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A MONOTONE CONVEX ANALOG OF LINEAR ALGEBRA
R.T. ROCKATELLAR

1. Introduction.

The “monotons processcs™ defined below are essentially non-linear
analogs of non-negative linear {ransformations. Monotone processes
have inverses and adjoints. They can be added and multiplied together,
etc. A significant “eigenvalue” theory can be built around them. In
general, they enable one to construct an extensive “monotone convex
algebra’ parallel to real linear algebra. The new theory has been set
forth by the writer in detail in [8] for eventual publication elsewhere.
The present paper is an expository summary of the main ideas and resulte,
without proofs.

In § 2, the duality between points and linear functions is elaborated
into one between “monotone sets’ and “monotone gauges”. This sets
the stage for the introduction in § 3 of “‘monotene processes™ and their
adjoints. The latter are developed using a generalized notion of
“bilinear function”. Combinatorial operations are discussed in § 5, and
the “eigenvalue” results are discussed in § 6.

A remarkable feature of the theory is the way it presents new convex
programming duality theorems as non-linear analogs of the classical
formula defining the adjoint of a linear transformation. This is explained
in § 4. Some possible applications to mathematical economies are touched
upon briefly in § 6.

2. Monotone Sets and Gauges.

Let P, denote the non-negative orthant of A", l.e. the set of all
x=(&,...,&) € R* such that £20 for j=1,...,n. We write z2z if
x—zeP,, #>zif 2z but z+2, and w»z if v—2z is an interior point
of P,. Thus x3 0 means that every component of @ is positive. It is also
uscful to set

(2.1) gz~ =f{zz20|z22} and av={220|z

3%

x} .
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We define a monotone set of concave type in P, to be a non-empty closed
subset €' of P, such that

(2.2a) ze implies z~ < .

A monotone set of convex type in P, on the other hand, is a non-empty
closed (unbounded) convex subset ' of P, such that

(2.2h) zel implies av g C.

In particular, for any @ e £,, ~ and 2 are monotone sets of concave
type and of convex type, respectively. In the discussion which follows
these sets provide the bridge between statements involving vectors and
statements involving general monotone sets.

The vector sum C,+C; of two monotone sets of the same type is
another such set. Likewise, the scalar multiple AC' is & monotone set
of the same type as C'if 1> 0. It is convenient accordingly to set 0-C'= {0}
when (7 is of concave type, but 0-C=P, when (' is of convex type.
Addition and non-negative scalar multiplication of monotone sets

satisfy
(2.3) MU +C,) = 20 +A0,,
(A+24)0 = 2,0+ 4,0,
A(2aC) = (Ads)C .

It is natural to define €, =, to mean €2, when both monotone
sets are of concave type, and to define it to mean ;£ , when both
are of convex type. When C is of concave type and (', is of convex type,
we let ;= C, mean that C;nC,+=0 (sce below).

A monotone gauge of convex type on P, is a continuous non-negative
real-valued funetion f such that

(2.4) fla) = fla,) for z; =2 2, 2 0,
fUx) =2f(x) for Az 0 and 2 =0
flaog+a,) 2 flay)+flz,) forz, =20, 2,2 0.

A monotone guuge of concave type is defined in the same way, except that
the inequality in the last condition of (2.4) is reversed. The functions
which are monotone gauges of both types simultaneously are precisely
the non-negative [limear functions. These correspond canonically to
n-tuples of non-negative coefficients and hence could be identified with
the elements of P, itself. Rather than make this identification, we con-
ceive of the coefficient n-tuples as belonging to P,* a second copy
of the non-negative orthant of R”, and we write

(25) <3’I:x*> = 5151*_}_ i +‘§n§'n$

for a=(&;....8,) e Py and a¥=(5%,...;§,5) e P*
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The elements of P, are in turn viewed as the coefficient n-tuples for
the linear monotone gauges on P,*. An asterisk will generally be used
to indicate that an object belongs to the dual orthant P, * rather than
to I,

Let C' be a monotone set in P,. We define the monotone support func-
trton (C,+> of ¢ on P, * by

(2.6a) (C,x*) = sup{{x,2*) |z e ('}
if € is of concave type, and by
(2.6Db) {0,2%} = ini{{z,2%) |z}

if ¢ is of convex type. The following analog of the classical theorem
about convex scts and their support funections turns out to be valid:
the monotone support function {(C, ) of a monotone set C of concave lype
in P, is a monotone gauge of convex type on P, *, and every such funciion
on P,* arises this way from a unique C. Likewise, the monotone sets
of convex type in P, correspond one-to-one with the monotone gauges
of coneave type on £, *. The monotone gauges on L, correspond dually
to the monotone sets C'* in P, *.

