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IIELLY'S THEOREM AND MINIMA OF CONVEX TUTICTTONS

Bv R. T. Rocrerpr,r,en

1. Introduction. The object of this paper is to prove an existence theorem
for solutions to a very general class of constrained and unconstrained minimi-
zation problems involving convex functions on R'. This theorem is in effect
an extension of the classical theorem of Helly, according to which an infinite
collectibn of compact convex sets in R" has a nonempty intersection if every
n * I of the sets have a point in common. (For the general literature on
Helly's theorem see the expository article by Danzer, Griinbaum and Klee in
Corwerity, Proceedings of the Symposium in Pure Mathematics, vol. YI,
American Mathematical Society, 1963.)

The idea of extending Helly's theorem to convex functions is not new; such
extensions have been given by Bohnenblust, Karlin and Shapley [2; 185] (dis-
cussed also in [13]) and by Fenchel in his 1953 lecture notes [7; 96-101]. Both
of these, however, are limited essentially to collections of convex functions on a
bounded convex set. Our theorem does not have this limitation, and hence it
can be used both in the compact case and in the theory oi convex programming,
where compactness is usually too severe a restriction. It implies, for instance,
that a polynomial convex function achieves a minimum.on any polyhedral
convex set where it is bounded below, a result obtained in the quadratic case
by Frank and Wolfe [8]. Yet at the same time it contains, in a direct way, a new
generalization of Helly's Theorem in which the sets and their intersections can
sometimes all be unbounded.

Our principal device is to replace compactness, wherever this might otherwise
be necessary, by "asymptotic regularity conditions" which restrict behavior
along certain infinite rays which might be present. This was suggested by
Fenchel's work with the asymptotic cones of convex sets [7, 42-44 and 99-101].

Besides applying the existence theorem to ordinary convex programs, we
shall derive from it results in the theory of inequalities and Lagrange multipliers
complementary to those in [6]. A new general version of von Neumann's
minimax theorem, not requiring compactness, will also be deduced.

2. Existence theorem. Throughout this paper P will denote a non-empty
polyhedral convex set in R", i.e. a set which can be represented as the inter-
section of finitely many closed half-spaces. The choices of P we have most in
mind are: /?" itself, the "non-negative orthant" of n", the unit simplex, the
product of n, closed intervals of E, or some combination of these, such as the
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setof r: ({,, ...,A>withfu ) Ofori: l; "',sandls + "'* {,: 1,

r1s1n.
A function / on P with values in (- -, 1- -] is conuer tf

(2.1) l(rr * (1 - r)y) < r/(r) + (r - r)/(v)

whenever r e P, Y e P,O < I < 1.

Tt is affine if equality always holds in (2.1). It. iS lower semi-csntinuols (.s.c.) if
all its (sub-) level sets

(2.2) lreP lf(x) < pl, where pen,

are closed. A convex function f on a conYex subset C of P can be extended

convexly to all of P by assigning I the value * - at points of P not in C' The

extension is l.s.c., in particular, when C is closed and I is continuous (or l.s.c.)

on C.
Let C be a non-empty closed convex subset of P. 'we say u I R" is a direction

in which c ,is unbotmd,ed, 1f. lr * \u I x > 0) is contained in c for all

u e C. (,,Direction,', as we shall use the term here, is hardly more than a sug-

gestive synonym for t'vectort'; we do nol assume u is normalized, and, in par-

iicular, the ,,trivial direction" u : 0 is admitted.) It u is a direction in which C

isunbounded,andif actuallytheintersectionof {rt l" I - o ( tr ( o }withP
is"contained in C for eYery r e C, we say a is a direcLion in which C is a linear

relat'iue to P.
Let I be l.s.c. convex on P and let z be a direction in which P is unbounded.

We say z is a d,irection in which f is non-increasing (respectively constant) f
f(r * Iz) is a non-increasing (respectively constant) function of tr 2 0 for
every r e P.

Exeupr,n 1. Let C be a non-empty closed convex subset of P and let I be

either the indicator function of C

(2.3) 6(rlC):0 il reC,6(r lO: - if ntc,
or the d'istonce lunction of C

(2.4) p(rlC): min {ll, - zlllzeCl

(for any norm). Then I is l.s.c. convex on P. Moreover, the directions in

which i is nott-increasing (respectively constant) are precisely the directions

in which C is unbounded (respectively linear relative to P)'

Exeupr,r 2. If P is the last of the sets described in the initial paragraph

of this section, then z : (rl, , ... , T,l is a direction in which P is unbounded

if andonlyif tt,t: Afori:1,"', randqi ) 0for i: r* 1, "',8' In
general, if P isthe set of vectors o such Lhat (ai, r) 2 oi for i : 1, "', l (where
"o, 

. R, a; e R* and (oi , r) is the scalar product), then the directions in which P
is unbounded are the vectors ?, such thal (a; , u) )- 0 for j : l, "' , t'
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Exeupr,n 3. Suppose I is a finite convbx function which can be extended

differentiably to a neighborhood of P. Let Vl(r) ddnote the gradient of f at x.
The directions in which f is non-increasing (respectively constant) are then
the directions z in which P is unbounded and (Vl(r), u) < 0 (respectively
(Y!(*),u) : 0) for all r e P.

