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A GENERAL CORRESPONDENCN EE:IWEEN DUAL
MINIMAX PROBLEMS AND CONVEX PROGRAMS

R. Tynnnll RocxlFnr,r,an

The Kuhn-Tucker theory of Lagrange multipliers centers
on a one-to-one correspondence between nonlinear programs
and minimax problems. This correspondence has been extend'
ed by Dantzig, Eisenberg and Cottle to one in'which every
minimax problem of a certain type gives rise to a pair of non'
linear programs dual to each other. The aim here is to show
how, by forming conjugates of convex functions and saddle'
functions (i.e. functions of two vector arguments which are
conyex in one argument and concave in the other), one can
set up a more symmetric correspondence with even stronger
duality properties. The correspondence concerns problems in
quartets, each quartet being comprised of a dual pair of convex
and concave programs and a dual pair of minimax problems.
The whole quartet can be generated directly from any one of
its members.

Our results grow out of a rather surprising fact, which we establish
as Theorem 1: saddle-functions are really just convex functions to
which Fenchel's conjugate operation has only been partly applied, i.e.
only in some of the variables. In fact, there is a canonical one-to-
one correspondence between the (minimax) equivalence classes of closed
convex-concave functions 1{ on R* x R" and the closed convex func-
tions I' on R*+*. (The values of these functions are allowed to be,
not only real numbers, but * - and - rc, so that, as explained in
[8] and [9], there is no loss of generality in considering only functions
which are everywhere defined on the given space.) The closed convex
functions F on R*+" can be paired with the closed coneave functions
G on R*+'by reversing signs in the conjugacy eorrespondence for
eonvex functions. At the same time, the equivalence classes of closed

convex-concave functions K on R* x R* can be paired with the equiva-
lence classes of closed concave-convex functions "I ot R* x .R' by
changing certain signs in the conjugacy eorrespondence for saddle-

functions in [s].
Given four functions -F', G, K, J corresponding to each other in this

fashion we consider the problems
( I ) minimize F(m, u) subject to * 2 0, o ) 0;

( II ) maximize G(u, a) subject to u >- 0, y 2 0i
(m) minimaximize K(r, g) subject to n >- 0, a Z 0;

(W) maximinimize J(w,o) subject to w2 0,o ) 0.

(The formal definition of these problems is given in $ 5. In (III) one
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minimizes in r and maximizes in gr,, whence ,,minimaximize.,, 
" In (IV)

one maximizes in u and. minimizes in o.)
A concept of "stable solution" is introduced fsr these problems.

We prove that, under very mild restrictions, all'solutions are stable.
The most interesting result is a double d,uality theorenx: if any of the
four problems has a stable solution, then all four have stable solutions
and the four extrema are equal. Other theorems give criteria for the
existence of solutions and charactefize these solutions in terms of
subdifferentials and complementary slackness.

It should be emphasized that constiaints other than nonnegativity
may be incorporated into the problems above by the device of infinity
values. For example, let fo, fr, . . . , f* be finite convex functions on
R*, and fot u: (pr,...,lt*)eR* let

Then ,F is a closed convex function on R^+n, and minimizing F(r,a)
subject to r > 0 and u >- 0 as in (I) amounts to minimizing /.(r) sub-
ject to the constraints r 2 0, fn@) < 0, i - 1, . .. tffi.

The nonnegativity conditions in our problems involve no real loss
of generality, of course. As is well known, a'free variable can always
be expressed as a difference of two nonnegative variables, just as a
linear equation can be expressed as a pair of weak linear inequalities,
and these situations are dual to each other. If, for example, one
wants to remove the nonnegativity constraint from the first component
of r in (I), one has to remove the nonnegativity constraint likewise
from the first component of r in (III) and at the same time strengthen
the constraint on the first component of a (the variable dual to the
first component of r in the sense of the complementary slackness
conditions in Theorem 4) from >0 to:0 in (II) and (IV). The
theorems below are then applicable to the modified problems. This
follows exactly as in the theory of linear programs.

