HELLY’S THEOREM AND MINIMA OF CONVEX FUNCTIONS

By R. T. RoCKAFELLAR

1. Introduction. The object of this paper is to prove an existence theorem
for solutions to a very general class of constrained and unconstrained minimi-
zation problems involving convex functions on R*. This theorem is in effect
an extension of the classical theorem of Helly, according to which an infinite
collection of compact convex sets in R" has a nonempty intersection if every
n 4+ 1 of the sets have a point in common. (For the general literature on
Helly’s theorem see the expository article by Danzer, Grinbaum and Klee in
Convexily, Proceedings of the Symposium in Pure Mathematics, vol. VI,
American Mathematical Society, 1963.)

The idea of extending Helly’s theorem to convex functions is not new; such
extensions have been given by Bohnenblust, Karlin and Shapley [2; 185] (dis-
cussed also in [13]) and by Fenchel in his 1953 lecture notes [7; 96-101]. Both
of these, however, are limited essentially to collections of convex functions on a
bounded convex set. Our theorem does not have this limitation, and hence it
can be used both in the compact case and in the theory of convex programming,
where compactness is usually too severe a restriction. It implies, for instance,
that a polynomial convex function achieves a minimum.on any polyhedral
convex set where it is bounded below, a result obtained in the quadratic case
by Frank and Wolfe [8]. Yet at the same time it contains, in a direct way, a new
generalization of Helly’s Theorem in which the sets and their intersections can
sometimes all be unbounded.

Our principal device is to replace compactness, wherever this might otherwise
be necessary, by ‘‘asymptotic regularity conditions” which restrict behavior
along certain infinite rays which might be present. This was suggested by
Fenchel’s work with the asymptotic cones of convex sets [7, 4244 and 99-101].

Besides applying the existence theorem to ordinary convex programs, we
shall derive from it results in the theory of inequalities and Lagrange multipliers
complementary to those in [6]. A new general version of von Neumann’s
minimax theorem, not requiring compactness, will also be deduced.

2. Existence theorem. Throughout this paper P will denote a non-empty
polyhedral convex set in R", i.e. a set which can be represented as the inter-
section of finitely many closed half-spaces. The choices of P we have most in
mind are: R itself, the “non-negative orthant” of R", the unit simplex, the
product of n closed intervals of R, or some combination of these, such as the
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setofz = (&, , &y withg > 0fore = 1,--- ,sand & + -+ + & = 1,
r<s<n. e e
A function f on P with values in (— «, 4+ «] is convez if

@1 0w+ 1 =Ny < M@ + @ = Ni6) :
‘ wheneverz e P,y e P, 0 < A < 1.

It is affine if equality always holds 1n (2.1). Tt is lower semi-continuous (Ls.c.) if
all its (sub-) level sets '

2.2) {xeP |f(x) <}, where pek,

are closed. A convex function f on a convex subset C of P can be extended
convexly to all of P by assigning f the value + « at points of P not in C. The
extension is 1.s.c., in particular, when C is closed and f is continuous (or L.s.c.)
on C.

Let C be a non-empty closed convex subset of P. We say u ¢ B is a direction
in which C is unbounded if {x + Mu | A > 0} is contained in C for all
z ¢ C. (“Direction”, as we shall use the term here, is hardly more than a sug-
gestive synonym for ‘“vector”’; we do not assume w is normalized, and, in par-
ticular, the “trivial direction” » = 0 is admitted.) Ifuisa direction in which C
is unbounded, and if actually the intersection of {z + M| — o <\ < =} with P
is contained in C for every z & C, we say u is a direction in which C is a linear
relative to P.

Let f be Ls.c. convex on P and let u be a direction in which P is unbounded.
We say w is a direction in which f is non-increasing (respectively constant) if
f(x + M) is a non-increasing (respectively constant) function of A > O for
every = & P.

Exampre 1. Let C be a non-empty closed convex subset of P and let f be
either the indicator function of C

2.3) 3z |C)=0 if zeC,o@x|[C) = if z¢C,
or the distance function of C
249 p( | C) = min {{lz — 2l [z2 C}

(for any norm). Then f is ls.c. convex on P. Moreover, the directions in
which f is non-increasing (respectively constant) are precisely the directions
in which C is unbounded (respectively linear relative to P).

Exampie 2. If P is the last of the sets described in the initial paragraph

of this section, then u = (7, , =+ , 7.) is a direction in which P is unbounded
if and only if n; = Ofors =1, --+ ,7rand 7 = Ofori=r+1,---,s In
general, if P is the set of vectors z such that (a; , x) > a;forj =1, --- , ¢t (where

a; e R, a; ¢ R" and (a; , 2) is the scalar product), then the directions in which P
is unbounded are the vectors w such that (a; ,u) > Oforj =1, --- , &
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Exampre 3. Suppose f is a finite convex functlon whlch can be extended
differentiably to a neighborhood of P. Let Vf(x) denote the gradient of f at =.
The directions in which f is non-increasing (respectively constant) are then
the directions % in which P is unbounded and (Vf(x), w) < 0 (respectively
(V{(z), u) = 0) forall x £ P.