DprrNrrroN 1. A conaer progra?n (at least for present purposes) is a problem

of the form i

(p) minimize f(r) : sup{ln(r) | i e Il subject to the constraints: r e P
and /;(*) ( 0 for all i eJ,

where lfrlk eK:Iv,I| isa (finite orinfinite) partitionedcollectionof l.s.c.

convex functions on P (with I^J : 6,1 * Q).

If the constraints of ($) can be satisfied by at least one r for which I(r) I -,
we say (p) is corusfst ent. A.vector r is a solution to (p) if r satisfies the constraints,

f(E) : F < @, and l(r) ) p > - - for every r satisfying the constraints.

Dprryruol1 2. The convex program ($) is weakly consistent if there exists

at least one p e R such that, for all e ) 0 and for every subset K' of K containing
n * I indices or less, the finite system of inequalities

(2.5) fo(r)<-p:-.r- for ixlaK, and fn(z)(e for ieJnKr
is satisfied by at least one r e P. (Note that consistency implies weak con-

sistency.)

Exerrpr,n 4. Let lC t I i x Il be a finite or hfinite collection of closed convex

subsets of P, and for each i e I let f u@) : a(r I C') (see (2.3)). Then ($), for
K : I, J : 6, is the problem of finding a point common to all the C; . Solutions

exist if and only if (p) is consistent. On the other hand, ($) is weakly consistent
if and only if e.very n * 1 of the C; have a point in common.

Exe.rr,rpr,p 5. LeL If t I i . Jl be a finite or infinite collection of l.s.c. convex

functions on P. Let K : {0}v.f, / : {0}, where 16 is identically zero. Then
(S) is consistent whenever the system of inequalities

(2.6) !,(*)<0 forall i"J
has a solution in P, and such solutions are the solutions of (p). It is weakly
consistent if merely every subsystem of the form

(2.7) l,,(r)(e for l:1,"',s, where e )0,s(n *l,i1eJ,
has a solution in P.

DnFnurroN 3. The convex program (s$) is asymptoticallE regular if there

arenodirectionsinwhichPisunbounded atdallltLeft,keK,arenon-increasing,
except perhaps for directions in which all the f r f.ot k e K - Ko are constant,

where the exceptional set of indices Ko is allowed to be any fihite (or empty)

subset of K selected in advance (i.e. independent of the direction), such that
Ko P. I and 16 is a'fr'ne for all It e Ko .
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If r satisfies the constraints of (F) with l(r) 4 o, and r,c * 0 is a direction
in which P is unbounded and all the fp are non-increasing,.then every point of
the infinite ray {r * kz I f > 0} also satisfi.es the constraints, and I is non-
increasing along this ray. The asymptotic regularity condition,ensures that I
achieve a minimum along every such special ray. The condition really ensures
much more than this, as we shall see in a moment.

Exeupr,r 6. Suppose that {fi | k x Kl is a finite collection of affine functions,
and that ($) is consistent. Then (F) is asJ'mptotically regular if and only if
there does not exist an infinite ray lr f Iz I X > 0) of points, all satisfying the
constraints, along which I is (uniforml5z strictly) decreasing.

Exeupr,n 7. An ordinary linear or quadratic program (see [4], [12]) is
asymptotically regular if and only if the constraints of its duq,l can be satisfied.
(This may be proved by applying the Lemma of Farkas to the system consisting
of the constraints of (S) and the inequalities obtained from the asymptotic
regularity condition; cf. Example 3.)

Our general existence theorem for convex programs will now be stated.

Tsnonpu 1. 4 (F) is weakly consistent and, asymptotically regular, then ($)
is consistent qnd has q,t least one solution. Moreouer, the m'inimum in ($) is
then the smallest of the real numbers p for which the weak consistency condition
con be sati,sfi.ed.

The proof of Theorem 1 will be given in the next section. Observe that
Theorem 1 leads immediately to the following extension of Helly's Theorem.

Conor,r,eny 1. Let lC; I i e Il be any rt.nite or inf.nite collection ol non-empty
closeil conaer subsets of a polghedral canuer set P. Suppose there are no directions
in which all the C, are u,nbounded, ercept perhaps f or directions ,in which they are
all linear relatiue to P. It euery n + I of the C; haue a point i,n common, then
there erists a itoint conxman, to all the C; . The assumpt'ion that euerA n I I ol the
C; haue a point in common cain enen be weakened, to the 'f ollowing; f or euery e ) 0
and lil t "' ti,l c I,r 1n I l,thereeristsapo'intwhosedistancelrorneach
of the sets Cr, , . . . , Cn, does not erceed e.

Proof . The first part is obvious froin Examples 1 and 4. The e version can
be obtained by applying Theorem 1 instead to Example 5 in the case of the
distance functions Q.$ ot the sets.

If we keep the first two sentences of Corollary 1 and assume that

sup{p(rlC.,)li e1} < -
for at least one I I P, we can still conclude the existence of. a prorimity point
U,5; 2a81for {C, I i e Il,i.e. a point for which sup {p(r I C,) | i e 1} is minimal.
This is proved by applying Theorem I to ($) with l,(r) : p(rl C), J : 6.
This result and the e part of Corollary I are new even for finite collections of
convex sets.
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Corollary 1 extends Fenchel's version t?jiOfl of Helly's theorem, which says
that a collection of non-empty closed convex sets in .8" has a'non-empty inter-
section if every ra f 1 sets have a point in coulmon and there is no direction u # 0
in which all the sets are unbounded. Fenchel's hypothesis implies that some
finite sub-collection has a (non-empty) compact intersection (see the proof of
Lemma 7 in the next section).

