ON THE SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS

1

BY

A. BRØNSTED AND R. T. ROCKAFELLAR

Reprinted from the PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Vol. 16, No. 4, August, 1965 pp. 605-611

ON THE SUBDIFFERENTIABILITY OF CONVEX FUNCTIONS

A. BRØNDSTED AND R. T. ROCKAFELLAR¹

1. Introduction. Let E be a locally convex Hausdorff topological vector space over the real numbers R with dual E^* . Let f be a proper convex function on E, i.e., an everywhere-defined function with values in $]-\infty, \infty]$, not identically $+\infty$, such that

(1.1)
$$f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y) \text{ if } x \in E, y \in E,$$
$$0 < \lambda < 1.$$

A vector
$$x^* \in E^*$$
 is called a subgradient of f at $x \in E$ if

(1.2)
$$f(y) \ge f(x) + (y - x, x^*) \text{ for all } y \in E.$$

(Thus the subgradients of f correspond to the nonvertical supporting hyperplanes to the convex set consisting of all the points of $E \oplus R$ lying above the graph of f.) The set of subgradients of f at x is denoted by $\partial f(x)$. If $\partial f(x)$ is not empty, f is said to be *subdifferentiable* at x. If f actually had a gradient $x^* = \nabla f(x)$ at x in the sense of Gateaux (or Frechet), one would in particular have $\partial f(x) = \{\nabla f(x)\}$ (see Moreau [5, p. 20]).

It is immediate from (1.2) that $\partial f(x)$ is a weak* closed convex set in E^* for each $x \in E$, and that the effective domain

dom
$$\partial f = \{x \mid \partial f(x) \neq \emptyset\}$$

of the subgradient mapping $\partial f: x \rightarrow \partial f(x)$, i.e., the set of points where f is subdifferentiable, is contained in the effective domain of f, which is the convex set

$$\operatorname{dom} f = \left\{ x \, \middle| \, f(x) < \infty \right\}.$$

One would like to know when dom ∂f is dense in dom f. This is certainly true whenever

(A)
$$f(y) = \liminf_{x \to y} \overline{f}(x)$$
 for all y , $\overline{f}(x) = \begin{cases} f(x) & \text{if } x \in \text{dom } \partial f, \\ +\infty & \text{otherwise.} \end{cases}$

Condition (A) says dom ∂f actually has a dense intersection with every (convex) set of the form $\{y|f(y) < (y, y^*) - \mu\}, y^* \in E^*, \mu \in R$. One may also ask whether f is the supremum of the supporting affine

Received by the editors May 20, 1964.

¹ Supported in part by the Air Force Office of Scientific Research.

the other hand, f is $\tau(E, E^*)$ continuous throughout E by (b), because a l.s.c. convex function on a Banach space is automatically continuous on open sets where it is finite [2, p. 11]. The theorem of Moreau invoked in the first half of the proof now implies the sets $\{x^*|f^*(x^*) \le (y, x^*) - \mu\}$ are all weak* compact. Thus f is bicompact.

REMARK. Moreau proved in [5] that the function $f(x) = ||x||^p$, p > 1, is bicompact on any reflexive Banach space. This is also a direct consequence of Theorem 1.

3. Existence of subgradients. Let f be l.s.c. proper convex on E. For each $\epsilon > 0$, we may define a set $\partial_{\epsilon} f(x)$ of "approximate subgradients" of f at x by

(3.1)
$$\begin{aligned} \partial_{\epsilon}f(x) &= \left\{ x^* \, \big| \, f(z) \ge \left[f(x) - \epsilon \right] + (z - x, x^*) \text{ for all } z \in E \right\} \\ &= \left\{ x^* \, \big| \, f(x) + f^*(x^*) - (x, x^*) \le \epsilon \right\}. \end{aligned}$$

Since (3.1) represents $\partial_{\epsilon} f(x)$ as the set of solutions x^* to an infinite system of linear inequalities, $\partial_{\epsilon} f(x)$ is a weak* closed convex set in E^* for each $\epsilon > 0$. Evidently $\partial_{\epsilon} f(x)$ decreases as ϵ decreases to 0, and the intersection of the nest of $\partial_{\epsilon} f(x)$ for $\epsilon > 0$ is just $\partial f(x)$. Also, $\partial_{\epsilon} f(x)$ is nonempty for $\epsilon > 0$ and $x \in \text{dom } f$ by (2.2). The following lemma, whose proof was suggested by that of the fundamental lemma of Bishop and Phelps in [1], estimates how well $\partial_{\epsilon} f$ "approximates" ∂f .

