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A COMBINATORIAL ALGORITHM FOR LINEAR PROGRAMS IN
THE GENERAL MIXED FORM*

R. T. ROCKAFELLART

. Introduction. T.et ¢;; be reul numbers for ¢ = 0,1, -+, m and
4 =0,1,,n and let the sct of integers {1, 2, -+~ i 4+ n} he par-
titioned into three digjoint subsets Ky, K, and A, | any of which may be
ewply. A dual pair of problems can then be stated,

FPiroblem 1: Find a vector X = {xy, » -+, 2y, minimizing

[

E = aw+ @ + -+ Tl
subject to the constraints
Loy = o = Tlla 1+ v == Tallag Jg=1,---.mn,
=0 lov b0 K and =0 for L2 K.
Problem IL: I'ind a vector ¥ o= (y1, -0 | Yupn) Maximizing
G = gy — Onlms — 0 — Oulfmin
subject to the constraints
Yo = @ — Wialmgl — **° — Gawlfmen s, 1= 1, +o0 m
e = 0 for ke Ky and ye =0 for kO K.

When Ky and K are empty, T and 11 are clementary linear programs,
In the general case, they can be viewed as lincar programs involving a
mixture of nonuegative and onrestricted variables, equality and inequality
constraints. The two problems ave dual to one another in the sense that
the following version of the Gale-Kuhn-Tucker existence and duality
theorems is valid (sce [4, Part 3]0,

TrEOREM 1. IJ any one of the following 1s true,

(a) the constraints in I are consistent and the mindmand is bounded below,

stradnts in 11 are consistent and the maximand i¢ bounded above
)

(b the con

(¢ the constraints are consistent both in T and in 11,
then all thee are true, and in fact both T and 1T have solulions. Moreover min
& = max .

Problems T and IT may be solved simultaneonsly by the well known
simplex method of Dantzig [2] or one of its variants. Actually, however,
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such algorithims can not be applied directly except when
K, =0, K =41, - m}, Ki={m+1 - ,m=+mn}, and

(1)

- oz 0 for ¢=1,,m.

Thus T and IT would first have to be reformulated as dual problems I’
and TT' of this special type. Although this is always possible using standard
tricks [4, p. 64 ff.], the new problems often require a much larger matrix.
Extra “artificial variables” may still have to be introduced into I and 11’
in order to get the algorithin started. Sowmetimes, as in the case of matrix
games, I and IT have a natural symmetry which is lost is T and 1T, This
can add to the Inconvenience of translating results, The amount of re-
formulation necessary depends also on whether a given problem is initially
expressed in form I or in form 11 (in other words, on whether it or its
dual is takeun as the primal problem for the algorithm). For example,
consider the concave program:

N Ve .
maximize Flog, vor ) = mzuﬁz ity e [ E=1, - ,s|>
(2) - ‘
L=, .
subject to Z o vy = Dy, =1 0 L
it

One can readily express (2) as & lnear program IT with m = s + { and
no=r -+ 1. After a typical reformulation, however, one would have
m=g+fandn = 2r + s + ¢ + 2. On the other hand, (2) can be also
expressed n form 1 with m = » + 1 and n = s -+ ¢ in such a way that
(1) 15 already satisfied. But then “artificial variables” must be added, so
that n increases to s - { -+ r. Furthermore, some algorithis are inefficient
in this case because most of the ay are zero.

The chject of thiz paper iz to explain a new simplex-type algorithm which
can always he applied directly to T and IT, thereby eliminating the bother
and inconvenience ol reformulation, Besides facilitating the solution by
linear programming of many types of problems, such as (2), the algorithm
can be used effectively to solve mixed systems ol linear cquations and
inequalities (case Il with ay; = 0;7=10,1, -+, n).