Although in this paper we discuss only a four-way correspondence,
a more extensive correspondence is actually implied. In problem (I),
we have a function F on a space J?', where each vector of R'is
decomposed into a component fie&* and a component ae&". Now
there is nothing unique about this decomposition: we could just as
easily partition the N canonical coordinates in .R" in some other way,
so that each vector is decomposed into a componenl *' e R^' and a' € R"',
n1,' + n' : N. This would have no effect on the dual problem (II), but
it would lead to entirely different minimax problems (III) and (IV).
Thus what we really have is a theory which represents (I) and (II) in
a finite number of different ways as a dual pair of minimax problems.

Fh.u\ _[f'(n) if. fn@) I po{ 0 for i - 1, "'tffi,
' (+* if not.
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we shall show elsewhere that such representbtions are closely related
to the "simplex tableaux" encountered iir the pivotal theory of linear
and nonlinear programs. . r'

2. Skew-conjugate funcrions. We begin with a quick review
of terminology. The main object is to set down various formulas
involving the "skew-conjugate" operation. This is the same as the
conjugate operation except for certain changes of sign, but it offers
so many notational advantages in this particular context that we feel
it warrants some explicit attention.

A conuen functi,on on / on R^ is, in our terminology, oD every-
where-defined function "f with values in the extended real interval
[-*,1-] such that

f (xr, + (1 - r)r,) { rp, * (1 - r")p,

whenever

f(*,.') < F,e R,f(n,) < p,eR, 0 < L < 1.

The closure of sueh a function / is the function cl / defined by

(cll)(r): limintf(a) (if / nowhere has the value --),(2.L) 2 - '
(cll)(r): -6 for all u (it. f has the value -rc somewhere).

When cl|:.f, we say/ is closed,. In particular, clf is itself a closed
convex function (cf. [3]).

A funetion g is concaae if. - g is eonvex. The closure operation
for concave functions is of course defined by

(cl gxr) : lim sup g(z) (if g nowhere has the value * -) ,(2.2) z 1u
(clgxr): f - forall n (if. g hasthevalue *rc somewhere).

Again, g is cl,osed, if. clg : g.

For any convex function f on R^, the function g defined by

(2.3) s(u) : inf"{f (n) - 1r,u)l ,

where 1*,u) denotes the ordinary inner product of vectors r and. u,
will be called ttre skew-conjugate of. f. It is really just the negative
of the conjugate of / in [a] and 141. Hence g is a closed concave
function and

(2.4) (cl/Xr): suP, ls@) + (u,*)1 .

Dually, starting with any concave function g on R*, the skew-eonjugate
of g is the closed convex function f on R* defined by



600

(2.5)
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f (m) : sup,{g(?r) + (u, r}} .

The skew-conjugate of / is then in turn cl g. In particular, fgrmulas
(2.3) and (2.5) set up a one-to-one correspondence between the closed
convex functions f on R* and the closed concave functions g on R*.

An everywhere-defined extended-real-valued function K on R* x R"
is called a conuefi-concclae. sad,ill,e-function if K(. , il is a convex func-
tion on R* for each g, and, K@,.) is a concave function on R' for
each r. We denote by cl, K the function constructed by closing 1{ in
its first argument for each flxed value'of the second argument, and
similarly cl, K. Both cl, K and el, K are again convex-concave saddle-
functions, as we proved in [8]. The function -F on R*+" obtained by
taking the skew-conjugate of. K in its concave argument, i.e.

(2.6) F(r, a) - sups {K(*, a) + (a, u)} ,

will be called the conaem parent of. K. Dually, the concaue parent G
of -K is defined by applying the skew-conjugate operation to the convex
argument:

(2.7) G(u, u) - inf, {K(x, A) - (n, u)I .