DermNiTioN 1. A convex program (at least for present purposes) i isa problem
of the form :

B) minimize f(x) = sup{f:(z) | < € I'} subject to the constraints: x e P
and f;(x) < 0foralljed,

where {f, | k ¢ K = I J} is a (finite or infinite) partitioned collection of 1.s.c.
convex functions on P (with InJ = ¢, I # ¢).

If the constraints of (P) can be satisfied by at least one x for which f(z) < o,
we say (B) is consistent. A vector Zis a solution to () if & satisfies the constraints,
(@) = & < «,and f(zr) > g > — = for every z satisfying the constraints.

DeriNitionN 2. The convex program (P) is weakly consistent if there exists
at least one u ¢ R such that, for all ¢ > 0 and for every subset K, of K containing
n <+ 1 indices or less, the finite system of inequalities
(2.5) fi@) < u+e for tel K, and fi(x) <e for jeJ K,
is satisfied by at least one z ¢ P. (Note that consistency implies weak con-
sistency.)

ExamriLe 4. Let {C; |4 ¢ I} be a finite or infinite collection of closed convex
subsets of P, and for each ¢ ¢ I let f,(z) = 8(z | C;) (see (2.3)). Then (P), for
K = I,J = ¢, is the problem of finding a point common to all the C; . Solutions
exist if and only if () is consistent. On the other hand, (%) is weakly consistent
if and only if every n + 1 of the C; have a point in common.

Exampre 5. Let {f; | j € J} be a finite or infinite collection of Ls.c. convex
functions on P. Let K = {0}.J, I = {0}, where f, is identically zero. Then
() is consistent whenever the system of inequalities

(2.6) fi(x) <0 forall jeJ

has a solution in P, and such solutions are the solutions of (). It is weakly
consistent if merely every subsystem of the form

2.7 fi(x) <e for 1 =1,---,s, where e>0,s<n-+1,5,¢J,

has a solution in P.

Dermnition 3. The convex program (P) is asymplotically regular 1f there
are no directions in which P is unbounded and all the f; , k £ K, are non-increasing,
except perhaps for directions in which all the f, for & ¢ K — K, are constant,
where the exceptional set of indices K, is allowed to be any finite (or empty)
subset of K selected in advance (i.e. independent of the direction), such that
Ko D I and f, is affine for all k ¢ K, .
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If z satisfies the constraints of () With f(z) < «, and w 5 0 is a direction
in which P is unbounded and all the f, are non-increasing,- then every point of
the infinite ray {z - M | X > 0} also satisfies the constraints, and f is non-
increasing along this ray. The asymptotic regularity condition ensures that f
achieve a minimum along every such special ray. The condltlon really ensures
much more than this, as we shall see in a moment.

ExamprLE 6. Suppose that {f, | k ¢ K} is a finite collection of affine functions,
and that (P) is consistent. Then () is asymptotically regular if and only if
there does not exist an infinite ray {x + M | A > 0} of points, all satisfying the
constraints, along which f is (uniformly strictly) decreasing.

-ExamMpLE 7. An ordinary linear or quadratic program (see [4], [12]) is
asymptotically regular if and only if the constraints of its dual can be satisfied.
(This may be proved by applying the Lemma of Farkas to the system consisting
of the constraints of (P) and the inequalities obtained from the asymptotic
regularity condition; ¢f. Example 3.)

Our general existence theorem for convex programs will now be stated.

TrEOREM 1. If (B) ¥s weakly consistent and asymptotically regular, then (P)
ts consislent and has at least one solution. Moreover, the minimum in (P) s
then the smallest of the real numbers u for which the weak consistency condition
can be satisfied.

The proof of Theorem 1 will be given in the next section. Observe that
Theorem 1 leads immediately to the following extension of Helly’s Theorem.

CoroLLARY 1. Let {C; | i & I} be any finile or infinile collection of non-empty
closed convex subsets of a polyhedral convex set P. Suppose there are no directions
tn which all the C; are unbounded, except perhaps for directions in which they are
all linear relative to P. If every n + 1 of the C; have a point in common, then
there exists a point common to all the C; . The assumption that every n + 1 of the
C; have a point in common can even be weakened to the following: for every ¢ > 0
and {3, , -+ , 4.} S I,r < n+ 1, there exisis a point whose distance from each
of the sets C;, , +++ , C;, does not exceed e.

Proof. The first part is obvious from Examples 1 and 4. The ¢ version can
be obtained by applying Theorem 1 instead to Example 5 in the case of the
distance functions (2.4) of the sets.

If we keep the first two sentences of Corollary 1 and assume that

sup {p(x |C)) |iel} < =

for at least one x ¢ P, we can still conclude the existence of a proximity point
[15; 248] for {C, | ¢ & I}, i.e. a point for which sup {p(z | C;) | 7 ¢ I} is minimal.
This is proved by applying Theorem 1 to () with f,(z) = p(x | C.), J

This result and the e part of Corollary 1 are new even for finite collectlons of
convex sets.
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Corollary 1 extends Fenchel’s version [7; 101] of Helly’s theorem, which says
that a collection of non-empty closed convex sets in R has a-non-empty inter-
section if every n -+ 1 sets have a point in common and there is no direction u % 0
in which all the sets are unbounded. Fenchel’s hypothesis implies that some
finite sub-collection has a (non-empty) compact intersection (see the proof of
Lemma 7 in the next section). ‘

Specializing Theorem 1 to the case where {f, | k¥ ¢ K} consists of a single
function, we have )

CoOROLLARY 2. Let f be 1.s.c. convex on P and not identically + . 1If f is
constant in every direction tn which P is unbounded and f is non-increasing, then f
achieves a (finite) mintmum on P.