With respect to addition and non-negative scalar multiplication of
monotone sets, one has

(2.7) {0+ 0 %) = (O %) {0 2%,
(A, #%y = WO, x*).

The definition of = for monotone sets is equivalent in all cases to
(2.8) ¢,z ¢, ifandonlyif (Cy,a*) = (Uy x*) forall ¥

Our suggestive notation for monotone support tunctions can be carried
a step further. It can be proved that
(2.9) sup inf (x, 2*) = inf sup (z, 2*)
z=0 preD* x*eD* pel

for any monotone set O of concave type in P, and any monotone set D*
of convex type in P,*. We shall denote by (C, D*) the non-negative
real number represented in (2.9). Thus by definition
(2.10) {C, D*y = sup (z, D*y = inf (C,z*).
el x*=D®

This “pairing” satisfies

(2.11) {0y Di¥y 2 A0y DYy 0, 2 Oy and D 2 Dy¥,
(A0, D*y = KO, D*y = (C,AD*y it 1z0,
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{01+ Cs, D¥)
(C, Dy* + D;*y

(Cy, D¥y+(C;, D*),
(C, Dy*)+(C, Dy*).

When the types of the sets are reversed, the “inf” and “sup” abo
must naturally be reversed, too. The last two inequalities in (2.11) a
then to be reversed.

A monotone set C' of concave type in P, will be called non-singul
if it has a non-empty interior. The formulas

(212a) C*={z*20|(C,z*) =1} and C={x 20|z C* =

>
=

define a one-to-one polar correspondence between the non-singul
monotone sets of concave type in P, and those in P, *. On the oths
hand, a monotone set ' of convexr type in P, will be called non-singuls
if it is not all of 2,. A polar correspondence between such gets in F
and in P, * is set up by

(2.12b) C* = {w* 2 0|(C,a*y 2 1} and € = {& 2 0| (&,C*) = 1]

If C and D are non-singular monotone sets of opposite types in P,
and if C* and D* are their polars in P,*, then

(2.13) (C,D¥)(D,C* = 1.

3. Monotone Processes.

We define a monotone process of concave type from P, to P, to b
a multivalued function 7' which associates with cach x € P, a monoton
get T(z) of concave type in P, in such a way that

(8) T(xy) 2T (xy) if @2,

(b) T(Az)=AT(z) for A20,

(0) Ty +) 2 Tiy) + Tiay),

(@) If y,eT(ay) for i=1,2,...,2;, >z and y; —y, then y e T(x).
A monotone process of convex fype is defined in the same way, except tha
T'(z) is required to be of convex type, and the inequality in conditio:
(c) is reversed. Examples will be given in the next section.

The taverse of a monotone process 7' from P, to P, is the multi
valued function 7! from P,, back to I’, defined by

(3.1) T-Yy) = {x 2 0|yeT'(x)} for each y = 0.

Investigation of T'-! leads one to call a T' of concave type non-singula
if 7'(x) has a non-empty interior when > 0; on the other hand, on
calls a monotone process 7' of convex type non-singular if 0 & 7T(z
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when =0, One has the following theorem: the inverse of a non-singular

: ne process is a mon-singular monoione process of the opposite type.

In linear algebra, the correspondence between lincar transformations
and bilinear functions is crucial, Here we may consider, instead of
bilinear functicns, the monotone bi-gauges of concave-convexr type on
P_xP,* ie. the functions K on P, xP,*%, such that K(-,y*) is a
monotone gauge of concave type on P, for cach fixed y* e P, * and
K(2,-) is a monotone gauge of convex type on P, * for each fixed z € P,,.
On the other hand, given a monotone process 7' of concave type from
P, to P,,, we can define a function P(-), > on P% x P, * by (2.8), namely

(3.2) (T(x),y*) = sup{{y.y*> [y e T(2)} .

We call (T(+),-) the Kuhn—Tuclker funciion of 7', because of its sig-
nificance in the programming theory to be explained in the next section.
The following thecorem may be proved: T'he Kuhn—Tucker funciion
(T(+),- of a monotone process 1" of concave type from P, to P,, is a monotone
bi-gauge of concave-convex type on P, x P.*, and every such function on
P, x P,* arises this way from a unigue T

In like manncr, the monotone processes of convez type from P, to I,
correspond one-to-one with the monotone bi-gauges of convex-concave
type on P, x P, * (with “sup” replaced by “int” of course in (3.2)).

