimes be reformulated as seemingly
much simpler combinatorial theorems about the way a sub-
space K intersects some orthant. This is true of the duality
theorem for linear programs. as has been pointed out by
Tucker. We want to show that, in this form, the theorems
about inequalities correspond to other well-known theorems of
a combinatorial character about graphs. which have been ar-
rived at by an entirely different route. The idea is to special-
ize K to a space of network flows. It turns out. for instance.
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that Minty's" colored arc lemma" is essentially a special case
of the classical lemma of Farkas.

The result to which we would most like to' draw the
reader's attention is Theorem 3, a versatile existence theorem
which extends Minty's theorem for "interval networks" in
r 6]. It is a partly combinatorial result about the consistency
of systems of linear inequalities, suited in particular for ap-
plication to the dual convex programs in [11]. '

Note. Since this paper was submitted, P. Camion has informed
us that a more general form of Theorem 3 is proved in his
unpublished thesis [23] in terms of modules over totally ordered
integral domains. The thesis also contains results equivalent
to Theorems 1 and 6, which we display below as corollaries of
basic theorems in convex analysis, and there are ideas similar
to those in Section 7 about using the simplex algorithm t()
determine which of the alternatives in Theorem 6 holds in a
given case. Some results from Camion's thesis are stated
without proof in an appendix to [22].

2. ELEMENTARY VECTORS AND SUPPORTS

It will be helpful to think of the vectors X = (XI" .. , x,)
in R' as real-valued functions on a certain finite set E = [e.,
... , I'd. with X(e,) = Xi' The su.irport of X is then a certain
subset of E, namely the set of e:s such that Xi =1= O. An ele-
mentary rector of K is defined to be a non-zero vector of J{
whose support is minimal, i.e. does not properly contain the
support of any other non-zero vector of K. The system of
subsets of E consisting of the supports of the elementary
vectors of K (which we call the elementary SllPPOI'(S of K) is.
of course. the matroid associated with K.

It is important to keep in mind that two elementary
vectors X and X' of K having the same support have to he
scalar multiples of each other. Indeed, if i. E R is chosen so
that one of the non-zero components of J.X equals the corrc-
spending component of X'. then X' - i.X is a vector of K
whose support is properly smaller. so that X' - AX = O. Hence
K has only finitely many elementary vectors, u.p to scalar
m.ultiples. The ratios between the components of an elementa-
ry vector do not depend on the arbitrary multiple. Thus a
certain finite "ratio system" is uniquely and intrinsically de-
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fined by K. This "ratio system" determines K completely,
because K is the subspace generated by its elementary vectors
(see Section 3). An interesting "combinatorial" problem is to
determine necessary and sufficient conditions on a "ratio sys-
tem" in order that it arises in this fashion. This is closely
related to the problem of characterizing the classes of real
matrices combinatorially equivalent to each other in the sense
of Tucker (see Section 6). Most of the results below concern
necessary conditions on the patterns of signs of the ratios or
matrix elements.

By a sumed set in E, we shall mean a subset S which has
been partitioned into two further subsets S' and S- (possibly
empty). We shall say that S contains an element e, po::n:tively
or negati1Jely. according to whether e, E S' or e, E S-. A signed
subset can be represented in an obvious manner by an N-
vector formed from the symbols +, - and O.

With each vector X of R", we associate a signed set S
formed from the support of X, where S~ consists of the ele-
ments e, with Xi > 0, and S- consists of the elements e, with
Xi < O. We call this the sianed support of X. A signed set
which is the signed support of some vector in K is said to be
a sujned support of K. It is elementary if it actually comes
from an elementary vector of K.

The system of elementary signed supports of K may be
regarded as a sort of "signed matroid." Its properties include
an extensive duality with the system of elementary signed
supports of IC-. the orthogonal complement of K, as one would
readily expect from ordinary matroid theory.

A special case to which we shall often appeal for motiva-
tion, and which therefore deserves a brief review, is the case
where E is the set of arcs of a directed graph. Here we in-
terpret the vectors in K as circulations in the graph, i.e.
flows which are conservative at every vertex. Thus X E K if
and only if X is orthogonal to every row of the (vertex vs,
are, signed) incidence matrix of the graph. For the general
theory of such flows. we refer the reader to the exposition of
Berge [2].

The elementary circulations are easy to determine. Given
any elementary cycle S in the graph and a real number (1:, a
"circulation of intensity rr around S" is obtained by setting
Xi = If if S contains e. in the sense of its orientation, Xi = - ex

if S contains e. in the opposite sense, and Xi = 0 if S does
not contain e, at all. On the other hand, a simple argument
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invoking the conservation condition at each vertex shows that
every non-zero circulation contains some cycle in its support.
It follows that the elementary vectors for this choice of K are
precisely the circulations of non-zero intensity around element-
ary cycles. The elementary signed supports of K can be iden-
tified with the elementary cycles themselves.

