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ABSTRAST A model is presented which describes, at least to a first approximation,
the oserved changes in cell shape and the movement of surface markers associated

with cleavage in some types of cells. The model postulates that the constraints gov-

erning cell cleavage are minimum surface area and constancy of cell volume. Equa-
tions are derived both for the case of symmetric as well as the case of asymmetric
cleavage. It is pointed out that the generally symmetric character of cell cleavage

is explicable if there is a positive correlation between internal cell pressure and the
radii of curvature.

INTRODUCTION

Elegant experiments carried out by the Japanese cytologists, especially Hiramoto
(1957), Dan (1958), and Ishizaka (1966) have made available quantitative data

concerning the shape and movement of the cell membrane during cell cleavage. The

data have been obtained by labeling dividing cells with carbon markers and then

recording the successive positions taken up both by the membrane in general and

the markers in particular. The data sustain Hiramoto's conclusion that, at least in
the case of sea urchin eggs, cell cleavage occurs at constant volume. The corollary
of this geometrical constraint is that if the cell is spheroidal before division, as is

generally the case, then the surface area must increase by about 26To duingcleav-
age. The movements of markers on the cell surface observed by the above investi-
gators is consistent with such an increase in area. In the particular case of grass-

hopper spermatocytes, Ishizaka (1966) has demonstrated that these cells rnaintain

a remarkable degree of symmetry and regularity of shape throughout cleavage.

Furthermore, he has shown that the successive positions taken up by carbon markers

can be calculated if it is assumed that the surface area increases'monotonically, that

the cellular profile may be represented by spherical zones, and that the volume

remains constant.

In the following, it will be shown that the typical shape exhibited by dividing cells

and the position of markers on the cell surface can be calculated from arguments

of a general nature.
One possibly attractive approach to characterizing the shape of a cell during
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cleavage is to assign mechanical properties to the cell membrane and to impose some
specified mechanism for constricting the cell while treating the cell contents as a
fluid. Thus, for example, one might.piausibly"treat the membrane as a thin elastic
sheet and assume that constriction is due to contractile fibers around the cleavage
furrow. And, to some extent, such a model underlies the'present approach. Never-
theless, it seems unlikely that the cell membrane is purely elastic, and rather more
likely that it has mechanical properties possibly intermediate between, or an ad-
mixture of, those of an elastic material and a monolayer. Furtherrnore, an important
constraint in the problem, namely that of constant volume, may be difficult to in-
corporate in a purely mechanical model. Accordingly, we eschew the strictly me-
chanical approach and adopt instead more general constraints which may be con-
sistent with, but not confined to, a model of the elastic type alluded to above.

Frcunr I Illustration of the theorem that the closed sur-
face of revolution which divides symmetrically at constant
volume and minimum area consists of the union of two
spheres. See text.

The procedure will be to derive the form of surface which is consistent with cer-
tain constraints and then to demonstrate that this surface is essentially isomorphous
with that exhibited by at least some cells during cleavage. We first consider a closed
surface of revolution and demand that the surface divide (i.e. pinch off) symmetri-
cally in a plane perpendicular to the axis of revolution. This division is to take place
subject to the constraints that (a) the volume remain constant and (6) the surface
area be a minimum. It is readily shown, as in the following argument, that the sur-
face satisfying these constraints is a segment of a sphere. Since cleavage has been
assumed to be symmetrical, it is sufficient to consider, as in Fig. I a, one-half of a
surface of revolution, of arbitrary profile. Now consider the spherical zone of Fig.
I c, which is assumed to have not only the same volume as that of Fig. I c, but also
to intersect the cleavage plane in a circle of the same radius (a construction which
is always possible). That the spherical zone ofFig. I c has a lesser area than that of
Fig. I a is demonstrated by adding to both figures a spherical "cap" which completes
the sphere, as shown in Fig. I b and. I d. Since, as is well known, a sphere has the
least area for a given volume, it follows that the spherical segment of Fig. 1 c has a
smaller area than the arbitrary profile of Fig. I a. Thus the surface of revolution
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which is constrained to divide symmetrically at constant volume and minimum sur-
face area consists ofthe union oftwo spheres. The next step is to derive the equations
defining the surface formed by the union of two spheres.

DERIVATION OF EQUATIONS

(a) Symmetrical Division

More specifically, we wish to derive the equations which specify both the radius and

the position of the center of the spherical segment at any given stage of division.

