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1. INTRODUCTION

A subset T of the real plane R X R is said to be totally ordered if, for each
(x, x*) E r and each (x, x*) E r, either one has x :( x and x* :( x*, or one
hasv ::? x and x* ::? x*. It is called a complete increasing curve, if it is totally
ordered and is not contained in any properly larger totally ordered subset.
Such a subset can be described geometrically as an infinite continuous curve
which crosses each of the lines with slope - 1 exactly once. A complete
increasing curve r thus resembles the graph of an increasing (i.e., non-
decreasing) function on a real interval, except that it may have vertical as well
as horizontal segments, some perhaps infinite in length. One is naturally led
to treat r as a multi valued function by defining

r(x) = {x* I (x, x*) E r} x. (1.1)for each

The real interval

I = {x I r(x) =1= </>} (1.2)

is thus called the domain of r. (For each x E I, r(x) is a closed real interval;
one could show by a classical argument that the interval is trivial, i.e.,
consists of a single x*, except for at most countably many values of x.)

Physical situations often arise in which the relationship between two real
variables x and x* is described by a complete increasing curve r. In Minty's
elegant theory of monotone networks [1], for example, each branch of a given
directed linear graph is assigned such a r as its characteristic curve, i.e., the
set of compatible pairs (x, x*), where x is the current or flow in the branch
and x* is the tension or potential drop across the branch. A notable feature
of Minty's theory is that it is applicable to transportation networks as well as
to nonlinear electrical and hydraulic networks. This is mainly because it
does not insist that the characteristic curves represent functional relations.
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The following correspondence between complete increasing curves and
certain convex functions is used extensively by Minty in [1]. Given a complete
increasing curve r with domain I, form a function y on I by choosing y(x)
to be some particular x* E T(x) for each x. Fix any x E I and c E R, and define

f(x) = r y(t) dt + c
x

for each x EI. (1.3)

The definite integral exists in the sense of Riemann because y is monotone,
and it actually does not depend on which particular y is selected for r. (This
will be elaborated in Section 2.) We may therefore speak off as the indefinite
integral of r, symbolically

f = f r + const. ( 1.4)

The function f so defined on I is convex. Minty does not raise the question.
of how to reverse this construction, an important question as we shall see
in a moment.

There is also the inverse T" of r, which is defined by

F" = {(x*, x) I (x, x*) E r}. (1.5)

(If r were the graph of a strictly increasing function, t= would be the graph
of the inverse function.) Clearly T" is again a complete increasing curve, and
its domain is

I* = {x* I r*(x*) -=F rp} = {x* I x* E T(x) for some x}, (1.6)

the range of r. Carrying out the above construction for r*, we get a convex
function f * on I*,

f* = f t=+ const. (1.7)

The arbitrary constant of integration can be chosen so that

(x, x*) E r if and only if x EI, x* EI*, (1.8)

and

f(x) +f*(x*) = xx*.

(See Section 2.)
Henceforth suppose that we are given a family of complete increasing

curves F, , with domains I, and integrals I,, for i = 1,... , N. Let ft on It
be the integral of the inverse r: of F, , with constant of integration chosen
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so that (1.8) holds. Let K and K* be subspaces of RN orthogonally comple-
mentary to each other. Consider the three problems:

(A) Find vectors (Xl"'" XN) E K and (xi, ... , x~) E K* such that
(Xi, xn E T', for i = 1, ... , N.

(B) Xl inimizc f1(x1) -I ... -I f N(XN) subject to Xi E l, for i = 1,... , Nand
(Xl"'" XN) E K.

(B*) :\linimizefi(xi) -I ... -lfiv(xY'v) subject to El,' fori = 1, ... , N
and (x;, ... , x~) E K*.

Problem (A) involves solving a certain nonlinear system of monotonic
relations, while (B) and (B *) are certain convex programs with linear con-
straints. These problems were studied by Minty in [1] in the case where T;
is the characteristic curve of the ith branch of a monotone network, K is the
space of flows (circulations) in the network and K* is the corresponding space
of tensions. (If E is the node-versus-branch signed incidence matrix of the
given directed graph with LV branches, K is the subspace of RN consisting of the
vectors orthogonal to the rows of E, whereas K* is the subspace spanned by the
rows of E). In applications to electrical networks, say, interest centers on
solving (A), and results about (B) and (B*) correspond to well-known
variational principles. In applications to networks of the sort arising in
operations research, one usually starts from an extremum problem like (B)
and works with a certain duality between (B) and (B *).

In the general case of a subs pace K not necessarily arising from a network,
(B) represents quite a broad class of problems. The class includes, for instance,
all linear programs and quadratic programs (with linear constraints), as will
be explained in detail in Section 4. It will also be shown in Section 4 that (B)
and (B *) can be reformulated as a pair of dual convex programs which fit
into the duality scheme we have set forth in [2].

The following facts about (A), (B), and (B *) will be corollaries of deeper
results proved in Section 3.

THEOHEl\! 1. (Characterization Theorem.) A pair of vectors (Xl"'" xN)

and (xJ<, ... , x,~) solres (A) If and only if (Xl"'" XN) solves (B) and (xi, ... , x~)
solves (B *).

THEOREM 2. (Duality Theorem.) Problem (B) has a solutianif and only if
problem (B *) has a solution, in which case the minimum value in (B) and the
minimum value in (B*) have the same magnitude but the opposite sign.