The facts just stated enable us to define, in the classical way, the
adjoint T* of a monotone process I from P, to P,. We take T* to
be the upique monotone process from P, * to P, * such that

(3.3)  (T(2),y*) = (&,T*(y*)) for all ze P, and y*e P>

Note that 7% is of the opposite type from 7', and (7*)*=1"

Adjoints can usually be caleulated dircetly, without explicit inter-
vention of the Kuhn-Tucker function. For instance, if 7 is of concave
type, T*(y*) will consist of the vectors 2*=0 such that

(3.4) {e,x¥)y = (y,y*) whenover & 2 0 and yeT(2).

Tt turns out that a monotone process 7' from P, to P,, is non-singular
if and only if its adjoint T* is non-singular, in which case

(3.5) - Tr-1 = T-1%

The latter monotone process, which goes from P, * to F,* is of the
same type as T. We call it the polar of T

The Kuhn-Tucker function of 71 is related to that of 7' by a mini-
max formula:
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(3.6) (T-Yy),x*) = inf sup {(x.2%) + (y.y*)— (T(2).y*)}

=0 y*=0

= sup inf {¢r,2*) + @, y*) — (T(),y*)}
y*20 220

when 7' is of concave type. (If T is of convex type, the roles of the
“inf” and “sup” must be reversed.)

Given a monotone set ' in P, and a monotone process 7' from P,
to P, of the same type as C, we define
(3.7) T7(C) = o |J T(=) .

xel

where “cl” stands for closure. Then 7(C) is a monotone set in P,, of
the same type as €. Actually, the closure operation in (3.7) is super-
flnous if 7' is non-singular or of concave type. If €' and 7' are non-singular,
so is 7'(C'), and its polar is the image of the polar of €' under the polar
of T'; in symbols

(3.8) L == (%)

If D* is a monotone set in £, * of opposite type from (. one has

(3.9) (T(C),D*y = (C.TD%) .

A higher version of (3.6) holds similarly: if C* and D are non-singular
monotone sets of opposite type in P, * and P, respectively, and if

T is a non-singular monotone process from P, to P,, of opposite type
from D, one has

(3.10)  (T'-4D),C*) = minimax {{(z,C*) + (D, y*) - {L'(x),y*)}

z20,y*20

where one minimizes in the convex argument and maximizes in the
concave argument.

4. Examples and Applications to Convex Programming,.

Each non-negative m x n matrix 4 corresponds to a certain monotone
process 7' of concave type from P, to P,, namely

(4.1) T(@x) ={y 2 0|y £ A} = (dx)~ for each # 2 0.

The Kuhn-Tucker function of 7' is obviously the non-negative restriction
of the bilinear function defined by 4, so

(4.2) @ T*y*)y = (T@)y*y = (Aue,y*y = (@, 4%*)

where A* is the transpose of 4. Therefore the adjoint 7* of T is the
monotone process of convex type from P * to P, * corresponding to 4*,
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(4.3) T*y¥) = {&% =2 0 |o* =z A%y*] = (A*y*)~ for cach y* = 0.

Assume now that no row of 4 consists entirely of zeros. Then 7 and
T* are non-singular, and the inverses given by

(4.4) TYy) = {zz 0|4z z y} foreach y 2 0,
=

=
Pr=l{gh) =dy¥ 20 | A%y* = o*} for eacha* = 0,

are monotone processes of convex and concave types, respectively. For
a fixed y € P, and a fixed x* in P * each of the sets in (4.4) consists
of the solutions to a certain finite system of linear inequalities. The
formula

(4.5) (P1y).a%y = (. T- @)y = T a%)
says that for fixed y and o*
(4.8) inf{(z,a*) |220, dzzy}=sup{{y,y*) | y*2 0, A¥y*<a*}.

This is the “monotone’ case of the famous linear programming duality
theorem of Gale, Kuhn and Tucker. By (3.6). the common extremum
in (4.6) is also the minimax of

(4.7) (m,w®y+{y,y*)—{(Az,y*) for v = 0 and y* = 0.