It is very important here to understand the role of 4 « as a value of f.
Although it would seem that Corollary 2 is applicable only to minimization
problems on polyhedral convex sets, this is not really true. Indeed, it contains
the following result in particular.

CoroLLARY 2. Let g be a continuous (or 1.s.c.) finite-valued convex function
on a non-empty closed convex subset C of P. Suppose there are no directions u #~ 0
in which C 4s unbounded and g s non-increasing along the infinite ray
{ 4+ M| X = 0} for every x e C, except perhaps for directions in which C is linear
relative to P and g is constant along all the infinite rays in question. Then g achieves
a minimum on C.

Proof. Let f(x) = g(z) when z ¢ C, f(z) = ~ when z = P but z ¢ C, and
apply Corollary 2 to the equivalent problem of minimizing f on P.
One might suppose that ‘“constant” could be replaced by “eventually

constant” in Corollary 2’. The assertion would then be false, as is shown for
C=P=Rby

g(x) = g(fl yEZ) = & -+ min {(El = 7]1)2 et (52 £ 772)2 l g > "7?}

This is a continuously differeniiable convex function which achieves a minimum
along each individual line in R, and yet is not even bounded below. Another
example in R? shows why, for the directions in question, C' has to be linear
relative to P (or something like it). Let P = {(&, &) | & > 0},

C = {<El; £2> 8P[€1£2 Z 1}: g(E; 752) = El-

The infinite rays in C along which ¢ is non-increasing are of form

{<£1 ) &2 + >\772> [ N2> O};

where 9, > 0and & > 1/& > 0. Along each such ray ¢ is constant, but g does
not achieve a minimum on C. _

As anticipated in the introduction, Corollary 2 implies that a quadratic convex
function f achieves a minimum on any polyhedral convex set P where it is
bounded below. This is true because such a function is affine on any infinite
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ray along which it is non-increasing. "The author is grateful to the referee for
pointing out that this result is still valid, for the same reasons, if f is any poly-
nomial funection which is convex on P. '

3. Proof of existence theorem. We shall break the proof down into a series
of lemmas, the first three of which have independent interest.

Lemma 1. Let C be a non-empty convex set in R™ and let g be a convex function.
on C with values in (— =, »]. Then g s l.s.c. on C if and only if g 7s 1.s.c. along
each line segment {\z + (1 — Ny |0 < A L 1} in C. ‘

Proof. ForeachpueR,let C, = {xeC|g(x) < u}. EachC,isa convex set,
and g is 1.s.c. on C if and only if all the C, are closed in the relative topology on C.
When the latter is true, then the intersection of a line segment in C with each C,
is closed, so ¢ is L.s.c. along every such segment. On the other hand, take any
u ¢ B with C, # ¢ and suppose the intersection of C, with each line segment in ¢
is closed. We shall show that then C, is closed in the relative topology of C;
this will prove the lemma. Let 2 be any point in C belonging to the closure
of C, . Choose an interior point y of C, relative to the smallest linear manifold
in R" containing C, . (Such a point of y exists because C, # ¢; see [5; 16]).
Then Az + (1 — Ny e C,for0 < N < 1 (see [5; 9]), so z £ C, by our suppo-
sition.

Lemma 2. Let g be 1s.c. convex on P and let A(g) be the set of directions in
which P is unbounded and g is non-increasing. Then

(a) A(g) is a non-empty closed convex cone tn R", i.e. A(g) is closed, 0 & A(g),
and D Nu; & A(g) whenever \; > 0 and u; £ A(g);

(b) in order that u e A(g), it vs sufficient that there exist one x, ¢ P and u, ¢ R,
such that xo + M e P and g(xo + M) < o for all X > 0.

Proof. (a). It is clear from the definition of A(g) that 0 £ A(g), and that
M e A(g) when u € A(g) and X > 0. If u, £ A(g) and u, £ A(g) then, for each
zePand A > 0,2 + Nus + ) = @+ M) +Nuy = 2" + Nz e P2’ e P,
80 U, + 4 is a direction in which P is unbounded. Also, for each z £ P and
A > X\, > 0 we have

g(x + >\1('U/1 + uz)) < g(x + Mug + )\2u2) < g(x + )\2(U1 + uz)),

80 U; + u. is a direction in which g is non-increasing. To show A(g) is closed,
suppose u; € A(g) forj = 1,2, --- , and lim; 4; = u. Let z e Pand A > 0.
Then z - M = lim; {z + Mu;} ¢ P since z 4 \u; ¢ P for all j (polyhedral
convex sets being closed by definition), and by lower semi-continuity

gz + M) < lim inf; glz + M) < g(@).
Hence foreachz e Pand N\, > A\, > 0,
(3.1) gz + Mw) = gl + Mu + O — M)w) < glr + \w).
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Thus u ¢ A(g).
(b). Let z, and g, have the property described. Let z ¢ P and A 2 0. Then,
for0 < N £ 1,

(1 — M@ + M) + N(@o + M) = (1 — Nz + Mz, + ()x/)x’)u)»aP,
g(1 = M@ + M) + N(zo + M) < (A = N)g@) + Vo

Since P is closed and ¢ is l.s:c., it follows that z + M & P and glx -+ M) < g(x).
This shows that u is a direction in which P is unbounded and g is non-increasing
(the latter by the argument in (3.1)), so u & A(g).