Two saddle-functions are said to be (mi,ni,mar) equioalent if. they have
the same parent functions. A saddle-function K is closed if it is
equivalent to cl, K and cl, K. (This difiers from the definition in [s],
but is equivalent to it by Corollary 2 to Theorem 1 in that paper.)
The situation for concave-convex saddle-functions is virtually the same

-the roles of the arguments are reversed.
As an important example [s] of an equivalenee class of closed

saddle-functions, let K be any finite continuous convex-concave function
defined on /, x B, where A is a nonempty closed convex set in R* and
B is a nonempty closed convex set in R". Define K and, R by

K@, a) :

R(*, v7 :

{i:
(u(*'

i;:

a) if. neA,yeB,
if xQA,geB,
if aeg

a\ if. neA,geB,
if reA,aQB,
if. nQ A.

The equivalence class consists of ( and R and all the other convex-
concave extensions of K to R* x .R" lying between K and R. In
particular, if. A: R* and B : R" then K is a closed saddle-function
and is the sole member of its equivalence class.

The parents .F and G of a convex-concave saddle-function K can
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be expressed in terms of the gradients of /{'in some cases. Suppose
that K is finite and differentiable everywhere on R^R". Let Y,K(*,y)
denote the gradient of K(. , u) at r, and let Y'2K(r, a) denote the
gradient of. K(u, .) at a. It can be seen that

F(n, a) : K(r, a) - (v,K(n, a), a> for a : - Y,K(r, g),
G(u,il: K(n,il - <v,K(n,a\,n> for u:YrK(r,a) .

These gradient expressions are the basiS of the duality theory inlzl.
Given any closed convex-concave saddle-function K on R* X R",

the functions

j(u, a) : inf , sup, {-K(*, d - (r, u) + {a, a)) ,(z.al
J(u, a) : sups inf., {K(r, a) - <n,u) + (a, g)} ,

are elosed concave-convex saddle-functions on R* x J?" equivalent to
each other, and they depend only on the equivalence class of K, as

shown in l8l. Any function J in the class containing J and 1 will
be called a skeut-conjugate of. K. For such a .-I, the functions

(2.e)
R(n, il - inf, sup, {.(u, a) + <'u, m) - (a, a)\

K@, a) : suP, inf, {J(u, a) + <u, n) - (u, a)}

belong in turn to the equivalence class containing K. In this way,
we get a skew-conjugate correspondenee between the closed convex-
concave saddle-functions on R^ x R" and the closed eoncave-convex
saddle-functions on n* x R' which is one-to-one up to equivalence.

3. Fout.way comespondence. It will be shown in this section
that each equivalence class of closed saddle-functions on R* x R* is
generated by a closed convex function on R^+". The first assertion of
Lemma t has already been noted by Moreau [o].

LsMr{A. 1. Let K be ang sadd,Ie-function on R* x R', Iet F be

its conuen parent, and let G be its concd'ae ptarent. Then F is a

conaefi functi,on on R*+^ and' G is a concaae function orL R*+*.
Moreoaar, K i,s closed if and, onla if F and' G are skew'conjugate to

eaclt other.

Proof. We may assume K is convex-concave. By definition (2.6),

F is a supremum of convex functions on R*+*, one for each given
value of g. The convexity of ,F is an easy consequence of this. One

p oves in the same way that G is concave. Now, since "F (r, ') is the
skew-eonjugate of K(n, .) for each fixed r, the skew-eonjugate of
F(n, .) is in turn the closure of. K(*, .). Thus
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(3.1) (el"K)(n,a) = inf"'{F(n,u) - (A,a))

(3.2) F(n, a) : sup, {cl, K(*, il + (u, gSy" 
..

For parallel reasons,

(3.3) (el,Kl(r, U) : sup, [G(u,a) * (u,*)l
(3.4) G(u, u) - inf, {cl, K(r, u) - (n, u)l .

According to (3.2) and (3.4), F is the conriex parent of cl, K and G is
the concave parent of cl, K, alwbys. Thus 1{ is closed if and only if
F is the convex parent of cl, K and G is the concave parent of cl. K.
That would mean by (3.1) and (3.3) that

F(u, u) : sups {sup" {G(a, U) + <u, r)} + (u, A)} ,

G(u,u) * inf,{inf,{,F(r, a) - (A,u)} - (r,w}\.
But this says that -F and G arc skew-conjugate as functions on R*+".