The algorithm is based on the concept of :=0r1‘1hinaforial equivalence
developed by Tucker [7, 9]. It invokes a succession of “pivot transforma-
tions® of the {(m + 1) X (n 4+ 1) matrix of cocfficients., After finitely
many iterations, it either furnishes solutions both to T and to II, or it
determuines that one of the problems i3 inconsistent and hence ( by Theorem
1} that neither has a solution. There are three phases differing in the way
that the pivot is chosen. Phase 0 automatically reduces the problems to a
simpler form, Phase 1 then finds a vector satisfying the constraints of 1T,
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Tapreav 0.

|
Ka K | K1
|
I e = 0 | =0 xr arb. I min
11 ye = 0 ! Y arh. ’ yr =0 | 7 max
TasLeau 1.
1 l = Ym=ji
1 [edT) o | =g
|
g io 2363 | = ¥:
= = Eeyg
TasrLeav T(x).
1 ; E— :
I | |
. |
| .
t | =
Frity = ¥rii}

and finally, Phase 2 calculates the extremal solutions. An auxiliary column
is added 1o the matrix temporarily in Phase 1. The final phase essentially
coincides with Tucker’s version of the simplex method in [8].

2. Combinatorially equivalent representations. Problems I and Il can
he summarized neatly by means of Tableau 0 and Tableau 1.

While the requirements in Tableau 0 are invariant in form, the linear
relations in Tableau 1 can be reexpressed in many different ways by solving
lor some of the variables in terms of others. Indeed, corresponding to
various permutations o of {1, -+, m 4+ n} there will be tableaux 7'(w)
expressing dual systems of linear relations equivalent to those in Tableau
1 (which corresponds to the identity permutation = = 1).

The matrices A(x) obtained this way are members of a combinatorial
equivalence closs. General formulas for A(#") in terms of A(x), where =
and #’ are two permutations, may be lound in [7, 9]. We shall be concerned
here only with a certain gpecial case.

Tix 4y € {1, -+, ml and jy € {1, -+, n}, and let 7 be the permutation
obtained from a given = by

T (%) = wm{m 4+ ju),
o ! . .
(3) = (m + joy = w(i),

(k) = =(k) for all other % € {1, -+, m 4 nj.
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oy ; o s 5 sl :
Then, provided ., (x) = 0, A(r ) exists and may be caleulated from
Alx) by

PR AN
Gigsp(T') =

roby

Al ) = a0 i =y,

‘ .?‘ = .?IL" )

i’
Gigs(m) =

wilm), T % and § £ g

ai(m ) = ay(r) — o (7)as,(

We shall refer to the process of passing [vom a given tablean T(x) to the
tableau T(x") specified by these [ormulas as pivating on (g, job.

Starting with Tablean 1, one can produce finitely many combinatorially
equivalent representations of 1 and II by repeated pivoting. 1t might be
hoped that some of these representations are of such a luecid character that
solutions to T and IT can be deduced from them atl a glance. Suppose in
fact that a tableau T{x) has heen caleulated in which

o aolm) =0 when w(i) { K g
oa) i _ _
agslm) =0 when aim + ) € K.
aoim) = 0 when =(i) £ K, and
(5h)

ap(m) =2 0 when =(m 4+ ) € K.
It must then be truce that
(Ga) min F = apir) = max §

and that the veetors X{#) and Y(x) given by

) Teey =0 and  yeny = awlw), i=1,+--,m,
(6b) - .
Taim -5y = Ooglm) and Yetmed = O, = 1, SR

are solutions to I and II, respeetively. Indeed, X (%) and Yix) trivially
satisfly all the constraints and vield # = aw(xr) = § Theorem 1 then
implies that aw(s) i3 actually the common minimum and maximum in
T and I1.