In this example, K J. is the subspace generated by the
rows of the incidence matrix. Thus Y E K J. means that Y is
a tension in the graph, i.e. that there exists some "poten~ial"
function on the vertices of the graph such that each Yi .js
obtained by subtracting the potential at the initial vertex of
e, from the potential at the final vertex of e.. Given any ele-
mentary cocycle S in the graph and a real number «, one can
construct a "tension of in tensi ty a across S", much as above.
The non-zero tensions of this form turn out to be precisely
the elementary vectors of K.!., so that the elementary signed
supports of K.!. are the elementary cocycles.

Much of the theory of linear inequalities, our other main
source of motivation, concerns "linear systems of variables"
rather than subspaces of H'. But the two settings are really
interchangeable. In the "linear variables" case, one deals
with the pairs of vectors U E R'" and V E R" satisfying UA
= V, where A is a given m X n matrix. The set of such
pairs X = (U, V) forms, of course, a certain subspace K of
H", with N = m + n. The orthogonal complement K? of this
K consists of the pairs Y = (U', V') such that U' E RaI, V'
E R", and V' AT = - U', where AT is the transpose of A.

Tucker's theory of combinatorial equivalence tells us how to
represent an arbitrary subspace K in this way by various matri-
ces A. More will be said about this in Section 6.

Everything that follows would still be valid if R were re-
placed by any ordered field.

3. HARMONIOUS SUPERPOSITION

A known result about circulations in directed graphs is
that every such circulation X can be represented (non-unique-
ly) as a superposition Xl + ... + X" where each Xk is a cir-
culation around an elementary cycle of the graph. Moreover,
the cycles can be chosen so that the orientations of their arcs
agree with the signs of the corresponding flow components in
X, see [2, p. 145]. In particular, the support of X is then the
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union of the elementary cycles involved. This theorem can be
generalized to arbitrary K, as we now show.

Let us say that two vectors X and XI in HV are disso-
nant, if, for some i, the components Xi and x; are non-zero
and opposite in sign. Thus X and X' are in harmony (i.e.
fail to be dissonant) if and only if x;x; ;;:::° for every i.

Theorem 1. Let X be an?! non-zero vector in K. Then there
exist elementary vectors Xl ..... Xr of K, such that X = XI +
... + Xr• These elementaru vectors may be chosen such that
each is in harmony with X and has its su.pport contained in
the support of X, but none has its support contained in the
union of the su.pport» of the others, and such that r does not
exceed the dimension of K or the number of elements 1:n the
su.pport of X.

Proof. The conditions on r follow immediately from the con-
ditions on the supports of XI"'" X" and they need not be
mentioned further. It suffices to treat the theorem in the
notationally simpler case where X;;::: 0, i.e. x;;;::: 0 for all 1:.
We must show that X can be expressed as the sum of non-
negative elementary vectors of K, each of which has an ele-
ment in its support not belonging to the support of any of
the others. A preliminary step is to show that there exists
at least one non-negative elementary vector whose support is
contained in the support of X. Assume inductively that this
fact has already been established for all non-zero non-negative
vectors XI E K whose supports are properly smaller than that
of X. Let Xo be any elementary vector of K (not necessarily
non-negative) whose support is contained in the support of X.
Replacing Xo by its negative if necessary, we can assume that
Xo has a positive component. Then there exists a largest
positive scalar i. such that 2Xo ::;;X. If i.Xo = X, X is itself a
non-negative elementary vector. Otherwise. XI = X - 2Xfl is
a non-negative vector of K whose support is contained in the
support of X but does not contain the support of Xo. By in-
duction, there exists a non-negative elementary vector of K
whose support is contained in the support of X', and hence in
the support of X. We can proceed now to prove the theorem
itself in the same way. Assume inductively that the theorem
has already been established for all non-zero non-negative
vectors XI E K whose supports are properly smaller than the
support of X. Repeat the argument above, but this time
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taking Xo ;::::0, as has just been shown possible. The induction
hypothesis yields a decomposition

Xz + ... + X, = X' = X - AXo.

Setting X = AXo• we get the desired decomposition of X.

Corollary. The elementaru vectors of K generate K algebrai-'
cally.

Theorem 1 has been depicted as an extension of a result
about graphs, but it is actually equivalent to a fundamental
theorem in convex analysis. The theorem in question says
that each non-zero vector in a polyhedral convex cone contain-
ing no whole lines may be expressed as a sum of r extreme
vectors of the cone, where r need not exceed the dimension
of the face of the cone in which the given vector lies.

