
EXTENSION OF FENCIIEL'S NUU,ITY
THEOREM FOR CONVEX FUNCTIONS

Bv R. T. Rocrernr,r,.s.n

l. Introduction. Letr E be a locall5i convex Halsdorff topological vector
space over the real numbers E with dual Z*. Let I be a proper convex func-
tion on E, i.e. an everl'where-defined function with values in (--, -| -J,
not identically f -, such that

(1.1) l$r*(1 -x)y) <Il(") +(1 - \)f(y) tf.xeV, aeE, 0 <I < 1.

Let g be a proper concave function on.E (i.e. -g is proper convex). This paper
is concerned with characterizing the solutions and the extremum in the following
problem:

(I) minimize l@) - s(n) on E.

Many constrained, as well as unconstrained, extremum problems can be repre-
sented in the model form (I), because the functions are allowed to be infinite-
valued. For example, if D is a convex set in E and, g(r) : 0 for t e D,
S@) : - - for n 4 D, then (I) is essentially the same as minimizing I on D.

Closely associated with (I) is a "dual" problem of similar type,

(D maximize g*(r*) - f*(r*) on E*,

where the concave function g* and the convex function 'f* arc the conjugates

.2,4,71 of I and g defined by

t*@*) : sup {(r, a*) - f(r)|,
g*(r*) : inf {(r, #) - s@)l

for each r* t E*. It is immediate from (1.2) and (1.3) that

(1.4) f@ - S@) > g*(r*) - l*(r*) for all r eE and r* eE*.

Problem (II) was first introduced (in the finite-dimensional case, and in a
slightly different formulation) by Fenchel [5], who showed that (1.4) could often
be strengthened to

(A) inf {f(r) - s@)} : -u* Is*@*) - l*(r*)}.
Fenchel's duality theorem [5; 108] asserts, namely, that (,4.) is true when Z : ft",
if the relative interiors of the convex sets
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C: {, ll(r) < -}, D:lrlg@)>*-l,
have a point in cornmon.

Although Fenchel's duality theorem is not generally valid {or E # R" under
the original hypothesis, we shall be able to show that the following version of it
is tme for spaces of arbitrary dimension.

Tnponnu 1. Il eitherf or g is cQnt:inuous at some point where both functians
are finite, then (A) is true.

This result will enable us to characterize the solutions of (I) using the sub-
differentiability notion recently studied by Moreau [9]. We shall also apply
it io some particular problems in the theory of conjugate convex functions,
and obtain from it a generalization of the Kuhn-Tucker theorem for Lagrange
multipliers.

2. Proof of Theorem l. Let C and D be the convex sets in (1.5), and let
roeC A Dbeapointatwhichf iscontinuous. Then16 eint C (theinteriorof
C) and

(2.1) - ) l(ro) - g(r) > inf {l(c) - s@)l : o.

Since (A) is trivial when the infimum a is - - because of (1.4), we can assume
aeR. InZ@B,thesets

C, : {(r, p.) lreinLC, p > f(r)|,
D, : I(r, p) | r e D, p, <. g(r) | al,

can have no common point. The convexity of I and the concavity of g imply
that C' and D' are convex. Furthermore, C' is open in the product topology on
E @ R, because I must be continuous at all points of the open set int C when
it is continuous at one such point 16 (see [i;92]). Hence C'and D'can be
separated by some non-trivial closed hyperplane in Z @ E (see [1; 71]). The
hyperplane cannot be "vertical", for otherwise its projection on.E would separate
the projections int C and D of. C' and D', which is impossible because
ro x D A (int C). The hyperplane must therefore be the graph of some con-
tinuous affine function on Z. Thus there exists some i* x E* and B e E such that

(2.2) f (d 2 (r, n*) - p for all r x inL C,

(2.3) (r,i*)-P>s@)*a forall reD.
Since g(r) : - o for r { D, (z.3)must be true for all r. Hence

(2.4) o*A1g*(**)
by (1.3). Inequality (2.2) is true similarly f.or r gC. If r belongs to C, but
perhaps not to its interior, we have Xro f (1 - I)a e int C for 0 ( \ ( 1 be-
cause ro e int C, and hence
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(trro * (1 - tr)r, fr*) - p ( l(Irs -| (1 - I)r)
< I/(r.) + (1 - I)i(r)

for 0 { \ < 1 by (1.1). The outer inequality in (2.b) must therefore also hold
for tr : 0. Thus inequality (2.2) holds for all r, so that

(2.6) B > l:(r-)
by (1.2). But (2.4) and (2.6), combined with (1.4), say that

(2.7) a 1 s*(fr*) - f*(i*) ( sup (g* - /*) < inf (l - g).

