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L. Introduction. A proper convex function on a vector space I over the real
numbers R is an everywhere-defined function f with values in (— ¢, + 0], not
identically + o, such that

(1.1) JOxy + (1=A)xy) = if(xy) + (1=4)f (x2)

for all x; e F, x,€F, 0 <A< 1. Its effective domain is the nonempty convex set
(1.2) domf= {xeF|f(x)<w}

A finite-valued convex function on a nonempty convex set C in F can always
be extended to a proper convex function on F by assigning it the value + o
outside of C.

Let F and G be real vector spaces in duality with respect to a bilinear functional
(x,¥) for xe F and ye G (sce [1, p. 48]). We shall henceforth assume F and G
have each been supplied with a topology compatible with this duality [1, p. 67],
so that each can be identified with the space of continuous lincar functionals on
the other. Unless explicit notice is given, all questions of closure, continuity
and boundedness refer to these given topologies. The formulas

(1.3a) g(y) = sup{(x,y) — f(x) |xe F} forall yeG,
(1.3b) f(x) = sup{(x, y) — g(») | y€ G} for all xe F,

define a one-to-one correspondence between the lower semicontinuous (Ls.c.)
proper convex functions f/ on F and the Ls.c. proper convex functions g on G.
Functions paired by (1.3a) and (1.3b) are said to be conjugate to each other.
This conjugate correspondence, discovered by Fenchel [6], was extended to
infinite-dimensional spaces by Moreau [9] and Brendsted [2].

Tt is natural to look for interesting relationships between the conjugate corre-
spondence among convex functions and two classical correspondences, the one
between convex sets and their support functions, and the polar correspondence
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for convex cones. Such is our motivation here. A fact which is already known,
and which will be important in our investigations, is that the two classical corre-
spondences can be treated as special examples of the conjugate correspondence
in the following way.

ExaMPLE 1A. A l.s.c. proper convex function is an indicator functicn, i.e,
has no values other than 0 and + oo, if and only if its conjugate is positively
homogeneous. The functions of the first kind on F arc precisely of the form
f(x) = de(x) = (x| €), where C is a nonempty closed convex set and

(1.4) d(x]C)=01if xeC, (x| C) = if x£C.
The conjugate of 8. is the support funciion 6. of C, where
(1.5) oo(y) = o(y| C) = sup{(x, y) | xe C} for all yeG.

Dually, the indicator functions of the nonempty closed convex sets in G are the
conjugates of the support functions of these sets, which are precisely the positively
homogensous Ls.c. proper convex functions on I,

Examrpre 1B, According to Example LA, a l.s.c. proper convex function is a
positively homogsneous indicator function if and only if its conjugate is also.
Such functions are the indicator functions of nonempty closed convex cones
(with vertex at the origin). For two such cones KS F and LS G, f = éx and
g = 6 are conjugate to one another if and only if K and L are polar to one
another, i.e.

(1.6a) L ={yeG|(x,y) 20 forall xeK]},

(1.6b) K={xeF|(x,y) =0 forall yeL}.

In particular, the annihilator correspondence between subspaces of F and G
may be expressed by the conjugacy of indicator functions of subspaces.

Associated with any 1.s.c. proper convex function fon F are various distinguished
convex sets, cones, and positively homogeneous convex functions. What happens
to all these objects under the above correspondence? That is the underlying
question throughout this paner.

One important convex set associated with fis its effective domain (1.2). Another
is its supergraph gph f, which is the convex set in F @ R consisting of the points
lying above or on the graph of /. Evidently, a proper convex function is positively
homogeneous if and only if its supergraph is actually a convex cone. Now for
each convex set there is a special convex cone, called its asymptotic cone, essentially
giving the directions in which the set is infinite. In the case of gph f, we shall
see that the asymptotic cone is itself the supergraph of a certain positively homo-
geneous L.s.c. proper convex function on F, which we call the asymptotic function
of f. This asymptotic function describes important growth properties of /. It
turns out to be the support function of the closure of the effective domain of
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the conjugate g of £ Dually, the support function of the closure of dom fis
the asymptotic function of g. We shall show that this can be viewed as a limiting
case of the conjugacy formulas for scalar multiples of given functions,

BPach 1.s.c. proper convex function fon F also gives rise to a large family of

level sets
(1.7a) Lygf=1{x|f(x)+ B = (x,h)} for beG and feR,

each of which is a closed convex set in F. For any fixed b, the union of the L, ; f
as f ranges over R is dom f. It is clear from (1.7a) and (1.3a) that L, ,f decreases
as ff increases, with

(1.8a) g(b) =sup{feR|L,pf# ¢}.

Likewise, the conjugate function ¢ generates closed convex sets

(1.7b) Lo.g={y|g(») +a=(a,»)} for acF and aeR,
decreasing in z for cach a, such that
(1.8b) flay=sup{aeR|L,,g# ¢}

The study of these level sets will lead us to interesting resulis relating boundedness
and continuity properties of fand ¢. We shall only consider cases where § < g(h)
and a < f(a), so that the level sets are sure to be nonempty. The marginal cases
where ff = g(bh) and z = f(a) involve special problems treated in the theory of
subdifferentials of convex functions. (See [10], [14] and the references given there.)

