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EXTENSION OF FENCHEL’S bUALITY ’
THEOREM FOR CONVEX FUNCTIONS

By R. T. ROCKAFELLAR

1. Introduction. Let E be a locally convex Hausdorff topological vector
space over the real numbers B with dual E*. Let f be a proper convex func-
tion on F, ie. an everywhere-defined function with values in (—«, 4+ ],
not identically + «, such that

QD f0r+ (0 —Ng) < M@ + 0 —Nf@) if 2eE, yeE, 0<x<Ll.

Let g be a proper concave function on E (i.e. —g is proper convex). This paper
is concerned with characterizing the solutions and the extremum in the following
problem:

@O minimize f(x) — g(z) on E.

Many constrained, as well as unconstrained, extremum problems can be repre-
sented in the model form (I), because the functions are allowed to be infinite-

valued. For example, if D is a convex set in F and g(x) = 0 for 2 ¢ D,

g(x) = — o for z ¢ D, then (I) is essentially the same as minimizing f on D.
Closely associated with (I) is a ‘“‘dual” problem of similar type,

(1) maximize g*(z*) — f*(2*) on E*,

where the concave function g* and the convex function f* are the conjugates
[2, 4, 7] of f and g defined by

(1.2) f*(@*) = sup {(z, 2*) — f@},

(1.3) g*(@*) = inf {(z,2*) — g(@)}

for each z* ¢ E*. It is immediate from (1.2) and (1.3) that

(1.4) f@ — gl@) > g*@x*) — f*@*) forall z=E and 2z2*eE*.

Problem (II) was first introduced (in the finite-dimensional case, and in a
slightly different formulation) by Fenchel [5], who showed that (1.4) could often
be strengthened to

(4) inf {f(z) — g(2)} = max {g*@*) — f*@*")}.

Fenchel’s duality theorem [5; 108] asserts, namely, that (4) is true when & = R”,
if the relative interiors of the convex sets
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(1.5 C={&lf@ <=}, D=fe]gw>—w},

have a point in common. .

Although Fenchel’s duality theorem is not generally valid for £ = R" under
the original hypothesis, we shall be able to show that the followmg version of it
is true for spaces of arbitrary dimension.

TurorEM 1. If either f or ¢ is continuous at some point where both functions .
are finite, then (A) s true. .

This result will enable us to characterize the solutions of (I) using the sub-
differentiability notion recently studied by Moreau [9]. We shall also apply
it to some particular problems in the theory of conjugate convex functions,
and obtain from it a generalization of the Kuhn~Tucker theorem for Lagrange
multipliers.

2. Proof of Theorem 1. Let C and D be the convex sets in (1.5), and let
zo ¢ C M D be a point at which f is continuous. Then z, € int C (the interior of
C) and

2.1 ® > f(zo) — g@o) 2 inf {f(z) — g@@)} =

Since (A) is trivial when the infimum « is — « because of (1.4), we can assume
aeR. InE @ R, the sets

= {&,w|zeint C, u> @)},
= {@ wlreD, p< gl +al,

can have no common point. The convexity of f and the concavity of g imply
that €’ and D’ are convex. Furthermore, C’ is open in the product topology on
E @ R, because f must be continuous at all points of the open set int ¢ when
it is continuous at one such point z, (see [1; 92]). Hence C’ and D’ can be
separated by some non-trivial closed hyperplane in E P R (see [1; 71]). The
hyperplane cannot be “vertical”, for otherwise its projection on £ would separate
the projections int ¢ and D of €’ and D’, which is impossible because
o ¢ D M (int C). The hyperplane must therefore be the graph of some con-
tinuous affine function on £. Thus there exists some £* ¢ E* and 8 & R such that

(2.2) f@) > (x, %) — 8 forall zeintC,

2.3) (z, ) — B> glw) +a forall zeD.
Since g(x) = — = for ¢ D, (2.3) must be true for all z. Hence
(2.4) a+ B < g*@E)

by (1.3). Inequality (2.2) is true similarly for ¢ C. If z belongs to C, but
perhaps not to its interior, we have Azy + (1 — Mz eint C for 0 < N < 1 be-
cause z, ¢ int C, and hence
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COROLLARY 3. Let E be a reflexive éz;ace, and let b be an 1.s.c. convex funciion
Jintle on all of E whose conjugate h* is finite on all of E*. Let K be any non-
emply closed convex cone in E and let K* be the negative of its polar in E*, ie.