Specializing Theorem I to the case where lf r I k r K| consists of a single
function, we have

Conor,r,env 2. Let 'f be l.s.c. conuer on P and not identicallA * -. If f is
constant'in euery direction in which P is unbounded and ! is nan-increasing, thm t
ach'ieues a (finite) min'im,um cn P.

It is very important here to understand the role of f - as a value of f.
Although it would seem that Corollary 2 is applicable only to minimization
problems on polyhedral convex sets, this is not really true. Indeed, it contains
the following result in particular.

Conor,r,eny 2'. Let g be a cont'inuous (or Ls.c.) f,nite-ualued conuen function
uL a nan-enxpty closed conaet subset C of P. Suppose there ure no direchons u * O

in which C is u,nbounded, and g is nan-increas'ing along the infi,nite ray
lr * \u I X > 0) lor euery r eC, erceptperhapstor d,irectionsinwhi,chC islinear
relatiue to P ond g is constant along all the infi,nite rags'in question. Then g achieaes

aminimum on C.

Proof. Lef f(r): g(r) whenc eC,f(r): o whenrePbut x{C,and
apply Corollary 2 to the equivalent problem of minimizing t on P.

One might suppose that "constant" could be replaced by "eventually
constant" in Corollary 2'. Tbe assertion would then be false, as is shown for
C: P: R"by

s@): Q(t',t): t' + min {(f' - n,)'+ (f, - n")" ln"> ,fi1.

This is a continuously difrerentiable corwer tunction whi,ch achieues a m,in'imum
along each indiui.dual line in R', and yet is not euen botm,iled, betow. Another
example in R' shows why, for the directions in question, C has to be linear
relative to P (or something like it). Let P : {(€' , €,) I {, > 01,

C : l(E,, t).P I E,€, ) 1), s(t,, f,) : f,.
The infinite rays in C along which g is non-increasing are of form

l\t',t"*I,r,)lr>01,
where nz ) 0 and g, > l/t, ) 0. Along each such ray g is constant, but g does
not achieve a minimum on C.

As anticipated in the introduction, Corollary 2 implies that a quadratic convex
function I achieves a minimum on any polyhedral convex set P where it is
bounded below. This is true because such a function is affine on any infinite
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ray along which it is non-increasing. The author is gratefui to the referee for
pointing out that this result is still valid, for the same reasons, if I is any poly-
nomial function which is convex on P.

3. Proof of existence theorem. We shall break the proof down into a series

of lemmas, the first three of which have independent interest.

Lolru,t 1. Let C be a non-ernpty'ponuer set in R" an'd let g be a conuer function
on C with aalues'in (- -, -1. Then g.fs l.s.c.. on C if and only if g isl.s.c. along
eachlinesegment {},2 * (1 - r)y l0 < x < ll inc.

Proof. Foreach prxR,letCu: lreClg(r) < pl. EachC*isaconvexset,
and g is l.s.c. on C if and only if all the Cu are closed in the relative topology on C.

When the latter is true, then the intersection of a line segment in C with each, C u

is closed, so g is Ls.c. along every such segment. On the other hand, take any
p e R with C u I 6 and suppose the intersection of Cu with each line segment in C
is closed. We shall show that then C, is closed in the relative topology of C;
this will prove the lemma. Let r be any point in C belonging to the closure
of. C u . Choose an interior point y of C, relative to the smallest linear manifold
in,R" containing Cu. (Such a point of y exists because C, + 6; see [5; 16]).
ThenXr + (1 - )t)y xCofor0 ( I < 1 (see [5; 9]), so r x Cuby our suppo-
sition.

Lorrue 2. Let g be l.s.c. conuer on P qnd let A(g) be the set of d,irections in
which P is unbounded and g is non-increas'ing. Then

(a) A(il is anon-em,pty closed, conl)er cone'in R", i.e. A(g) is closeil,0 e A(g),
qnd,L \;ui e A(g) wheneuer trr ) 0 and, ui t A(il;

(b) in order that u x A(g), it is sufficient that there enist one ro e P ond, p,J e B,
such that ro t )w e P and, g(ro I Iz) ( pofor aII\ > 0.

Proof. (a). It is clear from the definition of. A(g) that 0 e A(g), and that
)w eA(g) whenz "A(il and\ ) 0. If u, eA(g) andu,eA(g) then,foreach
xePand tr ) 0,r * tr(u' J-ur): (r * Iz') *tru, : r'*)ru"xP,fr'eP,
so r,rr * u, is a direction in which P is unbounded. Also, for each r e P and
tr, ) tr, ) Owehave

g(r*)t(u, lu")) < S@+ I,u, * tr,2,) ( Q@*\,(u' +u,)),
so u, * u, is a direction in which g is non-increasing. To show .4(g) is closed,

suppose ul e A(g)for j : 1,2, "', and limi ui : u. Let r eP and l > 0.

Then r * lz : lim; {r * Iz;} e P since r * },ui e P for all i (polyhedral
convex sets being closed by definition), and by lower semi-continuity

g(r -f \u) ( lim inf , g(r f fz,'; < s@).