This characterization is also well known in linear programming theory.
Important classes of non-linear programming problems ean be viewed in

this new way too. Let fy,. . . .f,, be monotone gauges of concave typeon P,

and let ¢ be a monotone gauge of convex type on P,. For each non-
negative choice of the constants #,,. . ..n,,, one may congider the problem

(4.8) minimize g(£;,...,&,) subject to

&2 0 for j=1,..;m and f&;.: :5,) B 1 fo1 4 = L. coym;
If we define 7" by
(49)  P@) =y = (.- com) [0S 75 S file) for i =1,...,m},

T is a monotone process of concave type from P, to P, whose Kuhn-
Tucker function is

il

(4.10) (T(x).y*y = 3 9% dx) for y* = (™. %07 -
i=1

Assuming that no f; is identically zero, so that 7' is non-singular, we can
restate (4.8) as
(4.8) minimize ¢ on 7-Yy) .
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Now let C'* be the unique monotone set of convex type in P, * such that
g(z)={(x,C*) for all x in P,. We havo

(4.11) inf{g(x) | z € T-Xy)} = (T-Yy),C*) = {y.T-1*(C*))
= {,T*HC*) = SUP{QnJ*) | 7*(y*) n C* + O} .

This formula evidently can be interpreted as a convex programming
duality theorem. Observe from (8.10) that the common extremum in
(4.11) can also be expressed as the minimax in >0 and y*20 of

(4.12) (2, C%+ (u*) —(T(z).y*) = gla)+ 2 —fil=) .

The Kuhn-Tucker theory of Lagrange multipliers for problem (4.8)
may be derived this way. In order to get more insight into the nature
of the dual problem here, we must caleulate T'*%. For i=1,...,m, let
C;* be the unique monotone set of convex type in P,* such that

{(,C;*y=f ) for all z in P,.

(4.13) <(&,T*y*)) = (T(@).y*) = ZnXa.C*) = C(x, Tm*0y*)
and therefore

(4.14) T*y*) = J;n*C* for each y* = (5*,...,n,%) 2 0.

Using our definition of £ when the “‘smaller’” set is of convex type and
the “larger” set is of concave type, we can now express the extremum
problem at the end of (4.11) by

(4.15) maximize 79,%+ ...+ 9,0, subject to
ql* 2 0:' ; 'fﬁm* = 0’ '?1*01*1"- 5N +??m Cﬁl* s C*.

This is the problem dual to (4.8). Problems of this form are also im-
portant in convex programming (see [1, Chap. 22]), but the duality
displayed herc seems to be new.

In general, suppose 7' is a non-singular monotone process of concave
type from P, to P,,. Let C* be a monotone set of concave type in P, *,
and let D be a monotone set of convex type in P,,. We may then consider
the dual pair of monotone non-linear programs

(4.16a) minimize (&, C*) subject to =z = 0, T(x) 2 D,
(4.16b) maximize (D,y*) subject to y* = 0, T*(y*) £ C*.

The infimum in the first problem is (7-1(D),C*), while the supremum
in the second problem is (D, 7%-1(C*)). The two cxirema are therefore
equal by (3.5) and (3.9), and they also coincide with the minimax in
(3.10). It can be shown that a pair of vectors 2 0 and 7* =0 is a saddle-
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point in (3.10) if and only if Z is a solution to (4.16a) and 7* is a solution
to (4.16b). Novel “polarity” and “reciprocity’” theorems, having no
counterpart in ordinary convex programming theory, can also be proved
in this context. These relate the solutions and cxtrema in problems
(4.16a) and (4.16b) to those in the corresponding “polar problems”,
i.e. where the elements 7. 7% C* D, are replaced by their polars.

A noteworthy case is the following. Let C,*%,...,C.* be monotone
sets of convex type in P, *, and let D,,..., D, be monotone sets of con-
eave types in P,,. Define 7' by
(4.17) Ty = @0y HOD F s 4, 0. 300,.

Then 7' is a monotone process of concave type from P, to P,. The
Kuhn--Tucker function of 7' iz given by
(4.18) (T@), 5% = 3 (2,05 (Dpy™ ,
k=1
and hence the monotone process of convex type adjoint to 7' is given by
(4.19) TH(y*) = (Dpyg*Op*+ ... +(Dy*)0,* .
Finally, we would like to point out that the monotone processes from

P, to P, correspond, as expected, to the monotone gauges on P,. The
monotone processes from P, to P,, on the other hand, are of the form

EEC for £2 0,

where ' is a monotone set in P,. Such a monotone process is non-
singular if and only if the set ¢ is non-singular, in which case the polar
process form P,* to P * is given by

EF 5 ZFC* for &% =z 0,

where C* is the polar of

5. Combinatorial Operations.
Let 7', and 7', be monotone processes of the same type from P, to P,,.
We may then define 7, + 7', by

(5.1) (T1+ Ty)w) = Tyfz) +Tylx) .