CoroLLARY. Let C # ¢ be a closed convex set in R and let A(C) be the set of
directions in which C is unbounded. Then A(C) is a non-emply closed convex
cone, and u & A(C) whenever {x + M| X > 0} C C for one x € C. Furthermore

3.2) A(MC) = MAWC) i NG, = ¢,
when {C; | 7 ¢ I} 1s a collection of closed convex sets in R™.

Proof. Apply Lemma 2 to P = R" and the indicator function (2.3) of C to
obtain the first statement. Equation (3.2) is easy to deduce from this.

Stoker [18] calls A(C) the characteristic cone of C, while Fenchel [7; 42-46]
calls it the asymptotic cone. The first part of the corollary, and the next
lemma, were proved essentially in [18], but not in a form convenient enough
for the present context.

Lemma 3. If C is a non-empty closed convex set in R", then C is compact if
and only if A(C) = {0}.

Proof. Obviously A(C) # {0} implies C' is not compact. Conversely, if C'
is not compact, there exists a sequence z, , z, , + - - , in C such that ||x;|| increases
without bound (given any particular norm). Choosing a subsequence if neces-
sary, we have

lim; (xz/HxllD = U, “’MH =

We shall show that u ¢ A(C). Since u # 0, this will complete the proof. Let.
H = {z| (a, ) < a} be any closed half-space containing C. Let z ¢ H and
A > 0. Then

((Z, x + )\’M) = (a7 x) + A hm, [(ar xz)/Hxill]
< a(l + M lim; (1/]|2]])) = @

because z; ¢ H and ||z,|| increases without bound. Thus z 4+ Au £ H whenever
2z e and M > 0. Since C is the intersection of all the closed half-spaces con-
taining it (by a standard separation theorem), this implies u £ A(C).

We proceed now with the proof of Theorem 1 itself.

Lemma 4. Suppose (B) is weakly consistent, and let & be the infimum of the
real numbers u for which the weak consistency condition is satisfied, © > g > — ..
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Let . o
K={k=(,pe|keK,g<peR,0<¢},
and for each k ¢ K let

Ci={zeP |filx) Kpt+etfkel,or Cr= {zeP |fulz) <€l ifked.

Then {C5 | k & K} is a collection of closed convex subsets of P such that every finite
sub-collection has a non-emply intefseqt’ion. Moreover, T is a solution to (PB) if
and only if  is common to all the Cx , and in this case fi is finite and is the minimum

of f in (P).

‘Proof. The C5 are closed and convex because the f, are l.s.c. convex. It is
easy to see from Definition 2 that every n + 1 of the sets have a point in common;
hence every m of them have a point in common, for each positive integer m,
by the special theorem of Helly for finite collections of convex sets (see [15,
Theorem 1]). Now, £ belongs to all the C; if and only if £ satisfies the con-
straints of (P) and g > f(&) > — =. But, if z satisfies the constraints and
o > f(z) = u, then the weak consistency condition is satisfied for this u, and
hence p > E. Thus in this case Z is a solution and g is the finite minimum.

Lemma 5. If all weakly consistent convex programs which satisfy Definition 3
with K, = ¢ have solutions, then all weakly consistent asymptotically regular
convex programs have solutions.

Proof. Assume () satisfies the asymptotic regularity condition, with K,
taken to be as small as possible. Let u, be a real number for which (B) satisfies
the weak consistency condition and let ¢, > 0. Foreachk e K — K, = K’
let f be the restriction of f, to the polyhedral convex set

P, = {x sP|f;,(x) S Mo + Eofork SInKoa:ndfk(x) S Eoforszf\Ko}’

and let (B’) be the convex program defined by P/, {f; |k e K'}, I’ = I — K, ,
J' = J — K, . Lemma 4 implies that P’ is non-empty and (P’) is weakly
consistent. By Lemma 2b, any direction in which P’ is unbounded and all
the f , k ¢ K', are non-increasing is a direction in which P is unbounded and all
the i , £ ¢ K, are non-increasing. It follows that (') satisfies the asymptotic
regularity condition with K} = ¢, so that (P’) has a solution & and a finite
minimum g by hypothesis. We shall show that & can be modified into a
solution to the original problem (%B).