LEMMA. Assume that E is a Banach space and that $x^* \in \partial_{\epsilon} f(x)$. Then, for any $\lambda > 0$, there exist vectors \bar{x} and \bar{x}^* such that $||\bar{x} - x|| \leq \lambda$, $||\bar{x}^* - x^*|| \leq \epsilon/\lambda$ and $\bar{x}^* \in \partial f(\bar{x})$.

PROOF. Define the relation $y \prec z$, for y and z in dom f, to mean that (3.2) $(\epsilon/\lambda) ||y - z|| \leq [f(y) - (y, x^*)] - [f(z) - (z, x^*)].$

It is obvious that \prec is reflexive and anti-symmetric. Transitivity follows from the subadditivity of the norm. Thus \prec is a partial ordering of the set dom f. By Zorn's Lemma, there exists a maximal totally ordered subset M of $\{z \in \text{dom } f | x \prec z\}$. For notational convenience, we shall write $M = \{z_{\alpha} | \alpha \in I\}$, where I is a totally-ordered index set. Since $x^* \in \partial_{\epsilon} f(x)$, (3.1) and (3.2) require

$$f(z_{\alpha}) - (z_{\alpha}, x^*) \ge f(z_{\beta}) - (z_{\beta}, x^*) \ge f(x) - (x, x^*) - \epsilon > -\infty \text{ when } \alpha < \beta.$$

Therefore

(3.3)
$$f(z_{\alpha}) - (z_{\alpha}, x^*) \downarrow \rho > -\infty \text{ as } \alpha \uparrow.$$

This implies $\{z_{\alpha}\}$ is a Cauchy net. Indeed, for any $\delta > 0$ we could

608

choose α large enough that $f(z_{\beta}) - (z_{\beta}, x^*) < \rho + \delta(\epsilon/\lambda)$ for all $\beta > \alpha$. Then $||z_{\alpha} - z_{\beta}|| < \delta$ for all $\beta > \alpha$ by the definition of \prec . Inasmuch as E is a Banach space, we may conclude $\{z_{\alpha}\}$ has a limit $\bar{x} \in E$. The lower semi-continuity of f in (3.2) and (3.3) implies that $\bar{x} \in \text{dom } f$ and $z_{\alpha} \prec \bar{x}$ for all α . In particular $x \prec \bar{x}$, so that

$$(\epsilon/\lambda) \|\bar{x} - x\| \leq - [f(\bar{x}) - f(x) - (\bar{x} - x, x^*)] \leq \epsilon$$

by the definitions of \prec and $\partial_{\epsilon} f$. Hence $||\bar{x} - x|| \leq \lambda$. Furthermore, $\bar{x} \prec z$ can happen only for $z = \bar{x}$, because the totally-ordered set M was maximal. Therefore

$$(\epsilon/\lambda) \|\bar{x} - z\| > [f(\bar{x}) - (\bar{x}, x^*)] - [f(z) - (z, x^*)] \quad \text{for all } z \neq \bar{x}.$$

This means that, in $E \oplus R$, the sets

$$C_1 = \{ \langle y, \mu \rangle \mid \mu \ge h(y) = f(\bar{x} + y) - f(\bar{x}) - (y, x^*) \},\$$

$$C_2 = \{ \langle y, \mu \rangle \mid \mu < -(\epsilon/\lambda) ||y|| \},\$$

have no point in common. But C_1 is a closed convex set, because it is the supergraph of a l.s.c. proper convex function h, and C_2 is an open convex cone. Hence C_1 and C_2 can be separated by a hyperplane in $E \oplus R$. Due to the nature of C_2 , we can take this hyperplane to be the graph of a continuous linear function on E, thus there exists some $z^* \in E^*$ such that

$$(3.4) \quad -(\epsilon/\lambda) ||y|| \le (y, z^*) \le f(\bar{x} + y) - f(\bar{x}) - (y, x^*) \quad \text{for all } y.$$

Set $\bar{x}^* = x^* + z^*$. The left half of (3.4) says $\|\bar{x}^* - x^*\| \leq \epsilon/\lambda$, and the right half says $\bar{x}^* \in \partial f(\bar{x})$.

