ON THE SUBDIFFERENTIABILITY OF
CONVEX FUNCTIONS

BY
A. BRONSTED anp R. T. ROCKAFELLAR

Reprinted from the
PROCEEDINGS OF THE AMERICAN MATHEMATICAT SOCIETY
Vol. 16, No. 4, August, 1965
pp. 605-611



ON THE SUBDIFFERENTIABILITY OF
CONVEX FUNCTIONS

A. BRONDSTED AND R. T. ROCKATELLAR!

1. Introduction. Let E be a locally convex Hausdorff topological
vector space over the real numbers R with dual E*. Let f be a proper
convex function on E, ie., an everywhere-defined function with
values in |— e, o |, not identically + =, such that

(1.1) e+ 1=V Exf@+A-N0) HxE E yCE,
0<A <1,

A vector x*C E* is called a subgradient of f at xCE if

(1.2) fy) =z flx) + (y — w,%%) forall y& E.

(Thus the subgradients of f correspond to the nonvertical supporting
hyperplanes to the convex set consisting of all the points of EGR
lying above the graph of f.) The set of subgradients of f at x is de-
noted by 8f(x). If df(x) is not empty, f is said to be subdifferentiable
at x. If factually had a gradient x* = Vf(x) at x in the sense of Gateaux
(or Frechet), one would in particular have df(«x) = [9/(x) } (see Moreau
[5, p. 20]).

It is immediate from (1.2) that 9f(x) is a weak™® closed convex set
in E* for each ¥ < E, and that the effective domain

dom of = {x| 8f(2) = I}

of the subgradient mapping df: x—9f(x), i.e., the set of points where
f is subdifferentiable, is contained in the effective domain of f, which
is the convex set

domf = {z|f(z) < =},

One would like to know when dom 8f is dense in dom f. This is cer-
tainly true whenever

(A)  f(y) = liminff(x) forally,

Ty

s flx) ifx & domdf,
f@) = _ ;

-+ otherwise.
Condition (A) says dom df actually has a dense intersection with

every (convex) set of the form [y f(y) < (v, ¥*) —ul, y*EE* uER.
One may also ask whether f is the supremum of the supporting athne
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the other hand, fis 7(E, E*) continuous throughout E by (b), because
a l.s.c. convex function on a Banach space is automatically continuous
on open sets where it is finite [2, p. 11]. The theorem of Moreau in-
voked in the first half of the proof now implies the scts {x*|f*(x*)
< (v, x*)—u} are all weak* compact. Thus f is bicompact.

REMARK. Moreau proved in [5] that the function f(x) =| /|7, p>1,
is bicompact on any reflexive Banach space. This is also a direct con-
sequence of Theorem 1.

3. Existence of subgradients. Let f be l.s.c. proper convex on E.
For each €>0, we may define a set d.f(x) of “approximate subgradi-
ents” of f at x by

df(x) = {a* | f(2) 2 [fx) — ] + (z — &, 2%) forall € E}
= {a*| f(2) + () — (3, 5%) = ¢}

Since (3.1) represents 4.f(x) as the set of solutions x* to an infinite
system of linear inequalities, d.f(x) is a weak* closed convex set in
E* for cach ¢>0. Evidently 8.f(x) decreases as ¢ decreases to 0, and
the intersection of the nest of d.f(x) for €>0 is just 9f(x), Also,
d.f(x) is nonempty for €>0 and «&dom [ by (2.2). The following
lemma, whose proof was suggested by that of the fundamental
lemma of Bishop and Phelps in [1], estimates how well 9.f “approxi-
mates” df.

(3.1)

LesMMmaA. Assume that E is a Banach space and that x*€0.f(x). Then,
for any N> 0, there exist vectors & and T* such that || #—x|| SN, || #* —x*|
=e/N and F*EI (7).

Proor. Define the relation y—<z, for v and 2z in dom f, to mean that
3.2 My —dl = F0) = 6,09] = 1@ ~ & 9]

It is obvious that =< is reflexive and anti-symmetric. Transitivity
follows from the subadditivity of the norm. Thus < is a partial
ordering of the set dom f. By Zorn's Lemma, there exists a maximal
totally ordered subset M of {zCdom f|x—<z}. For notational con-
venience, we shall write M= {51‘ ac I}, where I is a totally-ordered
index set. Since x*&a.[(x), (3.1) and (3.2) require

flaa) — (2ay %) = fz3) — (25, 2%) 2 (&) — (5, 3%) —e > — o whena < 3.

Therefore
(3.3) J(2a) = Gy &*) [p> — 0 as aT.