Fix any k, ¢ K, . Since f,, is affine and K, is minimal, there exists a direction
u; # 0 in which P is unbounded and all the f; , k& € K, are non-increasing, and
fe.( + Muy) is uniformly strictly decreasing in A > 0. Now choose N, > 0
large enough that f. (& + Mw) < @ if &k, e In Ky, or f, (& + Mw) < 0if
ke JAnKy. Set & = & 4+ Mu, . Then

ZieP and fu(@) < fi(@) forall keK,

which implies in particular that Z{ is another solution to (’). Now, however,
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we have f, (&) < @if ky wasin I Ko , or fi, (&) < 0if k; wasin J~ K, . Next
choose another k. ¢ K, and repeat the same process, replacing ] by Z, ete.
Since K, is finite, one eventually obtains a solution & to (PB’) such that,

@) <@ for kel K, and f.(2) <0 for ke JrKo .

This £ satisfies the constraints of the original problem ($) and has {(z) < &@'.
Thus (P) is consistent and g < f(£) < @ < o, where g is the infimum of f
in (B). But g > g if anything, by the definition of (B’). Hence & is a solution
to (P). '

Lemma 6. If all weakly consistent convex programs, such that there is mo
non-zero direction in which the set is unbounded and all the functions are non-
tncreasing, have solutions, then all weakly consistent convex programs which satisfy
Definition 3 with K, = ¢ have solutions.

Proof. Let (PB) be a weakly consistent, convex program of the latter sort,
i.e. such that

(3.3) every direction in which P is unbounded and all f, are non-
increasing is a direction in which all the f, are constant.

It will be shown that () is “equivalent” to a problem (P’) of the first sort.
Let A(P) be the set of directions in which P is unbounded, and let A(f;) be
the set of 4 ¢ A(P) for which f, is non-increasing. Let

Ao = m;,A(fk),M= {v —ulvsAo,ueAg}.

Then A4, is a non-empty closed convex cone in B* by Lemma 2a, and M is the
subspace generated by 4, . Let M’ be a subspace complementary to M, i.e. a
subspace of R" such that

MM = {0}, M + M’ = R".

(C; + C, will denote the set of all sums z, + z, for 2, ¢ C; and z, ¢ C, .) Let
P’ be the projection of P into M’, i.e. P’ = M’ (M + P). Actually,

(3.4 P ={x'eM |2’ +ueP forsome wue A}

by definition of M/, inasmuch asz’ +u = (' +u —v) + v e P whenz' + u —
vePandved,C A(P). Itisevident from the characterization of a polyhedral
convex set as the ‘““‘convex hull of finitely many points and rays” [7] that M + P
is polyhedral and A(M + P) = M + A(P). Hence P’ is a (non-empty) poly-
hedral convex set in R” and, using (3.2)

(3.5) AP") = AM'~(M + P)) = AM)AM + P) = M'~(M + A(P)).
Now, for each 2’ e P’ and k ¢ K, let
(3.6) filx’) = fu(e’ +u) where ue Ao, 2’ +uelP.

We shall show f7 is a well-defined l.s.c. convex function on P’.
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Suppose first that &’ + u, ¢ P and 2’ -+ uy e-Pforu, e Agandu, e Ay . Then
2 + u, 4 u, e P, since A, & A(P). Also, u; and u, are directions in which f,
is constant by (3.3). Hence '

f@’ + w) = fila’ +w + w) = file’ + ua).

This demonstrates that the definition of f/ is unambiguous, i.e. that f(z') does
not depend on the particular « chosen in (3.6). Of course, {7 is defined on all
of P’ by (3.4). To prove f}is Ls.c. convex on P/, it is enough, in view of Lemma 1,
to prove f/ is Ls.c. convex on each line segment in P’. Let 2’ ¢ P’ and y' ¢ P'.
Choose u, ¢ A, and u, & A, such that 2’ + u; ¢ P and 4’ -+ u. £ P, as is possible
by (3.4). Letu = u; + us. Thenuedo, 2’ +u=2zePandy +u=yeP,
because A, is a convex cone and 4, & A(P). Moreover

3.7 fle’ + (1= Ny) = fildz + (1 —Ny) for 0<N< 1

by Definition (3.6). Since f; is Ls.c. convex on P, the right side of (3.7) is
l.s.c. convex in \; hence the left side is also.

Let (P’) be the convex program corresponding to P’ and {fi | k ¢ K}, with
I and J as in (P). The weak consistency of (P’) follows from that of (P).
Indeed, suppose x ¢ P satisfies (2.5), and choose any u & A, such that x — u =
2’ ¢ P'. (This is possible by (3.4), P’ being the projection of P into M ’.) Then
fi(@’) = fu(x) for all k by definition (3.6), so 2’ ¢ P’ satisfies (2.5) with f, replaced
by f, . A similar argument proves that (PB) has a solution if (P’) has a solution.

Suppose now that u’ is a direction in which P’ is unbounded and all the f]
are non-increasing. We shall show that ' = 0. This will finish the proof
of Lemma 6, because, by the hypothesis, then ($’) (and hence ()) has a solution.
According to (3.5) and the definition of M we have

3.8 weM uw =v—u-+w, where vedouedowe A(P).