The constant volume constraint is the basis of the derlvation. The geometrical rela-

tions are illustrated in Fig. 2. The cleavage plane is represented by the ordinate axis,

the axis of revolution by the abscissa. In the figure, the right-hand "daughter cell"
has a radius r and a center displaced a distance c from the cleavage plane. The

Frcuns 2 The geometrical relations and nomen
clature used in describing the process of sym-
metrical cell cleavage.

maximum width of the daughter cell is given by the distance ft betweeen the cleavage

plane and the right-hand intercept on the abscissa. The radius, center, and width
are related by the equation:

h:r*c
0:(c:(r

But the volume V of a spherical segment of width ft is given by:

V : G/3)(3r - h)h2 (2)

We denote the initial radius of the mother cell by a. The volume of the daughter
cell must at all times be half the volume of the mother cell, since, by assumption,
division is symmetrical and at constant volume. Therefore, the relation:

y : (2/3)rag
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must obtain. At this point it is convenient to introduce the parametric relation:

'u:c/r : (4)

0:( z:( I

Combining equations (1)-(4) so as to eliminate h and c we find:

r : a(I + l3/21u - ll/zls'1-ua
'

Equations (4) and (5) together describe the profill taken up by a cell which divides

subject to the given constraints. As the parameter z varies between zero and one the

daughter cell radius decreases by a factor of { 2 and the center is displaced from
the cleavage plane a distance tT 2a. The surface arca (A7) of a daughter cell, as well

Frcunn 3 The surface area and perimeter of a

daughter cell are plotted as a function of the sepa-
ration betweei the center of the daughter cell and
the cleavage plane.

o.t o.2 0.3 0.4 0.5 0.6 0.7 0.8

Seporolion of doughter cells (c/o)

as the perimeter (P'), is readily shown to be given by:

Ar : 2r(u * l)r2 (6)

P, : 2rlzr - cos-l(a)l (7)

Note that by "perimeter" we mean that part of the circumference of one daughter
cell passing through the cleavage plane at (0, +b) and the point (h,0). The term

"area" denotes the surface area of a solid of revolution geometrically equivalent to
one daughter cell. The area and perimeter of a daughter cell, as defined above, are

plotted in Fig. 3 as a function of the separation of a daughter cell from the cleavage

plane (i.e., as a function c). The largest increase in these quantities occurs after

separation is more than half completed.
The next step in the analysis is to derive an expression for the path followed by

a marker put at any point P(x, y) on the surface of the cell (see Fig. 2). It is clear
from Fig. 2 that the profile of the dividing cell (under the given constraints) may
be described by the equations for two interesecting circles having their centers dis-

(5)
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placed equally on opposite sides of the cleavago plane. Accordingly, we have:

(x-c)'*y2-'rz x)0
(x*c)'*y2:r2 x-(0

(8)

(e)

The movement of markers on the surface will, under the present assumptions, be
due solely to increased area. A marker put on the original cell surface at a distance
xo from the cleavage plane may be associatgd with an annulus between the cleavage
plane and the plane defined by x : x,. This annulus, being a spherical zone of
width x,, has a surface are Ao given by:

Ao: 2traxo (10)

Expressed as a fraction of the initial total area (A;) of the daughter cell, the area
of the annulus is:

A"/Ar : 2trax"f2traz : x"f a (11)

As division proceeds, the area will increase uniforrnly over the whole surface. Thus,
if the marker moves from xo to x it will then come to be associated with a spherical
zone having an are& I defined by:

A: 2zrrx (12)

But the total area Ar of the daughter cell at any stage of division is given by equa-
tion (6). As the change in area is uniform the fraction A/Ar must remain constant
and equal to the fraction given by equation (11); i.e.,

A/A, : 2trrx/2tr(u * l)r, : x/(u * l)r
: x./a

...r: (u*l)x"r/a. (13)