Hence for each r t P ar'd trr > tr2 > 0,

(s.t; s(r*\,,u): s@i)\u* (I, - I)rz) 3 g@*\,u).
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"i

Thus z e A(il.
(b). Let ro and po have the property described. Let, r tP and i > O. Then,

for0 ( tr'( 1,

(1 - I)(r * Iz) * tr'(ro * Iz) : (1 - tr')r * tr'(ro ! (\,/\t)u) eP,

9((1 - r')(r * rrr) + r'(r, * rz) ( (1 - r')s(r) * tr'po.

SincePisclosed andgisl.s.c., itfollows Lhata f },z €Pand g(r* )\u) < S@).
This shows lhat u is a direction in which P is unborinded and g is non-increasing
(the latter by the argument in (3.1)), so u t A(g).

Conor,r,env. Let C # g be a closeil conuer set,in R" and let A(Q be the set of
d,irect'ions in which C is u,nboundnd^ Then A(C) is a non-empty closed, connen
cone,ondueA(C)whmeuer lr*\u lX > 0l CCIoranerxC. Furthermore.

(3.2) A(AIC) : A.A(C) if AnC, 4 6,

when lC; I i e Il is a collect:ion of closed, conue& sets in R".

Proof . Apply Lemma 2 to P : R" and the indicator function (2.8) of C to
obtain the first statement. Equation (3.2) is easy to deduce from this.

Stoker [18] calls A(C) lhe characteristic cone of C, while Fenchel [7; a2a6l
calls it the asymptotic cone. The first part of the corollary, and the next,
lemma, were proved essentially in [18], but not in a form convenient enough
for the present context.

Lniulle 3. Il C is a non-empty closed, conuer set in R", then C is compact if
and onty if A(C) : {0}.

Proof . Obviously A(C) + {0} implies C is not compact. Conversely, if C
is not compact, thereexists a sequence nr t ez t '.. , in C suchthat llrrllincreases
without bound (given any particular norm). Choosing a subsequence il neces-.
sary, we have

lim, (r;/llr,ll) : u, llull : 1.

We shall show that u e A(C). Since z # 0, this will complete the proof. Let
H : lr I @, *) ( a] be any closed half-space containing C. Let r x H and
I > 0. Then

(a, r * trz) : (o, tr) + I lim' [(o, r,)/llr ll]
( a(l * x limo 0/llrll)) : '

because r; eH and llr,ll increases without bound. Thus r f tra e y'1 whenever
r e H and I > 0. Since C is the intersection of all the closed half-spaces con-
taining it (by a standard separation theorem), this implies u e A(C).

We proceed now with the proof of Theorem 1 itself.

Lpnue 4. Suppose (S) ?s wealtly consistent, ond, let F be the infi.mum of the
realnumbers pforwhichtheweak consistency condittionis satisfied,, - ) p- ) - o.
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R : tE : (k, p,e) | ke K,F <peE,0 ( e],

and,loreachExRlet

C6: {reP lfr(r) < p + el i,fkeI, orCv: {rxP lf^(r) < cl i! ke J.
Then lCv I E e Rl is a collect;ion ol elosed conaer subsets of P such that euery fi,nite
sub-collecttian has a non-empty intersection. I1i[oreouer, * is a soluttion to (T) i!
and only'i! E is comman to all the Cr , and, in this cq,se F is f,nite ond, is the minimum
ol I in (V).

Proof. The C; are closed and convex because the /6 are l.s.c. convex. It is
easy to see from Definition 2 that every n * 1 of the sets have a point in commonl
hence every za of them have a point in common, for each positive integer rn,
by the special theorem of Helly for finite collections of convex sets (see [15,
Theorem 1l). Now, f belongs to all the C; if and only if f satisfies the con-
straints of (F) and p ) !(*) > - -. But, if o satisfies the constraints and
- > /(r) : p, then the weak consistency condition is satisfied for this p., and
hence p ) p. Thus in this case r is a solution and p is the finite minimum.

Lnnm 5. If all weakly consistent corluer progra,rns which satisly Defnition 3
with Ko : 6 haue solutions, thm qll weakly consistent asymptotically regular
canuefr progrq,rns haue solutions.

Proof. Assume ($) satisfies the asymptotic regularity condition, with Kq
taken to be as small as possible. Let po be a real number for which (S) satisfies
the weak consistency condition and let eo ) 0. For each h e K - Ko : K'
tet li be the restriction of fo to the polyhedral convex set

P' : lx e P lfr(x) ( po * eo for /c e InKoand l,(r) I e6 for h e J6Ksl,
and let (S') be the convex progmm defined by Pt, lti"lk . K'1, I' : I - Ko ,
J' : J - Ko . Lemma 4 implies lhat P' is non-empty and (S') is weakly
consistent. By Lemma 2b, any direction in which P' is unbounded and all
the ti , k e K', are non-increasing is a direction in which P is unbounded and all
the lo , h e K, are non-increasing. It follows that (F') satisfies the asymptotic
regularity condition with Kj : d, so that (S') has a solution f' and a finite
minimum p' by hypothesis. We shall show that r' cal'. be modified into a
solution to the original problem (S).