It turns out that 7, +7, is another monotone process from P, to P,,,
and
(5.2) (T + To)* = Ty*+Ty* .
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Non-negative scalar multiples of monotone processes can also be defined
in the obvious way by
(5.3) (AT)x) = AT(x) .

Less obvious is the fact that the operation “o7 defined by

(5.4) (TOT)x) = U{Ty(e—2)nTy2) |0 = 2 £ a}

yields another monotone process of the same type as 7, and 7,. Like
addition, this binary operation is commutative, associative, and satisfies

(5.5) (T OTG)* = FF o Ty,

We call it inwerse addition, because

(5.6) (0Tt =T7'+T,71 and (T,+T7,)' = T,-1g i
when 7'y and T, are non-singular.

The partial ordering for monotone sets may be turned into one for
monotone processes by defining

(5.7) T, 27T, if Ty(x) = Tyx) for all x.

Under this ordering, the set of all monotone processes of a given type
from P, to P, is actually a conditionally complete lattice. For monotone
processes of concave type, the (commutative associative binary) lattice
operations are given by

(5.8) (Ty 2 To)@) = Tyla) n Ty)
(Tyv Ty)(x) = U{T(e—2)+Ta(2) | 0 £ 2 £ 2}

These formulas must be reversed for monotone processes of convex type.
The adjoint operation is order-preserving, and hence

(5.9) (TyaTy)* = T aTy* and (TyvT,)* = T %v T+,
The inverse operation is ordering-inverting, so that
(8.10) (T1aT)t=11vTyt and (P vT,)=T,1AT,2
in the non-singular case. The operations of addition, inverse addition
and non-negative scalar multiplication arc monotone with respect to the
partial ordering.

Perhaps the most interesting operation is binary multiplication. The

product ST is defined, for a monotone process 7' from P, to P, and
& monotone process § from P, to P, of the same type as T, by

[:5.] ]) (STT)(I} = S(j‘(.’l‘)) .
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| &)
e |
[

(See (3.7) and the remarks following it.) Since

(5.12) (S(T(x)), 2*) = (T'(x), S*(=*)) = {z, THI*(z%))>,
we have
(5.13) (STY* = T*8*,

If § and 7' are non-singular, so is S7 and
(5.14) (ST)1 = T-181 .

As in linear algebra, binary multiplication is associative (but not com-
mutative). It is also monotone, i.e. 8,7, 2 8,7, when 8, =8, and 7', = T,.

Although binary multiplication is not distributive across addition,
it does satisfy certain distributive inequalities. For example, with
monotone processes of concave type one always has

(518)  S(T+T,) = 8T, +8T, and (8,+8,)T = 8,7+8,T.

With convex types, thesc inequalities have to be reversed. Similar
distributive inequalities hold between binary multiplication and inverse
addition.

Particular attention will be devoted in the next section to the set of
all monotone procesges of a given type from P, to itself. This iz a con-
ditionally complete lattice supplied with three further monotone associa-
tive binary operations (addition, inverse addition and multiplication)
and a non-negative scalar multiplication. The sequence of powers

PP ooy Py

can then be defined and studied from the point of view of semigroup
theory.

One may derive formulas which show how the Kuhn-Tucker functions
behave under the various combinatorial operations. These formulas
ought to be useful, for instance, in convex programming applications,

6. Sub-eigenvalues and Eigensets.

Throughout this section, let 7' denote a non-singular monotone process
from P, to itself. A positive real number 1 is called a sub-eigenvalue
of T if
(6.1) AveT(x) for some x > 0.

This condition is quite weak; in particular, every a3 0 satisfies (6.1)
for some A>0 by non-singularity. Interest therefore centers on cha-
terizing the set of sub-eigenvalues of T' as a whole, and on relating it
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to the corresponding set for 7*. The sub-eigenvalues of 7' are, of course,
just the reciprocals of those of 7.
If 7 is of concave type, we define its upper growth rate 7 and its lower
growth rate i by
(6.2) 7= sup{i > 0|4z e T(z) for some = > 0},
i =sup{l > 0| Az e T(z) for some z > 0}.