The ordinate of the marker can be deduced from equation (8) or equation (9) for
any given x coordinate. It is convenient to express x and y in terms of the parameter
a, thus eliminating the explicit dependence upon / and c. This can be done by an
appropriate combination of equations (5), (8), and (13). The results are:

r : (l * [3/2lu - U/z1vt1-rr3(u * l)x, (14)

and

..-\/ffiY- lt+equ-(t/2)usw- (1s)
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Equations (14) and (15) together describe'the path taken by a marker put on the

surface of a cell at a distance xo from thb cleavage plane calculated on the assump-

tion that the increase in area is uniform over the.whole surfaoe. One or two general

features of the family of paths may be readily deduced frorn the equations. Since the

coefficient of xo in equation (1a) is a monotonically increasing function of a for all
positive values of u, it follows that the horizontal component of displacement in-
creases monotonically. It is otherwise with the vertical component of displacement,

the behavior of which depends upon xo. This fact can be easily demonstrated by

confining our attention to the net change in vertical displacement during cell divi-

sion. Thus from equations (8) or (15) We have for the condition c 
= 

u - o (i.e.

no constriction) the relation:

v.: \/aZE
At the end ofthe cleavage u : l, and we have from equation (15) that:

! _ 2rr, \,/G _ VJi"

Combining equations (16) and (17) gives:

(16)

(17)

Y/Y. : 2uarrvJ@ .-*) (18)

Accordingly we find:

! ) !" if x"f a ) l/12ata - 1) + 0.658

whereas

! 1 !" if x"/a 10.658

In summary, a marker on the surface of a cell dividing subject to the given con-

straints would move uniformly away from the cleavage plane and either toward the

axis of revolution if the initial value of xof a were less than 0.658 and away from
the axis if x,f a were greater than 0.658. For a value of xo : 0.658 the marker would
experience no net vertical movement. Various aspects of the movements are illus-
trated in Fig. 4. It will be noted that the total displacement exhibits a minimum which

occurs at a value of x,f a of approximately 0.375.

It is of interest to apply the above equations to the case of cell cleavage in grass-

hopper spermatocytes. As remarked in the Introduction, it has been shown by

Ishizaka (1966) that these cells undergo cleavage maintaining a high degree of sym-

metry. The cleavage and the movement of markers, as observed by Ishizaka (1966)

are shown in Fig. 5. The open circles indicate the observed positions of the markers

at successive times. The solid lines through the circles are the paths calculated from
equations (14) and (15). Note that the only parameters required in the calculation,

namely xo and a, were obtained directly from the figure as published by Ishizaka.

664 Bropnvsrcar- Jounner- Vor.uMs 7 1967



s
as
\
\
\ts

(b) Asymmetric Division

It is of theoretical interest to derive equatio^np for the case of asymmetrical cell
cleavage, that is for the condition in which the cleavage plane is displaced from the
equatorial plane. On reflection, it will be seen that some extra cbnstraint must be
imposed to achieve a complete formulation. In the absence of a knowledge of the

Fraupe 4 A graph illustrating the gen-
eral character of the displacements ex-
perienced by particles put at various dis-
tances (i.e. xs) from the cleavage plane
(symmetrical cleavage). The displacement
is either the distance or the projected
distance between initial and final posi-
tions.

Frcunr 5 Adapted from a figure published
by Ishizaka (1966) showing the profile and
movement of markers (see open circles)
exhibited by dividing grasshopper spermato-
cytes. The solid lines throueh the opencircles
represent trajectories calculated from equa-
tions (14) and (15). Seetext.

structure of membranes the imposed constraint will be necessarily of an arbitrary
character. In the following we present for possible consideration three different
constmints. Only the underlying assumptions and the final equations are given with
but a brief indication of the derivation.

The geometrical relations for the asymmetric case are summarized in Fig. 6. The
origin is taken at the intersection ofthe equatorial plane and the axis ofrevolution.
The cleavage plane is displaced a distance d from the equatorial plane in the positive
direction. The radii, h and rz, of the two daughter cells are now, in general, dif-

0.1
00 0.r 0.2 0.3 0.4 05 0.6 0

lniliol Posilion {Xo/o}

ffi
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ferent, as are the distances cr and cz to the centers ofthe respective cells. Thus, there

are four variables tt t t2 t ct t cz t of.which one is essentially independent. Accord-

ingly, three equations are required tb'ipecify the motion. The four variables are

related by a geometrical condition, as will be evident from. Fig. 6. Thus two further

conditions are required. One is furnished by the constant volume constraint. The

final condition remains to be specified.