Lnuul 2. Let F and, G be functions on R^+* skew-conjugate to
eaeh other, where F is conue* and G is concaae. Let

R@,y) - inf, {F(r,t:) - (u,a)l ,

Elm, a) : suP, {G(u, u) t (u, n)) .

Then E and K are conaefr-co%caae sailille-funcbions on R* x R* hatsing
F and G as parents (anil hence R and, K are in the same equiua-
Ience class).

Proof. Since K(r, .) is the skew eonjugate of the convex func-
tion F(r, .), it is concave. We must,also prove for each g that R(. , U)
is a convex function. In other words, given

(3.5) R(n,,U) ! F,eR,R(r,,y) { p,eB, 0 < I < 1,

we must show that

(3.6) K(\,r, + (1 - \)n,,U) ( r,p, + (1 - x)\t".

For an arbitrary e ) 0, (3.5) and the definition of .K imply the existence
of some 'u, and u" in R* such that

Ft * e 2 F(xr, a,) - (A, ar) ,

F, * e >- F(nr,ar) - (A,ar) .

Now .F is convex, so it follows that

r[p, + e * {a,?r,>] + (1 - r)[p, + € + (a,u,))
2 F(r"o, + (1 - I)r,, ).u, + (1 - I)oJ .
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Hence, for zr : Io, * (1 - I)or, 
'

\p, + (1 - r)p, * e > .F (},r, + (1 j1u)x,,u).- (a,a) .,
Since e was arbitrary, this implies (3.6). Thus E is a saddle-function.
As the skew-conjugate of G, F is closed. In particular, .F (r, .) is
closed for each m, and hence it is in turn the skew-conjugate of its
skew-conjugate R(n,.). Therefore -F is the eonvex parent of. R. The
concave parent of R, on the other hand,, is given by

inf.,{R@,U) - (x, li)}: inf,,,{F(r,a) - (r,u) - (a,a)\ ,

which is just G(u,u). The proof f.or K is analogous.
Lemmas. 1 and 2 imply that every .F and G skew-conjugate to

eaeh other on R^+'are the parents of a unique equivalence class of
closed convex-concave saddle-functions K on R^ x R". But the same
arguments must work for concave-convex saddle-functions, too. Speci-
fically, suppose .F and G are the convex and concave parents of the
closed convex-concave saddle-function K. Then, as in Lemma 2, the
functions

(3.7)
f(u,u) - inf, {F(x,u) - 1*,u}},
J(u, a) - supE {G(u,0 + (a, a)} .

will be closed concave-convex saddle-functions on R* x R" having -F

and G as parents. SubstitutinC (2.6) and (2.7), we see that i and J
are the skew-conjugates of ,K defined in (2.8). This proveS the follow-
ing theorem.

Tnnonnu 1. There is a canonical four-usay one-to-one corres-
pond,ence between the closed, conaefi functions F on R*+", the closed
concd,ae functions G on R*+", the (equiualence classes oJ') closed, cotuae$-

concaae sadd,Ie-functions K on R* x R" and, the (equ'i,aalence classes

of) closed, conco,aa-conaer sadd,Ie funct'ions J on R* x R". The relation-
sh'ips in th'is correspondence are that F and, G are skew-conjugate to
each other, K and, J are skew-conjugate to each other, and, F and, G
are the parents of K and, J.

4. Efiective domains and subdifierentials. Henceforth we as-
sume that F, G, K and ./ are four funetions eorresponding to each other
in the manner described in Theorem 1. We shall also assume these
functions are proper, i.e. we exclude the case in Theorem 1 where all
four functions are identically * * and the case where all four are

- @. Then the sets

dom l': {(r, u) | F(x, o) < + -} ,

domG : {(u,illG(u,a) } -*l .