Take any x e P. Choose u, € A, such that x — u, = 2’ ¢ P’. Thenforeach X\ > 0
(3.9) (@ + W) + @ + M) =z -+ A + ),

where u, + M e Ao and o' + u = v + w & A(P), because 4, and A(P) are
convex cones and 4, C A(P). From (3.9) and Definition (3.6) we now get

(3.10) fi@’ + W) = fulx + M’ + w) forall A >0 and keK.
(The two sides are defined for all X > 0 since o eP u e AP),zeP,u +ue
A(P).) But« is by assumption a direction in which every f! is non-increasing,
so (3.10) and the arbitrary choice of z imply 4’ -+ wu is a direction in which
every f, is non-increasing. Thus v’ + u e Aoand v = (W + u) —uelM.
But %’ ¢ M’ by (3.8),sou’ e M'AM = {0}. '
Temma 7. Let (B) be a conver program such thal there is no direction w # 0
in which P is unbounded and every f, is non-increasing. If () is weakly con-
sistent, then () has a solution.

Proof. Consider the family of sets Cz = Ci.,. defined in Lemma 4. Lemma
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2b implies that A(Cy,...) S A(fs). Hence,"aééording to our hypothesis,

(3.11) MeACr) S MNA®f) = {0},
For each k& ¢ K let Az be the intersection of A(C7) with the unit sphere
{z | ||lz]| = 1} (in some norm). The A(Cy) are closed cones by the corollary

to Lemma 2, so {Az | k ¢ K} is a collection of compact sets having an empty
intersection. According to a standard compactness argument, there must

exist £y , -+- , k, in K such that Ag, , --+ , Az, have-an empty intersection.
Thus <. '
(3-12) A(CE,)n e r\A(CE) = {0}

For each k& ¢ K let
Cé = CEACZ,A e nCE,- .

From Lemma 4 we know that the C% are non-empty, in fact every finite sub-
collection of {C% | k & K} has a non-empty intersection. Moreover, the C% are
all compact by Lemma 3, (3.2), and (3.12). The same fact about compactness
used above now implies the existence of some £ such that

ZTeMzCt = MNiCs.

Such an Z is a solution to () by Lemma 4.

Proof of Theorem 1. The chain of Lemmas 5, 6 and 7 says that every weakly
consistent asymptotically regular convex program has a solution. The second
assertion of Theorem 1 is contained in Lemma 4.

4, Inequalities and Lagrange multipliers. The rest of the paper is devoted
to deducing consequences of Theorem 1. We begin by showing to what degree
the familiar Lagrange multiplier theory for ordinary convex programs [14] is
true for the more general problems ().

TueoreM 2. Suppose the convex program (P) is asymptotically regular.
Let 7 = « if (B) is not consistent; otherwise let & be the finite minimum in (P)
guaranteed by Theorem 1. Then i > « ¢ R if and only if there exist 4, , --- , 2,
infandj;, -+ ,j inJ with 1 < r 4+ s < n + 1, and “Lagrange multipliers”
(4.1) )\i, > 0, s y)\i.- > 0,)\,‘, > Oy b ,)‘i. > 0:)\1'1 + e _I_}\i,- = la

such that

4.2 PNofo@ + - F A L@+ M@+ o+ M@ > @
for all z & P. '

(It is permissible here that either r = 0 or s = 0, but not both; in the first case,
the summation condition naturally has to be omitted in (4.1). This degenerate
case can not arise if the constraints in () can be satisfied.)

Proof. By Theorem 1 and Definition 2, g > « if and only if, for some ¢ > 0,
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there exists a subset K, of K contalmng n —I— 1 indices or less, such that the
system of inequalities

4.3) filx) —a— e 0 for kel-K,,filr) —e <0 for IchnK1
has no solution in P Let
C={zeP|ffr) < » forall keK,}.

This is a convex set. In particular, the version.of (4.3) with strict inequalities.
could have no solution in C. If C 5 ¢, it follows from a theorem of Fan Glicks-
berg and Hoffman [6, Theorem 1] that
(4.4) > wli@® —a—9+ Z w(fu(@) — € 20

: kel K1’ ked AK1'
for all z ¢ C, where the u; are certain positive real numbers and K/ is some
non-empty subset of K, . Actually (4.4) holds on all of P, since the left side is
unambiguously + o for z in P but not in C. If C = ¢, (4.4) is true in the
same way for K/ = K, and arbitrary p; > 0. Now if I K! # ¢, let u, be
the sum of the u; for k ¢ In K] and let N\, = p,/u, for each k ¢ K/ . Setting
InK! = {4y, -+ ,4}and Jn K, = {ji, --- , j.}, we then have (4.1), and
we get (4.2) from (4.4). On the other hand, if I,K{ = ¢, no vector = can
satisfy the constraints of (P), since the left side of (4.4) would be negative for
such vectors. In this case let N;, = Au;, forl =1, --+ | s, where A > 0 is large
enough so that \ ¢ (u;, + --- + u;,) > @ Then (4.2) follows once more from
4.4).

CoroLLARY 1. Suppose (PB) is an asymptotically” regular convex program
whose constraints can be satisfied. Let Q be the convex subset of R consisting of
ally = {\ > 0| k e K} with \, = 0 for all but finitely many k, \; > 0 for at
least one 7 ¢ I, EM N, = 1. Let

(4.5) L(z,y) = EI Afi(@) + ZJ ij(x)
for each x ¢ P and y ¢ Q, using the convention 0 = 0. Then
(4.6) inf sup L(z, ) = g = sup inf L(z, y)

zeP yeQ yeQ zeP

with & as in Theorem 2.