A representation satisfying (3a) and (5bh) will be called resolvent. The
algorithm we are about to deservibe is hased on the following fact,

Tarorem 2. (nder the hypothesis of Thearem 1, a rvesolvent vepresentalion
exests for T and TT,

This theorem will be proved constructively by showing that the al-
gorithm produces a finite nonrepeating sequence of representations which
terminates either in a resolvent representation, or in one which indicates
that I or IT is inconsistent.
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There is another simple kind of cquivalence which will be exploited
in Phase 1 of the algorithm. Consider the problems 1" and II" obtained from
I and 1T by adding an auxiliary column of coefficients @, alm), ¢ = 0,
1, -+, m, to some tableau T{m), cxtending = by m(m + n + L}
=g 4+ n + 1and placing m + 7 4+ 1 in K in Tubleaw 0. These aug-
wented problems are trivially cquivalent to the original ones. In par tlcnleu
I and II satisfy the Lypothesis of Theorem 1 if and only if 1" and II° do.
Furthermore, the representations of T and TI correspond one-to-one with
those of I and 11" in which #{m -+ n =+ 1) = m + n 4+ 1. This provides
ug with a useful device. Given a tableaw T (my), we can angment it as above,
valru]ate any sequence of combinatorially equivalent augmented tableaux

(mg), T(m), -+, T{w) such that =.{m + n + 1) = mim + n + 1)
at the end, and finally delete the (n + 1)st column again. The result of
this process is always another representation of the original pair of problems,

3. Statement of algorithm. For simplicity, the particular ta )1(—‘:1[1 on
hand at the start of each step below is always denoted by 7'(x). The
algorithm ordinarily begins with the original representation of 1 and 11
in Tableau 1 {sce Remark 1).

Step 0.1, 1f a.;(w) = 0 for cvery (¢, j such that

m(i) C Ky and «(m +j) £ Ky,

=1

) or w(i} € K, and «(m L j) € Ky,
or 7(7) € Ky and ={m +7J) ¢ Ky,

proceed to 0.3, Otherwise do 0.2,

Step (.2, Pivot on any (4, Jja)
and return to 0.1, (See Remark 2.)

Step 0.3. 1f ag;t_m = 0 for some 7 such that #(m 4+ j) € Ky, then I
is inconsistent. If a.w(x) # 0 for some 1 such that ={¢) ¢ K., then 1L is
incongistent. Otherwise proceed to 1.1.

Step 1.1. Proceed to 2.1 if gu(m) = 0 for all 7 such that «(i} € Ky.
(See Remark 3.) Otherwise augment the tableau as dPacnbcd f‘arhm

satislying (7) such that aq (7)) = 0

taking a. (7} = 1if #(i) £ Ko and ap(r) < 0, and a = () for
all other 7. [See Remark 4.,.! Then choose ¢ such L-];a‘r 7 ‘.1‘_. ¢ Ky and

a: () it as negative as possible, pivot on (é, n + 1) and proceed to 1.2,
(The ¢, referred to in 1.2 and 1.3 is the one used here. )
Step 1.2, Tf a. ;(7r) = 0 for all j with #(m + j]
consistent. Otherwise choose ji such that =(m -
iz as negative as possible, and do 1.3,
Step 1.3, Tf there exist indices 7 such that =(7) € Ky, aq, (=) > 0 and

Ky, then IT ig in-
C Ky and a5 (7)

3 ) aalm)iag,(n) < !‘]‘.;-].;.[JTI"I] Ffag (),
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choose from among them an index 4 minimizing the ratio on the left of (8).
(See Remark 6.) Then pivot on (4, jo) and return to 1.2, Otherwise
pivot on (1, ju), interchange column 7, and column # + 1 of the resulting
tableau, delete the resulting column n -+ 1 and proceed to 2.1. {See Re-
mark 5.)

Step 2.1, If ay{w) = 0 for all § such that #(m + j) € Ky, the repre-
sentation is resolvent and solutions to T and IT are given by (6a) and (6b).
Otherwise select jy sucly that w(m + 7o) € Ky and ao;(7) 15 as negative as
possible, and proceed to 2.2.

Step 2.2, Tf a;j, (71 = 0 for all j such that #(7) £ Ky, then I is incon-
sistent. Otherwise choose, from among the indices ¢ guch that «(2) € K,
and we;, () > 0, an 7, minimizing the ratio

(9) ol )/ gy ().

{See Remark 6.7 Then pivot on (4, 73} and return to 2.1.