R. T. ROCKAFELLAR

are nonempty and convex in R*+.*. They are -called the ,effecti,ae
doma'ins of. F and G. The: rgstriction of F to dom .F is a finite
convex function in the ordinary sense. . The effective domain of K is
defined by

where

dom K - dom, K x domrK

dom, -K : {ml K(n, il < + - for all g} ,

domrK: {alK(n,il ) -rc for all r}.
The latter are nonempty convex sets. It is shown in [S] that, for
each a edom, K, t}re effective domain of the convex function K(.,a\
lies between dom, K and. its closure. Likewise for the concave func-
tions K(r, .). The restriction of I{ to the relative interior of dom K
is a so-called relatively open saddle-element (the kernel of K) which
completely determines the minimax equivalence class containing K.
The effeetive domain of ./ is similarly defined by

dom J: dom, J x domrJ

where

domr..I: {ulJ(u,a) ) -rc for all z},
domr..I : la I J(u, 

") > + - for .all ul .

since these effective domains enter into the hypotheses of two of our
later theorems, it is helpful to know the following result about their
relationship.

Lnunna 3.

dom,,K : {xl(r, o) edom F for some a) ,

dom, J : Ia I (n, o) e dorn F for some n) ,

dom,"I: {ul(u,a)edomG for some g},
dom, K : {U | (u, y) e dom G for some u} .

Proof. Since .F (r, .) is the skew-conjugate of the convex function
K(n,.), it is identieally +- if and onlyif K(n,A): *op forsomey.
This fact is equivalent to the formula for dom*K. The other formulas
can be established in the same way.

There is also a striking relationship between the subdifferentials of
F,G, K and "I which will be at the heart of our programming theory.
These subdifferentials are most easily defined by first considering the
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case of a convex function f on R*. A vector r is called a subgrad,i,ent
of.fat*if.
(4.1) f (z) > f(n) + (z - m,u) f.or all z .

The set of these is a closed convex subset of R* denoted by Af@).
The map n * df (n) is the subd,'ifferential of. f. If f(tc\ is finite, the
directional derivative

(4.2) f '(r; z) : lim lf @ + rz) . f @)llx
tl0

existsforall zeR* andis a convex function of a. One has ue}f(n)
if and only if

(4.3) f'(n; z) Z Q, z) for all z ,

In particular, if / is differentiable in the ordinary sense at r, then
d/(*) consists of just one vector, the ordinary gradient Yf(n). The
situation for concave functions is the same, except that the inequalities
need to be reversed in (4.1) and (4.3). (For more information about
subdifferentials, we refer the reader to the bibliography in [9].) The
meaning of d?(n,o) and ilG(u,g) is now clear, since -F and G are
convex and concave functions on -R-+". The subdifferential of 1( is
defined by

dK(n, g) : 6rK(r, Y) x ArK@, g)

where, for each U€R*,lrK(n, E) consists of the subgradients in -R- of
the convex function K(., il at n, and so forth. One defines |J(u, u)

in the same way.

Lputul 4. The following cond'it'ions on a set of four uectors r,
Ur%,0, are eqwiaalent:

(a) (u, a) e1F(r, a),
(b) (-cc, -u) e AG(u, g),
(c ) (u, -u) e dK(r, g),
(d) (-n,u\edJ(u,u).

These con(Iitions implA that the four aal,ues F(n,u),G(u,u), K(n,A),
J(u,u), are fi,ni'ta.

Proof. If / and g are convex and concave on R*, skew-conjugate
toeachother, and not identically *- or --, then the three condi-

tions

(4.4) u e0f (n), -n e\g(u), f (m) - s(u) < (*, u) ,

are known to be equivalent and to imply the finiteness of f(r) and
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s@). One can quickly verify this using the definition of the skew-
conjugate correspondence. Heric'e (a) and (b) are equivarent and imply
the finiteness of F(r,a) and. G(u,g). we next use.the same basic fact
to show (c) implies (a) and (b). By definition, (c) means that u e 0,K(x, g)
and -ae|,K(n, g), which itself means

K(z,il 2 K(r,il + Q - n,u> for all z,
K(r, w) ! K(n, d + Qn - A, -a> for all ru .