Our first task in analyzing these level sets will be to determine their support
functions. The level sets L, ,g under consideration correspond one-to-one with
the points (a, ) in F @ R which do not belong to gph f. The supergraph of the
support function of L, ,¢ turns out to be the projecting cone of gph f from (a, «).

From the support function formulas, we shall deduce the following boundedness
principle: L, ,fis bounded for all § if and only if b is an internal point of dom g
(i.c., along each line through b, g is finite on an open scgment containing b).

Starting with a locally convex Hausdorfl topological vector space E, we can
always let F/ = E and let G be the dual E* of E, with (x, y) = y(x) for ye E*.
Our results can then be applied if the topology on G is taken as the weak™ topology
(see [1, p. 67]). Of course if E is reflexive the strong topology on E* could also
be used. Even if E is not reflexive, however, our boundedness principle leads
to a continuity theorem in this context. We shall see, namely, that the infernal
points of dom g are precisely the points where the conjugate function g is finite
and continuous in the strong topology on the E*. When E is fonnelé (in particular
when E is a Banach space or is reflexive, sce [1, p. 2 and p. 89]), there is a dual
theorem: points where f is finite and continuous correspond to weak® compact
level sets of g.
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The last result also follows from recent independent work of Morcau. In [10;]
which appeared shortly after our paper was submitted for publication, Morea
proved that the points where f is finite and continuous in the Mackey topomgy
7(F, G) correspond to the level sets of g which are compact in the weak topology
6(G, F). In a tonnelé space, of course, the given topology coincides with the
Mackey topology induced by the dual space. Morcau’s method of proof could
also be used for a more direct derivation of our theorem on boundedness, without
employing the formulas for the support functions of level sets.

We also want to mention along these lines the recently published theorem of
Fan [5] about polar convex sets. It is closely related to the case of Morcau’s
theorem where f'is the support function of a convex set in G.

Cumex cones associated with convex selq For each IlOl"iCl‘l'tpl\ convex set
C in F and each ac F, the set

2.1 P,C =cl{i(x—a)|i>0, xeC},

where “cI”” denotes closure, is the projecting cone of C relative to g. It is the
smallest closed convex cone containing the translated convex set C — a. (This
definition diflers slightly from the classical one, in which the cone is not required
to be closed and its vertex is at @ rather than at the origin.) Another important
closed convex cone associated with a nopempty convex set C is ils asymplotic
cone 0% C, which is defined as the ““limit”* of AC as 4 [ 0, i.e.

(2.2) 0tc=N [cl U ;.c].
e=0 D=i<sg
We want to mention here some propertics of these cones which will be invoked
later in the case where € is replaced by the supergraph of a convex function.
Asymptotic cones seem to have been considersd first by Stoker [16]. Choquet
[3] has recently studied them in infinite-dimensional spaces. The characterizations
of 0+C listed for convenicnce in the following theorem are all known.

Tueorem 2A. If C is a nonempty closed convex set in F, each of the four
conditions on x e ¥ given below is equivalent to the condition that xe0+C:

(a) theray {a + Jx |4 Z 0} is contained in C for every aeC,

(b) there exists some ae C such that a + /xeC for mbr!muﬂy large choices
of 4;

(c) C+x = C;

(d) (x,)) =0 for every yeG such that the linear function {+, 1) is bounded
above on C.

Proof. By definition (2.2) the condition that xe0* C can be expressed as:

(e) there exist nets of scalars A; > 0 and vectors x;e C such that lim; 4, = 0
and lim; Z; x; = x.
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wh

Theequivalence of this with the four condilions in the theorem will be established
by a cycle of implications.

(a) implies (¢): Trivial (take A = 1).

(¢) implies (b): Fix any ae C. Then a + nxe C for all positive integers n by
induction.

(b) implies (¢): Choose any unbounded increasing scquence of g; > 0 such
that @ + ;x = x;€ C, Let 4; = 1/ g, Then lim;4; = 0 and limAx; = x.

(c) implies (d): If (e, v) = R for all e C, then

(x, 1) = limyAdx, ) = e limgd; = 0.

(d) implies (a): If (a, ) = «eR for all ae C we have (a + Ax, y) = « for all
asCand 1 = 0 by (d). Since a closed convex set is the intersection of the closed
half-spaces containing it, this finishes the proof.

Characterization {d) says that 0*C is polar to the cone cl(dom ¢,) in G, which
might be called the barrier cone of C (see [7, p. 45]).

Cur scalar multiple notation for the asymiptotic cone of a nonempty closed
convex set C fits in with various algebraic formulas in a helpful way. For example,
consider the formulas

(2.3) Kl €= CladDE 408 (3 + B0 = -5,

which are obyious when A, > 0 and /, > 0.