It is not hard to deduce Theorem 1 from this cone theorem.
One argues that the set of non-negative vectors of K is a
polyhedral convex cone K, containing no whole lines, whose
extreme vectors are elementary. The faces of K. correspond
to the "non-negative" signed supports of K. It is just as
easy. on the other hand, to deduce the cone theorem from
Theorem 1. This is even a convenient route for attaining
various important facts about polyhedral convex cones, since
the direct proof furnished above for Theorem 1 is so elemen-
tary. Recall that. by definition, a polyhedral convex cone C in
R'" can be represented as the inverse image of the non-negative
orthant of some R' under some linear transformation T. If
C contains no whole lines, T is one-to-one from R'" onto a
certain subspace K (the range space of T), and T carries C
onto K.. Application of Theorem 1 to K. yields the facts
about C.

The study of signed sets is greatly aided by Theorem 1.
We can define, in the obvious parallel way, what we mean by
two signed sets being dissonant or in harmonu, If SI,' .. , S,
are signed sets pairwise in harmony, a new signed set S, the
harmonious union of SI" .. , S,' can be formed by taking

S L = S; U ... U S; and S- = S-;-U ... U S-;

(In the dissonant case, this S' and S- would overlap, so that
there would be no natural way of introducing signs in the
union.) If vectors Xl .... ' Xr are pairwise in harmony, so arc
their signed supports, and vice versa. The harmonious union
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of these signed supports is then the signed support of XI +
... + Xr• Theorem 1 immediately yields the following result,
according to which the properties of the signed supports of K
can entirely be deduced from those of the elementary signed
supports.

Theorem 2. Every signed support of K is a harmonious u-nion.
of elementary signed supports of K. On the other hand. evcry
such harmonious nnion is a signed support of K.

4. FUNDAMENTAL EXISTENCE THEOREM

In applications of flow theory, the question often comes up
as to whether there exists a circulation X whose components
Xi lie within certain given ranges I, depending on the arcs e..
It may be required for some arcs, say, that 0 ::::;;Xi ::::;;k .. where
k, is the "capacity" of the are, while for other arcs Xi is to
assume a constant value specified in advance. Some existence
theorems pertaining to closed intervals, for instance, are pre-
sented by Berge [2, p. 157-160]. These are all really special
cases of a theorem of Minty [6] for arbitrary intervals (i.e.
non-empty connected sets of real numbers, not necessarily
closed or open or bounded. possibly degenerating to a single
point).

We shall now prove that Minty's theorem is valid for ar-
bitrary K, if reformulated in terms of elementary vectors.

Theorem 3. Let 11<"" I, be arbitrary real intervals. Then
one of the following alternatives holds, but not both:
( a) There exists a vector X of K such. that Xi E I, for i = 1,

... , N;
( b) There exists an elementary vector Y of K!. such that yJI

+ ... + yJ, > 0 (i.e. the interval obtained by letting
YI XI + ... + y" Xv 'uary over all choices of Xi E l, lies en-
tirely to the right of 0).

Proof. The conditions are mutually exclusive, because 1/1XI +
... + y" X" > 0 is impossible when X E K and Y E K!·. Let Q
be the set of all vectors X E R" such that Xi E I, for i = 1, ....
N. In the terminology of [10]. Q is a partial polyhedral con-
vex set. If condition (a) fails, Q does not meet K. and a
certain separation theorem of the writer [10] may be applied.
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This gives the existence of a vector Y E K1., such that YI XI

+ ... + YNXx > 0 for every X E Q, i.e. yJI + ... + Y,vIv > o.
We must demonstrate that this Y can actually be replaced by
an elementary vector of K1.. Theorem 1 allows us to set Y
= YI + ... + Yr, where the vectors Yj = (Yjl, ... ,Yjx) are
elementary vectors of K'- pairwise in harmony with each other ...
The distributive law (AI + 1.2)[ = I.I[ + 1.2[ holds for any interval
I provided AI 1.2 ~ O. Therefore

r

yJI + ... + yJ~, = "; (yjJI + ... + YjNI.,;)
j=1

by "harmony." The interval represented on the left lies whole-
Iy in the positive part of R, so the same must be true of one
of the r intervals corresponding to YI, ••• , F, on the right.
(If all r intervals contained a non-positive number. then so
would their sum.) Thus

YiI II + ... + Y j x L, > 0

for some elementary vector Yj of K1., which is what was to
be proved.

Notice that (b) in Theorem 3 is a combinatorial condition,
in that there are essentially only finitely many possibilities to
test. Up to positive multiples. K1. has only finitely many ele-
mentary vectors, and a positive multiple of Y makes no dif-
ference in (b). In the graph example, the elementary vectors
of K1. correspond to cocycles, and the multiple can always be
chosen so that all the components Yi of Yare + 1, - 1 or
O. Then condition (a) holds if and only if. for every ele-
mentary cocycle of the graph.

o E u.L, + ... + y.\I, = "'-:1[' - "'2[;.

where "'t is the sum over the indices i such that the given
cocycle contains the arc e, in the direction of its orientation,
and "'2 is the sum over the indices such that e, is contained
in the opposite direction. The" max-flow-rnin-cut " theorem is
readily deduced from this, as has been explained by Minty.