It T is of convex type, we instead sct

) = inf{d > 0| Az e T(x) for some z » 0},

= inf{A > 0| Az e T(z) for some z > 0},

,C:.
]

[P

In both cases, it turns out that
(6.4) 0cl2si<o,

We say T is evenly growing if 1=A3. The terminology is suggested by
certain economic applications and limit theorems which will be discussed
below.

The main results about sub-eigenvalues are the following. Suppose
for definiteness that 77 is of concave type, so that I™* is of convex tyne.
The upper growth rates of 7 and T* then coincide and are given by

i {(P(x),x )
(6.5) A = inf sup S
a0 ap0  (5TF)
The lower growth rates of 7' and 7'* likewise coincide and are given
by

(6.6) A = sup inf

x30 z¥x0 <.’I?, x*>

(T{z),z*)

Furthermore, A is a sub-eigenvalue of 7' if and only if 0<1=1, while
A is a sub-eigenvalue of 7'* if and only if A £ 2 <co. In particular, the sef
of sub-eigenvalues A common to T and T* is the non-empty closed bounded
positive interval [4,2].

There is an important corollary: 7' is evenly growing if and only if
T+ is evenly growing. In that case there is a unigue sub-eigenvalue 4
common to 7' and T%*, and it is given by

p =i {T(@), &%)
(6.7) A = mMinimax - o
#50, 250 (HETF)

A notable class of monotone processes which are &lways evenly growing
are the positive processes, i.e. the ones such that (T(x),x*) is positive
except when =0 or a*=0.
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The results just described are analogs of the Perron-Frobenius theory
of positive matrices. Indeed, for any n xn matrix 4 of positive real
numbers, the corresponding monotone process 7' of concave type from
P, to itself defined in (4.1) is positive, and hence is evenly growing.
The special sub-eigenvalue 2 in (6.7) is easily seen to be the sole positive
eigenvalue of A4.

The results about sub-cigenvalues can also be interpreted in light
of economic growth rate theories, such as the one developed by Gale in
[3]. Suppose that the vectors z in P, are thought of as representing
the possible goods states of an economy. For each z let 7'(x) consist
of the various states into which x could be transformed in one time
unit. Under reasonable economic assumptions, 7' is a non-singular
monotone process of concave type. Now 1> 0 is a sub-eigenvalue of 7
if and only if some goods state £>0 can be transformed into / times
itself. One is naturally interested in the largest such 2, which is 7 or 1
if one insists on having 3> 0. An element a* of P, * may be interpreted
as a price or valuation vector. Then (z,2*) gives the total value present
in the economy when the goods state is « and the “market state” is a*.
Similarly

(6.8) (T(z),x*) = sup{(y,«*) | y € T(x)}

gives the highest possible value attainable after one time unit, if the
present goods state is x and the future market state is 2*. Since (6.8)
also equals (z.7*(a*)). T* can be thought of as a valuation mechanism
which converts futurc values into present values (“shadow prices”).
The inverse T*-' (the polar of 7') thus gives the set of (theoretical)
market states into which a market state 2* may be transformed by
the economy in one time unit. The condition Az* € T*(a*), for >0
and x*> 0, is equivalent to A-la* e T*-1(z*), which says that a certain
market state x* can be transformed into A-! times itself. One is in-
terested in the largest such A-, or cquivalently in the smallest sub-
cigenvalue 4 of 7% which is A. In case T is evenly growing, we may
conclude that the largest possible growth rate for market states x*
is the reciprocal of the largest possible growth rate A for goods states z.
(As goods become more abundant their values per unit go down, or
inversely.) Formula (6.7) points to a game-theoretic equilibrium in-
volving the fastest growing goods state and the slowest diminishing
market state.

In the example above, the powers of 7' have a simple meaning: 7'%(x)
consists of the states into which z could be transformed in & time units.
It seems worthwhile therefore to study the sequence

Colloguium — 18
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(6.9) . T(C), THC), ..., THO), ...

where € is a non-singular monotone set of the same type as 7. In
particular, we call € an eigenset of T' if

(6.10) T(C) = A0 for some i > 0.