Equotoriol

):.;
\\

(c2,0) 00 (d,o) (cl,o)

r(d,+l /

l-Cleoveqe Plo

lrz
(rl+CI,0)

V': (u/3)(3r!- h)hf

Vr: (r/3)(3r2- h2)h22

hr:rra@r-A
hz: rz + (-c, + d)

Frcunr 6 The geometrical relations and

nomenclature used in describing the process

of asymmetrical cell cleavage.

(i) Uniform Interior Pressure. In this derivation it is assumed that through-

out cleavage the interiol pressure is uniform, or equivalently, that no pressure

gradient exists between the two daughter cells. In the absence of such a pressure

gradient there should be no movement of fluid across the cleavage plane. Hence the

volume of fluid on either side of the cleavage plane remains constant. We now derive

the equations for asymmetric cleavage, proceeding on the assumption of uniform

interior pressure. For simplicity in writing, the radius of the mother cell, denoted

by a, has been set equal to unity. Accordingly, the parameters /"1 
' 

12 t cL t c2, d, etc',

are dimensionless in all of the following equations.

l. Geometric relations. It is evident from Fig. 6 that:

b : \/VPTT.=-AP
b : \/'7TT:-,,TAP

Equations (19) and (20) provide a constraint of the form:

ff - rz2: (q- d)'- (-cr* d)'

2. Constant volume condition. With the nomenclature of Fig. 6, the volumes Zt

and Vz of the two daughter cells are given by:

(1e)

(20)

(21)

(22)

(23)

where
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As in the case of symmetrical cleavage, it is useful to introduce parametric relations
of the form:

(24)

(25)

where d is the displacement of the cleavage plane from the equatorial plane. The
above parameters are defined within the fo_llowing ranges:

0 -( cr.-( rr * d -rz.* d < ", -< O

-d.-( zr .-( I d:( ar -( I

Note that cz is defined in such a way as to be always less than or equal to zero. The
initial conditions are defined by putting cr and c2 eeual to zero. combining equa-

Flcurc 7 An illustration of the change in profile and the movement of surface markers
for a hypothetical case in which d : O.la.

tions (21)-(25) and taking into account the initial conditions, we find:

ur: (cr- il/r,
y2:(-cz*A/r,

(26)

(27)

(2 - uz)(l I uz)2r23 : (2 - d)(l + d), (28)

The change in profile and the movement of markers (calculated on the same
assumption as in the symmetrical case) on the surface is shown in Fig. 7 for a hypo-
thetic asymmetry of l0% (i.e., d : o.la). This figure may be compared with sym-
metrical division as illustrated in Fig. 5.

Formulas for the area and perimeter as defined above are readily derived from
Fig. 6. We find:

(l-u12)ry2:(l-u22)rz2

(2 - u)(t + u1)2rf : (2 + d)(r - d),

At: 2r(l * u)rf

J. W. Pnornsno aNo R. T. Rocx-a.rnrr,sp. A Model of Cell Cleavage
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Az:2r(I*uz)rzz

P,:2,rr(x-cos-l[a1])

Pz:2rz(zr-cos-1[22])

(30)

( 31)

(32)
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These expressions are plolted in Fig. 8 as a function of the parametric variable ar ,
again for the case d : 0.1a. It is a curious fact that the area of the smaller (i.e.

Frcuns 8 A plot of the area and perime-

ter for each daughter cell as a function
of the parametric variable u1 for the case

of asymmetric cleavage (d : O.Ia).
-0.t 0.0 0.t 0.2 0J 0.4 0.5 0.6 0.7 0.8 0.9

Porometric Vorioble (u,)

-lo -09 {3 -o'so.q-o.r-02-o.r ob o.t 0.2 0.3 03 0.5 0.6 0.7 0.8 09 1.0

lniliol Posilion (Xo/o)

Frcunr 9 A craph illustrating the general character of the displacements undergone by

particles put at various horizontal distances (i.e. xo) from the equatorial plane. Asymmetric

cleavage in which d. : O.la.

right-hand) daughter cell actually decreases initially before entering a monotonically

increasing phase. It can readily be shown that this decrease is characteristic of
asymmetric cleavage under the given assumptions'

Various other aspects of the movements of markers for this type of asymmetric

division are brought out in Fig. 9. As in the symmetric case the horizontal component

of the displacement is uniformly away from the cleavage plane. The vertical compo-

s
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nent of displacement and the total displacement exhibit minima which are in dif-
ferent locations as between the two daughter cells and as compared with the sym-
metric case.