Fix any lct e Ko. Since fp, is affine and Ko is minimal, there exists a direction
% * 0 in which P is unbounded and all the Io , lt t K, are non-increasing, and

Io,(fr' * trz') is uniformly strictly decreasing in X ) 0. Now choose tr' ) 0
largeenough lhatfr,(frt* trru,) {-F':dk1 eI6Ko, or l*,@'* tr'a') S 0if
kt e JnKo. Set f{ : fri * \tut. Then

r!eP and fr(ti)<fr(fr') forall keK,

which implies in particular that f{ is another solution to (F'). Now, however,
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we have tr,@) < p if /c, was in In Ko , or/r,(t) < 0 if &, was in /..' Ko . Next
choose another kz e Ko and repeat the same process, replaci.ng ii by Ei , etc.
Since Ko is finite, one eventually obtains a solution t to (S') such that

fo@) 1p' for kelnKo and fr@) < 0 for kxJaKo.
This f satisfies the constraints of the original problem ($) and has 'f (i) I pt.
Thus ($) is consistent and p ( f(i) <',p' I -, where p is the infimum of I
in (F). But p ) p'if anything, by the defrnition of (F'). Hence f is a solution
to (S).

Lnnnla 6. If att weakly con$stent canuefi programs, such that there is no
non-zero direction in which the set is unbounded, and atl the lunctions are non-
'increasing, haue solutians, then all weahly consistent conaer progra,rns which satisfy
Def,nitian 3 with Ko : 6 huue solutions.

Proof. Let (S) be a weakly consistent, convex program of the latter sorb,
i.e. such that
(3.3) every direction in which P is unbounded and all f6 are non-

increasing is a direction in which all the fp are constant.

It will be shown that ($) is "equivalent" to a problem (S') of the first sort.
Let A(P) be the set of directions in which P is unbounded, and let ,4(l) be

the set of. u e A(P) for which f6 is non-increasing. Let

Ao: ArA(l),M: t, -ulueAo,ueAnl.
Then /o is a non-empty closed convex cone in ft" by Lemma 2a, and M is the
subspace generated by Ao . Let, M' be a subspace complementary to M, i.e. a
subspace of B" such that

MnM':{0} ,M+M':R".
(C, + C" will denote the set of all sums rr * rz for r, e Cr and 12 e C2.) Let
P'be the projection of P into M',i.e. P' : M,n(M + P). Actually,

(3.+1 P! : tt' "M' lr' *ueP forsome ue Asl

bydefinitionof M,inasmuchasr'*u: (r'+u- u) + a ePwhen r' * u -
a e P and u e Asc A(P). It is evident from the chavacterization of a polyhedral
convex set as the "convex hull of finitely many points and rays" [7] that M + P
is polyhedraland, A(M * P) : M + A(P). Hence P'is a (non-empty) poly-
hedral convex set in E" and, using (3.2)

(3.5) ,4(P',) : A(M'\(M + P)) : A(M')^A(M + P) : M'n(M + A(p)).

Now, for eaeh r' e P' and h x K,leL

(3.6) fi@') : -lo@, * u) where ue Ao,x, * ueP.
IVe shall show /l is a well-defined Ls.c. convex function on P'.
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Suppose first that r' * ure P and r' * u"e.P for u1 e A6 and' u, e Ao ' Then

r' * i, * u, e P, since Ao c A(P)' Also, ,, and u" arb directions in which ;
is constant by (3.3). Hence

fo(r' * u,) : fn(r' * u, * u,) : fo(n' I u,).

This demonstrates that the definition of /i is unambiguous, i.e. that li(r') does

not depend on the particular z chosen in (3.6).- of course, ll is defined on all

of p, by (A.a). To prove ll is l.s.c. convex on P', il is enough, in view of Lemma 1,

to prove fi is l.s.c. convex on each line segment in P'' Let fr' e P' and y' e P''
Choose uleAoand.u, e,4q such t'hatx' I urePand A' * u, eP, as is possible

by (3.a). Lelu : ur-l uz. Then ueAs,x' * u : tr eP andy' I u : U I P,

because,4o is a convex cone and Aoc A(P)' Moreover

(3.7) f'^(\r'l (1 -I)s'):f*(Ir*(1 -l)s) for 0<r < 1'

by Definition (3.6). since l* is l.s.c. convex on P, the right side of (3.7) is

l.s.c. convex in tr; hence the left side is also.

Let ($') be the convex program corresponding to P' and Ui I k e K), with
.I and J as in (g). The weak consistency of (F') follows from that of (S).

Indeed, suppose r e P satisfies (2.5), and choose any u e-40 such t,hat r - u :
r' e P'. (This is possible by (3.4), P' being the projection of P irft'o M'') Then
'!i(r') : f r(r) f.or all k by definition (3.6), so n' e P'satisfies (2'5) with f} replaced

iv fl, . A similar argument proves that (g) has a solution if (S') has a solution.
- 
d,tppo." now that u' is a direction in which P' is unbounded and alt the li

are non-increasing. we shall show that u' : 0. This will finish the proof

of Lemma 6, because, by the hypothesis, then ($') (and hence ($)) has a solution.

According to (3.5) and the definition of M we have

(3.8) u' ell[',11t : u - u* w, where ue Ao,'u'e A6,we A(P)'

Takeanyr eP. Choos€?{6 e-46suchthat fr - Lro : r' xP'' Thenforeach X > 0

(3.e) (r' * )v,') * (ao * \u) -- r * I(a' * a),

where uo * )tue,4o and u, I u : a * w x A(P),because,4o and A(P) arc

convex cones and Ao c A(P). From (3'9) and Definition (3'6) we now get

(3.10) I'*(r'*tr2'):fo(r*x(z'*z)) forall I>0 and hxK'
(The two sides are defined for all I > 0 since r' e P','u" e A(P'), fi e P, u' * u e

.4(P).) But u'is by assumption a direction in which everyfi is non-increasing,

.o'(g.io) and the arbitrary choice of r imply u' * u is a direction in which

every l*-is non-increasing. Thus ol' * u e Ao and u' : (u' * u) - u e M'
But z' x M'by (3.8), so u' e M'nM : {0}.