There are similar formulas, easily verified from Theorem 2A, which involve
the asymptotic cone, namely 0+(,C) = 0+C, A(0*C) = 03C, 0+(0*C) = 0+ C,
0tC =0+C+0+C, 4,C=0+tC + A,C. We can summarize all of these by
saying that (2.3) holds for all 2, = 0% and A, = 0+, The notation also suggests
that the set

@y Aot o SAEIN B R B e Bl

ought to be more important in some contexts than the mere convex hull of given
closed convex sets Cy, -+, Cp (which is what (2.4) would be if the result of multiply-
ing by zero were interpreted as 0C; = {0} instead of 0% C,). As a matter of fact,
Choquet [3] has shown that (2.4) often gives the closed convex hull of Cy, -+, C,.

The following projecting cone formula, which also benefits from the O+notation
is already known. Since it will be crucial in this paper, a proof is included for,
completeness.

Trrorem 2B (Cuoquet [31). I C is « nonempty closed convex sei in I and
aeC, then

P.C = [Cc—al|Az 0%},

Proof, Let K denote the union of the right. It is clear from definition (2.1)
that ¢l K=P,C. Furthermore, P,C is closed and P,C 2 A[C — a] for all 1 >0,
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so P,C 2 0*+[C — a] from definition (2.2) . Thus P, 2 K. It remains to show
K 2 ¢l K. Il x ecl K, we can choose nets such that x = lim, z; where z; € 4, C—a|,
4z 07, Taking a subnet if necessary we can suppose the A; are all strictly positive,
tor otherwise x e 0+[C — a] = K trivially because 0¥[C — a] is closed. Set,
z; = Ay, where x;€ C — a. Since a ¢ C and C is a closed convex set, there exists
by a standard separation theorem some b6 e G such that (z — a,b) = 1 for all
ze C, Hence
lim sup;4;  limA(x, D) = (x, b)) < w.

We may supposc therefore that lim;/; = 4, where 0 = 2 < co. Il 4 > 0, we have
(1)) =limx;eC —a,s0 xeA[C—a]. If 2 =0, xe0*[C ~ a] by definition,
Thus x e K in both cases, so ¢l K = K,

Remark. The asymptotic cone and projecting cones of a nonempty closed
convex set C were defined using the closure operation. But the characterization
of 0+C in Theorem 2A(c), and the formula for P,C in Theorem 2B when a & C,
show that these cones could aiso be defined algebraically. They do not depend
on the particular topology, except to the extent that the topelogy has to be one
in which C is closed.

3. Asymptotic functions and scalar multiplication, There is a natural one-to-one
correspondence between extended-real-valued functions / on F and their super-
graphs

(3.1) gohf = {<x, 1) [ xeF, f(x) £ peR}

in F @ R. For the case of interest here, the correspondencs is characterized in
the following lemma, whose proof is straightforward and will be omitted.

LEmmA 3A, In order that a subset S of F @ R be of the form gphf jfor some
(unique) Ls.c. proper convex junction f on F, it is necessary and sufficient that
S be a nonempty closed convex set with {0,1>€0+S and — (0,1>¢0+8.,

For the rest of this section let f be Ls.c. proper convex on F, and let g be its
conjugate on G. In view of Lemma 3A, we can defline nonnegative right scalar
multiples fA of f, all of which are again Ls.c. proper convex, by the geomelric
formula

(3.2) gph( /i) = Agphffori z 0+,
Evidently,
(3.3) (fA)(x) = A (1 Dx) for /> 0.

We shall call f0* the asymptotic function of f. Tts properties will now be described.

THEOREM 3B, Each of the following conditions on x € F and pe R is equivalent
to the condition that (fO+)( x) < u:
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(a) fla +Ax) =f(a) + Ap forall aeF and 7 = 0;

(b) there existssomeae dom fsuch thai fa + ix) = f(a) + Apfor arbitrarily
large choices of 7

(c) f(z +x)—f(2) = p for all ze domf;

(d) (x.v) = g for all ye G with g(y) < o0}

(e) there exist directed nets of vectors x;€ F and 2; > 0 such that imJ2, = 0,
limx; = x and im 2, f(x)) £ 1.

Praof. By definition (3.2) of f0+, we have (f07)(x) = p if and only if {x, 1>
is in the asymptotic cone of the set gph fin (3.1). Conditions(a), (b),(c) and (e) are
easily derived from the corresponding conditions in Theorem 2A. Condition (d)
could also be derived from the earlier {d), but it is simpler to show it is equivalent
to the present {c). If (¢) holds, we actually have —f(z) = pu — f(z + x) for all
zeF, so by (1.3a)

g(y) = sup.{(z, y) — f(2)} £ sup.{(z, ») + p — f(z + x)}
=p —(x, ) +sup.{(z + %)) —flz+x)}= p — (x, ) + gy

Hence g — (x, ) = 0 whenever g(y) < oo. On the other hand, if (d) holds, we sce
from (1.3b) that

f(z +x) = sup{(z + x, ) — g(1)}

1A

sup{(x, ) | g(»)) < o} + sup{(z, ) — g(3) | &(») < o0}
= n+f()
for all x e F. Thus (¢) holds in this case.