Theorem 3 has been derived from a separation theorem of
convex analysis which is stronger than the well-known lemma
of Farkas. Actually, this separation theorem can be derived
in turn from Theorem 3. using the fact that. by definition.
every partial polyhedral convex set is the inverse image under
some linear transformation of a set of "paralellopiped form"
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(xlxi E Ii' for every i),
where the I, are intervals.

Existence alternatives for inequalities involving the vari-
ables in a "linear system" UA = V can be obtained by ap-
plying Theorem 3 to the subspace K described at the end of
the Section 2. Tucker's results in [13] can be established this
way. Some special cases will be considered below.

As an immediate combinatorial application of Theorem 3,
we shall show how the signed supports of K may be const-
ructed directly from those of K 1. • From matroid theory it is
known, of course, how to construct the elementary supports
if signs are disregarded. One takes the collection of non-empty
subsets S of E such that no elementary support of K meets S
in just a single element; the minimal sets among these are
the elementary supports of K J. • The following theorem shows
what modification works for the signed supports.

113

Theorem 4. Let S be a signed set in E. In order that S be a
signed support of K 1., it is necessary and sufficient that every
elementary signed support of K not disjoint from S be disso-
nant with S.

Proof. The necessity is on the surface. For if X E K and Y
E K.L had signed supports in harmony and not disjoint, then

Xi Y. ~ 0 for every i with strict inequality for at least one i,
contradicting XI YI + ... + x; Y,y = O. To prove the sufficiency,
we apply Theorem 3, with the roles of K and K.L reversed,
to the case where I, = (0, + 00) for e. E S+, I, = (- 00, 0) for
ei E S-, and 1; = (O) for e, E S. If S is not a signed support
of K, that means there is no Y E K J. such that Y. E I, for
every i. Then by Theorem 3 there exists an elementary
vector X E K, such that

XIII + ... + xNIN > O.
This implies that Xi ~ 0 for ei E S+ and Xi ::;;:0 for e, E S-, with
strict inequality for at least one e, I/. S. The signed support of
X is then an elementary signed support of K in harmony
with S, but not disjoint from S.

5. PAINTINGS

Certain combinatorial problems In graphs involve a spec i-

•
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fled partitioning of the set of arcs into several subsets. A
happy way of describing the partitioning, which has been ex-
ploited by Minty. is to say that the arcs have been "painted"
various colors. One can then speak of a "black and red co-
cycle", meaning a cocyc1e constructed exclusively of "black"
arcs and "red" arcs, and so forth. (A black and red cocycle
could be entirely black or entirely red.)

Here we shall present several results about the existence
of signed supports matching a given "painting." The first is
a complementarity theorem.

Theorem 5. Let each of the elements ei of E a?"bitrarily be
painted white, green or red (where any of the colors can re-
main unused). Then there exist a green and white signed sup-
port S of K and a red and white signed support S' of K'·.
such that Sand S' have no element in common, but every'
white element is contained in S positively or in S' positively."

Proof. From among the vectors X E K such that Xi;;::: 0 for
e, white and Xi = 0 for e, red, choose one whose support con-
tains a maximal number of white elements. Call it Xo, and
let S be its support. Take I, = (0, + 00) for e, white and not
in the support of Xo. L, = (-00, +00) for e, red, and I, = {OJ
for every other i. If there exists a vector Y E K? such that
Yi E I, for every i. the support S' of Y, along with S, meets
the requirements of the theorem. Suppose. therefore, that no
such Y exists. We shall show that leads to a contradiction.
By Theorem 3 (with K and K -'- reversed), there alternatively
exists some X E K, such that

XI II + ... + Xx L; > 0 .

The choice of intervals forces x, = 0 for e, red and Xi ~ 0
for e, white and not in the support of Xo, with Xi > 0 for at
least one of the latter elements. Then X + 2Xo• for A positive
and sufficiently large, has a green and white signed support
containing no white element negatively and containing at least
one more white element than was the case with Xo. This
conflicts with the maximality in the selection of Xo.

Corollary. There exist non-negative vectors X E K and Y E K!
which are complementary, i.e. such that xiy; = 0 and X; + Yi
> 0 for every i.
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Proof. Paint every element white.
This corollary is a well-known complementary slackness

theorem of Tucker [13], which can be made the cornerstone
of linear programming theory. Theorem 5 itself could be de-
duced without much trouble from Tucker's many results about
dual linear systems of variables in [13], so only its formulation
here, as a combinatorial theorem concerning dual systems of
signed sets, is really new. The interesting thing about this
formulation, however, is that it leads quickly to the follow-
ing generalization of Minty's fundamental" colored arc lemma"
[ 6] for directed graphs.