THEOREM 3. (Existence Theorem.) If there are vectors (Xl"'" XN) E K
and (x;, ... , x~) E K* such that Xi Eli and xi En for i =, 1,... , N, then (A),
(B) and (B *) all have solutions.
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Observe from Theorem and Theorem 2 that neither (B) nor (B*) can
have a solution unless (A) has a solution, in which case the condition in
Theorem 3 is certainly satisfied. Thus the condition in Theorem 3 is also
necessary for the existence of solutions to any of the three problems. Here is
another immediate consequence of Theorem 1 and Theorem 2.

THEOREM I'. A vector (Xl"'" xN) solves (B) if and only If there exists a
vector (xi, ... , xt) such. that (Xl"'" xN) and (xi, ... , xt) solve (A).

In view of the symmetry between (B) and (B*), Theorem I' can be used
in turn to derive Theorem 1 and the first part of Theorem 2.

Minty first proved Theorem 3 in [1] under the assumption that the sub-
spaces K and K* arise from a network as above. He also showed that, if
(Xl"'" xN) and (xi ,... , xt) solve (A), then these vectors solve (B) and (B*),
respectively, and the minima in (B) and (B*) have the same magnitude and
the opposite sign. (This is a weaker version of Theorems 1 and 2.) The proofs
are very graph-theoretic, but constructive. They are valid without change in.
the case of subspaces corresponding to a "digraphoid" rather than a directed
graph, as was pointed out by Minty in an appendix to [3].

A weaker form of Theorem 1', is stated by Berge [4, Chap. 2], in terms of
monotone networks only, but the proof does not involve graph theory in any
essential way. It is not altogether clear from the hypothesis, but it seems that
Berge requires the domain intervals Ii to be closed. At least some such
assumption must have been in mind, since Berge applies to the minimand in
(B) (which is given only on the product of the intervals Ii) a version of the
Kuhn- Tucker theorem in which the functions are supposed to be defined on
all of RN. It could be proved that, if the intervals L; are closed, the minimand
in (B) can be extended to be a convex function on all of RN, so that this
Kuhn- Tucker application is justified. Assuming that the intervals It are
closed too, one can get Theorems 1 and 2 this way. To have I, and It closed,
however, means that T; has neither a vertical nor a horizontal asymptote.
This excludes many obviously important curves r, such as those yielding
I(x) = i]» on 1= R+ = {x I x > O}, or I(x) = - vx on 1= R+, or
I(x) = - log X on I = R+ , or I(x) = eX on I = R.

Berge does not consider any existence theorems like Theorem 3 in [4].
The first proof of Theorem 3 in the general (non-network) case was given

by the present author in his dissertation [5, Chap. 5]. Theorems 1 and 2
were also proved in [5] along with more general results along the lines of
Theorem 4 (to be introduced in Section 3). The results in [5] are stated in
the convex programming form described below in Section 4.

More recently, Minty [6] has given a general proof for a weaker form of
Theorem 3 in which Xi and xt are required to lie in the interiors of I, and
It. Camion [7] has proved that the condition in Theorem 3 is necessary
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and sufficient for (B) to have a solution. The sufficiency proof is an extension
of Minty's original constructive proof. It furnishes an algorithm for solving
(B) approximately, starting from any pair of vectors satisfying the condition
in Theorem 3. To establish the necessity, Camion invokes Theorem l '
as proved by Berge, but he does not demonstrate that the Kuhn-Tucker
theorem can be extended to cover Berge's argument in this general case.

Theorems I, 2, and 3 will be deduced below from two theorems about
conjugate convex functions, Theorems 4 and 5, which will be given a joint
inductive proof. Theorem 4 describes the duality between two extensions of
(B) and (B*).

The elementary theory of convex functions of one variable is recounted
in Section 2 for background. This theory in particular characterizes the pairs
fi' I, , which are admissible in (B). It shows how to construct problems (B*)
and (A) starting from (B) (rather than from given curves ri).

2. CONVEX FUNCTIONS ON THE REAL LINE

Vlanv of the facts about convex functions on R can be deduced at once
J •

from the established multi-dimensional theory of convex sets and func-
tions [8]. The concepts and arguments are usually simpler, however, in the
one-dimensional case. There are also some results not generally true in RN,
which arc not well-known and yet will be especially important to us. Since
one of our objectives here is to extend linear programming without relying
on a "nonclementary" technical background, it makes sense for us to give a
self-contained outline here of the theory of convex functions on the real
line. Proofs will be omitted where they are easy exercises, depending perhaps
on some elementary classical trick.

In harmony with our terminology elsewhere, we define a proper convex
function on R to be an everywhere-defined function f with values
- 00 <f(x) ::;;;-+- 00, not identica1Jy -+- 00, such that

[I);» + (I - A) y) ::;;;V(x) + (I - A)f(y) when O<A<1. (2.1 )

(Improper convex functions, not to be discussed here, can have the value
- 00.) The set of points where such a function f is finite is evidently a
non-empty interval (i.e., a connected set of real numbers); we call it the
effective domain of J.

A proper convex function f on R is always continuous, except possibly
at end-points of its effective domain. (By an end-point of an interval, we mean a
finite end-point of the closure of the interval.) It is said to be a closed function
if each of the intervals {x I f(x) ::;;;,u}, ,u E R, is closed. Equivalently, f is
closed if and only if it is actually continuous relative to the closure of its
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effective domain. This is a constructive property. If J is not already closed, it
can be made so in a unique way by lowering its values suitably at the end-
points of its effective domain. (The resulting function may have a slightly
larger effective domain.) All the closed proper convex functions on R can
thus be constructed as follows. On the one hand, there is the trivial case
where J has a specified finite value at a certain point x, but has the value
+ 00 at every point other than x. In the more interesting case, we take an
arbitrary nonempty open interval 10 and any finite convex function J on 10"
extendJto the closure of 10 by taking limits, and giveJthe value + 00 outside
the closure of 10, (The limit of J(x) at the end-points of 10 always exists,
and it is either finite or + 00.) Then 10 is the interior of the effective dom~in
ofJ.