The per cent increase in perimeter and area for the-respective daughter cells, as
given by equations (29)-(31) are plotted in Fig. l0 for various degrees of asymmetry
up to 0.5. Note that the smaller daughter cell experiences the greatest increase in
perimeter but the least increase in area.

(i) Uniform Film Pressure. ''In this and the following alternative deriva-
tions of the equations for the case of asymrnetric cleavage, we make special assump-
tions about the nature of the membrane, fn the present derivation we suppose that
the membrane behaves as a two-dimensional gas, or as an idealized monolayer. In
particular, we assume that the membrane is characterizedby a uniform surface pres-
sure which is inversely proportional to the surface area. As cleavage proceeds, the
areas of each of the presumptive daughter cells will increase and the surface pressgre
will decrease. Since, by assumption, the surface pressure is uniform throughout the
membrane, the changes in area will be such as to maintain the initial proportion be-
tween the areas of the daughter cells. That isi if the initial areas are given by An,

Frcunr 10 Per cent increase in surface
area and perimeter .(see text) as a function
of asymmetry.

A2s , and the areas at any subsequent time are given by Ar and A2 , then

Ar/(Ar* Az): An/(An* Azo) (33)

Thus in the hypothetical case in which the surface pressure is halved, the areas of
the two daughter cells would double, but the proportion between them would re-
main constant. Combining the equations for uniform surface pressure (or equiva-
lently, constant proportionality of areas) with the equations given by the geometrical
and constant volume constraints, we find:

Q
-\
\'
s

s

{'

uz: (r - d)u1/Q * d) + 2d/(l + d)

(l-uf)rf : (l-u22)r22

l(2 - u)(t + uL)2 + (2 * uz)(l I uz)z

.t(l + A/0 - 611atzl(l + u)/(l I u2)fst2lr13 :

J. W. PnorHsno nNo R. T. Rocr;rrnr,r"nn A Model of Cell Cleavage
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(35)

4 (36)
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This derivation has the virtue that the eqxations can be solved directly. If we de-

note the initial and final volumes of the right-hand daughter cell by ho amd Vy te-
spective$, then it is readily shown that: '

Yro: (tr/3)Q - A0 + d)'

vu - I4/3lr/lt * tG + A/0 - Als'l
Furthermore, the volume of the right-hand daughter cell is a maximum when:

u: (r - o/2'
Thus there is a movement of fluid from the larger to the smaller daughter cell ini-
tially [i.e., h I (l - d)/2] and a flow in the reverse direction subsequently. These

changes in volume are small (of a few per cent only) for moderate degrees of asym-

metry.

(iii) Elastic Solution. In this final derivation of the equations for asym-

metric cleavage we treat the membrane as a linear elastic (Hookean) material. It is

well to note at the outset that it is necessary to make a strictly ad hoc assumption
as to what constitutes the unstretched or rest condition of the membrane. Merely
for convenience we assume that the mother cell, prior to cleavage, represents the
rest condition (contrary to our usual notions of the preparturition state!). Further-
more, we assume that the equilibrium condition is described by an equation of the
form of Laplace's law. That is, if the tensions in the right and left daughter cell
membranes are denoted by 7r and Z2 respectively, then equilibrium is assumed to
be defined by the relation:

Tt/rt : Tr/r, (40)

The assumption that the membrane is linearly elastic implies that the tension. in the
membrane is a linear function of the thickness of the membrane, of the elongation
of membrane, and of the Young's modulus "Ey." The elongations er and ez of the
right and left daughter cells respectively are given by:

st : l2f cos-t (d)l [rt cos-l(r4) - cos*t(4] zr:(0

(37)

(38)

(3e)

(41)

(42)

(43)

(44)

: [2/cos-t(d)]{rrlzr- cos-r(ar)l - cos*l(d)} w)0
st: l2/r - cos-'(d)l{rrlo - cos-l(z)l - r * cos-l(d)}

If the initial thickness of the membrane is denoted by wo , then we have:

wr: w"(l - A/$ + url*)

wz:wo(l+A/ff+u27r22)

where wr and w2 zte the thicknesses of the right and left daughter cells respectively.
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Thus the three equations specifying cleavage under the above assumptions are:

rt2(l - ut') : r2e(l - uz2)