We can write this equivalently as

(4.b) K(n' u) - (n' u) ! G(w' a) '
K(n, a) + (a, a) 2 F(*, a) ,

because ,F and G, being the parents of K, are given by (2.6) and, (2.7).
Of course, then

(4.6) F(r,u) - G(u,u) ! (*, u) + (s,a)

so that (a) and (b) hold by the equivalences in (4.4). The finiteness
of K(r,g) also follows from this and (4.b). Now suppose conversely
that (a) and (b) hold. In particular, g is a subgradient of F(n, .) at
u, and the closed convex function F(x, .) is not identically * - or
-@. The skew-conjugate of F(n,.) is cl,K(r, .), so

F(n, u) - cl, K(r, a) { (a, a) ,

again by the equivalence of the conditions in (4.4). Likewise

cl, K(n, u) - G(u, il < (n, u) .

These two inequalities imply (4.5), which we have shown to be equiv-
alent to (c), because

cl, K(n, g) I K(n, y) ! cl, K(r, U) .

The equivalence of (d) with (a) and (b) can be proved in the same way.

5. The four prograrnrning problems. The four problems intro-
duced in $ 1 can be expressed more specifically as follows.

( I ) Determine E,>0 and o ) 0 such that F(r,o-) is finite and
F(m,a) > F(n,o-) for all r ) 0 and a 2 0 .

( II) Determine u>0 and.g )0 such thatG(il,,/) is finite and
G(u, d < G(il,, U) f.or all u >:0 and u 2. 0.

(m) Determine n > 0 and. y ) 0 such that K(E,l) is finite and
K@,A)>-K(E,d>K(il,y) f.or all r)0 and a20.

(ry) Determine n>0 and O ) 0 such that J(il, d) is finite and
J(u,6)<J(u,6)<J(il,,o) for allu2 0 and a20.
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Naturally, a pair (n, d of the typQ described in (I) is called a
solution to (I). The real number F(fr,6\ "ib then denoted byi'min (I)".
Similarly for (II), (III) and (IV). Note that we do not speak of solu-
tions unless the extrema are finite.

We shall be interested mainly in what we call "stable" solutions.
These are defined as follows. First consider the notationally simpler
caseof a convex function f on R*'. Let E )0 be a point where/is
finite, and let

(5.1) M:{),(r-r)l\ 20,n=0}.
The infimum of / subjeet to r 2 0 is achieved at r if and only if the
directional derivative function satisfies

(5.2) f'(E;z)>A forall zeM.

Now it can happen in certain peculiar situations that (5.2) holds, and
yet

(5.3) inf.f'@;w+z) * -€de M
for some wGM.

Then we say that the infimum is achieved unstably at c- (otherwise:
stablg). This terminology is suggested by the fact that, if (5.2) antl
(5.3) hold, the infimum of / subject to r ) etr is a function of e whose
righthand derivative at e:0 is --. In other words,'the infimum
would drop off at an initially infinite rate if the nonnegativity con-
straint on # were relaxed slightly. We shall not elaborate this here;
a similar stability notion has been developed in detail in [9].

We speak of a solution (f, o-) to (I) as stable, if the infimum of
F(*,u) subjeet to r ) 0, o ) 0 is achieved stably at (8,,u) in the sense
just defined. Stable solutions to (II), where G is concave instead of
convex, are defined in the obviously analogous manner. Next consider
(III). A solution (f,l) involves K(r, y) having a minimum at r sub-
ject to r20 and K(fr,g) having a maximum at I subjeet to 920.
We therefore say @,A) is a stable solution to (IID if these two sepa-
rate extrema are stably achieved. The definition for (IV) is practically
the same.