Let y be an increasing function from R to [- 00, + 00], and let x be a
point where y is finite. The formula

J(x) = r yet) dt + const.
x

(2.1)

then defines a closed proper convex function on R. Namely, J(x) exists as a
Riemann integral in thetinterval where y is finite, and as an improper Riemann
integral (limit of ordinary integrals) at the remaining end-points of this
interval. The natural interpretation of the integral elsewhere is + 00. The
closedness and convexity of J are easy consequences of the monotonocity of y
and the continuity and additivity of Riemann integrals.

We can also construct a complete increasing curve T from any such y
by taking

rex) = {x* E R [Iim y(z) :s;;x* :s;; lim y(z)}.
zix zJ.x

(2.3)

Evidently the converse is true: each complete increasing curve T arises this
way from a somewhere-finite increasing function y on R. Thus a closed
proper convex functionJ on R can be constructed from any complete increas-
ing curve r, via (2.2) and some y representing r as in (2.3). Of course y
need not be unique, since y(x) can be any number in rex). However, two
increasing functions representing the same T have the same points of con-
tinuity, and they must agree at those points. Since an increasing function is
continuous except at countably many points, it follows that J depends only
on T and the constant of integration, and not on the particular y used in the
construction. (This is not an "elementary" argument. An easier way of
establishing the uniqueness will appear below.)

Observe that the above construction yields an J defined on all of R, not
just on the domain 1 of r as in the introduction. Outside the closure of I,
J(x) is + 00, but it might be finite at end-points not belonging to 1 itself.
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In order to reverse a generalized kind of integration, one needs a generalized
differentiation. Let f be any proper convex function on R. At each x in the
effective domain off, the left and right derivatives

f'-(x) = lim (f(z) - f(x))f(z - x)
zix

f~(x) = lim (f(z) - f(x))f(z - x)
zJ.x

(2.4)

exist (although they may be infinite), as is well-known. Both f'- and f~ are
finite at interior points of the effective domain. It is convenient to define
them both as .~ 00 to the left of the effective domain, and both as + 00

to the right of the effective domain. Then

when (2.5)

In par ticularvj", andf~ are increasing functions on R.
\Ve define the generalized derivative of a proper convex function f to be the

multioalued function 1', where

1'(x) = {x* E R If'-(x) :::;;x* :::;;f~(x)} for each x. (2.6)

At any point .vwhere f is differentiable in the ordinary sense, j'(x) reduces to a
single number, the ordinary derivative of fat x. The domain of 1',

J -.c.= {x :1'(x) =1=</>} = {x !f'-(x) < + 00 andf~(x) > - co}, (2.7)

is a nonernpty interval contained in the effective domain of f and containing
in turn the interior of the effective domain.

The main result about generalized derivatives is the following version of
the "fundamental theorem of the calculus." The reader may be interested
to know that an analogous result has also been proved in [9] for convex
functions on RN.

LEMMA I. If f is a closed proper convex function on R, its generalized
deriuatiue f' is a complete increasing curve. Conversely, for each complete
increasing curve r one has

r=1'
for some closedproper convex function f on R, and f is unique up to an additive
constant. In fact

f = I r + const.

in the sense that formula (2.2) holds for any somewhere-finite increasing function
y representing r as in (2.3).
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PROOF. 'When f is a closed proper convex function, the formulas

limf~(z) = f~(x),
ztx

limf~(z) = f~(z),
z~x

limf~(z) = f~(x),
ztx

limf~(z) = f~(x),
ztx

(2.8)

hold for every x E R, as is easily deduced from (2.S) and the definition of
"closed." Thus, if we take any somewhere-finite function y between [':
and I',, (which will automatically be increasing according to (2.S)), l' will
coincide with the complete increasing curve r defined by (2.3). Conversely,
given T and any y representing it as in (2.3), let f be the closed proper convex
function defined by (2.2). Then evidently

f~(x) = lim y(z)
ztx

and f~(x) = lim y(z),
z~x

(2.9)

and hence j" = r. It remains now to show that, iffl andf2 are closed proper.
convex functions on R such that f~(x) = f;(x) for every x, then
f2 = fl + const. This is trivially true when the effective domain oft, consists
of only one point. Otherwise the effective domain of fl has a nonempty
interior 10 , and this consists of the points x for which the interval f~(x) is
bounded. Then 10 has to be the interior of the effective domain of f2 , too.
On 10 , f2 - fl is actually differentiable, indeed its left and right derivatives
both equal zero at each point. Therefore f2 = fl + const. on 10 . This must
hold on the closure of 10 as well, since I, and f2 are closed, and hence it holds
throughout R.

COROLLARY.Let I be a nonempty interval and let f be afinite convex function
given on I. In order that there exist a complete increasing curve I', such that I
is the domain of rand f is the restriction to I of f r, it is necessary and sufficient
that f be the restriction of a closed proper convex function on R to the domain I
of its generalized derivative. In other words, aside from the trivial case where I
consists of a single point, the condition is that f has to have a finite one-sided
derivative at any end-point included in I, but the one-sided derivatives must
become infinite as one nears an end-point not included in I.