Theorem 6. Let one of the elements e, of E be painted black,
and let each of the other elements arbitrarily be painted white,
green or red. Then one of the following alternatives holds, but
not both:
( a) There exists an elementary signed support of K con-

tainning the black element and otherwise only g1'een and
white elements, with the black and white elements contained
positively;

( b) There exists an elementary signed support of K J. contain-
ing the black element and otherwise only red and white ele-
ments, urith. the black and white elements contained positively.

Proof. If both conditions could be satisfied simultaneously,
one would have overlapping signed supports of K and K!· in
harmony, contrary to Theorem 4. Thus (a) and (b) arc
mutually exclusive. On the other hand, suppose the black
element is repainted white and apply Theorem 5. The S ob-
tained can be expressed as a harmonious union of green and
white elementary signed supports of K by Theorem 2, and
similarly for S' with "red" in place of green. The previously
black element belongs to either S or S' and hence to one of
the elementary signed supports in these decompositions. That
signed support satisfies either (a) or (b).

Corollary. Each element of E belongs either to some non-nega-
tive ('i.e. S+ = S, S- = 1» elementary signed support of K or
to some non-neqaiire elementary signed support of K~, but not
both.

Proof. Paint the element m question black and every other
element of E white.
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In the directed graph case, the corollary reduces to the
fact that every arc belongs either to some "unidirectional"
elementary cycle or to some "unidirectional" elementary co-
cycle.

Minty has demonstrated in [8] that the simpler" unsigned"
version of the property in Theorem 6, namely in which one
omits the color white and all mention of signs, may be adopt- ,
ed as a fundamental axiom of matroid theory. He has not
developed the signed version as an axiom, although he -has
shown it is valid for his" digraphoids ". According to Theorem
6, the signed version is actually valid for a much broader
class of systems than "digraphoids."

An important virtue of the" colored arc lemma" in Minty's
convex programming theory for monotone networks [ 6 ] is that
an efficient combinatorial algorithm actually constructs an ele~
mentary cycle or cocycle satisfying alternative (a) or (b).
This prompts one to ask whether a constructive procedure
exists for the more general case of Theorem 6, too. The
proof we have given here is not constructive. We shall see
below. however, that the construction can be effected by the
simplex algorithm of linear programming.

6. MATRIX REPRESENTATIONS

The relationship between Tucker's combinatorial theory for
linear systems of variables, "digraphoids," and the study of
elementary vectors and signed supports will now be explained.
The results described below are all known. in one way or an-
other, but they need to be worked up together in a certain
way as preparation for their use in the next section.

Suppose that. for a certain m X n matrix A = (aiJ. K is
given by UA = V as at the end of Section 2. The vectors X
in K are then precisely the ones whose components satisfy

for j = 1, ... , n.

-,

Here the values of XI"'" X", can be specified arbitrarity, and
the values of the remaining components X",. I, ... , Xm;" = x.v
are then explicitly given. At the same time, the vectors Y
in K J are precisely the ones whose components satisfy

"2.:ai.iYm+j = -Yi for i= l, ... ,m .
.i=1
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These dual systems of equations may conveniently by sum-
marized in a tableau.

__ YmLI _ ._-- ---_._--
XI nil

Ym:!:n
aln l = - y,

:rm GmI

== Xm+t

. 0mn = - Ym
== Xm+n

We shall call such a tableau a Tucker representation of
the subspaces K and K-'-. For notational simplicity, we have
only pictured a representation in which the symbols X" ... , X_,

occur in undisturbed order along the margins of the tableau.
In reality, of course, there will usually be numerous represen-
tations, involving different arrangements of the symbols.
Every such representation entails the partitioning of E into
two subsets D and D', such that the components Xi of a
vector X in K for e; in D are uniquely determined by the
components for e; in D', while the latter components take on
all possible combinations of values as X ranges over K. With
respect to K-'-, J) and D' have the opposite property.

Tableaus which represent the same complementary pair
of subspaces are said to be combinatorially equivalent (along
with their corresponding matrices A). How to pass arithmeti-
cally from any given tableau to any other combinatorially e-
quivalent tableau has been thoroughly clarified by Tucker [14,
15, 16]. "Pivoting" and rearranging are all that is required.
A simple pivot step corresponds to a classical elimination pro-
cedure for the dual systems of equations. Any non-zero entry
in the tableau may be selected as "pivot"; one then passes to
an adjacent representation, in which D and D' are modified
by interchanging the e! of the pivot row with the e; of the
pivot column. As far as getting an initial representation is
concerned, that is a very easy matter, at least if K is defined
as the subspace orthogonal to a known finite set of vectors in
R', or as the subspace generated by such a set. (That is the
situation in the graph example.)

Tucker's theory grew out of studies of the simplex al-
gorithm for linear programs. But it is also relevant to some
ideas Tutte has exploited for representing matroids, as we
shall now relate.