CoroLLary 3C. The asymptotic function of f can be determined from any
ef the following formulas:

(@) (f0+)(x) = sup [ f(a + 2%) — f(a)] ] 2 for any ae dom f;
(b) (f0) () = lim [f(a + 1) ~ (@] ] 2 for any a dom;
(©) (F0) (x) = sup {£(z + ) — f()] & dom};

(@ (f0+) (x) = sup {(x, ) | (1) < 0 };

(f0*) (x) = lim inf {1,/(x)) | >0, 4; =0, 4x; = x}
(e)
= lim inf {(f2) (z) | 4 >0, 4, =0, z; > x}.
Proof. (a), (c), (d) and (e} are immediate from the conditions in 3B; (b) is
equivalent to (a), because the difference quotient is a nondecreasing function
of 4> 0 (e.g. see [4]).
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CoroLLary 3D. fOF is positively homogeneous; in fact it is the support
Sfunction of the nonempty closed convex set cl{dom g) in G.

Proof, This is the essence of 3C(d); cf, Example 1A.
Properties of asymptotic functions reduce to those of asymptotic cones when
Jis the indicator function of a closed convex set €. Tndeed,

(3.3) (fA)(x) = 8(x | AC) forall 2 = 0* if /(x) = 6(x | ).
It is natural to define left scalar multiples )f of f for 1 = 0+ by
(3.4) () (%) = 2LF)] HE 2> 0, (0+) (x) = (x| ¢l dom 1),

Then each Af is again Ls.c. proper convex, and gph (0+/) is the “limit” of gph
(4f) as 4] 0. Left and right scalar multiplication are dual to one another in the
sense of the following theorem, which combines a known elementary fact for
A =0 with 3D (cf. 1A).

Turtorem 3E. Afand f2 are conjugate to gh and J.g, respectively, for all 2 = 0+,
Another reason for our “‘right scalar multiple” notation is provided by the

next theorem,

THEOREM 3F. Let ¢ be the function on R @ F defined by: $(A, x) = () (x)
Jor 2> 0, (0, x) = (f0+) (x), ¢p(4,x) = oo for A < 0. Then ¢ is ls.c. proper
convex and positively homogeneous. In fact ¢ is the support function of gph g
inG@R,if RO F and G @R are placed in duality with respect to

(3.5 ({222, <y, ) = (%, ) — Ap.
IfROF @R and R® G @R are placed in duality with respect to
(3.6) (Chox, '3, KA 3o ) = (3%, 3) — A = Xy

and v is the function on R @ G constructed from g as ¢ was from 1, then

gph¢ & R® F® R and gph y <R ® G @R areclosed convex cones polar to each
other.

Proof. By (3.2) and 2B, gph ¢ is the smallest closed convex cone in R®@F®R
containing {<{1,x, u> | {x, u>egphf}.

Hence ¢ is a positively homogeneous Ls.c. proper convex function on R @ F
by the criterion in Lemma 3A. By Theorem 3E, the conjugate of ¢ with respect
to (3.5) is

sup {(<%, %3, <3, 1)) — (A, %) | <A x)eR @ F}

sup {sup{(x,») = 2u — (f) ()| xeF} |1z 0"}

sup { — Au + (Ag) (») | 4 2 0%} = o(<y, 1> | gph 2).
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Thus ¢ is the support function of gph g (cf. 1A). In view of the dual of the first
assertion in the proof, the polar of the cone gph  with respect to (3.6) consists
ofall J,x. 10'>eR @ F @ R such that

0 2 (CA %, 1D, <L 3y 1) = (KA, %3, 3o 13) — W
for all <y, ;> € gph g. Thus it consists of all {4, x, u*) with
u' = o({A x| gph @) = ¢(4, x), i.e. it is gph ¢.

-

Remark. The correspondences in Theorem 3F were noted by Fenchel, and they
apparently helped motivate his original definition of the conjugate correspondence
(cf. [6] and [7, p. 88 T.]). Our only contribution here has been to formalize and
complete Fenchel’s observations in terms of asymptotic functions.

4. Support functions of level sets. Just as the asymptotic function of a L.s.c.
proper convex f on F was defined geometrically by means of the asymptotic cone
of the closed convex set gph £, we can construct other functions from f considering
the projecting cones of gphf relative to various points {a,a) of E @ R. These
will turn out to be the support functions of the level sets of the conjugate g of 7,
just as f0+ was the support function of the union of these sets, dom g.

Indeed, in view of Theorem 2B and Lemma 3A, we can define a positively
homogencous 1.s.c. proper convex [unction £, ,f on F for each {a,uyédephf
by the formula

(4'1) gph{Pa,-zf) = P((.'_.st)gphf: U {)L[(gphf) - <ﬂ', 5’>] | ;-' 2 0+}'

Of course, (a, =) ¢ gph fif and only if z < (@), and in this case the closed convex
level set L, ,g is sure to be nonempty (see (1.7b) and (1.8b)).