We shall now develop the one-dimensional case of Fenchel's notion of
conjugacy [7]. The novel feature of our approach is that we avoid having to
use separation theorems for convex sets in R2. Instead, we rely on Lemma I
and the following elementary fact: iff is a proper convex function on R, then

f achieves its minimum at x if and only if

o E1'(X), i.e., f~(x) ~ 0 and f~(x) ~ O. (2.10)
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,(otice that this implies f always achieves a minimum somewhere, unless
f ~(.I'),0 for all .v (f is "strictly dccrcasing") or f'-(x) > 0 for all x (f is
"strictlv increasing"). In particular, no outright compactness argument is
needed in proving that a continuous conuex function on a closed interval
achieves its minimum.

LBI:lIA 2. Let f be any closed proper convex function all R, and let f *
be the conjugat« function defined by

f *(.\'*) ,- - inf ef(.'") - xx*}
.v

for each x*. (2.11)

Then f* is again a dosed proper convex function all R, and its conjugate is in
turn f, i.e.,

I(x) = . inf{f*(x*) ._- xx*}
x*

for each .\'. (2.12)

Furthermore, the three conditions

.v" Ef'(.\), .v Ef*'(X*), and I(x) +f*(x*) = xx*,

(we equnalent . Thus

f*' =F'", (2.13)

PROOF. Applying (2.10) to hex) = f(x) - xx* in place of f, we see In
(2.11) that

-f*(.\*) =f(.\') - xx* if and only if x* E/,(X). (2.14 )

In particular,.! * is not identically ,.L 00. Trivially,! *(x*) > - 00 for all x,
because f irsel f is not identically -1- 00. Furthermore, (2.11) expresses f*
as a supremum of affine functions (one for each x in the effective domain off),
so f * satisfies the convexity and closure conditions. Hence f * is a closed
proper convex function. By definition of f *, for a fixed x we have

f *(.1'*) - xx* ~ - I(x) for every x*.

Tim; I *(XX) -- X.I'* is sure to be at its minimum when the left half of (2.14)
holds. Consequently x Ef*'(X*) whenever x* Ef'CX), in other words 1*'
is an extension off'*, the complete increasing curve obtained by reflecting
I' across the Iinc w" .Y. Since complete increasing curves by definition
cannot be properly extended, it follows that actually f *, ~--f' *, so that the
three cited conditions are equivalent as asserted. Observe that I * is the only
closed proper COIl\TX function for which the equivalence holds, because f *



552 ROCKAFELLAR

is determined up to a constant as the integral of f'*, and the constant is
fixed by (2.14). The uniqueness and symmetry imply that I is in turn the
conjugate of/*.

COROLLARY. Given any complete increasing curve r and 1= f r, let
I * be the conjugate 01J. Then I * = f t», and

(x, x*) E r if and only if I(x) + I*(x*) = xx*. (2.15)

REMARK. Starting from a convex function I on an interval I satisfying
the condition in the corollary to Lemma 1, one can evidently construct the
corresponding function 1* on an interval 1* directly as follows. For each
x E/, let 1* coincide with the affine function xx* - I(x) on the interval
{x* E R 1/~(x) ~ x* ~/~(x)}. The union of these intervals will be 1*.
This is a simple generalization of the Legendre transform.

Certain combinatorial operations are useful in theory as well as in practice.
Suppose 11 and 12 are closed proper convex functions on R. Then so is
11 +12' unless it is identically + 00. Likewise, if T', and r2 are complete
increasing curves, so is r1 + rz, where

(2.16)

provided the domains of r1 and r2 have a point in common. This follows
from Lemma 1 and the additivity of left and right derivatives:

(2.17)

if 11 + 12 is not identically + 00. Hence also

(2.18)

if r,+ r, is not empty.
Another interesting operation is the convolution defined by

for each x. (2.19)

It is easy to show that 11 012 is again a closed proper convex function, unless
it is identically - 00. Convolution and addition are dual to each other with
respect to taking conjugates:

and (2.20)

(The first formula follows by duality from the second, which can be estab-
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lished by direct computation using definition (2.11 ).) The related operation
for complete monotone curves is given by

(2.21 )

\Ve call this operation inverse addition, because trivially

(2.22)and

The fact that r1 r2 is another complete increasing curve, unless it is
empty, is apparent from (2.22). The formulas

(2.23)

(2.24)

follow from (2.17) and (2.18) by duality.
A function g on R is called a closed proper concave function if - g is a closed

proper convex function. The theory of such functions can be developed in
obvious analogy with the above: - 00, ;:;:;:and "sup" will play the roles of
+ 00, :(; and "inf". In particular, the conjugate relationship for concave
functions is given by

g*(.1'*) = - sup {g(x) - xx*}
x

for each x* ,

g(x) ~= - sup {g*(x*) - xx*}
x*

for each x, (2.25)

The generalized deriuatioes of the closed proper concave functions g on R,
given by

g'(x) = {x* E R I g~(x) :(; x* :(; l-(x)} (2.26)

are the complete decreasing curves L1 (which are the reflections of the complete
increasing curves across the horizontal axis).

A key result involving both convex and concave functions is the following
special version of Fenchel's Duality Theorem [8].