Thinking of the vectors X in K as functions on R, we
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may restrict them to a given subset D of E. The restrictions
may be viewed as vectors in R", where M is the number of
elements in D. The Tucker representation corresponds to the
case where the restriction mapping (a linear transformation) is
one-to-one from K onto RIJ. The mapping clearly is "one-to-
one" if and only if no non-zero vector of K has its support
disjoint from D. It is "onto" if and only if no non-zero
vector of K '- has its support contained in D. Indeed, in these'
conditions it is enough to speak of elementary vectors. .The
case where both conditions hold is where D is minimal with
respect to the property that it meets every elementary sup-
port of K. or equivalently where D is maximal with respect
to the property that it contains no elementary support of K!·.

A set D with the latter properties is called a dendroid of
K by Tutte. Notice that the complement of a dendroid of J(
is a dendroid of K J.. In the example of a connected directed
graph, of course. the dendroids of K are the sets of arcs
maximal with respect to the property that their deletion would
not disconnect the graph: the dendroids of J( 1. are the maxi-
mal trees of the graph. In general, according to the analysis
above. the oarioue part.umirui» of Xl, ... , X", and Yl,' .. , Yv into
"row symbols" and "column symbols" in the Tucker represen-
tations of K and K'- correspond to the possible ways of parti-
honing E into a dendroid D of K and a dendroid D' of K'-.

Given a Tucker representation of K and K' in the nota-
tionally simple form above. the m X N matrix [I"" A 1 (where
L; is the m X m. identity matrix) is what Tutte calls a eiandard.
represenuitine matrix for K (and its matroid). The rows of
this matrix are evidently elementaru vectors of K forming a
basis of K. Likewise, [- A 7, I,,] is a standard representative
matrix for K'- (and the dual matroid), and its rows are ele-
mentary vectors of K> forming a basis of K J .•

Two such standard representative matrices are implicit
similarly in a general Tucker representation. They are ob-
tained by applying to the columns of [I"" AJ and [_A', I,,]
the permutation which is required to restore the symbols Xi

from the order in which they occur, clown the left side and
across the bottom of the tableau, to the order Xl' ...• x.\'.
EveTY Tucker representation. thus yields a basis of elemeniaru
vectors for K and one for K J.. The bases so obtained will be
called elementary bases. (A basis consisting of elementary
vectors is not actually an elementary basis 1.1 nless one can also
"select an identity matrix from the components.")

I

r •
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In matroid terms, a dendroid D of K yields a certain uni-
que family of elementary supports of K (namely, those of the
vectors in the corresponding elementary basis), each having
exactly one element ei in common with D. From matroid
theory, it is known that, for any elementary support S of K
and any e, E S, one can find a dendroid D giving rise this way
to S and having e, as its only element in common with S.
We can state that result equivalently as follows: each elemen-
tary vector of K having a component equal to 1 belongs to
some elementary basis of K, and therefore occurs in some
Tucker representation. Tucker's" pivoting" formulas thus
serre to compute all the elementary vectors of K and K\ up to
scalar multiples.

In a directed graph, for example, an elementary vector of
K having some component equal to 1 is a circulation of inten-
sity 1 around some elementary cycle; hence it is actually a
representative vector for some elementary cycle, and all its
components equal + 1, - 1 or O. The matrices in the Tucker
representations thus must have all their components equal to
+ 1, - 1 or O. If the graph is connected, each Tucker re-
presentation corresponds to a certain maximal tree D' of E.
The elementary basis of K which can be read from the tab-
leau gives the fundamental basis of elementary cycles associ-
ated with the tree D'. Pivoting in the tableau is then an
arithmetic expression of the purely combinatorial operation of
passage to an adjacent tree. That is why the general algo-
rithms of linear programming can be supplemented by simpler
combinatorial algorithms, when network problems are involved;
see Dantzig's comments [3, Chapter 17].

More generally, a simplified combinatorial approach with
strong graph-theoretic analogies is possible in the context of
Minty's "digraphoids" and "unimodularity." A matrix A is
said to have the unimodular property, if every square sub-
matrix of A has determinant equal to + 1, - 1 or O. Actual-
ly, by Tucker's theory, this is equivalent to the property that
every matrix combinatorially equivalent to A (including A it-
self) have only + l 's. - l 's and O's as components. The lat-
ter property would make a better definition of unimocJularity,
in the author's opinion, since it is the property that one is
directly concerned with in linear programming applications. (If
an initial linear programming tableau in Tucker's format has
integral "margins", and if its "non-marginal" matrix has the
unimodular property. then the arithmetic of the simplex algo-
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rithm will be trivial, and the solutions calculated will be in-
tegral.) According to the above, any circulation matrix of a
directed graph (i.e., the tableau matrix A of some Tucker re-
presentation of the space K of circulations in a directed graph)
has the unimodular property. The derivation given here for
this well-known ann. important result hinged merely on the
fact that, for graphs, every elementary vector of K is a mul-
tiple of a primitive vector, i.e. a vector having every compo-
nent equal to + 1, - 1 or O. In general, let us call a sub-
space K with the latter property a unimodular subspace of
RN. We can say then that K is unimodular if and only if the
matrices A in its Tucker representations have the unimodular
property. The study of matrices with the unimodular proper-
t.y is thus equivalent to the study of certain subspaces of RV

and their elementary vectors. Such unimodular subspaces are
what Tutte would call "regular chain groups over the real '
numbers." Minty has shown [8, Appendix A] that the systems
of elementary signed supports of such subspaces and their
orthogonal complements are precisely the objects of his "di-
graphoid " theory. Minty's results may therefore be regarded
as a contribution to the theory of matrices with the unimodu-
lar property, in which everything is built up axiomatically in
analogy with graphs.

