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StrCTION ONE

Introduction

Problems of mininizitrg convex functions on eonvex subsets

of real vector spaces, which.aie called conve{ programs, have

attracted attention ln recent years, especially because of their

importance i.n econonies, network theory and other disciplines. Our

aim here is to develop a new general theory of such problems ln the

finite-dimenslonal case, using an approach inspired by that of

Fenchel [fS]. Computational'procedures will not be considered, lTe

shal1 be interested rather in eharacterizlng solutlons j.n various

rvays, and ln extending the duality principles whj.ch play so prominent

a role in the study of certain classes of problems, such as linear

programs" Before describj.ng our results, we shall set the stagc

by reviewing some well known facts.

tet E and E* be two copies of the finite-dlmensional real.

nvectorspaceRrwith
***

[*,* J = ErEr+. " "+irr9r,
:t {< *. {.

for x = ,, l'u,"rErr) €E and x = ltf roorgo ) en

(Instead of identifying E and E*, *" think of the elements of each.

spaee as corresponding to the llnear functions on the other by

means of the bllinear functional [*,*n]") Slmllar]y, let F and F*

be two copies of Rm, with
**,F

[Y,Y'J = ?r4r+.".*4*%.

The ordinary vector partial orderings are to be used in these spaces;

thus x' E x ls to mean that tj > !. for j=1,"..,r. Let A = ttali)) be an

n x n real matrix with transpose A* = ((41,);, wtrere af, = rv*-,"- J1 Jr. ].J
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Treating all vectors as "column vectorsr" w. view x ',Ax as a

linear transforrnation from E to F with ad;oint y* , A*y* f"o*
*

toErsotbat

*
F

(1.1) -*:ft*-*,F[R*,y i = [x,A y ] for all xeE and y'eF.

This notatlon w111 be assu{ned througnout the paper.
*:F

For fixed vectors b €E and ceF, the canonlcal dual

programs [ZSl are the two constrained extremum problems

Iinear

defined by

(1.2a) minimize [",O*l subject to x ] O and Ax ] c,

(1.2b) maximize [",y*] subject to y* ] 0 and A*y* * b*.

The remarkable property of this palr of probLems i,s that, whenever

one has a solution, then so does the other and the minimum and

maximum are egual. Moreover, if the constraints in both problems

can be satisfied, then both have solutions. These facts, proved

by Gale, Kuhn and Tucker [ZfJ in tgSf, constitute the duality

theorem for llnear programs. Sometimes the last fact is referred

to separately as the existence theorem.

A ninlmax property of the solutions to the dual linear programs

depends on the following notion.

DEFINITION I-A
:f

Let B and C

*
and let L1x,y ) be

**
y eC A pair of

s_aQdle-point for L

*:t
*0.8, YO€C , and

**
L(xO,Y)sL(XO,YO)=

be non-empty subsets of

a real-valued function
,t

vectors ,xOrYO, is said

(minimizing over B and

EandF,respectively,

given for all xeB and

to be a (global)

maxinizlrig over c*) ir

rt**
L(x,yO) for all xeB and y eC(1 .3)
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If a saddle-polnt exists, then

(r.4) \o = inf iro* "(*,y*) = L(xo,rl, = iuo* 
,n, L(*,y*)

xeB y cC y cc xeB

is called the minimax value of L. (It ls well known that (f.3)

implies (1.4); e.g. see 127, p,22 1.)

Associated with (1.2a) and (I.2b) ls a third problem

(1.5) flnd a saddle-point of the function

L(*,y*) = ix,u*] * [",y*] - iR*,y*.i

oD B = xlx>o and c* = y*ly** o

It is customary to called L the l4grangla_n Igqllgl, because of an

analogy with the classical theory of lagrange multipliers which wlll

be explained in a moment. It ls known [23, p,TZ1 that,*O,tJ-

1s a solution to (1.5) if and only if xO is a solution to (1.2a)
*

and VO is a solution to (f.2b). Moreover, when such solutions

exist, the minimax vaLue of the Lagrangian function ln (l.b)

coincides with the common extreme value ln the dual probtems (1.2a)

and (r .2b) .

Finally, xO ls a solution to (I.Za) and Vj i" a solution (1.2b)
rl

lf and only lf ("0'V0 . is a solution to the followi.ng system

of inequali ties:
* *tl(1.6) x >,0, y h 0, Ax-e :: O, b -A y a O

[Rx-c,y*] < o, [*,b*-A*y*] * o

(see [Ze, proof of Theorem 5]). Because of the result mentioned

above, (1.6) arlso characterizes the saddle-points in (l.S). We

shall speak of relations (1.6) as the equililrrium conditions for the

dual linear programs. Cale [zO, F.19] uses similar terminology when
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dj.scussing the slgnificance of (1.6) in economics.