Remark 1. The algorithm can, of course, hegin equally well with any
tableau T{rx) representing T and TT. TFor instance, suppose that, having
already found a resolvent representation for I and II, one wants to solve
the new problems obtained hy changing some of the marginal coefficients
in Tableau 1. Instead of starting all over again, one can apply the algorithm
to the representation of the new problems obtained by modifying the old
resolvent one according to the formulas in [7] or [9].

Remark 2. Phase 0 iz more ellicient il preference is given to pivots such
that w(7y) € Ko and w{m -+ ju) ¢ Ko, It can be shown that then Phase 0
always terminates in the minimum number of iterations. For problems in
which most of the coellicients in the left margin of the initial tubleaun are
zero, the efficiency of the later phases can sometimes be incereased by
choosing 7, such that a:e{r) = 0 whenever possible in 0.2,

Remark 3. When 1.1 is reached, the representation is such that I and
II have heen reduced essentially to dual subproblems:

minimize = an(m) + D Zootalr),

Tl ERg

subject to y =0 for w(z) € Ky, and

0 € Loimep = aalm) + D zewan(m) for alm+j) € Ky

Tl CHg
maxiize F = ap(wr) — 2 (T Yt is
Fimt+iteRy
- Yromesy = 0 for w(m + j) € Ky, and
0= gey = anlr) = 2 ay(m)yemep for =(1) € K.

TimAfICRg
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If ax(#) = 0 for all 7 with =(7) € K,, the vector Yia) in (6h) salisfies
the constraints of II, and the algorvithm moves directly 1o the optimizing
phuse. Otherwise Phase | first changes the representation to one having
this extra property.

Remark 4. 1n augmenting the tableau in 1.1, one could algo set a; 41 (7)
= 1 for all 7. This would be stmpler and perhaps just as cfficient.

Remark 5. Before pivoting oun (4, ji) in the last part of 1.3, there is a
representation of the augmented problems iy which () = m ++ n =+ 1
by definition of 4. The # representation alter pivoting has = (m + ji)
= m —+ n + 1 according to (3). Interchanging column j, and cohuun
n + 1 then vields a =" vepresentation with #”(m +n -+ 1) = w -F n + 1,
go that when cohunn n + 1 1= deleted the tablean returns fo a representa-
tion of the original problems, as explained earlicr.

Remark 6. Tt may happen that the minimum of the ratio in 1.3 or in 2.2
ig achicved on g set Iy containing more than one index. If this degenerate
situation ocewrs repeatedly, il is theoretically possible (although quite
unlikely in practice that the algorithm will eyele. The possibility is elimi-
nated entirely if the [ollowing procedure is used to pick i whenever I,
contains two or more indices. Let m be the permutation as the algorithm
first reaches 1.2 in the cage of Phase 1, or 2.1 in the case of Phase 2. Let
by, -+, ke be the indices in Ky in their order of appearance in = (ie,
m (k) < e < wo (k). Starling with the set 7; deline I, recursively
as follows. If k, = w(i') where 1 £ ¢ = m,let I, = L if ¢ { [us or
lot 1, be T,—y with ¢ deleted i ¢ € I, 1. I &y = w(m + 7)) where 1 < §
< n, let I, be the subset of 7.y minimizing the ratio a.;(7)/a:;, (7). This
process continues until /, contains just one index which is then taken as
the @ .

Remark 7. Speed could be gamed in machine computation by a tech-
nique closely rescmbling one used in the revised simplex method [3],
in which the original tableau is stored but colunns of later tableaux are
caleulated individually only as they are needed.

4, Tustification of the algorithm. In order to prove that the algorithm
works, it is enough to show that the various possible terminal tableaux
do have the meanings ascribed to them, and that no tableau oceurs twice
during one of the three iterative phases. Since a given pair of problems
has ounly [initely many combinatorially equivalent representations, this
implies that the algorithm eventually finds solutions or determines that
none exist.