The class of matrices with the unimodular property is, of
course, closed under many operations besides those of Tucker's
combinatorial equivalence (pivoting, and permutation of rows
and columns), notably the operations of

(a) taking submatrices;
(d) multiplying various rows or columns through by - 1;
( c) taking transposes;
(b) appending a new row or column having only one

non-zero component, and that a + 1 or - l.
A typical way of proving that a given matrix A has the uni-
modular property is to show that A may be constructed by a
sequence of such operations from a matrix A', which in turn
may be interpreted as a circulation matrix of some directed
graph. Although A may itself no longer correspond directly
to a directed graph, it does correspond to one of Minty's" di-
graphoids." Linear programming manipulations of A there-
fore have graphlike interpretations, which might be an im-
portant conceptual aid.

Part of our interest has been to show that many such
interpretations can even be extended from unimodular sub-
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spaces to arbitrary subspaces, in terms of systems of element-
ary signed supports. Of course, where computational algorithms
are concerned, the entirely combinatorial approach which is so
efficient in graph theory must give way to a more general
linear programming approach.

7. LINEAR PROGRAMMING

The results about signed supports in earlier sections of
this paper place certain limitations on the patterns of signs
which can occur in an equivalence class of Tucker representa-
tions. As a matter of fact, so do Tucker's results concerning
linear programs. We shall apply these results now to the
study of signed supports.

Tucker has shown that, starting with any tableau repre-
senting K and K 1-, one may pass by a pivoting algorithm to
a representation having one of the patterns of signs in Figure
1. In these tableaus, the top row and the leftmost column are
to correspond to the same two e/s as in the starting tableau.

( T ) + or 0
(IT) -- + or 0

; or i
; i

o
i-----,- - -- --

+ I + or 0

(Ill) (IV) I
1--

I-!
- ,'- I

, I
-I

o o o
or or or

+ i + or 0 0

Figure 1

The four cases are mutually exclusive. In linear program-
ming, they correspond to the cases where (I) the X problem
and the Y problem have solutions, (II) the X problem is un-
bounded and the Y problem is inconsistent, (III) the X pro-
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blem is incoJstent and the Y problem is unbounded, and
(IV) the X and Y problems are both inconsistent.

The fact just described is a constructive version of the
duality thorem for linear programs. But it may also be viewed,
in the light of the observations of the last section, as essen-
tially an assertion about elementary signed supports, and hence
as a fundamental theorem about certain signed matroids. The
bottom row in (II). for instance, corresponds to a vector in
an elementary basis of K. whose support is a non-negative
elementary signed support of K containing the e, of the left,
most column.

Taking (I) as alternative (a), and (II), (III) and (IV)
together as (b). we can state the result as follows. Let one
of the elements of E be distinguished as the "black" element
and one as the "grey" element. (We have in mind the e, of
the top row in Tucker's terminal tableaus and the e. of the"
left-most column. respectively.) Paint all the other elements
white. Then one and only one of the following alternatives
holds (and which one it is may be determined by an efficient
algorithm):

(a) There exist an elementary signed support 5 of K
containing the black element positively, and an elementary
signed support 5' of K1. containing the grey element positively,
such that no white element belongs negatively to 5 or to S',
and no white element belongs both to S and to S'.

(b) There exists a non-negative elementary signed sup-
port of K containing the grey element but not the black ele-
ment, or there exists a non-negative signed support of K 1.

containing the black element but not the grey element, or
both.

Actually, this is not quite completely contained in the re-
sult stated by Tucker, because there the black element and
the grey element correspond to a row and a column initially.
But that correspondence can always be arranged. unless (b)
holds. For, if the grey element corresponds to a row in some
Tucker representation, and that row is not entirely zeros, a
simple pivoting step will calculate a new representation in
which the grey element corresponds to a column. If, on the
other hand, the row contains only zeros, the corresponding
elementary basis of K has a vector whose support is the grey
element along; this is a case of alternative (b). Similarly for
the black element.

This somewhat mysterious, purely combinatorial result
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about signed sets, let us emphasize, has the celebrated duality
theorem for linear programs as a corollary. We must there-
fore regard it as one of the deepest theorems possible about
the signed matroids arising from subspaces of RN. Here is an
even more elaborate result, which corresponds in linear pro-
gramming to the case where some constraints are equations
and some variables are unconstrained.