LEl\I'\IA 3. Let f be a closed proper convex function on R with conjugate f *,
and let g be a closed proper concave function on R with conjugate g*. Then

inf {f(x) - g(x)} = sl!P {g*(x*) - f*(x*)}.
x x

(2.27)

Furthermore, let I, 1*, ], ]*, denote the domains of the generalized derivatives of
I, f*, g, g*. The infimum above is attained if and only If 1* n ]* *- <p, zohile
the supremum is attained if and only if In] *- <p.
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PROOF. Let h(x) = - g(x). Then h*(x*) = - g*( - x*). One can
therefore re-express (2.27) as

inf {(f + h) (x) - x ·O} = - (f* 0 h*) (0).
x

Now, as seen above, either f + h is identically + 00 and f* 0 h* is
identically - 00, or the two are closed proper convex functions conjugate
to each other. In the former case the equation is trivial, while in the latter
case it is true by the definition of "conjugate." Iff - g is identically + 00,

its minimum is trivially attained. Otherwise, f - g is a closed proper convex
function and consequently attains its minimum except when (f - g)~(x) <: 0
for all x, or when (f - g)~ (x) > 0 for all x. Altogether, therefore, f - g
attains its minimum except when

f~(x) < g~(x) for every x, (2.28)

or when

g~(x) <f~(x) for every x. (2.29)

The generalized derivatives off* andg* are merely the inverses of those off
and g, so that

1* = {x* E R If~(x) ~ x* ~f~(x) for some x},

1* = {x* E R Ig~(x) ~ x* ~ g~(x) for some x}.

Since [': and f~ are increasing, and g': and s; are decreasing, condition (2.28)
means that j* lies entirely to the right of 1*, while (2.29) means that j*
lies entirely to the left of 1*. Therefore, the infimum in (2.27) is unattained
if and only if 1* and J* fail to overlap. The assertion about the supremum in
(2.27) follows by duality.

3. THE BASICTHEOREMS

The elements introduced in Section 1 can be viewed in a better light, now
that the elementary facts and definitions in Section 2 are at our disposal.
'vVe assume for i = 1,... , N that T', is a complete increasing curve and I,
is a closed proper convex function on R, such that f: = ri, f T,= I. .
We letft be conjugate offi ,so thatfi' = rt, f rt =It,and

if and only if (3.1 )

The domain of ri is denoted by Ii , while the domain of the inverse curve
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r; (the range of ri) is denoted by It. Finally, we assume that K is an arbitrary
subs pace of RN, and that K* is its orthogonal complement. This notation
will be in effect throughout this section.

Theorems I, 2, and 3 will be proved below using a further theorem, which
treats the slightly more general problem where the functions i. are not
restricted to the domains Ii of their generalized derivatives.

THEOREM 4. If

inf Ul(XI) -I- ... -I- fN(xN) I (Xl"'" XN) E K} (3.2)

is not -I- 00, then it is the negative of

inf un"'i) -I- ... -I- fZ(xZ) I (xi,···, xZ) E K*}, (3.3)

and it is attained if and only if there exists some (xi, ... , x;t) E K* such that
xi EIt for i =.01, ... , N. In order that (Xl"'" XN) E K and (xi, ... , x,t) E K*
be points sohere the respective infima are finitely attained, it is necessary and
sufficient that (Xi, x*) E Fsfor i = 1, ... , N.

In establishing this theorem we shall also automatically establish the result
below, which has an interesting corollary. (Here we use the convention that
the infimum of an empty set of numbers is -I- 00.)

THEOREM 5. Assume

is finite for at least aile Xl . Then g is a closedproper concave function on R whose
conjugate is given by

g*(xi) = - inf Ui(xi) -I- ... -I- fZ(x.~) I (xi, xi,···, xZ) E K*}. (3.5)

Furthermore, the domain] of the generalized derivative of g is

{Xl I (Xl' x2 , ••• , xN) E K for some X2 E 12"", XN E IN} (3.6)

it this set is nonempty, In the nonempty case the infimum in (3.5) is attained
for every x*, whereas in the empty case the infimum is attained only trivially
when it is -I- 00. Finally, if the set in (3.6) and the set

{xi i (xt, X2*"'" x,~) E K* for some xi E Ii, ... , x~ E I~} (3.7)

are both nonempty, g is indeed finite somewhere and the generalized derivative
of g is

Ll = {(Xl' x,*) I there exists some (Xl' X2 , ••• , XN) E K and (xi, xi, ... , X~) E K*

such that (x2, x;) E r2 , ••• , (XN , xZ) E TN}' (3.8)
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COROLLARY.If the set Ll in (3.8) is not empty, it is a complete decreasing
curve.

REMARK. Minty [I] has already proved this corollary in the network-
theoretic case of K and K*, where it has an important interpretation. Suppose
one is given a monotone network with two distinguished nodes, the "input
node" and the "output node." Construct a new network by adding a "return
branch" (labeled as branch 1 for convenience) from the output node back
to the input node. Each circulation (Xl' X2 , ••• , XN) E K in the augmented
network corresponds to a flow of Xl from the input to the output of the
original network. Similarly, each tension (xi, xt, ... , x%) E K* corresponds
to a potential drop of - xi from input to output. Thus, if we want to lump
the original network together, its characteristic curve as a whole will be

This is another complete increasing curve according to the Corollary.

JOINT PROOFOF THEOREMS4 AND5. First of all, Theorem 4 1S true
when N = 1, where it is the special case of Lemma 3 withg(x) = 0 for X E K
and g(x) = - 00 for x rt K. (The attainment conditions then reduce to
(2.10) or its dual.) Theorem 5 is vacuous when N = 1.

Assume now that the given value of N is bigger than I, and that Theorem 4
has been verified for all smaller values of N. We shall prove that then Theo-
rem 5 is true for the given N. This will be shown to imply in turn that Theo-
rem 4 is true for the given N. Theorems 4 and 5 will thus be true for all N
by induction.