Proof. sup{L(z,y) | y ¢ Q} equals j(z) when z satisfies the constraints of (),
but equals + < otherwise. This implies the first half of (4.6). Theorem 2
gives the second half.

The conclusion of Corollary 1 appears to be true even when the constraints
of (PB) can not be satisfied, but we have omitted the proof because of its length.

CoroLLARY 2. Let {f; | j &€ J} be a finite or infinite collection of l.s.c. convex
functions on R". Assume there exixts a finite (permissibly empty) affine subcol-
lection {f; | j & Jo}, such that there are no directions in which f; is non-increasing
for all j € J, except perhaps for directions in which all the f; for j ¢ J — J, are
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constant. Then either the system of inequalities

4.7 fi@) <0 forall jedJ, where xeR",

has a solution, or there exist §, , -+ ,joinJ and N;;, > 0; -+« \;, > 0,1 < s <
n + 1, such that '

4.8 Nofo@ 4 o+ Afn@ >e>0 for all zeR".

(The alternatives are mutually exclusive.) .

Proof. Define (PB) as in Example 5, with P = R" Then (P) is asymptotically
regular. Take 7 as in Theorem 2. If g < 0, (4.7) has a solution by Theorem 1.
If g > 0, (4.8) follows from Theorem 2.

Theorem 2 extends the results of Bohnenblust, Karlin and Shapley [2] and
Fenchel [7] referred to in the introduction. Both apply to the case where
I =K,J = ¢and P = R". The first concerns f;, which are all - « outside of a
certain compact set C £ ¢ where they are finite and continuous. The second
requires that the set of points z for which « > sup{fi(z) |k e K = I} = f(x)
be non-empty and bounded. Both results follow from Theorem 2, because the
asymptotic regularity condition is then satisfied trivially, there being no infinite
ray along which the f, are all even finite. Fenchel also showed [7; 100] that his
boundedness hypothesis would be satisfied when the (closures of the) non-empty
convex sets C, = {z | f(x) < =} are not all unbounded in some single non-zero
direction. (In this event, finitely many of the C, have a bounded intersection;
see the proof of Lemma 7.) )

The results in this section are complementary to those in [6], which deal
with finite collections of convex functions on spaces of arbitrary dimension,
and (roughly speaking) have strict inequalities wherever we have weak inequal-
ities, and vice versa.

5. A new minimax theorem. Let L(z, y) be a real-valued function defined
on ¢ X Din R* X R™, where C and D are non-empty convex sets, such that L
is convex on C for each y £ D and concave on D for z ¢ C. Assume also that
L is completely closed in the sense that {x « C' | L(z, y) < u} is closed in R" for
eachyeDand p e R, and {y ¢ D | L(z, y) > u} is closed in R™ for each z £ C
and p ¢ B. (This is always true, in particular, when C and D are closed and L
is continuous in each argument.)

Let P and @ be non-empty polyhedral convex sets in R” and R™ respectively,
with P~ C 5% ¢ and @~ D 7 ¢. It is elementary that
5.1) inf sup L(z,y) > sup inf L(z,y)

zeP~C yeQAD y2QnD zeP~C
(see [12; 22]). The two sides of (5.1) are finite, equal and attained, if and
only if there exist & ¢ P~ C and § & @~ D with

(5.2) L(x,9 > LE&,9) > L&, y) forall zeP~C and yeQ~D
Such a pair (Z, §) is called a saddle-point of L.



394 R. T. ROCKAFELLAR

It is known that a saddle-point always exists when P, C and Q~ D are
compact. (See the generalizations of the von Neumann minimax theorem proved
by Kakutani [11] and Sion [17].) Our aim here is to extend this theorem to the
non-compact case using a condition suggested by the results in prev1ous sections
of this paper.

Drrinition 5. We shall say L s asymptotwally regular relative to Pp C"
and Q~ D if L has the following dual propertles

(a) the only infinite rays {x + M | A > 0} contained in P~ C, along which
all the {f, | y € @~ D, f,(x) = L(z, )} are non-increasing, are those rays along
which all the f, are constant, and for which the intersection of the line
{t + M| — ® < A < «} with P is contained in its intersection with C;

(b) the only infinite rays {y + A | A > 0} contained in @ D, along which
all the {g. | ¢ ¢ P~ C, g.(y) = L(z, y)} are non-decreasing, are those rays
along which all the g, are constant, and for which the intersection of the line
{y + M| — o< N < o} with Q is contained in its intersection with D.