Tlach iteration of step 0.2 strietly reduces the total number of indices
J: such that & € Ko and # (k) £ m, or k € Ky and # (k) =2 m + 1.
ITence no cycling is possible in Phase 0. In 0.3 we have a;;{x) = 0 for
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slm L+ CRe | mim4i e K alm 47 & Ko
tani ) i 0 | fto;(m) |
x(i) € K. 0 0 0
::’.} —_: Kc, ﬂ:‘p‘:::l 0 ([:‘j{?
s e R |
Fra. 1

all (¢, j1 =atiglying (7). Thervefore, for each remaining j such that
wlm 4 ) ¢ Ky, colun § of the tablean represeuts o constraint

Teimin = Goi{7) + e (7)) + 00 A X CmiF)

of I in which the coefficient of x.¢ 1s zero unless «(7) ¢ K, . Since x; is
required to be zero for b € Ky, and =(m + j) £ Ky, I is inconsistent if
agi(m) # 0. A parallel argument shows that 11 is inconsistent unless
aqlw) = 0 forall 7 such that ={{) £ K, n 0.3.

At the end of Phase 0, the matrix of the represenfation has the form
dicated in Fig. 1, except for the ordering of its rows and columms, Sup-
poge it 18 algo true that

(10) ag(wt = 0 forall 7 such that ={(i) ¢ Ks.

This js the case where the algorithm passes from 1.1 directly to Phase 2;
it will be demonstrated later that the representation also has all these
properties after Phase 1 has been passed through the hard way.

The pattern of zeros in Iig. 1 is preserved under iterations of 2.2 since
the pivots (7, 7) are all such that ={¢) £ Kgand m{m + j) ¢ Kq. It is also
immediate from (4} that, because of the way the pivot is chosen, (10) is
preserved in 2.2 and aw(w) s never decrcased. In particular, the terminal
tableau in 2.1 would indeed be resolvent. Moreover, no tableau can oceur
twice in Phase 2, exeept perhaps at the beginning and end of a chain of
tableaux in which aw(x) remains constant. The procedure described in
temark 6 makey such eyelie ehaing impossible; it g a straightforward
adaptation of the well known procedure of Charnes [1] for getting rid of
the same possibility in the ordinary simplex method. In the terminal
tablean in 2.2, colunin 7. expresses a constraint

N

Lrtmtjy) = a(sj.;.":?rj + -rw-;l)ﬂl_ju(i'rl} "E_ Tt + .'E'.w'l;v:‘.-am}'q(_’iTJ

of I in whieh ao;,(7) < 0, @i, (w) < 0 when #(i) € Ky, and ai,(w) = 0
when w(7) £ K.. No vector X meeting the requirements in Tableau 0
could also satisfy this constraint, so I is indeed inconsistent in this case,

Only Phase 1 still needs to be explained. The motivating idea is as follows,
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The variable y. .1 added to IT when the tablean is sugmented in Step
1.1 allows for an adjustment in the values of certain of the . Putting
m o+ n 4+ 1in K reguires the amount of adjustment ultimately to be zero.
After the pivot transformation n 1.1, there is a representation whose
corresponding vector Y(r) in (6b} satistics all the constraints of I,
except that the adjustment w1 = apol7) volved s negative. The
algorithm proceeds now just as in Phase 2, but with row i (expressing
Y ruin) playing the role otherwise allocated to the top row (expressing 7,
which is temporarily ignoved ). Suceessive iterations improve the value of
Ymonsr , Without violating other constraints, until it is possible to make
Ymane: = 0. The latter iz accomplished by the final pivot transformation
in 1.3.