Let h(xi) denote the right side of (3.5). We begin by demonstrating that

(3.9)

except possibly when g(X1) is - 00 and the right side is + 00. Fix any Xl •

The right side of (3.9) can be expressed as

(3.10)

We can suppose that there exist constants c2, ••• , CN such that (Xl' c2 , ••• , cN) E K,
since otherwise g(XI) is - 00 while (3.10) is - 00 or -+- 00. Then

when (3.11)

by the orthogonality of K and K*.
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Consider the closed proper convex functions hi and the subs pace Kl of
RN-I defined by

h/-.:,) 0" fi(x; + ci) for ie, 2, ... , N,

K; = {(x2 , ••• , xN) I (0, X2 , •.• , xN) E K}.

Obviously

(3.12)

On the other hand, the conjugate hi of hi and the orthogonal complement
Ki of K, in RN-l are given by

for i = 2, ... , N,

Hence, on applying (3.11) to (3.10), we get

Slip {hex:) - x1.yn-= inf {h;(x;) + "',- h,~(x~) I (xi, ... , x,~) E K:}.
x'"

1

(3.13)

Theorem 4 (and its dual) are valid by hypothesis in RN-\ so the right sides
of (3.12) and (3.13) are equal except when the first is - 00 and the second
is + 00. This is what we wanted first to demonstrate.

The significant thing about the fact just proved is that the right side of
(3.9) cannot be --'- CD unless h is identically - CD, in which case the right
side is -I- CIJ for every Xl • Inasmuch as g(Xl) is finite for at least one Xl by the
hypothesis of Theorem 5, it follows that for every Xl (3.9) holds and
g(Xl) if- + CD. This implies further that hex;) is finite for at least one xi and
that h(."i:} < -+- 00 for every xi. The function - g, which is not identically
+ 00 and which nowhere has the value - 00, is expressed by (3.9) as a
supremum of afline functions on R (one for each -: such that h(xn is finite).
Hence -- g is a closed proper convex function, i.e., g is a closed proper
concave function. Since h is finite somewhere too, what we have proved for g
can now be applied to h. Hence 11 is a closed proper concave function. By
(3.9), hand g are conjugate to each other, i.e., (3.5) holds.

When we applied Theorem 4 above to the infimum in (3.12), which is
just a re-cxpression of the one in (3.4), we skipped over the part about whether
the infimum would be attained. Actually, Theorem 4 also yields the con-
clusion that, when g(.\\) :1= -- 00, the infimum in (3.4) is attained if and only
if the set in (3.7) is nonernpty, Dually, then, when g*(xi) =f - 00, the infi-
mum in (3.5) is attained if and only if the set in (3.6) is non empty. This
condition does not involve the particular xi one is looking at, so the infimum



558 ROCKAFELLAR

is attained for every xt if it is finite and attained for one xt. Now Xl belongs
to the domain ] of the generalized derivative of g if and only if
g(XI) + g*(xt) = XIXt for some xt. This is equivalent to the supremum on
the right of (3.9) being attained (h = g*). If the set in (3.6) is nonempty, the
infimum in (3.5) is always attained (as we have just seen), so attainment in
(3.9) is equivalent to attainment in (3.10), which is the same as the right side
of (3.13). Once again we have a situation where Theorem 4, or rather its
dual, can be invoked in RN-l. The resulting condition for attainment is that
there exist some (0, X2 , ••• , xN) E K such that Xi + c, E l , for i = 2,... , N,
in other words (recalling the meaning of C2 , ... , CN) that Xl belong to the set
in (3.6). This proves that (3.6) gives] in the nonempty case. -

Finally, assume that the sets in (3.6) and (3.7) are both nonempty. Let
(Xl' ••" XN) E K and (xt, ... , xt) E K*. By the orthogonality of K and K*,

N N N

L (j;(xi) + fi(xi) - XiXi) = L fi(Xi) + L fi(xi) + XIX:'
i=2 i=2 i=2

(3.14)

Each term on the left side is non-negative by definition of the conjugate
function, and is zero if and only if (Xi, xt) E T', . Therefore

N N
L fl'lCi) + L fi(xi) ~ - XIXI*'
i=2 i=2

(3.15)

with equality if and only if

for i=2, ...,N. (3.16)

When Xl and xt belong to the sets in (3.6) and (3.7), respectively, the right
sides of (3.4) and (3.5) are not - 00, and it follows from (3.15) that they
cannot be + 00 either. In particular, therefore, in the present situation g
is finite somewhere and the part of Theorem 5 already established can be
brought to bear. For instance, we have the fact that the extrema in (3.4) and
(3.5) will always be attained. Thus by (3.15), (Xl' xt) belongs to L1 if and only
if - g(Xl) - g*(xt) = - xlxt, which means that xt E g'(xl). This proves L1

is the generalized derivative of g.
Next we shall employ Theorem 5 for N to prove Theorem 4 for N. Suppose

first that g is finite at least somewhere, so that g is a closed proper
concave function and g* is given by (3.5). Then (3.2) is inf (11 - g), while
(3.3) is inf (1t - g*). These are the negatives of each other by Lemma 3.
Infimum (3.2) is attained if and only if inf (11 - g) is attained at some Xl

at which (3.4) is finite and attained, in other words if and only if inf (11 - g)
is attained and the set in (3.7) is nonempty. This set is J* when nonempty
by the dual of Theorem 5, whereas by Lemma 3 inf (11 - g) is attained if
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and only if {I and I" have some xi in common. That establishes the first
attainment condition in Theorem 4.