Problem (1.5) allows us to view the dual relationship betrveerr

(1.2a) and (f.2b) as an expression of a "conflict of interest."

Indeeed, a problern of f incling saclclle-'points such as those delined

1n 1-r\ can always be interpr'eted as a game betlvcen trvo players (l )
*_

an<l (II) whose strategy spaces arc B ancl C lZZ, p.i6l. Assume that
*x

;hen (I) plays the strategy x€8, and (II) playg the strategy y €C,

the result is a payment L(x,y*) to (II). i:\, pair of strategies
*

X^,Y.." satisfying (f .3) then corresporrcls to a state of equilibrium.UU
-:,s long as (I) plays *0, h" rlever has to pay more than L(x'rtlr, out

::e rvould risk a higher payment if he deviatccl from xO. At the same

:ine, (II) can guarantee himself at least L(xU,Vll UV keeping ao 
";,

:rui wouJd risl; receiving less if he played a different strategy.

Since the saddle-points in (1.5) can bc found by solving (I.2a)

rid (1.2b) separately, wc carr think of the latter as the strategy

::'obl.ems to be solve. by two o1>posing "playcrs." The cluality theorem

ior lj.near programs rcflects the intuitive idca that nej.ther "player"

::;'l determine his best strategy rvithout implici.tly determining at the

-a:e time the bc'st strategy which catr be used against hj.m. The equality

:!-!ween the extrema in (L.2,t) and (1,.2b) and the minimax value. in (f .5)

rl:presses the fact that Ioss to one "player" is gain to the other'.

::rs game analogy provide furthcr justification for speaking of the

:ciations (l.6) as tho eqtrilibrium conditlons.
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Sj.milar heuristic interpretations can be given even for classical

:cnstrained extrernum problems. Suppose that frgr,...rB* are

::fferentiable functions on E and consider the problem:

(1.8) minimize f (x) subject to Sr(.xi = O, ...,8*(x) = o.

ll order that x be a soluti.on to thls problem, it is necessary (under.

=:'table regularity assumptions) that x satisfy the given constraints

a-c the directional derivative of f vanish at x in every direction in

na:ch the S, are all constant, i.e. that

) q g (x) = o for each z =({r,..., a )uj J dgj

Bg.
such that ) f* -i (x) = 0 for i=1,...,m.

'-i ' 3€"r

3y elementary llnear algr:bra, this impl.ies that x is a solution to (l.B)

:-11' j.f

-.9) S, (x) = 0 for i-I, . . .,m, and

3f ,-', - \ -* ag=
EE..*, = /..,.\L =''l trl for j=l1 . . .1n-Jrdi;j

for certain scal 
* 'kars ?1 ,,.,,11m.

::: ne$, unknowns in (1.9) are called Lagrange nultipliers. The

13 :eans of L, we can re-state (1.g) as

:.r') u!* (*,y*) -- o for i=l,...,m and
dn.'t-

l;;:'angian function for (l "B) 1s deflneu by
*i****

-.:c) L(x,y ) = f (x) -,r-.?igi(x) for y =(?1,...,4*).
I

+ (*,y*) = o for j=r, ...,n.df' '-J

li:=e are necessary conditions for a stationary point of L.

[::-ia1ly, however, the sorutions to the minimizatlon problem (1.g)
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correspond not to mini.ma of L, but to 'olocal" saddle-points which

can be defined much as in l-A. Heuristically, in other words, they

correspond to local equilibria in a conflict of interest situation.

Relations (r.9) are the "equilibrium conclitions." No obvj.ous dual

problem presents ltself in this case, but an impliclt dual 1s described

rnformal.ly by Courant and llilbert IIO, vol. I, p.231. ff .J.

rn 1951, Kuhn and Tucker flzel considered probrems of the form

(r.11) ninimlze f(x) subject to x a o, Br(x) ) o,...,gr(x) '0,
*here f is convex and the gi are concave. (The set of vectors

satisfying the inequalities is then convex in E.) Using certain

regularity assumptions including differentiability, they showed

that sorutions of (1.11) correspond to the saddle-points of the

iagrangian function
*- t * - rrL(x,y ) = f(x) - i, .nr*r(x) for x > 0 and y E O,

I
and can be characterized by a system of inequalities, i.e. a set

cf equilibriurn conditions in our terminology. They did not devise

a problem dr.ral to (1 .11) , however.

Generally speaking, the question of the existence of duals to

grven problems has turned out to be diffi.cult and often ambiguous.

i:: the case of (r.11) where the g. are linear, for example, severar types

:f duals have.'been constructed, each having its own advantages and

:iawbacks (see [2, p.99], [tt, Fl, [ri]l). For many other

problems, no dual at all is known.