TuroREM 4A. The function P, .f satisfies the following formulas (where
ael and x < f(a)):

(a) (P, .f) (%) = min{(hd) (x) | 2 = 0*} with h(x) = f(a + x) — o}

(b) (P,.f) (x) = inf{[ f(a + Ax) = f(a) + €] /2 | 2 >0}, where & =f(a) — a,
provided that f(a) < oo

(©) (P, )(x) =sup{(x,y)|g(y) £(a.y) — o}, ie P,,f is the support
function of the level set L, ,g.

Proof. Formula (a) follows from (4.1), because A[(gphf) — <a,a>] = gph(hl)
for all 2 = 0+ by the definitions. If o > & = f(a) — « = h(0), we have

(h0+) (x) = Lim [A(Ax) — B(OY] /2 = lim [ f(a + 2x) — f(a) + €] [

Aren i

by 3C(b). On the other hand,
[h(1 [ D] (x) = h(3x) [ 2 = [f(a + 2x) — f(a) + e]fifor 0 < i< w
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by the definition of right scalar multiplication. Therefore (a) implies (b) when
fla) < oo, We can also calculate the conjugate of P, ,f from (a) and 3E as

sup{(x, y) — min{(hi) (x) |1 2 0*} |xe F}
= sup {sup{(x, y) — (h)) (x) [ xe F}[ 1 2 0%}
Sup{(),k) (¥ ] A O*’} = d(y l k(y) = 0),

where k denotes the conjugate of 1. Since
k(y) = sup{(x,») — [f(a +x) — o] |xeF} = g()) ~ (0,)) + o,

we have k(y) = 0if and only if 2(3) = (o, y) — «, L.e. ye L, ,g. Thus the conjugate
of P,.f is the indicator function of L, g, so that we must have (P, /) (x)
= (x| L, ,£) as in 1A,

CoroLrary 4B. Ifbe G and inff < 0, then
(4.2) sup{(x, b) | /(x) £ 0} = min{(gA)(b) | 2 = 0+}.

If also inff > — o, then the right side of (4.2) can be replaced by
inf{g(Zy) 4|24 > 0}.

Proof, By the dual of 4A, all of these expressions give (P, ,g) (b).

We shall now prove the boundedness principle mentioned in the introduction,

THEOREM 4C. Let be G and f < g(b). Then the (nonempty) level set L, ;f
is bounded in F if and only if b is an internal point of dom g,

Proof. A nonempty closed convex subset of F is bounded in the given topology,
if and only if it is bounded in the weak topology G induces on F (see [1, p. 70]),
i.e. its support function is finite throughout G. Thus, by the dual of 4A, L, ,f
is bounded if and only if

(4.3) G = dom(P; y) = |J {dom(ka) |4 = 0+},

where k(y) = g(b + ») — . On the other hand, b is an internal point of dom g
if and only if

(4.4) G = {A[domg) — b]| 4> 0} = {2dom k|2 > 0}.
Since by definition of right scalar multiplication
(4.5) dom (ks) = Adomk for 4 >0,

we know (4.4) implies (4.3). Now assume (4.3) holds. For any ze domk, select
4z 0% such that —zedom(kl). If 4 > 0, the line segment connecting = and
(—1/ )z lies entirely in the convex set dom k, and contains 0. If 2 = 0+, the

half-line {z + p(—=z) | 1 = 0} lies entirely in dom k, because
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@ > (k0*) (=z) = sup{[k(z + p(—2)) — K(=)] [ u|p > 0}
by 3C(a); this half line again contains 0. At all events, we therefore have 0 e dom k,

ie. g(b) < oo, It now follows from the dual of 4A(b) that

(Pop2) (¥) = iﬂfo[g{b +1y) — B/ = inf (k2) (»).
=

A0
Thus dom (£ 0+) can be omilted from the union in (4.3), so that (4.3) implics
(4.4) by (4.5},

CoroLLARY 4D. If L, , f is bounded for some [i< g(b), then it is bounded for
every feR.

5. Properties of effective domains. Tn this section we shall dualize some
properties of the effective domains of a conjugate pair of functions f and g.

First we shall generalize a fact noted by Phelps [11]. Suppose C = F and
D= G are convex sets polar to one another. Let f=opand g =§,asin Example 1A, We
have C = Ly ., f(this is the definition of polarity), and it is apparent that f can
also be viewed as the gauge function of C. Phelps proved that a point be D is
an extreme point of D, (i.e. b does not belong to any open line segment lying in D)
if and only if the convex set of differences C, — C, 1s dense in F, where

Co={xeF|opx) (x,b) + 1} =L, _,f.

Of course D = dom g here, and —1 < g(b) = 0. The following theorem shows
that a similar result is valid for any conjugate fand g.