K*— {z* | (z,2*) > 0 forall zeK}.

Then, for all a ¢ E and a* = E*, one has

(B) min {k(a + 2) — (z, a*)} +’t1*nir‘1 {r*(a* + z*) — (a, ¥)} = (a, a*).

ze K

Proof. Define f and g by
a5 @) = ha+2) — @+ =z, a¥,
glx) =0 if zeK, gx) = —o if z¢K.
Formulas (1.2) and (1.3) then yield
f*@*) = h*@* + z*) — (a, 2%,
g*@*) =0 if 2*eK*, g¥@x*) = — o _if z* ¢ K*,

(3.3)

Applying Corollary 2(c) to f and g proves (B).

If K is a subspace in (B), then K* is of course its annihilator. If E is com-
patibly partially-ordered, one can take K to be the non-negative orthant; then
K* is the non-negative orthant of £* in the dual ordering. An interesting pair
of conjugate convex functions for which (B) is valid, when E is a reflexive
Banach space, is

B4) k@) = /D) llell”, k@) = 1/9 l*°% A/p) + (/9 =
(See [9; 16-17].) If E = R* = E*, one can also take

(3.5) hiz) = (1/2)z" Az, R**) = (1/2)2*T A7 x*,

where A is any positive definite symmetric real matrix.

4. Characterization of solutions. A subgradient of f at a point z ¢ E is an
z* ¢ E* such that

(#.1) 1@ = f@) + @y — 2, 2% forall yek.

The set of subgradients of f at z is denoted by df(z). If f has a gradient V{(x)
at = in the sense of Gateaux (or Frechet), then df(z) is the singleton { Vf(z)}
(see [9]). If f is the indicator function of a convex set C in E, i.e. f(z) is 0 on C
and + » outside of C, then z* ¢ 9f(z) if and only if the linear function (- , 2*)
attains its maximum on C at z, and hence defines a (possibly trivial) supporting
hyperplane to C at z. It follows from the definitions of * and df(z) that, in
general,

“4.2) z*e df(r) if and only if f(x) + f*@*) < (z, z*).
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Subgradients of the concave function g have analogous propertles (with the
defining inequality in (4.1) reversed).

THEOREM 2. Assume that f and g satisfy some hypothesis, like that of Theorein
1, guaranteeing that (A) is true. Then & is a point where f — g achieves its mini-
mum in (L), if and only if 9f(Z) and dg(Z) have some T* in common. - Moreover,
such vectors ©* are then precisely the pomts where g* — f* achieves its mazximum
in (II). ®

Proof. By (4.2) and its concave analog, the condltlons &* ¢ 9f (£) and £* £ 9g()
are equivalent to

“3) 1@ + @) < @ ) < g@) + g*(@).

But the opposite inequalities are always true by definition of f* and ¢*, so (4.3)
is equivalent to

@) = g(@) = g*(@) — *@).

The conclusion of the theorem is now obvious from (A).

5. Application to sums of convex functions. Our next result is a contribu-
tion to the study of the conjugate and subgradients of a sum (see [2, 8, 9]).

TareoreM 3. Let f, and f, be proper convex functions on E. Suppose there
exists a point at which both functions are finite and at least one is continuous. Then,
for all x € B and z* ¢ E*,

(@ (i + f2*@*) = min {fiz* — 2%) + fAE*) | 2* e B*},

(b) o(fy + f2)(x) = 8fi(x) + 9fu(2).