Lpurra 7. Let (T) be a conuer progranx such that there is no d,irection u I 0

i.n which P 'is unbound'ed' and' euery lr is non-'increasing' 4 (F) is weahly con-

tistent, then (T) has a solutian.

Proof . Consider the family of sets Co : Co,u,, defined in Lemma 4' Lemma'
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2b implies that A(C*,u,.) e a6-;. Hence, aciording to our hypothesis,

(3.11) .\iA(Ci) c A|AI*): {0}.

For each E " R let At be the intersection of. A(C) with the unit sphere

{, I llrll : 1} (in some norm). The A(C) arc closed cones by the corollary
to Lemma 2, so {A7 | E e Rl is a collection of compact, sets having an empty
intersection. According to a standard compactness argument, there must
exist ft' ,

Thus

(3.12)

ForeachE"Rlet
A(C)n.....A(C*): {o}.

Ci : CmCr,n "' nCo, .

From Lemma 4 we know that the C! are non-empty, in fact every finite sub-
collection of. ICi I E e Rl has a non-empty intersection. Moreover, the C! are
all compact by Lemma 3, (3.2), and (3.12). The same fact about compactness
used above now implies the existence of some f such that

fr' e AnCi : AnCt .

Such an f is a solution to (S) by Lemma 4.
Prool ol Theorem l. The chain of Lemmas 5, 6 and 7 says that every weakly

consistent asymptotically regular convex program has a solution. The second

assertion of Theorem 1 is contained in Lemma 4.

4. Inequalities and Lagrange mriltipliers. The rest of the paper is devoted
to deducing consequences of Theorem 1. We begin by showing to what degree

the familiar Lagrange multiplier theory for ordinary convex programs [14] is
true for the more general problems ($).

Thnonnu 2. Suppose the convex program (S) is as;rmptotically regular.
Let p, : - if (S) is not, consistent; otherwise let l; be the finite minimum in ($)
guaranteedbyTheoreml. Then F) a eRif andonlyif thereexistir, "' ,i,
inland jr, ..., j"in Jwith l ( r * s ( n * 1, and'"Lagrange multipliers"

(4.1) rr, > 0, ...,trn, ) 0,x,, > 0, ...,trr. ) 0,tr,. + .-. * tr,;, : 1,

such that

(4.2) hu,l,,(r) + ... + Io.l,,(r)l * [Xo,l,,(r) + "' * Ii"fi"(r)] > a
for all r e P.

(It is permissible here that either r : 0 or I : 0, but not both; in the first case,

the summation condition naturally has to be omitted in (a.1). This degenerate
case can not arise if the constraints in ($) can be satisfied.)

Proof. ByTheoreml andDefinition2,p ) aif andonlyif,forsome e ) 0,

391
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there exists a subset K, oI K contaihing n + l indices or less, such that the
system of inequalities

(4.3) Ir(x)-ot-c<0 for kelaK,,lr(r)-e/-0 for tceJrK,

has no solution in P. Let

C : lrtP lfe(x) < - forall keK,l.

This is a convex set. In particula4 the version-of (4.3) with strict inequalities
could have no solution in C. If. A + @, it follows from a theorem of Fan, Glicks-
berg and Hoffman [6, Theorem 1] that

(4.4) X pr(f^(r)-o-.)*
ksl .lKr' lce J ;rKt'

X p,t(fo(r) - €) > 0

for all r e C, where the pp are certain positive real numbers and Kf is some

non-empty subset of K' . Actually (a.a) holds on all of P, since the left side is
unambiguously f o for r in P but not in C. If C : 0, $.4) is true in the
same way f.or K! : Kr &nd arbitrary p* ) 0. Now if I^Ki # {, let pt6 be
the sum of the p.o for k e In K', and let \r : rtn/ tro for each k e K!. Setting
I^K! : \i, , ... , f,] and JnKi. : li. , ... , i"l, we then have (4.1), and
we get (4.2) from (4.4). On the other hand, tL I^Kl : d, no vector fr car
satisfy the constraints of (S), since the left side of. @.+) would be negative for
suchvectors. Inthis case let trr, : trpr, for Z : 1,."', s, where I > 0 is large
enough so that tr e (p,, + . .. * u,) ) a. Then (4.2) follows once more from
(4.4).

Conor,r,env 1. Suppose (S) z's an asymptotically' regular conDer progranx

whose constra'ints can be satisfi,ed. Let Q be the conuex subset ol RK consisting ot
ally : {I* > 0lk eKl with\.*:0lor allbutfinitely monyk,\;} 0'lorat
least one i e lrlr"7 trr : 1. Let

(4.5) L(r,y): 
D^J,@) + Xr,l,(r)

'toreachreP sndy eQ,usingthecanuentian 0 - :0. Then

(4.6) inf sup L(x, A) : F : suP inf L(x, A)
teP yzQ teQ .2P

with F. as in Theorem 2.

Proof . sup{-L(r, d I a " Q} equals l(r) when r satisfies the constraints of (F),
but equals * - otherwise. This implies the first half of (4.6). Theorem 2
gives the second half.