If g were not finite at least somewhere, the infimum in (3.2) would have to
be-- 00 (the -+- 00 case being excluded by hypothesis). This is because

~ ~ l\'

I fi(xJ ! I f7(x7) =0: L U/'i) +fi(xi) - x;xi) ~ 0,
i=l i=l i=l

(3.17)

when (.\\ ,... , Xl\') E K and (.v~<,... , x~) E K*. We can also deduce the last
assertion of Theorem 4 from (3.17). The infima add up to zero when they
are finitely attained, so they are attained precisely at the points where equality
holds in (3.17). That means that each of the non-negative terms on the right
of (3.17) is actually zero, i.e., that (Xi' x;) E I', for i= I, ... , N, by (3.1).

PROOF OF THEOREMS I, 2 A:KD 3. The key to everything is the fact that,
If the constraints of problem (B) can be satisfied, the solutions to (ll) will be the
same as the points minimizing the extended function f , -+- ... +f» on K. (And
dually for (B*).) \\'e prove this as follows. Let (,VI , ..• , Xl\') be any point of K
where fl(.rJ) -: - ••• + fAxN) is finite, and let (ZI ,... , ZN) be a point of K such
that Zi E l, for i I, ... , Y All the points of form

(AZ'1+(I-A)x1, ... ,AZN+(I, A)XN)

belong to K.:\Ioreovcr

N

h(A) = I fi(Az; -: - (I - A) x,)
i=l

has a right derivative at A = 0, namely,

(3.18)

(\\'e saw in Section 2 that each of the limits in the sum exists and is either
finite or -,- ".0.) If Xi ~ Ii for some i, Xi is an end-point of the effective domain
off; at which the corresponding limit in (3.18) is- 00. Then h~(O) = - 00

and the infimum of f1 -+- ... + fN on K cannot be attained at (Xl"'" ();'N)'
This fact implies that, if a pair of vectors solves (B) and (B*), thcn it is a

pair where the respective infima in (3.2) and (3.3) are finitely attained. The
converse is also true, since by Theorem 4 the constraints in (ll*) can be
satisfied when the infimum in (3.2) is finitely attained (and dually the con-
straints in (B) can he satisfied when the infimum in (3.3) is finitely attained).
Theorem I is now immediate from the last statement of Theorem 4. More-
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over, it follows from the first assertion of Theorem 4 that the minima in (B)
and (B*) are the negatives of each other when they exist. The key fact also
implies via Theorem 4 that, if the constraints in (B) can be satisfied, (B) has a
solution if and only if the constraints in (B*) can be satisfied. By duality,
therefore, when the constraints in both (B) and (B*) can be satisfied both
(B) and (B *) have solutions, whereas when the constraints in either (B) or
(B *) cannot be satisfied neither (B) nor (B *) has a solution. This proves
Theorem 2, and in view of Theorem I (which we have already verified) it
proves Theorem 3,

4. CONVEX PROGRAMMING REFORMULATION

We shall now deduce, from the results stated in the introduction, a rather
general theory of convex programs with linear constraints.

The notation is the following. For i = 1,... , m, let Ii be a closed proper
convex function on R, with generalized derivative F; having domain Ii
and range It, and with conjugate function pr For j = 1,... , n, let g, be a
closed proper concave function on R, with generalized derivative .1; having
domain I, and range It, and with conjugate function gj. Let «au)) be an
m X n real matrix with transpose «aim. Here are the corresponding problems.

(P) Minimize "L7'-di(Xi) - "L7~1g;("L7'-lxiaij) subject to Xi E I, for
i = 1,... , m, and "L7'-1xiaii E Ij for j = 1,... ,11.

(P*) Maximize "L1=lgt(yf) - L~':dt(Lj~lytat) subject to yt E Ii
for j = 1,...,11, and "Lf=ly;at E Ii for i = 1,... , m.

(R) Find (Xl"'" xm) and (yt, ... ,y!) satisfying (Xi' "L1=lyta~) c r, for
i = 1,... , m, ("L~1 Xiaii , yf) E .1j for j = 1,... ,11.

The nature of (P) is brought out very clearly if we set N = m +- nand

Im+i = -gj and for j = 1,... , n. (4.1)

The constraints in (P) are of the form

for i = I, ...,N, (4.2)

where X E R'", each L, is a linear function, and each Ii is a certain interval
of R (not necessarily a closed interval, and possibly consisting of all of R or
degenerating to a single point). The feasible solutions to (P) thus constitute
a convex set C in R": which is polyhedral, except that some of its faces might
be missing. The problem is to minimize on C the convex function

N

F(X) = L li(Li(X)),
i=l

(4.3)
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where each t. is a convex function given on I, and satisfying the constructive
regularity condition in the Corollary to Lemma I in Section 2. (Here LI •...• L",
correspond to the canonical coordinate system on R'", In general. one could
consider a problem of minimizing the Fin (4.3) subject to (4.2). where the
L; arc linear functions on a certain real vector space. This problem could be
reformulated as (P) by choosing ]'1 •...•L", to be a maximal linearly indepen-
dent set among the L; and introducing coordinates Xi = Li(X),) This is a
linear programming problem when every I, is linear on ]i •which implies the
I, are closed. Quadratic programming subject to linear constraints is also
included. for example. because any positive semi-definite quadratic function
can he expressed (nonuniqucly) as a sum of squares of linear functions.
(Recall. incidentally. that finding such an expression is a very simple matter
involving congruencc of matrices and not eigenvalues.)