Proof. For any fixed «* & E*, let f(x) = f,(z) and g(x) = (z, 2*) — fi(z).
Then f*(z*) = f%(¢*), and ¢g*(z*) = —f%(@@* — 2*) by (1.3). Our hypothesis
guarantees via Theorem 1 that (A) is true for f and g, in other words
(56.1) inf {fi(@) + f.(2) — (z, 2¥) | zeE} = max {—fi(z* — %) — [4E*) | e*e E*}.
This is just the negative of (a), because the left side of (5.1) is —(f; + f.)*(z*)
by definition. Next we observe from (a) and (4.2) that z* ¢ (f, + f,) if and
only if
(3.2) fi(@ + @) + fiE* — ) + A6 < (=,2%) = (z,2* — %) + (x, %)

for some 2* ¢ £*. By definition of f* and f% , (5.2) is equivalent to
@) + fil* — 2% < (@, 2* — %) and fo(@) + fi@*) < (=, 2%).

Using (4.2) again, we cenclude that * £ 9(f, + f.) () if and only if there exists

some z* ¢ B* such that z* — 2* € 9f,(x) and 2* £ 3f,(x). Thus (b) is true.
Remark 1. If E = R", Theorem 3 is true if one assumes, instead of continuity,

that the relative interiors of the convex sets C; = {z | fi(z) < «} and
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C; = {z | fo(z) < =} have a point in common. The proof in this case is the
same as the one above, except that one applies the origina’l version of Fenchel’s
duality theorem in place of Theorem 1.

Remark 2. By reversing the above proof, one. can derlve Theorem 1 from
Theorem 3a and Theorem 2 from Theorem 3b. Indeed, as a general rule one
can prove a version of Fenchel’s duality theorem by first proving a theorem
about conjugates of sums of convex functions. This approach could have been
used here, because Theorem 3 can be deduced from the sum theorems of
Brgndsted [2] or Moreau [8], if one uses the new theorem of Moreau {10] about
the duality between inf-compactness and continuity in the Mackey topology
and then shows that the result can be extended to the case where f, and f, are
not everywhere lower semi-continuous. (In the lower semi-continuous case,
Theorem 3b has already been deduced this way by Moreau in [10].) The ap-
proach we have taken, however, has the advantage that the arguments are self-
contained and more elementary.

6. Application to Lagrange Multipliers. ILet ¢,..., g. be concave functions
tions on F which are everywhere finite, continuous and Gateaux differentiable,
and let

D=f{z|g@20, ¢=1,--, mj.

Let f be a proper convex function on E. The following theorem characterizes
the solutions to the problem of minimizing f on the (closed convex) set D.

TarorEM 4.  Suppose that f is finile al some point x satisfying

(6.1) g >0 for v=1,---,m.

Then £ 1s a point where f achieves its minimum on D, if and only if there exist real
numbers X, , - -+ , X, (Lagrange mullipliers) which along with & satisfy

© X; >0, g:(@ > 0, Ng:(@ =0 for i=1,--- ,m,

Proof. Letg = h, + --+ -+ h,, where the concave functions h; are defined by

(6.2) hi(@) =0 if g¢g.(x) >0, hix) = —o if g(x) <O.
Minimizing f on D is the same as minimizing f — g on E. Any solution of (6.1)
where f is finite is a point where the functions g, h, , -+ - , h,, are all finite and

continuous. Hence, by Theorem 2 and by induction on the concave analog of
Theorem 3(b), f achieves its minimum on D at % if and only if df(£) contains
an element of 0k, (&) + --- + 0h,(&). To complete the proof, one need only
show that

Oh,(z) = {0} if gizx) >0, or(%) = & if ¢.@) <0,
0h(2) = (\Vg:.@ |\ 20} i g.F) = 0.

(6.3
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By definition, «* £ dh;(Z) if and only if ;
hi(x) < hi(@) + (@ — &, 2%) forall zek.