The conclusion of Corollary 1 appears to be true even when the constraints
of (S) can not be satisfied, but we have omitted the proof because of its length.

Conor,r,env 2. Let llt I i " Jl be af'nite or infinite collectiqn of l.s.c. canaer

functions on R". Assume there erirts a rt.nite (pernuissibly empty) affi,ne subcoL

lection lf, I i , Jsl, such that there are no directions in which f ; is non-increasing

tor all j e J, ercept perhaps.tor directions in which all the t,'for i e J - Jo are
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cqnstuxL Then either the system of inequalities

(4.7) fo@)<0 foraII i"J, wkere rtRn,
hasasolutiunrorthereerist jr,... ,,j"inJ snd \;, ) 0; .'. , \,.. ) 0, 1 ( s (
n + l, such lhut

(4.8) rr,ln.(c) + "' * r1"11"(r) ) . ) 0 for all r eB".

{The alternat'iaes are mutually erclusiue.) .

Proot. Define (S) as in Example 5, with P : R". Then (S) is asymptotically
regular. Take lz as in Theorem 2. If p ( 0, (4.7) has a solution by Theorem 1.
If p > 0, (4.8) follows from Theorem 2.

Theorem 2 extends the results of Bohnenblust, Karlin and Shapley [2] and
Fenchel [7] referred to in the introduction. Both apply to the case where
I : K, J : 6andP : 8". The first concernslr whichareall * - outside of a
certain compact set C * d where they are finite and continuous. The second
requiresthatthesetof pointsoforwhich - ) sup{/*@)IkeK: Il: f@)
be non-empty and bounded. Both results follow from Theorem 2, because the
asymptotic regularity condition is then satisfied trivially, there being no infinite
ray along which the /o are all even finite. Fenchel also showed [7; 100] that his
boundedness hypothesis would be satisfied when the (closures of the) non-empty
convex sets C1 : {" I to@) < - } are not all unbounded in some single non-zero
direction. (In this event, finitely many of Lhe Cx have a bounded intersection;
see the proof of Lemma 7.)

The results in this section are complementary to those in [6], which deal
wtth finite collections of convex functions on spaces of arbitrary dimension,
and (roughly speaking) have strict inequalities wherever we have weak inequal-
ities, and vice versa.

5. A new minim4a theorem. Let L(r, y) be a real-valued function defined
onC X Din n" X E , where CandDarenon-emptyconvexsets, such lhatL
is convex on Cfor eachy eDand concarreonDfor x eC. Assumealso that
L is completely closed. in the sense that lr eC I L(*, il ( p| is closed in R" for
eachy eD and F eR,and lA eD I L(r,il > pl is closed infi-for eachr eC
and p e -R. (This is always true, in particular, when C and D are closed and ,L

is continuous in each argument.)
Let P and Q be non-empty polyhedral convex sets in ft" and B- respectively,

with P^ C * 6 and 8n D * 0. It is elementary that
(5.1) inf sup Z(r, y) ) sup irfi L(r, y)

,gP,aC ceo-lD lgQ^rD.|PAC

(see [12; 22]). The two sides of (5.1) are finite, equal and attained, if and
only if there exist fr e Pn C and il t Qn D with
(5.2) L(r,g))_L(e,il>L(i,d forall rePaC and AeQnD.
Such a patr (n,l) is called a sadd,le-point of L.

393
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It is known that a saddle-point always exists when Po C and Q..., D are
compact. (See the generalizations of the von Neumann minirnax theorem proved
by Kakutani [11] and Sion [17].) Our aim here is to extend this theorem to the
non-compact case using a condition suggested by the results in previous sections
of this paper.

Dnrrnrtrox 5. We shall say L is asymptotically regular relatiue to Pn C
and Qn D lf L has the following dual properties:'

(a) the only infinite rays {r * Xu I I > 0} contained in P6 C, along which
all the If " I 

y 
" Qn D, f "(r) 

: L(r, y)l are non-increasing' are those rays along
which all the fu are constant, and for which the intersection of the line
lr t )w I - - < I < - ] with P is contained in its intersectionwith C;

(b) the only infinite rays {y * Iu I I > 0} contained in Qn D, along which
all t}ae lS, I * x P6 C, S,(U) : L(r, A)| are non-decreasing, are those rays
along which all the g, are constant, and for which the intersection of the line
{y * lu I - -< }, < -}withQiscontainedinitsintersectionwithD.

Rentatk. This asymptotic regularity condition is always satisfied, of course,
when there are no infinite rays in P^ C along which all the f, are non-increasing,
and no infinite rays in Qr., D along which all the g" are non-decreasing. This
is true in particular when Pn C and Qn D are bounded, as in the minimax
results cited above. When P and Q are contained in the closures of Pn C
and Q,. D, the linear intersection condition may be omitted (assuming that L
is completely closed).

Tnnonnu 3. Let L be completely closed conuer-concaue m, C X D as d,escrobed,

aboue, and suppose L 'is asymptotically regular relatiue to Pn C ond Qn D. Then L
has a saddle-point (fr, !) relatiue to PnC qnd Qa D.