The dual problem (P*) is just like (P). except that it is a concave program
instead of a convex program. We shall see below that problem (R) correponds
in the linear programming case to the complementary slackness conditions.

TIfEORD! 6. (Characterization Thcorcm.) A pair of vectors (Xl •...• X1/I)

and (y; •...•y~) solves (R) if and only If (Xl •...• xm) solves (P) and (yi •...• y:)
solves (P*).

THEOREM 7. (Duality Theorem.) Program (P) has a solution If and only
if program (P*) has a solution. in zohicli case the minimum in (P) equals the maxi-
mum in (P*).

THEORDI 8. (Existence Theorcm.) If the constraints can be satisfied
ill both (P) and (P*). then (P). (P*) and (R) have solutions.

PHOOF OF THEOREMS 6, 7 AND 8. Let N = m -1 n, and

for j -~ I•...,n,

K = ;(xI •..., xN) I x",+j =.0 I"'iaij for j = I,...•n~
i~-l .

Then i. is a closed proper convex function on R for i = I•...,N, and K is a
subs pace of RN. This puts problem (P) in the form of problem (B). The
orthogonal complement of K is

n .

K~*- I( .* .*) I .* - "..* * f . - I I---- 1''-1 J"'J ,\,..' ,''\:i - -- L X1ll+JO'j or t - ,.'" m\ .
j~] .

(4.5)
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In addition, for j = 1,... , n, the conjugate of fm+j is

(4.6)

by Definition (2.11). The generalized derivative of fm+j is

.(4.7)

which has domain and range given by

(4.8)

Thus problems (P*) and (R) are just (B*) and (A), with Y!+j = - x!+j,
under choices (4.1) and (4.2). Theorems 6, 7, and 8 are therefore corollaries
of Theorems 1, 2, and 3.

REMARK. We have just seen how problems (R), (P), (P*) can be reform-
ulated as (A), (B), (B*). As a matter of fact, this reformulation also works in
the opposite direction. If K is an m-dimensional subspace of RN, we can always
arrange a permutation of 1,... , N, so as to get K represented as in (4.4) for a
certain ((aij». (Of course, the representation is not uniquely determined;
the set of m X n matrices one gets by considering the various suitable permu-
tations forms a combinatorial equivalence class in the sense of Tucker.)
Defining s, , gj, Llj, }j and it from (4.4), (4.6), (4.7), and (4.8), one can
express (A), (B) and (B*) as (R), (P) and (P*). Thus Theorems 6, 7, and 8
are really equivalent to Theorems 1, 2, and 3.

If one replaces (P) by the problem of minimizing the given function on all
of Rm (i.e. if one replaces each (fi ,Ii) or (gj , }j) pair by the corresponding
infinite-valued closed proper convex function I. or concave function gj
defined on all of R), one has a program specializing the model handled in
[10] and [2]. The theorem below says it is a normal program in the sense
of [2, Section 6].

THEOREM9. For the extended functions, one has

except for the trivial case where the infimum is + 00 and the supremum is
- 00. When the infimum is not + 00, it is attained if and only if the constraints



ELEMENTARY MONOTONIC RELATIONS 563

in (P*) can be satisfied. When the supremum is not - 00, it is attained if and
only if the constraints in (P) can be satisfied.

PROOF. This is a corollary of Theorem 4, via the reformulation already
used in the preceding proof.

The usual dual linear programs correspond to the case where

The generalized derivatives are then

Thus the conjugate functions are

1:(x7) = 0 if x: ~ b:,
g:(yj) = biy; if y;?: 0,

and one has

t,= {Xi I Xi ?: O}

fi(xi) = + 00 if Xi < 0,

glYi) = - 00 if Yi < bi . (4.9)

if Xi> 0,
if Xi =0,
if Xi <0,

if Yj > bj,
if Yj = bi,
if Yi < bj•

1:(x:) = + 00 if x: > b:
gj(y1) = - 00 if y7 < 0,

I: = {x: I xi ~ bi},

The problems become:

(P) Minimize L:::l bixi subject to Xi ?: 0 for i = I, ... , m, and
L:~:lxiaij ?: bi for j = I, ... , n.

(P*) Maximize L:j~lbiyj subject to Y; ?: 0 for j = I, ... , n, and
L:j~ly;a~ ~ bi for i = I, ... , m.

(R) Find (Xl' ... ' xm) and (y;", ... , y:) such that, for xi = L:j_lyja~ and
Yi = L:::lxiaji , one has Xi ?: 0, xi ~ bi and xi(bi - xi) = 0 for i= I, ... ,m,
Yj?: b, .v; ?: 0 and (Yi - bj) yj = 0 for j = I, ... , n.

The familiar linear programming theorems of Gale, Kuhn and Tucker
result when the theorems above are applied to this case. Observe that we
have in fact provided an independent proof of these faets without using
arguments from N-dimensional topology or convexity, and in particular
without invoking the Minkowski-Farkas Lemma.
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It is interesting to view each gj in (4.9) as a penalty function in the sense of
its contribution to the extended minimand in Theorem 9. There is no
penalty if the constraint L:Y:l Xiaij ~ b, is satisfied, but infinite penalty if
it is not. In many situations, it ought to be more realistic to have the con-
straints correspond instead to penalty functions gj which grow rapidly but
continuously from zero to infinity rather than making an abrupt jump. The
theory set forth here handles such functions as easily as it handles the all-
or-nothing ones of linear programming.
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