THEOREM SA. Let bedom g and f§ < g(b). Then b is an extreme point of
dom g in G ifand only if L, o f — Ly p f is dense in F,

Proof. Let L be the closure of L, ,f — L, ,f, which is a nonempty convex set
in F, We have
G.0) o(y | L) = sup {(xy — x5, %) I x€Lyyf, x3€Ly 51}
= oy | Lysf) +o(—y [ Lypf) = (Pyp2)(y) + (Ppp2) (=)

by the dual of 4A. Since the correspondence beetween closed convex sets of
their support functions is one-to-one, we conclude that L = F if and only if the
last expression in (5.1) equals + oo for all y ¢ 0. But

(Pyp)(+ ) = inf{[g(b £ Ay) — ]/ 4]/ > 0}
by the dual of 4A(b), inasmuch as g(b) < oo by hypothesis. Thus
Py g(3) + Pyp(—y) < 0

for some y # 0 if and only if b is the midpoint of an open line segment between
some b — Aycedom g and b + iyedomg, i.e., b is not an extreme point.
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The next theorem answers the question of when the conjugate of aveni§ function
is finite everywhere.

TrarorEM 5B. dom g is dense in G if and only if
(5.2) (f07) (x) = oo forall x # 0.
One actually has dom g = G, if and only if
(5.3) Ly pf is bounded for all be E and ffeR.

Proof. dom gisdenseif and only if 0+ g is identically zero, and this is equivalent
to (5.2) because /0 is the conjugate of 0+ g by 3E. We observe nextthatdomg = G
if and only if every b e G is an inlernal point of dom g. By Theorem 4C, this is
equivalent to L, ,f being bounded whenever f < g(b), which is trivially the
same as (5.3).

CoroLrary 5C. If F is finite-dimensional, conditions (5.2) and (5.3) ave equiv-
alent,

Proof. A convex sct dense in a finite-dimensional space must itself be the
whole space.

6. Asymptotic and projecting cones of level sets. Throughout this section it is
still assumed that f and g are 1.s.c. proper convex functions on - and G conjugate
to each other.

THEOREM 6A. For each be G and f < g(b), the asymptotic cone 0* L, ,f and
the projecting cone P,(dom g) are polar to each other.

Proof, According to characterization (d) in Theorem 2A, the asymptotic cone
of a nonempty closed convex set C in F is polar to the closure of the effective
domain of the support function of C in G. The support function of C = L, ,fis
Py p g by the dual of 4A(c). The closure of the effective domain of P, ;g is
obviously the closed convex cone generated by (dom g) — b, i.e. it is P,(dom g).

COROLLARY 6B. For each be G, all thenonempty level sets of the form L, ,f
have the same asymptotic cone.

Proof. The theorem trivially implies 0+L, ;f is the same for all ff < g(b).
This cone can be described as the set of x such that f(z -+ ix) — (z + Ax, b)
is a nonincreasing function of 4 for every z, If L, ,f happens to be nonempty
for fi = g(b), its asymptotic cone includes these vectors, too. On the other hand,
its asymptotic cone must be contained in the asymptotic cone of the other level
sets, which are larger.

CoroLLARY 6C. The set of vectors x such that



58 R. T. ROCKAFELLAR [May
(6.1) flz+x)=f(2) forall zeF

is a closed convex cone in F whose polar is the smallest closed convex cone in
G containing dom g.

Proof. The set of vectors x satisfying (6.1) is the common asymptotic cone
of the level sets L, » for f < g(0), according to characterization (¢) in Theorem 2A.

The fact that the vectors satisfying (6.1) ferm a closed convex cone was used
extensively by the author in [13].

THEOREM 6D. Given any level set L, ,f, where B < g(b), and any point
a¢ Ly f, let a be the real number such that x + f = (a, b). Then dually « < f(a)
and b¢ L, g, and the projecting cones

Pﬂ(Lb,Pf) ﬂ”d Pb(Lﬂ'.:g)
are polar to each other.

Proof. Since a ¢ L, ,f if and only if f(a) + § > (a, b), the hypothesis is self-
dual. The conjugate of P, ,f is the indicator function of L, g, whose cffective

4,23

domain is L, ,g itself, so, by 6A and 6B, P, L, ¢ is the polar of the asymptotic
cone of any nonempty level set of the form L, (P, .f). Since P, ,fis positively
homogeneous, we can take p == 0. The level set in question is then a convex
cone, and hence it coincides with its asymptotic cone. Thus the problem is to
show that

(6.2) {x|(Paof) (%) £ (x,b)} = PLy ).
Let
h(x) =f(a+x)—a=fla+x)—(a,b)+fi.