Proof . Let ao and Bo be the values of the two extrema in (5.1), - )ao 2
0o ) - -. We shall show that ao 1 Fo if a6 ) - o, ard that the "in_f" on the
left side (5.1) is finite and attained at, some r if a6 ( a. This will be enough
to prove the theorem. Indeed, by a dual argument we would have ao ( 0o if
0o ( -, and the "sup" on the right side of (5.1) would be finite and attained
at some ! if Bs > - * . By combining these results with the fact that ao ) 0o ,
we could then conclude that - )ao : 9o ) -o, and that both the "inf"
and "sup" are attained at f and l, respectively. This (*, l) would be a saddle-
point (see ll2;231).

For each U x Qa D, assign f, the value *-on P outside of C.(with l, as
inDefinition4). Then ll,la .QnD : Klisacollectionof Ls.c. convexfunctions
on.R" which, together with P, defines an asymptotically regular convex prograrn
($) for I : K, J : 6. (cf. Lemma 2b and Corollary 2'to Theorem 1.) Also,
a6 is the p in Theorem 2. Hence the "inf" on the Ieft side of (5.1) is attained
at some f by Theorem 1 if a6 ( -. On the other hand, suppose ao ) a e R.
By Theorem 2 there then exist Ut, ..., A,inQ,1D and tr' ) 0, ..., tr, > 0
withtr. + ... +tr,:1,suchthatItrnl,,@)) "forallr eP. Bythe definition
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of l, and the concavity of L in y, we now haVb

o < I tr,Z(r, Y,) I L(r, Eo) for all x x P6C 
' '

where Ao:\tUr+ "'+ )r,A,"QnD. ThissaysthatcY 1go' Thus0o ) a

whenever ao 2 ot e R, so ao : 9o if oo ) - -'

6. Finite convex programs. we shall now illustrate some of our results by

specializing them to a case of particular interest'

Tnnonpu 4. Let f r , ... , f, and. g, , "' , 9" be cont'inuous finite

conuerlunctiansononon-n*ptyptolyhed,ralbonuersetPinR",andletg"*tt ''' tIt
be afine (r 2 1, I ) s ) O)' Assume that:

(a) theonlyinfi'niterays lx * }.a lX > 0l i'nP alongwhichallthef 'andg; 
are

non-'increasingforl<i<rand,l<i<t,arethosealongwh'ichthefnandgiare
constuntlorl l i l rand 1 < i S s;

(b) there elists some r in the relati'ue 'interi'or ol P such that

(6.1) sr(r) 10, ... , s"(n) < 0, 9-+1(r) < 0, ' " , g,(r) 10'

(The retatiue,interior of P is its'interioyin the smallest l'inear manilold cuntaining it')

Then the conuer Progranx
(S,) m'in'hnize mar l'f ,(r), ' ' ' , I,@)l subiect to.the

constra'ints: r e P, gr(r) ( 0,' ", g"(r) I 0

has q,t least one solution r. Moreouer, Iet

Q: ty: (tr,,... ,X" )trr,"' ,F,)eR'*' ltrn > 0, pi)-},tr' * "' +I":11'
L(*,a): Ix,f,(r)'lEp,g,@) for reP an'd ae8'

Then fr e P is a solut;ion ro (SJ if a'rt'd' only if there erists sonle a eQ such that

L(r, A) >- L(t, g) ) L(I, v) for all t e P and U e Q'

where L(8, !) : P is the m'inimum fu (fi')'

Proof. For C : P and D : Q, assumptions (a) and (b) actually guarantee

that the hypothesis of Theorem i is satisfiedl Theorem 4 can then be derived

easily from Theorem 3. Rather than verify this, however' we shall take a

somewhatdifferentapproach.(sJisaconsistent,asSrmptoticallyregtrlar
convex program by (a) and (b) (cf. Lemma 2b), and hence it has.a solution f by

Theorem 1. The,,inf'sup,, of'Lis finite and attained at, r, as pointed out in the

proof of corollary 1 to Theorem 2. Theorem 4 will therefore follow from the same

corollary, as soon as we prove that the (finite) "sup inf" of 'L is attained at

some !-e Q. By Theorem 1, it is enough to show that the consistent convex

p"og.J* ttill, i" which .,rpr"roo^ of the collection of (convex' actually linear)

functions

th" l, eP,h"(a) : - t trnfo(r) - E''s'@)l
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is minimized on Q, is a,symptoticallj" regular. Suppose, therefore, that u is a
direction in which @ is unbounded and all the h, , n e, P, are non-increasing.
Thenu: (0,..- rO,vrr... tzr)where eachvi ) 0and0 < X v${x): S@)
forallr eP. Since (6.1) canbesatisfied, wemusthavezi : 0for i : L, r.. r s.

Hence g is affine. But (6.1) can actually be satisfied by some r in the relative
interior of P, so the non-negative affine function g vanishes at a relative interior
point of the convex set P. Therefore 0 : g(r) : Z r,g,(r) for all r e P. This
implies a is a direction in which all the h, , r e P, are constant, and finishes the
proof.

Ghouila-Houri [1; 83] proved the minimax criterion in Theorem 4 for the
case where P : E" and r : 1, under assurnption (b). A similar theorem of
Karlin [12; 20ll applies even to non-polyhedral P under (b), provided I : s

(i.e. provided all inequalities can be satisfied strictly). The original theorem
of this type is, of course, due to Kuhn and Tucker [14]. None of these authors
supplies a criterion for the existence of a solution to (Fo) (other than compactness
of the non-empty set of vectors satisfying the constraints, say, or the minimax
criterion itself).
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