(l - d)er/(ll * ulrrs): (1 + Ae,/(ll * uzlrzs)

l(2 - ur)(l * u')'r" + (2 - ur)(l * u2)2r23f : 4

(4s)

(46)

(47)

where er and ez are given by equations (41) and (42) respectively. It should be noted

that there is again a movement of fluid acfoss the cleavage plane according to this

solution. This is not necessarily as surprising as it may first appear. If an elastic

material, such as a balloon, is inflated, it will be found (experimentally and theoreti-

cally) that the pressure first rises and then falls. The effect may be attributed to the

fact tbat the membrane gets thinner as it is inflated. The present case is analogous

to the case of two such balloons connected together. In order to be consistent with
equation (40) it is admittedly necessary to suppose that cleavage takes place infi-
nitely slowly, so that equilibrium is preserved.

A possibly curious feature of the above three different derivations for asymmetric

cleavage is that, numerically at least, and for small asymmetries, they are all very

similar.

DISCUSSION

There is good agreement between the observed and calculated paths followed by

markers placed on the cell surface during cell cleavage, at least for the case of sym-

metrically dividing grasshopper spermatocytes (see Fig. 5). It is true that these cells

exhibit during cleavage an unusual degree of regularity; nevertheless, it seems

reasonable to suppose that the model is a useful first approximation to the descrip-

tion of cleavage in many other types of cells. But whereas the model may apply to
many animal cells, among others, it clearly does not, and is not intended to apply
to plant cells, etc.

Alternatively, one can argue that in those cells which do not exhibit the form de-

scribed by the present model, other constraints, possibly in addition to those cited

above, may be operative. This viewpoint emphasizes the utility of obtaining further
quantitative data relative to cell cleavage.

The case of asymmetric cleavage has been discussed above because it is of theo-

retical interest. As a practical matter it is clear that the majority of cells which have

been studied so far do divide substantially symmetrically. At present visual estimates

of this symmetry have a precision perhaps no better than 5 Vo. Qaantitative data on

this point would be very useful. Nevertheless, the widespread occurrence of essen-

tially symmetrical cleavage suggests that some common mechanism may be opera-

tive. Our study of asymmetric cleavage suggests the following process. Let us assume

that the furrow region initially lies on a great circle of the mother cell (i.e., in an

equatorial plane) so that cleavage begins symmetrically. Further let us assume that

J. W. PnornERo AND R. T. Rocrarsu-Bn I Model of Cell Cleavage 671



a pressure exists within the cell which is positively correlated with the radius. Denote
the pressure in the two presumptive daughter cells by Pt and & . Initially we have,
by assumption, that:

fr:tz

and, therefore,

Pr : Pr.

Now disturb the system so that rr decreases relative to 12 . Thus we have:

rrlfz

and, therefore,

Pr I Pz.

The pressure gradient is in such a direction as to tend to restore the initial condition
of equality of the radii. Thus symmetric division would be expected to be stable

under the given assumptions. On the other hand, if it is assumed that the cell mem-
brane as a whole exhibits the property of constant tension independent of radius
then it is readily shown that symmetrical cleavage would be inherently unstable and

should be the exception rather than the rule. (An analogy is furnished by two soap

bubbles connected by a tube.) Thus a plausible theoretical model of symmetric
cleavage is obtained if there is initial symmetry in the location of the furrow and if
there is an internal hydrostatic pressure which is a positive monotonic function of
the radius.

Although one would like to interpret the model in terms of the mechanical prop-
erties of the cell membrane, this is clearly premature. For example, the movement
of the surface markers is consistent with a uniform increase in surface area, at least

in the case ofgrasshopper spermatocytes. But a uniform increase in area could arise

either by uniform stretching, by a uniform insertion of new material, or by unfolding
of a uniformly pleated membrane. Although uniform stretching may appear more

likely, it is clear that more experimental evidence will be required before a convincing

mechanical interpretation will be possible.

In summary, the profile and the movement of the cell membrane during cleavage

are consistent with a model of cleavage predicated upon the constraints of constant

volume and minimum area. This has been demonstrated in the case of symmetrically

'dividing grasshopper spermatocytes, but may reasonably be supposed to apply as

first approximation in many other types of dividing cells. Finally, it may be noted

that the general approach to the dynamics of cell shape, as outlined above, may
prove useful in other problems of a similar character.
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