This proves (A), because the outer terms in (2.7) arc equal by definition.

3. Special cases. The hypothesis of rheorem 1 can be weakened somewhat
when -E' is tonnel| (in particular, when.E is a Banach space). For such spaces,
namely, a convex function is continuous at a point ro if it is finite and lower semi-
continuous (l.s.c.) on a neighborhood of ro (see [12, corolary 7c]). Thus we
have

conor,r,env 1. I! E is tonnel6, il f and g are l.s.c. and u.s.c. on E respectiuely,
and if one of the conuex sets in (L.5) contains an interior point of the other, then
(A) is lrue.

Especially interesting is the case where Z is reflexive (and hence automatically
tonnel6). The semi-continuity conditions then guarantee.that the conjugates
fx* and g** of f* and g* on the bidual can be identified with I and g again (see
[2] or [7]), so that problem (r) can in turn be viewed as the duar of problem (rr).
since l* and g* are always l.s.c. and u.s.c. on E* by their definition, we can then
apply a dual of Corollary 1 to (II) for the sets

(3.1) C* : lr* ll*(r*) ( - l, D*: In* lS*@*) > -@1.
This gives us the following, more symmetric result.

conor,r,env 2. suppose that E is ref,exiue and that f and, g are r.s.c. anil u.s.c.
on E, respectiuelg.

(a) If one of the convex sets in (1.5) contains an interior point of the other,
then inf (f - S) : max (S* - f").

(b) rf one of the convex sets in (3.1) contains a (strong) interior point of the
other, then sup (9* - l*) : min (l - 9).

(c) If the hypotheses of (a) and (b) are both satisfied, then - ) min (f - il :
max (g* - l*) ) --.

Part (c) of Corollary 2 is closely parallel with the original double version of
Fenchel's duality theorem in .E : 8" (see Is; 10gj). This case also gives us a
striking duality formula which emphasizes the intimate relationship between
a function and its conjugate (cf. [11, Theorem 2] in the case Z : R").
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conor,r,env 3. Let E be a refl.exiue ipace, and, tet h be an L.s.c. conaer function
finite on' all of E whose conjugate h* is fi,nite oi alt of E*.. .Let K be any non-
empty closed, cutluer cone in E and, let K* be the negattiue of its polar in E*, i.e.

K* : l** l@,c*) ) 0 foralt reKl.
Thm, for all a e E and, a* e E*, one has

(B) 
21p ln@ i r) - (n, a*)l *:,T:l !h*(a:.* * r*) - (a, a*)1 : @, a*). 

s

Proof. Definelandgby

(8.2) t(r) : h(a * r) - (a * n, a*),

g(r):0 if reK, g(r):-- if rqK.
Formulas (1.2) and (1.3) then yield

(B.B) f*(r*) : h*(a* * r*) - (a, rx),

g*(r*):0 if fr*eK*, g*(r*):-- if r*qK*.
Applying Corollary 2(c) to f and g proves (B).

If K is a subspace in (B), then K* is of course its annihilator. rf z is com-
patibly partially-ordered, one can take K to be the non-negative orthant; then
K* is the non-negative orthant of z* in the dual ordering. An interesting pair
of conjugate convex functions for which (B) is valid, when z is a reflexive
Banach space, is

(3.4) h(r) : (I/p) llrll", h*(r*) : (r/q) llr*11", G/d * 0/d : t.
(See [9; 16-17].) If E : R" : E*, one can also take

(3.5) h(*) : (t/2)rrAx, h*(r*) : (r/2)r*rA-1sx,

where,4. is any positive definite symmetric real matrix.

4. characterization of solutions. A subgradient of I at a point r e .E is an
r* e E* such that

(4.r) I(0 >_l@) * (a - r,r*) forall seU.
The set of subgradients of I at r is denoted by Ol(r). If I has a gradient Vl(r)
at r in the sense of Gateaux (or Frechet), then Al(r) is the singleton {Vl(r) }
(see [9]). If / is the indicator function of a convex set C in E, i.e.l(r) is 0 on C i
and * - outside of C, then a* e 0l(r) if and only if the linear function (. , r*)
attains its maximum on c at r, and. hence defines a (possibly trivial) supporting
hyperplane lo C at r. It follows from the definitions of l* and d/(r) that, in
general,

(4.2) x* e 0l(r) il and only if 'l@) * l*(r*) ( (r, r*).
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Subgradients of the concave function g iu.rru analogous properties (with the
,defining inequality in (4.1) reversed).