The following theorem gives elementary criteria for stability of
solutions. (The relative interior of a convex set C is, of course, the
interior of C with respect to its affine hull, the intersection of all
subspace translates containing C.)

Tuponnm 2. If th,e relatiae ,interior o/ dom F conta,ins at least
one (r, ?r) 

= 
0, then all solutions to (I) (if theg enist) are stable. If

the relatiue interior o/ dom G conta,ins at l,ea,st one (u, A) > 0, then
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al,I soluti,ons to (II) are stable,. , i7 th, relatiue interior of dom K
eontains at leost one (n,A)>O; then all soluti,ons fo (III) are stable.
If the relatiue interior o/ dom J contains at least. o,ne (u,a) 2 0, then
all solutions to (IV) are stable.

Proof. We start out again with a convex function f on R^ and,
its effective domain dom/: {nlf(x) < +*}. Suppose that dom/
contains some tr ) 0 in its relative interior. Suppose also that the
infimum of / subject to n )0 is finite,arid achieved at r. Then / is
certainly not identically *m, nor can it have the value -- ary-
where, since it is known that a convex function which takes on - *
rnust have this value throughout the relative interior of its effective
domain. Thus / is a proper convex function in the sense of [Z], so
that Theorem 2 of that paper can be applied. According to this
theorem, there exists some n > 0 such that

\f f(n) : s@)

where g is the skew-conjugate of. f. Since (r, Z) 2 0, then

(5.4) f(x): inf,{/(r) - (r,il)} { inf, {f(n) - (r - *,tr)\.
This says that u is a subgradient of. f at E. Taking n : E in (5.4),
we also see that <r,u>:O, since both f and u are nonnegative.
Thus (a, il,>>0 for all zeM, where M is the'convex eone defined in
(5.1). We therefore have for any w

(5.5) in[f'(r;w + z) linf.(w -t 2,il,):1ra,u) ) -* .

Thus the infimum is achieved stably at r, as we wanted to prove
The assertion of the theorem about (I) differs only in notation from
the fact just proved. The assertion about (II) follows analogously.
A double application is needed to take care of (III). The relative
interior of dom K contains a nonnegative element if and only if some
r 2 0 belongs to the relative interior of dom, K and some ? ) 0 belongs
to the relative interior of domrl{. Suppose (n,y) is a solution to (III).
The relative interior of the effeetive domain of the convex function
K(,9) is the same as the relative interior of dom.K, as shown in [8].
Taking f(n): K@,A), we may conclude therefore that the infimum
of. K(n,/) subject to n 2 0 is stably achieved at f. Likewise, the
supremum of. K(il,g) subject to 92.0 is stably achieved at l. But
this means that (r, g) is a stable solution to (III). The argument for
(IV) is virtually the same.

6. Prograrnrning theorerns, We can now establish our main
results, a double duality theorem, a eharacterization theorem, and an
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existence theorem. The first two will have, joint proof .

Tnponorvr 3. If ang one of the problems (I), (II), (III), (IV), hos
a stable solut'ion, then aII four problems haae stable sol,utions and,

(6.1) min (I) : max (II) : minimax (III) : maximin (IV) .

Tirponnu 4. The fol,Iowi,ng cond,i,tions on a set of Tour uect:;ors

8,0,il ,0, a,re equ,iaalent.
(a) (r,6) i,s a stable soluti,on to (I) and (n,A) is a stable solu-

tion to (lI).
(b) (r,g) is a stable solut'ion to (III) and, (il',6) i's a stable

solution to (IV).
(c) fr,g,il,o, satisfy one of the aqu'iaalent subd'ifferenti'al

cand,i,ti,ons in Lemma 4, as well as tha complemantarg slackness
cond,itions:

(6.2) n > 0,il2 0,<8,il,>: 0,A > 0, O > 0,<9, d) : 0 .