4. Main theorem. The Lemma just proved is crucial in the following result.

THEOREM 2. If E is a Banach space, then conditions (A) and (B) are satisfied by every l.s.c. proper convex function f on E.

Moreover, the conjugates f^* of such functions actually satisfy the stronger conditions (A*) and (B*) obtained from (A) and (B) by restricting attention to the existence of subgradients of f^* belonging to E (not just to E^{**}).

PROOF. Since f is l.s.c., (A) can be proved by showing that the "lim inf" does not exceed f(x) when $x \in \text{dom } f$. Given any $\delta > 0$, choose any $x^* \in \partial_{\epsilon} f(x)$, where $\epsilon = \delta/2$. Choose $\lambda > 0$ so small that $\lambda < \delta$ and $\lambda ||x^*|| < \delta/2$. Now let \bar{x} and \bar{x}^* be the vectors whose existence is guaranteed by the Lemma. The three conditions on \bar{x} and \bar{x}^* then yield

609

(August

$$f(\bar{x}) - f(x) \leq -(x - \bar{x}, \bar{x}^*) \leq ||\bar{x} - x|| ||\bar{x}^*||$$
$$\leq \lambda(||x^*|| + \epsilon/\lambda) < \delta/2 + \delta/2 = \delta.$$

Thus $\bar{x} \in \text{dom } \partial f$, $||\bar{x} - x|| < \delta$ and $f(\bar{x}) < f(x) + \delta$. Since $\delta > 0$ was arbitrary, this yields (A).

Virtually the same argument proves (A*) holds for f^* . This is apparent if, in the wording of the Lemma, we set $\epsilon/\lambda = \lambda^*$, $\lambda = \epsilon/\lambda^*$, and replace the conditions $x^* \in \partial_{\epsilon} f(x)$, $\bar{x}^* \in \partial f(\bar{x})$, by the equivalent conditions $x \in \partial_{\epsilon} f^*(x^*)$, $\bar{x} \in \partial f^*(\bar{x}^*)$. (The equivalence is immediate from (2.3) and the symmetry in (3.1)).

The fact that (B) holds for f follows directly from (2.2) and condition (A*) for f^* , because of (2.3). Similarly, (B*) for f^* is a consequence of (A) for f.

REMARK. The Lemma can also be employed, much in the above manner, to derive results of Bishop and Phelps [1]. In this case, one would make use of the one-to-one correspondence between nonempty closed convex sets C in E and their indicator functions δ_C (where δ_C is 0 on C and $+\infty$ outside of C), which are l.s.c. proper convex functions. The conjugate of δ_C is the support function σ_C of C. Hence $x^* \in \partial_* \delta_C(x)$ if and only if $x \in C$ and $(x, x^*) \geq \alpha - \epsilon$, where

$$\infty > \alpha = \sigma_C(x^*) = \sup\{(z, x^*) \mid z \in C\}.$$

In particular, the nonzero subgradients of δ_C at x are precisely the vectors x^* defining nontrivial supporting hyperplanes to C at x.

5. A counterexample. Klee [3] has constructed a nonempty closed convex set C in a certain reflexive Frechet space E (actually a Montel space), such that C has no support points whatsoever. This C happens to contain various half-lines emanating from the origin, but no whole lines. Under these circumstances, we may construct a function f as follows. Fix any $x_0 \neq 0$ such that $\{\lambda x_0 | \lambda \geq 0\} \subseteq C$. For each x let

(5.1)
$$f(x) = \min\{\lambda \in R \mid x + \lambda x_0 \in C\},\$$

where the minimum is understood to be $+\infty$ when no such λ exists. We shall prove that:

The function f is l.s.c. proper convex on E, but it is nowhere subdifferentiable.

Since C contains no whole lines, f does not take on the value $-\infty$. The convexity condition (1.1) is easy to verify. To show lower semicontinuity, we need to observe first that

(5.2)
$$f(x + \mu x_0) = f(x) - \mu$$
 for all $x \in E$ and $\mu \in R$.