Tnnonnu 2. Assume Lhat f and g satisly some hypothesis, like that of Theorem
l, guaranteeing that (A) is true. Then i is a point where f - g ach,inues its mini-
tnum in (I), if and, only il df(n) uryd 0g(l) haue sonxe n* in contman. ' Moreouer,
such aectors r* are thm precisely the points where g* - !* achieues its murimum
in (II). i r

Prool . By @.2) and its concave analog, the condiiions f* e Al (e) and, fr* e kg(E)

are equivalent to

(4.3) t(f) + l*(t*) < (f, f*) < s@) * s*@*).

But the opposite inequalities are always true by definition of l* and g*, so (4.3)
is equivalent to

f(n) - s@): s*@*) - i*(t*).
The conclusion of the theorem is now obvious from (A).

5. Application to sums of convex functions. Our next result is a contribu-
tion to the study of the conjugate and subgradients of a sum (see [2, 8, 9]).

Tunonnu 3. Let f , and f, be proper conuer functions on E. Suppose there
'erists a point at which both lunctians are finite and, at least one is continuous. Then,

torallreEand,n*eE*,
(a) (l' * f,)*(r*) : min {lT(r* - z*) + tt@*) lz* eE*1,

(b) d(l' + h)@) : al,@) -f af 
"(r).

Proof . For any fixed c* e E*,let f (r) : tr@) and S@) : (r, r*) - t,@).
Then l*(a*) : f\(z*), and, g*(z*) : -f\(r* - z*) by (1.3). Our hypothesis
guarantees via Theorem 1 that (A) is true for I and g, in other words

(5.1) inf ll'@)*1"@) -(*,r*) lreBl:max {-lt(c* -z*)-tt@\ I a*t,E*|.

This is just the negative of (a), because the left side of (5.1) is -(1, * I)*@*)
by definition. Next we observe from (a) and (4.2) thal r* s d(l' * l,) if and
only if

(5.2) l,@) I f"(x) * I\@* - z*) + ItQ*) 1 (r, r*) : (r, r* - a*) { (r, z*)

for some z* e E*. By definition of /{ and t! , (5.2) is equivalent to

l,@) * f\(r* - a*) 1 (r,r* - z*) and l,@) I f\Q*) < (r,z*).

Using (4.2) again, we conclude that, r* 
" 

d(l' * l")(r) if and only if there exists
some a* e -&'* such that r* - ?* e dl'(r) and zx e |fr(r). Thus (b) is true.

Remark l. If E : R", Theorem 3 is true if one assumes, instead of continuity,
that the relative interiors of the convex sets C, : 1r I f '@) < - ] and
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C" : lr l'lr@) < - ] have a point in common. The proof in this case is the
same as the one above, except that one applies the original vbrsion of Fenchel's
duality theorem in place of Theorem 1.

Remark 2. By reversing the above proof, one can derive Theorem I from
Theorem 3a and Theorem 2 from Theorem 3b. fndeed, as a general rule one
can prove a version of Fenchel's duality theorem by first proving a theorem
about conjugates of sums of convex functions. This approach could have been
used here, because Theorem 3 can be deduced from the sum theorems of
Brlndsted [2] or Moreau [8], if one uses the new theorem of Moreau [10] about
the duality between inf-compactness.and continuity in the Mackey topology
and then shows that the result can be extended to the case where fy and f, are
not everywhere lower semi-continuous. (In the lower semi-continuous case,
Theorem 3b has already been deduced this way by Moreau in [10].) The ap-
proach we have taken, however, has the advantage that the arguments are self-
contained and more elementary.

6. Application to Lagrange Multipliers. Let g,..., g^ be concave functions
tions on Z'which are everywhere finite, continuous and Gateaux differentiable,
and let

D : l* | gn(r) ) 0, i : 1, ...,,m\.
Let I be a proper convex function on -8. The following theorem characterizes
the solutions to the problem of minimizing f on the (closed convex) set D.

Tnoonpm 4. Suppose that f is fi,nite at some point r s;atisfAing

(6.1)

Then E is a po'int where f achieues its nvinimum on D, if ond only if there erist real
numbers I, , . . . , X^ (Lagronge multipliers) which along with i satislE

(C) f,u ) 0, go(t) ) O, Iogo(*) :6 fo, i:1, "' ,ffi,
r,ve,(r) + ... + x*vs*@) eaf(*).

Proof. Let g : h, *''' + h^, wheretheconcavefunctionsh, aredefined by

(6.2) h'(r) : g i1 s,(r) ) 0, hn(r):-- if gn(:r)<-0.