By formula 4A(a) for P, ,f, the left side of (6.2) consists of the vectors x such
that (h2) (x) < (x, b) for some 4 = 0+. In view of formula 2B for projecting
cones, (6.2) will therefore certainly follow from proving that

(6.3) {x ] (hA) (x) = (x,b)} = A[(LyS) — a] for each . 2 O+ .
If / is positive, both sides of (6.3) are equivalent to
fla+ @/ Dx)+ B S (a+(1]Ax,b)

On the other hand, suppose that 4 = 0+, and fix any ce (L, 5 f) — a. By Theorem
2A, x belongs to the right side of (6.3) if and only if the ray {¢ + px|pu 2 0} is
contained in (L, ;f) — a, in other words

fla+c+ux)+f=(a+c+ux,b) forall pz=0.
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But this is the same as
hic + nx) = p(x, b) for all u = 0,
in other words (h0+) (x) = (x, b}, Thus (6.3) 1s also true when A = 0+,

CoroLLaRY 6E. Iff{0) > 0 »inf/, the closed convex cone generated by
{x|f(x) £0} is polar to the closed convex cone generated by {y]g(y) =0}

Proof. Take ¢ = b = 0 and § = 0, and use the fact that g(0) = —inff,

7. Boundedress and contiauity. Local continuity properties will now be investi-
gated using our main result about boundedness, Theorem 4C. It will help us
here if we change notation and look at the conjugate correspondence from
another point of view.

Let I be a locally convex Hausdorff topological vector space over R, and let
E* be its dual, with (x, x¥) written instead of x*(x), The formula

(7.1) FEx®) = sup {(x,x*) — f(x)| xe E} for all x* e E*

defines a conjugate operation which takes certain functions on E into functions
on E*, iust as the adjoint operation takes linear transformations E — E into trans-
formations £* — E*. If the operation is applied twice, one has

(7D f**(e%) = sup {(v¥,x%) — F*(x")

where E¥% is the bidual of E. Of course, E and E* are in duality with respect to
(x,x*). and the original topology on E and the weak* topology on E* are compat-
ible with this duality [1, p. 69]. Hence, the results proved in earlicrsections
can be applied in the new notational system, with E=F, E* = G, x* = y, f* =g,
etc., provided the G topology is interpreted as the weak™ topology. If E is reflexive,
the strong topology on E* may be used instead. For example, the basic facts
about conjugacy may now be viewed as follows: The conjugates f* of the l.s.c
proper convex functions f on E are precisely the weak® ls.c. proper convex
functions on E*. (Such functions are a fortiori strongly ls.c., but in the non-
reflexive case there will be strongly 1.s.c. proper convex functions on E* which are
not of the form f*.) Furthermore, the restriction of f** to E (considered as a
subspace of E*¥) is f. We assume, of course, here and henceforth, that f is Ls.c.
proper convex on E,

The derived functions f*0 "and P .. f* for o* < f*(a*), do not depend on the
topology being considered on E¥, since they arise algebraically from f through
(7.1) and formulas like those in 3C and 4A. Caution must be used with 0+ f%,
however, because the weak™ closure of a convex set in E* can be larger than its
strong closure in the nonreflexive case. Tt may be deduced from 4A(c) that

(7.3) (Peof Y¥* =P, (f**) when aeE and « < f(a) = f**(a).

x* e E*] for all x** e E**,
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Thus P, .f is the restriction of P, (f**) to E. It is also true that f07 is the re-
striction of £**0* to E (see 3C(d)), but £**0 is not always the same as (f07)**
(c.g. when domf* is weak® densc in E* but not strongly densc). The relationship
between the level sets of / and those of its “‘bi-conjugate”’ is quite simple. For each
a* € E* and o < f#(a*), L f** Is the closure of L. ,»/ in the weak topology
on E** induced by E*. This follows from the fact that, by the appropriate versions
of 4A(c), both of these convex sets can be viewed as having the same support
function Pge ,+f* on E*, (Consider first the duality between E and E* and then that
between E** and E*.)

We shall now prove a continuity thcorem having many consequences. The
relationship between this result and the one of Moreau [10] has already been
pointed out in §1.

THEOREM TA.

(a) For any «* < f*(a*), Ly »f is bounded if and only if f* is finite and
strongly continuous at a*.

b) If E is tonnelé then, for any o < f(a), f is jiniie and continuous at a if and
only if L, ,f* is weak™ compact.

Proof. If £ * is finite and strongly continuous at a*, then «* is an internal
point of domf*. The converse of this fact will be enough to prove (a), in view
of Theorem 4C. Suppose a* is internal to domf*. Since f* is already strongly
Ls.c. at a*, we can verify strong continuity at a* by showing that, for arbitrary
s> 0,

U} ={x* c E*|f*(a* + x*) £ f*(a*) + &}

is a strong neighborhood of the origin. Now, U7 is the polar of the set
U,={xeE|(x,x*) £1]| for all x*eU;},

because U*is a weak* closed convex subset of E* containing 0 (see [1, p. 52]).
In addition, U¥ is absorbent. This results from the assumption that «* is an
internal point of domf*, since a convex function is automatically continuous
along any open line segment where it is finite (sce [4]). Therefore U, is weakly
bounded, and hence bounded in the initial topology on E. Thus U} is the polar
of bounded set in E, which, by definition, means that U is a neighborhood of 0
in the strong topology on E*,

Applying (a) to E* in place of E, we see that, for ac E and « < f¥¥(a) = f(a),
L. .f*is strongly bounded in E* if and only if f*¥ is finite and continuous at a
in the strong topology on E**. When E is fonnelé, the closed and strongly bounded
convex sets in E* are the weak® compact ones [1, p. 65 and p. 86], and the initial
topology on E is the same as its relative topology as a subspace of E** [1, p. 87].
Inasmuch as f** coincides with f on E, this proves (b).
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CoroLLARY 7B. ™ iy continuous at a* in the strong topelogy if and only if,
along each line through a*, the restriction of f* is continuous at a*.