Theorem 7. Let one of the elements of E be painted black and
one grey. Let each of the remaining elements be painted white,
green or red. Then one of the following alternatives holds, but
not both:
(a) There exists an elementary signed support S of K contain-

ing the black element positively and no red elements, and
an elementary signed support S'of K"- containing the grey
element positively and no green elements, such that no
white element belongs negatively to S or to S', and no white
element belongs both to S and to S'.

(b) There exists an elementary signed support of K contain-
ing the grey element and otherwise only green or white
elements, with the grey and white elements contained posi-
tively; or there exists an elementary signed support of K"-
containing the black element and otherunse only red and
white elements, with the black and white elements contained
positively; or both.

Proof. This theorem must be considered known as regards
linear programming, although Tucker has not discussed equa-
lity constraints or free variables explicitly in terms of his
terminal tableaus. Computationally, one can decide between
(a) and (b) (and construct the elementary signed supports in
question) using some extension of the simplex algorithm to
this more general case, such as the extension described by the
writer [9]. Details will not be given here. For the sake of
proving Theorem 7, however, it seems appropriate to indicate
how the general case may be reduced constructively to the
one previously dealt with.

Starting from an arbitrary Tucker representation, we first
arrange, by simple pivoting if necessary, that the black ele-
ment corresponds to a row and the grey element to a column
(henceforth the "black" row and the "grey" column, etc.)
(If this is not possible, then alternative (b) holds, as already
explained.) We continue with simple pivoting, choosing at
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each step as pivot a non-zero entry in a green row and white
column, or in a green row and red column, or in a white row
and red column. (The consequence is that the number of red
elements in D plus the number of green elements in D' in
the dendroid partition of E is increased at each step.) After
finitely many steps, a Tucker representation of the sort in
Figure 2 is obtained (upon rearrangement of the rows ancl
columns). The O's mark submatrices all of whose entries are
O. (In any given example, of course, one would expect a de-
generate version of this tableau, without any green rows' at
all, say.)

grey white red green

black i
i---_._---- - --!~---"--.---- ._..

white I

i--
o i

i
_. 1 .

green - o o
!--- -

red

Figure 2

At this point, we look to see whether the entries in the
grey column and green rows are all zero. If not, one of the
green rows furnishes an elementary vector whose support
satisfies alternative (b) of Theorem 7. Similarly, if the black
row has a non-zero entry in a red column, then (b) holds.
Otherwise we proceed with Tucker's analysis of the black-gray-
white subtableau, eventually transforming it to one of the
four cases in Figure 1. (At each iteration, the whole tableau
is transformed in accordance with what is happening in the
subtableau. The transformations trivially preserve the indi-
cated pattern of zeros.) The conclusion, in terms of element-
ary signed supports, can be read from the final tableau as be-
fore.

Theorem 7 reduces to our generalization of Minty's
"colored arc lemma" (Theorem 6), if one simply omits every-
thing having to do with there being a grey element. The
simplex algorithm may then be employed in practically the
same way to decide constructively between the alternatives.
The terminal tableaus correspond to having (I) or (III) of
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Figure 1 in the upper left of Figure 2, with leftmost columns
deleted. In the purely black-and-white case, as Tucker has
pointed out in [15], these alternative tableaus correspond to
the alternatives in the classical lemma of Farkas.

Since Theorem 7 and its algorithm are so complicated (as,
indeed. they have to be to cover so many cases), a more
special illstration may be helpful. Let us demonstrate how the
"unsigned" form of Minty's lemma (where nothing is painted
white) may be decided for an arbitrary subspace K. Here we
are given a painting of E, where one element is black. and
all other elements e, are red or green. We start with any
Tucker representation of K. If the black element corresponds
to a column of the tableau, we look for non-zero elements in
that column. If one exists, pivoting on it will yield a repre-
sentation of K in which the black element corresponds to a
row. If none exists, then the set consisting of the black ele-
ment alone is an elementary support of K, and alternative (b)
holds. Assume now that the black element corresponds to a
row. We pivot next on any non-zero entry in a green row
and red column. This is kept up until there are no more such
pivots. at which time the tableau has the form in Figure 3.

red green

black

green' 0

red

Figure 3

If now the black row has a non-zero entry in some red
column, the e,'s corresponding to rows with non-zero entries
in that column. along with the e, of the column itself. form
an elementary support of K'~ containing the black element and
otherwise only red elements. If, on the other hand, the black
row has only O's in red columns. then an elementary support
of K is given by the black element and the green elements
corresponding to columns with non-zero entries in the black
row. These are alternatives (a) and (b). (Note, incidentally,
that this special case of the algorithm is valid for graphoids
arising from su hspaces of vector spaces over arbitrary fields.)
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