Proof. Once more consider a convex function f on R* having a
finite infimum subject to r > 0. We shall show that this is achieved
stably at x 2 0 if and only if there exists some u > 0 such that
A e Af @) and (f , tr) : 0. To start with, let us suppose that fr and il,

have the latter properties. Then (a, tr> > 0 for all z e M(the set in
(5.1)), and (5.5) holds for eyery w. Thus the minimuni is stably
achieved at x by the argument already used in the proof of Theorem
2. Now suppose conversely that the infimum is achieved stably at d.
The function lz defined by

(6.3) h(w):inf.f'@;w+z)

then nowhere has the value --. Furthermore, rt, is a convex func-
tion on -B-. This follows from the fact that f'(r;.) is a convex
function and the set M is convex. Namely, given

h(w,) < Fre R,h(w,) 3 p,eR,0 < }, < 1 ,

and any e ) 0 there exists qe M and z,€ /14 such that

F, I e 2 f'(r;wt+ 3) and F,* e> f'(E;wr* zr) .

Then we have

rp' + (1 - r)1, * e > f'(r;\,(w, * z,) + (1 - r)(lz, + z,)) .

Since Lz, + (1 - \,)zreM and e was arbitrary, we conclude
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rp, * (1 - r)p, 2 h(xw, + (1 - \)w,) ,
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thereby completing the proof tliat lt, is convex. Fenchel showed in
[3](in the other notation) that .a convex function which nowhere has
the value - - majorizes at least one (finite) affine function. Applied
to the case at hand, this means there exists some il, e R^ and u e R
such that

(6.4) a + <n,w)Sh(w.) 1.f'(il;w t z) forevery zeMandus.

Taking u): -z in (6.4), we see that.(il,,a)} 0 for every ze M.
Hence il>O and (r,u)=O. Taking z:0 in (6.4), we may also
deduce at once that ueAf@). This finishes the demonstration of the
stability condition stated at the outset of the proof. In the context
of (I), the condition says that (r,o) is a stable solution if and only
if (6.2) is satisfied for some (il, A) e AF@, O). (Here we are also making
use of the fact that, by Lemma 4, the existence of a subgradient
(n,y) implies -F(r, d) is finite.) When the stability condition is applied
in like manner to the other three problems, we get the following
charaeteizatlons. In (II), (n,y) is a stable solution if and only if (6.2)
is satisfied by some (-n, *u)e1G(a,g). In (III), (E,g) is a stable
solution if and only if (6.2) is satisfied by some (m, *6)e0K@,g).
And in (IV), (d, o) is a stable solution if and only if (6.2) is satisfied
by some en, A) e }J(il,, u). By virtue of the equivalences in Lemma 4,
these characterizations prove Theorem 4, and all of Theorem 3 except
(6.1). In the proof of Lemma 4, however, it was shown that the four
equivalent subdifferential conditions on 8,0,il, d, imply

(6.5) K@,a) - <fr,il> < G(n,,A) and K(x,A) + 19, o>> F(n,o) .

In the same way they imply

(6.6) J(il,6) + <n,n>> F(r, d) and J(il,, o) - <a,6> < G(n,A) .

On the other hand, we have

(6.7) F(E,a) - G(n,u)><fr,n> + <o,r>

by definition of the skew-conjugate correspondence. Now (r-, il):0
and. (y,6):0 for stable solutions according to (6.2), so when (6.5),
(6.6) and (6.7) are put together they yield

F(E,u): G(il,A): K(8,0): J(il',0).

This is (6.1), the desired conclusion.

TnnonsM 5. If tltereeristuectors o)0,a20,u20,u)-0 sueh
that (x,u) belongs to the relatiaa interior o/ dom F anil (u,g) belongs
to the relat'iae interior o/ dom G, then stable sol,ut'i,ons erist for (I),
(II), ([I), (W).
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Proof. Since F antl G are skew-conjugate to each other, the
hypothesis implies by Theorem 2 ot l7l that (I) and (II) have solutions.
These solutions are stable by Theorem 2 of the present paper. Prob-
lems(II|and(IV)thenalsohavestableso1utionsbyThborem3.
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