This condition says that the linear function (- , z%) achieves its minimum on
D; = {z | g.(x) > 0} at £. Since sup g; > 0 by the hypothesis, (6.3) follows
from this by an elementary argument using the continuity and differentiability
of g; . This proves Theorem 4. : )

Theorem 4 is “open-ended,” in the sense that one may incorporate further
constraints into f. For example, suppose f = f, + h where & is proper convex,
and f, is the convex function which is 0 at all solutions of a certain system of
linear inequalities

(6.4) @, 0% —a; >0, j=1,---,k,

and is 4 o elsewhere. If k is finite and continuous at some solution of (6.4),
we can substitute df,(£) 4+ 9h(£) for 9f(z) in (C) by Theorem 3(b). In other
words, h then attains its minimum on D at & subject to the additional con-
straints (6.4), if and only if

legl(.'z) + A + vagm(l'_) - :1:3‘ € ah(.'i),
where £ and X, satisfy the first half of (C) and z% is some element of 3f,(z).
Moreover, 2% & 8f,(£) if and only if the linear funetion (-, z*) attains its maxi-
mum subject to (6.4) at £. This is equivalent to the existence of real numbers
M1, *°* , u which along with £ satisfy
Hi 2 01 (.'1_), at) — a; 2 01 ﬂi[(:l_:, a:;;) - ai] = 01
xy = _(Iha;k + o~ ﬂkaﬂ;c)~

(See [3; 108]). Combining this condition with the earlier one, and changing
notation slightly, we get the following version of Theorem 4.

THeOREM 4'.  Suppose that g; is affine for ¢ = 1, -+ | k, and that f is finite
and continuous at some point x satisfying
(6.1) gi(x) >0 for ¢=1,--- ,k, g:x) >0 for i=k+1,---, m
Then the conclusion of Theorem 4 is valid.

Theorem 4’ can be applied to systems of constraints containing finitely many
linear equations, using the standard trick of representing each equation by a

pair of inequalities.
When f is finite and Gateaux differentiable, condition (C) says that

(€, Xy, -+, X, is a saddle-point of the Lagrangian function
L(xy Ay e ’ )‘m) = f(x) - )\191(.’13) - = )‘mg7n(x):
minimizing for x ¢ £ and maximizing for (\; , -+ , \,, > 0in R™. Condition (C)

was developed in this case for £ = E" by Kuhn and Tucker [6].
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We should like finally to describe a dual to the problem: of minimizing f on
D. We have already indicated, in the proof of Theorem 4, that this problem
can be represented in the form (I) with g as the sum of the functions &, in (6.2).
To see the nature of the corresponding problem (II), we must calculate the con-
jugate of g. Under the hypothesis of Theorem 4, there exists a point at which
all the h; are continuous. In this event ‘

@) = (u+ -+ h) @)
= max {i h";(Z’f;)

i=1

(6.5) .
ZXeE*, 3 7% = x*}
i=1

by induction on the concave analog of Theorem 3(a). Furthermore, according
to formulas developed by the author elsewhere (see [12, Corollary 4B and
Corollary 3C(d)]), we have

(6.6)  hUZY) = max {MgU(A/AZ%) [N >0} i ZF=0,  A%0) = 0.

(The fact that g, is finite everywhere, and the assumption in Theorem 4 that
sup g; > 0, are both required for this formula to be true.) Setting Z* = \;z* and

D¥ = {g* e B* | g%(z*) > — o},
we can combine (6.5) and (6.6) as
6.7 g*@*) = max {35 Mg |e¥e DF, N 20, XAzt =t}

with the maximum taken to be — e when the constraints cannot be satisfied.
Since, under the hypothesis of Theorem 4, f is finite at a point where g is finite
and continuous, we can now apply Theorem 1 to get the following result.

THEOREM 5. If the hypothesis of Theorem 4 s satisfied, then
(A" inf {f(z) |zeE, g(z) >0 for =1, ---,m}

= max {Z Ngk*) — f*(z )\,-x”i) { N2>0, zte D",‘}.
i=1 i=1

It could be shown similarly that (4’) is true under the hypothesis of Theorem
4’, but the argument will not be given. If f achieves its minimum on D at some
point &, it turns out that the maximum in (A’) occurs when the \; are the
multipliers in (C) and z%¥ = Vg,(£). Theorem 5 is valid, however, even if the
g. are not differentiable, since this assumption was not used in its proof.
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