Remark. This asymptotic regularity condition is always satisfied, of course,
when there are no infinite rays in P~ C along which all the f, are non-increasing,
and no infinite rays in Q~ D along which all the g, are non-decreasing. This
is true in particular when P~ C and Q~ D are bounded, as in the minimax
results cited above. When P and @ are contained in the closures of P~ C
and @ D, the linear intersection condition may be omitted (assuming that L
is completely closed). :

TurOREM 3. Let L be completely closed convex-concave on C X D as described
above, and suppose L ts asymptotically regular relative to P~ C and @~ D. Then L
has a saddle-point (&, ) relative to Pn C and Q~ D

Proof. Let ay and B, be the values of the two extrema in (5.1), © >a, >
Bo = — . We shall show that a, < B0 if ay > — «, and that the “inf”’ on the
left side (5.1) is finite and attained at some Z if oy < . This will be enough
to prove the theorem. Indeed, by a dual argument we would have o, < B, if
Bo < o, and the “sup’” on the right side of (5.1) would be finite and attained
at some 7 if 8, > — . By combining these results with the fact that ay > 8o,
we could then conclude that © >ay = B, > — «, and that both the ‘inf”
and “sup’’ are attained at & and 7, respectively. This (£, ) would be a saddle-
point (see [12; 23]).

For each y € Q~ D, assign f, the value 4 «won P outside of C .(with f, as
in Definition 4). Then {f, |y e @~ D = K} is a collection of 1.s.c. convex functions
on R" which, together with P, defines an asymptotically regular convex program
(B) forI = K, J = ¢. (cf. Lemma 2b and Corollary 2’ to Theorem 1.) Also,
a, is the @ in Theorem 2. Hence the “inf” on the left side of (5.1) is attained
at some £ by Theorem 1 if ¢y < . On the other hand, suppose ay > o ¢ .
By Theorem 2 there then exist y; , +++ , ¥, in @~ Dand Ay > 0, -++ ;N\, >0
with A\, + --- 4+ A, = 1, such that Y \.f,,(z) > aforallz ¢ P. By the definition
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of f, and the concavity of L in y, we now have
a < 2 NLx, y) < Lix, 1) for all " xePAC,.

where yo = Mty + -+ + ANy, Q~D. This says that « < 8, . Thus 8o > a
whenever a, > a ¢ B, 50 g = Bo if g > — . '

6. Finite convex programs. We shall now illustrate some of our results by
specializing them to a case of particular interest.

Tarorem 4. Let fi , =+ , fr and g, -+ , g, be continuous finite
convex functions on a non-empty polyhedral convex set P in R", and let goe1y ** 5 Gs
be affine (r > 1,t > s > 0). Assume that:

(a) the only infinite rays {x + Mu | N = 0} n P along which all the f. and g; are
non-increasing for 1 <1 <rand1 < j < (, are those along which the f; and g; are
constant for 1 < ¢ < randl <j <s;

(b) there exists some x in the relative interior of P such that

(6.1) g(@) <0, -, g <0, goal@ <0, -, gt(x) < 0.

(The relative interior of P is ils interior in the smallest linear manifold containing it.)

Then the convex program
(Bo)  mingmize max {f(x), -, f.(x)} subject to the
constrainis: x € P, gi(x) <0, +--, g.(x) <0

has at least one solution &. Moreover, let
Q=1{y=0,  Asm, o u)eRT N 20,200 Foo =13,
L y) = SALE + X mgi@) for zeP and yeQ.
Then % ¢ P is a solution to (Po) if and only if there exists some § e Q such that
Lz, §) > L& §) > L@&,y) forall zeP and ye@,
where L(Z, §) = & is the minimum in (Po).

Proof. For C = Pand D = Q, assumptions (a) and (b) actually guarantee
that the hypothesis of Theorem 3 is satisfied; Theorem 4 can then be derived
easily from Theorem 3. Rather than verify this, however, we shall take a
somewhat different approach. ($,) is a consistent asymptotically regular
convex program by (a) and (b) (cf. Lemma 2b), and hence it has a solution £ by
Theorem 1. The “inf sup” of L is finite and attained at 7, as pointed out in the
proof of Corollary 1 to Theorem 2. Theorem 4 will therefore follow from the same
corollary, as soon as we prove that the (finite) “sup inf” of L is attained at
some 7 ¢ Q. By Theorem 1, it is enough to show that the consistent convex
program (), in which supremum of the collection of (convex, actually linear)
functions

{h. I zeP, h(y) = — Z Nifi(x) — Z 1:9;(x) }
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is minimized on @, is asymptotically regular. Suppose, therefore, that v is a
direction in which @ is unbounded and all the h, , z ¢ P, are non-increasing.
Thenv = (0, -+, 0,7, ---,»,) where each»; > 0and 0 < 2 »,9:(z) = g(z)
for all z e P. Since (6.1) can be satisfied, we must havey; = 0forj= 1, --- , s.
Hence ¢ is affine. But (6.1) can actually be satisfied by some z in the relative
interior of P, so the non-negative affine function g vanishes at-a relative interior
point of the convex set P. Therefore 0 = g(x) = > v.gi(x) for all z & P. This
implies v is a direction in which all the h, , z € P, are constant, and finishes the
proof. s '

Ghouila-Houri [1; 83] proved the minimax criterion in Theorem 4 for the
case where P = R" and r = 1, under assumption (b). A similar theorem of
Karlin [12; 201] applies even to non-polyhedral P under (b), provided { = s
(i.e. provided all inequalities can be satisfied strictly). The original theorem
of this type is, of course, due to Kuhn and Tucker [14]. None of these authors
supplies a criterion for the existence of a solution to (PB,) (other than compactness
of the non-empty set of vectors satisfying the constraints, say, or the minimax
criterion itself).
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