Minimizing f on D is the same as minimizingf - g on E. Any solution of (6.1)
where I is finite is a point where the functions g, h, r ... t h*are all finite and
continuous. Hence, by Theorem 2 and by induction on the concave analog of
Theorem 3(b), I achieves its minimum on D at f if and only if dl(f) contains
an element of \h,(t) + . . . + Ah^(E). To complete the proof, one need only
shorv that

(6.8) ah'@) : {0} if go(r) } 0, ah'(i) : @ if eo(f) <-0,

ah,(i) : {Iuvs,(f) I r, > O} if g,(fr) : 0.
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By definition, r\ t Aht@) rt and only il

hn(r) < h,(fr) * (r - fr, r\) for all x xE.

This condition says that the linear function (. , r.t) achieves its minimum on
Dn : lr I g,@) > 0| at f. Since sup gr ) O by the hypothesis, (6.3) follows
from this by an elementary argument using the continuity and differentiability
of gu . This proves Theorem 4. j

Theorem 4 is "open-ended," in the sense that one may incorporate further
constraints into l. For example, suppose I : !, * h where h is proper convex,
and lo is the convex function which is 0 at all solutions of a certain system of
linear inequalities

(6.4)

and is * - elsewhere. If h is finite and continuous at some solution of (6.4),
we can substitute 0/"@) -t |h(n) fot dl(e) in (C) bV Theorem B(b). In other
words, h then attains its minimum on D at r subject to the additional con-
straints (6.4), if and only if

I,Vs,(r) + ... + L^vg^(t) - r{ e \h(fr),

where f and I; satisfy the first half of (C) and rf; is some element of dl.(z).
Moreover, a\ e 6f o(t) if and only if the linear function (., , rtr) attains its maxi-
mum subject to (6.4) at f. This is equivalent to the existence of real numbers
t\ t . .. , p; which along with f satisfy

p; 2 O, (i, a\) - di ) 0, pi[(i, a,\) - a;] : 0,

xf:-Qr,af+...*poq\).

(See [3; 108]). Combining this condition with the earlier one, and changing
notation slightly, we get the following version of Theorem 4.

Tnnonpn 4'. Suppose that gi is affine for i : I, . . . , lc, and that -f is f,nite
and continuous at some point r satisfying

(6.1')g'(r)>0 for a:1,...,k, Sn(x))O for i:k+7,...,ffi.
Then the conclusion of Theorem 4 is ualid.

Theorem 4' car. be applied to systems of constraints containing finitely many
linear equations, using the standard trick of representing each equation by a
pair of inequalities.

When / is finite and Gateaux differentiable, condition (C) says that
(f, X, , ..- , X-) is a saddle-point of the Lagrangian function

L(r;\,1 t ... t I-) : l(c) - tr,g.(r) \*g^(r),

minimizing for r x E andmaximizing for (\,, . . ., tr- ) 0 in,E-. Condition (C)
was developed in this case for E : n" by Kuhn and Tucker [6].
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We should like finally to describe a dual to.the problem,of minimizing I on
D. We have already indicated, in the proof of Theorem 4,'that this problem
can be represented in the form (I) with 9 as the sum of the fuuctions hn in (6.2).
To see the nature of the corresponding problem (II), we must calculate the con-
jugate of g. Under the hypothesis of Theorem 4, there exists a.point at which
all the lzn are continuous. In this event

(6.5) s*(t*) : (h, + "' * h*)*(r*)

: max {f oxttlrr"u., 2n: *j
by induction on the concave analog of Theorem 3(a). Furthermore, according
to formulas developed by the author elsewhere (see [12, Corollary 48 and
Corollary 8c(d)l), we have

(6.6) h\(Z\) : max I\,;s\((t/)\,)Zi) | I, > 0l if Z! * 0, Di(0) : 0.

(The fact that ga is finite everywhere, and the assumption in Theorem 4 lhat
sup g; ) 0, are both required for this formula to be true.) Setting Z\ : \;r*; and

D!: lx*eE*lg*n@*) ) -*1,
we can combine (6.5) and (6.6) as

(6.7) g*(x*): max {f l;g}(r;t) lrIeD!, tr, ) 0, f trnr1 : "*;
with the maximum taken to be - - w-hen the constraints cannot be satisfied.
Since, under the hypothesis of Theorem 4, f is finite at a point where g is finite
and continuous, we can now apply Theorem 1 to get the following result.

Tnnonnrt 5. If the hypothesis ol Theorem 4 is satisf,ed, then

(A) inf {l(r)l*eE, sn(r)}0 for i:1,...,nx\

: max {E ^,oro*) - r(* ^,,r) I 
tro ) o, ,r. D;r}.

It could be shown similarly that (A') is true under the hypothesis of Theorem
4', but the argument will not be given. If I achieves its minimum on D at some
point c, it turns out that the maximum in (1') occurs when the tr, are the
multipliers in (C) and r\ : lg,(o). Theorem 5 is valid, however, even if the
g, are not differentiable, since this assumption was not used in its proof.
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