Then (6.9) consists of multiples of €. Eigensets of 7% also provide in-
formation about (6.9). If D* is such an eigenset,

(A-FTR(C), D*y = (C, A-*T*5(D*)y = (C, D*)

for every positive integer k. Assuming T is of concave type, we see
that the supremum of the monotone gauge (-, D*) is the same on cach
of the monotone sets A-*¥T%(C), so that the levels of (-, D*) are “orbits”
along which 217" aets.

In view of the strong property just described, the existence and
uniqueness of eigensets is an important matter. We shall call 77 a primary
monotone process if both 7 and 7™ bave (non-singular) eigensets.
It may be shown that then only one value of 4 can be involved, in fact
A=2=17. Hence a primary monotone process is necessarily evenly growing.
The following partial converse holds, too. Assume that 7 is evenly
growing, and that there exists vectors 3 0 and 2*3% 0 such that AvcT(x)
and Azx* € T*(x*), where A=21=/. (Ordinarily, “cvenly growing” only
implies the existence of some such x>0 and »* > 0.) Then 7' is primary.
The hypothesis that 230 and 2*¥3%» 0 may be weakened still further:
taking 7" to be of concave type for definiteness, one need only assume
that T%(x) and (7'%F)-Y{z*) arc non-singular monotone sets (of concave
type) for k sufficiently large.

The class of “simple” monotone processes also arises in this context,
Let T be of concave type. Let P be any sub-orthant of P, i.e. a closed
face of P, as a polvhedral convex set in A" Then
(6.11) U Tz) and ﬂ U Tiz+x)

ae P 250 sl
are sub-orthants of P,, too. If the first of these coincides with P, we
say P is self-reproducing under T; if the second coincides with P, we say
P is asympiotically self-reproducing under T. (Incidentally, P is self-
reproducing under 7' if and only if its annihilator sub-orthant P* is
asymptotically self-reproducing under the polar of T, and dually.)
We call T' a simple monotone process if no sub-orthant, other than
{0} or P, itself, is either self-reproducing or asymptotically self-
reproducing under 7. (A monotone process of convex type is called
simple if its adjoint is simple.) The main result about simple processecs
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is that they are all primary (and hence evenly growing). As an example:
every posititve process is a simple primory monofone process.

We have just given a number of conditions which guarantee the
existence of eigensets. The uniqueness of such sets (up to positive scalar
multiples) seems to be a far more difficult question. For instance, non-
uniqueness ocours even for certain positive idempotent (1% =1T) monotone
processes,

Although we have not found easy criteria for “uniqueness™, we can
prove the equivalence of the uniqueness property and a very significant
kind of behavior of 7% in the limit. Suppose that 7' is of concave type,
and that € and D* are non-singular eigensets of 7' and 7', respectively,
normalized so that (C,D*)=1. Define 7, by

(6.12) To(x) = (e, D0 .
Then T, is an idempotent monotone process of concave type such that
(6.13) T, = A, where 1 =4=4.

The theorem is that the uniqueness of € and D* asg eigenscts (up to
positive multiples) is a necessary and sufficlent condition in order
that the powers of 2-17" converge to 7', in the sense that

(6.14) ARTROY = T(C) as k- oo

(uniformly, as compact convex sets in £7) for each non-singular monotone

set. (' of concave type. This theorem is quite hard to prove; perhaps

the theory of topological semi-groups could be used to advantage here.
Other interesting theorems about limiting behavior can be developed

around a notion of “norm”. Fix any two non-singular monotone setg

'y and Cg* of concave type, polar to each other, in £, and I’ *, respec-

tively, Write |lef| for {z, C*) and |la*]| for (C,x*). Define

(6.152) IOl = sup{l|| | =€ C}

if €' is a monotone set of concave type, but

(6.15b) ICll = inf{|lx|| |z € C}

if € is of convex type. Finally, define

(6.16) IT) = sup{|T()}liall | = > 0}.

These norms satisfy

(6.17) 17(¢)

| £ I1Z1-IIC1, <C,D*» = [C]- 1D,

and. other respectable rules. Surprisingly enough,
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(6.18) 12 = |7 .
The most striking result is an analog of the “spectral morm theorem’:
(6.19) Lim ||[T*|W% = 7,

0

When T is evenly growing, one also has

(6.20) Hm (@), ¥y % = ] = 4

k—rco

for any 30 and x*> 0, In fact then

(6.21) im (Tr(C), DLk = J = ),

b0

rovided the monotone sets ¢ and D#* are non-gsincular,
[=3

1.

2,

. H. W. Kubn and A. W. Tucker, “Non-linear programming,’
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