Maore formally, one may easily verily [rom (4) that after pivoting in 1.1
the tableau satisfice (103, has aof7) < 0, and has the pattern of zeros
indieated in I'ig. 1 except for its row 7 (where w{al = m +n + | £ K}
which does nevertheless have a, (7)) = 0 when =(m 4+ j) € Kyi. More-
over, these properties are maintained under the pivot transformations
selected in the first part of 1.3 which also never decrvease a:qo{w ). TTence
no representation can appear twice in Phage 1, at least not when the
degeneracy routine in Remark 6 1g used. When tlie Jast part of 1.3 13 veached,
{he maintained properties of the tableau and the chosen properties of the
pivol guarantee that the resulting tablean once again resembles the one in
Iig. 1 and satisfics (10}, and hence is suitable for Phase 2, When the
algorithm terminates instead in 1.2, row & of the tableau expresses a
consiraint

Ymtntl = Ystiny = ailﬁ[\ﬂ':‘ — G (T Ymimey — 00— a-"1-’a{\7‘-.:'.";f'

Lh

of the augmented problem IT° in which a;ol7) < 0, @y (7)) = 0 when
mim + i) £ Ky, and a.;(7) = 0 when =(m 4+ j) € K,. Since
m - - 1€ Kyin II', there can be no vector zatisfying this constraint
along with the other requivements n Tableau 0. TTence IT" is inconsist-
cut in thiz cage, huplying the inconsistency of the original problem 11, as
pointed out hefore.

5. Example. The workings of the algorithm (though not its efficiency)
can be inspected by solving the following problem, which is designed to
make use of all of the steps.

Mininyize maxid — 3 — Toe + 3xs, 1 — 20y — 4 + 204}

(117 subject to e =0, a4+ 20 —ay 20 and
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‘ 1 | —¥i | — ¥ ‘ -1 —5%
il oW _sid I | |
‘ 1 oo ‘ o | —4 ~1 =3
57 _ | .
I @ 0 o -1 3 2 =, RKi=13,571,8
T e 7z a 1 | =2 7 4 = Ky = {5}
wrs L 2SET oELH) s 0 -1 1 8 | -2 | =m Koo= (1,4, 4)
td 1 0 i} | 1 1 =
=% | = a3 = 5 = a7 | = 1
| | | |
0 | —1| t | =7 |3 Tol=tl 1|7 4 | D
] ‘ 1|=1] 35 |2 -] 1| =1|=3|=1 @
: 5 0| —1| =1 4 |2 —4 | =1 =1 | —4|-2| W
mr o= (5234 | 16758 | = age 548 3 L
wr = (5234 | 1678) ‘ 0 ool e la b 5237 | 1648 | 1 G ; 5 o ol o
L i il | |1 1 0 | i 1] 1|0
1 1
?‘—1 1 ?‘-‘n ‘3 -1 L‘l—-ﬁo
2 S N |—— [ e 5
=g | o |=p | ey | g -2 -1l =210
. . 4 =1 1| =4i{—2 1 N —3 | =1 (=1 —2 |2 1
= (3037 | 16482) s = (5038 | 16472 )
T (0BT | 15482 0 o o ol x G038 | 16472) 0 1 o olalo
oo o 1] wlo 1] of| of 1lta
‘ 1|2 1 G ‘ 1 3|=2| 1 | 3|2
. L _ _ SRS I S A
‘ 02| =1 |#%|= | =1 12 —-1]1]1
) 201 =12 |- 4 " L | —1 |42
= (3638 | 1247 | &} 7= (5647 | 1248)
76 = (3638 | 1247 | 8 i |1 s g = (AT | 1248 1 3 i lel
1|0 a1 o | 0 1o of11
Bolutions:  win ¥ = max j§ = 3,

Xime) = (=2, 1, 0,8, 0,0,0,2), Fiar) = (0.0,0,0,1, 41,0

T 2

Wheun (11) is expressed in form I, one obtains the first tableau of Mg, 2.
Tableaux subsequently calenlated by the algorithm have been abbreviated
by giving only the matiix and the corresponding permutation. (, denotes
the permutation yielding the +th tableau, while & = (k- Fu | Bun
J means w(1) = ky, m(2) = ks, ete.) The pivot element leading
to the next representation has been marked in each case by parentheses.
The tableau which would appear in the last part of Step 1.3, after pivoting
but before interchanging eolummns, has been omitted (it would lie between
the fifth and sixth). The final representation is resolvent and furnishes the
golution oy = —2, 1, = 1, 3y = 0, with minimum 3.

julm'_ﬁ
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