This implies {za} is a Cauchy net. Indeed, for any >0 we could
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choose o large enough that f(z2) — (25, x¥) <p+8(c/N\) for all B>c.
Then ‘_!zm—zﬁ!f < d for all 3>« by the definition of <, Inasmuch as E
is a Banach space, we may conclude {z.} has a limit & E. The lower
semi-continuity of f in (3.2) and (3.3) implies that z&dom f and
5.~ for all &. In particular x <&, so that

(/e = o] = = [f®) = f@) = (2~ 5, 0%)] < e

by the definitions of < and 8.f. Hence |&—ux||<\. Furthermore,
#~<z can happen only for z =%, because the totallv-ordered set 3 was
maximal. Therefore

(e/N)]]d — 4 > [f@ — @& 9] — [fG) — (z,4%)] forall z = &
This means that, in ES R, the sets
Cr={{,u)| ez h0Q) =fE+2 - (5 - (3,2M},
Co={(nulu<— M},

have no point in common. But C; is a closed convex set, because it is
the supergraph of a L.s.c. proper convex function %, and C; is an open
convex cone. Hence C; and C, can be separated by a hvperplane in
E@R. Due to the nature of (s, we can take this hyperplane to be the
graph of a continuous linear function on E, thus there exists some
g*C E* such that

B4 — (M = 0,2 S fa+ ) — f@® — (3,2%) forally.

Set #* =x*42* The left half of (3.4) says ||'£*-x*|| <e/\, and the
right half says £*Caf(z).

4. Main theorem. The Lemma just proved is crucial in the follow-
ing result.

TrEOREM 2. If E is a Banach space, then conditions (A) and (B) are
satisfied by every l.s.c. proper convex function f on E.

Moreover, the comjugates f* of such functions actually saiisfy the
stronger conditions (A*) and (B*) obtained from (A) and (B) by re-
stricting attention to the existence of subgradients of f* belonging to E
(not just to E**).

Proor. Since f is ls.c., (A) can be proved by showing that the
“lim inf” does not exceed f(x) when xEdom f. Given any 8§ >0, choose
any x*&a,.f(x), where e=5,/2. Choose A>0 so small that A<é and
N|x*| <8/2. Now let & and &* be the vectors whose existence is
guaranteed by the Lemma. The three conditions on & and #* then
vield
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f@ — f&) £ — (v — 2,8 = |2 — 4| &
< A(||a¥| +e/N) <8/24+68/2 =6

Thus #&dom 87, ||#—=«|| <& and f(#) <f(x)+3. Since §>0 was arbi-
trary, this yields (A).

Virtually the same argument proves (A*) holds for f* This is
apparent if, in the wording of the Lemma, we set ¢/A=\*, A =¢/A¥,
and replace the conditions x*&d.f(x), £¥*€df(8), by the equivalent
conditions xEa.f*(x*), & df*(#¥). (The equivalence is immediate
from (2.3) and the symmetry in (3.1)).

The fact that (B) holds for f follows directly from (2.2) and condi-
tion (A*) for f¥*, because of (2.3). Similarly, (B*) for f* is a conse-
quence of (A) for f.

REMARK. The Lemma can also be employed, much in the above
manner, to derive results of Bishop and Phelps [1]. In this case, one
would make use of the one-to-one correspondence between nonempty
closed convex sets C in E and their indicator functions é¢ (where 8¢
is 0 on C and + = outside of (), which are l.s.c. proper convex func-
tions. The conjugate of d¢ is the support function o¢ of C. Hence
x*Ea.6c(x) if and only if x€C and (x, £*) Za—e, where

0 > g = gea¥) = sup[(z, x*)'izGC].

In particular, the nonzero subgradients of d¢ at x are precisely the
vectors x* defining nontrivial supporting hyperplanes to C at «.

5. A counterexample. Klee [3] has constructed a nonempty closed
convex set Cin a certain reflexive Frechet space E (actually a Montel
space), such that C has no support points whatsoever. This C hap-
pens to contain various half-lines emanating from the origin, but no
whole lines. Under these circumstances, we may construct a func-
tion f as follows. Fix any x,#0 such that {?\xgi)&gﬂ}C_IC. For each
x let

(5.1) f(x) = min{x € R| x + Ao € C},

where the minimum is understood to be + = when no such A exists.
We shall prove that:

The function f is Ls.c. proper convex on E, but it is nowhere sub-
differentiable.

Since C contains no whole lines, f does not take on the value — .
The convexity condition (1.1) is easy to verify. To show lower semi-
continuity, we need to observe first that

(3.2) flx 4 pxg) = flx) —u forallx & E and p € R.