Proef. The condition is trivially necessary. Its sufficiency when f#(a*) < o0
follows from 7A and 4C, because it implies ¢ is an internal point of dom f*,
(A finite convex function on an open line segment is always continuous, as pointed
out above.) When f*(a¥) = oo, f* is strongly continuous at a* trivially, since
it is strongly Ls.c.

CoroLrary 7C. IfE iy tonnelé, f is continuous at every internal peint of its
effective domain.

Proof. If @ is an internal point of domf, the level sets L, , f* are bounded by
4C. But closed bounded convex subsets of the dual of a tonnelé space are weak®
compact. Thus fis continuous at @ by 7A(b) when E is fonnelé,

CororiARY TD.If L +f is bounded for some o¥ < f*(a*), then there exists
a strong neighborhood U* of a* in E™ such that Ly 4o f is bounded for all b* e U*
and f*cR.

Proof, Let U* be the interior of dom f* in the strong topology. The hypothesis
implies that a* e U* by 7A(a). Every point of U* is internal to domf™, so the
conclusion now follows for b* € U™ and f* < f*(b*) by 4C, The extension to the
case where f* = f*(b*) is trivial.

The first part of the next corollary has already been noted by Hormander
[8, Theorem 7].

COROLLARY TE. A nonempiy closed convex set C in E is bounded if and only
if its support function is strongly continuous throughout E*. If E is tonnelé,
a nonempty closed convex set C* in E¥ is weak® compact if and only ifits support
Junction on E is continuous everywhere.

Preof, In the first case take, /= J; and /* = o, as in Example 1A and apply
7A(a). In the second case, take f = o¢r, f* = 6cs and apply 7A(Db).

Cororrary 7F. Let K be a nonempty closed convex cone in E, {0} # K # E,
and let K* be its polar in E*. Then — a* belongs to the strong interior of K*
if and only if {xeK|(x,a*)= 1} is nonempty and bounded. If E is tonnelé,
—a is interior to K if and only if {x* e K*|(a,x*) = 1} is nonempty and weak*
compact.

Proof, Let f=0x and f* = 6y as in Example 1B. Then L_, _,f
= {xeKi(x,ﬂ‘-“) =< 1}. Since K contains more than just 0, this set is bounded
if and only if {x e K|(x,a*) = 1} is nonempty and bounded. The first conclusion
of the corollary now follows from 7A(a). The second conclusion is derived like-
wise from 7A(b).
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Just as  oundedness of level sels is dual to continuity at points, boundedness
of effective domains is dual to uniform continuity. We shall prove this now as
our final result.

CoroLLARY TG. f* is finite and uniformly strongly continuous throughout L*
ifand only if domfis bounded in E. If I is tonnelé, then f is finite and uniformly
continuous throughout E if and only if domf* is relatively weak® compact.

Proof, If f* is finite and uniformly strongly continuous, we must have
dom(/*0%) = E* by formula 3C(c). This implies dom f is weakly bounded (and
hence bounded) by the dual of 3C(d). Conversely, suppose domf'is bounded. Then
/*07 is finite and strongly continuous on E* by 7E, because it is the support
function of cl(domf). Moreover

(74) |F¥(%) = £*(z%) | < max {(f*0+) (y* — z%),(f*0+)(z* — y*)}

for all y*e E¥* and z*e E* by 3C(c), so we can conclude from this that /* is
finite and uniformly strongly continuous. The second part of the corollary is
proved similarly.

RrMARK. Suppose dom f is bounded. and lct

(7.5) p(x*) =sup{|(x,x*)| |x edomf} = max{(f*0+)(x*),(f*07)(—x*)}

(see 3C(d)). Then p is a strongly continuous seminorm on E* by definition of the
strong topology. According to the proof above, we have

(7.6) |/*¥*) — f*(z%)| £ p(y* — z*) for all y*e E* and z* e E*,
In fact p is the smallest function with this property, because
(7.7) p(x*) = sup {|f*(%) = f*(=*)| [¥* — =% = x%)

by formula 3C(c) for f*0+. If E is a normed linear space, it is immediate from
these facts that

(7.8) sup{|fi*(y®) = f*)|[] y* — z*] |y* # z*} = sup{

|x|| [xedomf}.
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