In thi.s paper we hope to develop a duality theory which can be

sed to deduce most known results, including t,he strongest results



-9-

for linear programs, and yet can be applled to a large variety of

new problems. Let f be a finite-valued convex functions on a non-empty

convex set B ln E, and let g be a finite-valued concave function

on a non-empty convex set C in F. The basic problem we shall

consider 1s

(1.1.2a) minimlze f (x) - S(Ax1 subject to xrB and AxeC.

.Aecordlng to a theorem of Fenchel [fg], the function f on B

**
corresponds to a conjugate convex function f on a convex set B

rf
in E i similarly, B on C corresponds to a conj\rgate concave function
1**g on a convex set C in F . The prclblem dual to (l.l2a) in our

theory will be

,t * * ** * :* ** *
(r.Izb) maximizec (y ) - f (Ay ) subject toy €c andAy €B

(These problems will take on a somewhat slmpler form later, due to

a device of extending convex and concave funetions to t he whole space

by means of infinite values.) lfe shall also associate with these

dual problems a "game" problem:

(1.12c) find a saddle-point of the Lagrangi.an function
**{.*:F

L(x,y) = f(x) + C (y ) - [nx,y ] tor x€B and y €C

Finally, using a generalized concept of "diff,erential" (o'gradient")

rb.ich is explained in '2, we shall define equilibrium conditiors

*hi.ch appear formally as

* * **
(1.12d) Ax = $g (y ) and A Y = Df(x)

Froblem (l.I2a) reduces to (1.2a) if one chooses

f(x) * [*,b*] ror x€B = xlx> 0 ,

e(y)=Ofory€C= yly>c
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Then (,rs we show in : 3) (f .Zb), (1.?c) and (1.7d) reduce to

( 1 , 2b) , (1 ,5) ane.t (f . 6) respectively 
"

The first three problems above, but not the problem of solving

the generalized "equilibrium conditions',' were studied by Fenchel

'i*Itg, p.1O5-I15] in tne case where E = F, E = F, and.4. = I is

the identity matrix. (An account of Fenchel,s results is also

g:.ven in Karlin's book [ZZ, p.2ZT*ZZTf ,) Fenchel proved in this

special case that, if problems (1.12a) and (r.lzb) are "strongly

sonsistent" ln the sense that B and c have relative interior

poi'nts in common, and dually for B* ancr c*, then both problems

bave solutions and the extrema are equal. IIe also proved that then

-"he solutions of (r.12a) and (r.lzb) correspond to saddle-polnts

rrr (1'rzc). A weaker theorem of Fencher [tg, p.r06] , Lzz , p,229f ,

rlrich says that the extrena in (1.12a) and (I.f2b) are equal

(tbough not necessarily attained) whenever the constraints in

roth problems can be satisfied, i.s not correct. (ftr:.s will be

established by counter-example in 4) 
"

we shall show in :4, using very slmilar "strong consistency"

:cnditions, that Fenchelos results can be extended to the general

case i.n whtch the spaces can be of different climensions and A

:eed not be the identity matrix. A substitute for the false

;ual.ity theorem will also be derived" sinee "strong consistency"

:s sometimes too restricti.ve an assumption, e.g. iq linear programming

:reory, we shall develop in l5 a weaker sufficient condition, which

sre call "stable consistency." Thls new type of consi.stency makes use
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of the regularity properties of certaln classes of "stable" and

"completery stable" convex functions. The latter includes, among

others, a1l the quadratic convex functions and the "polyhedral"

convex functions described by the author in lS11. r.or the case of

(1.2a) ln which f and g are "completely stable", we shall prove

theorems that are in every respect as strong as those for llnear

programs. Moreover, as will be shown in - 6, the class of

"completely stable" coilvex functions is closed under a number of

useful combinatorial operations. Therefore the strongest theorems

can always be applied to (r.12a) when f and g have been constructed

from known "completely stable" functlons by means of such

operations.

Various special cases of the theory will be considered in

detait tn *7 and;8. A new existence theorem for solutions to

certain network problems, proved at the end of :8, deserves

parti.cular mention.



Jf;a'T?r1\: 'l Li

l'unvcx i'unc ti on-..;

T'hrl $lort-ion:r ol thrj theo!'y o{ conv*.x f unctinn-r tha t p1;ry a

centr';il role through$ut Ihir pii'pt-,r'ri'i.lI bc tr.eated hE,i'e. Thr: fsct:;

atrout the closur't, e:url,.1 u;gtrte, ani.t di f fere,ntial <lf e collvex f uncti<.in

are of particular'importance. The-, 1i:st <,rf thcse thrt:e notions

is newn ;tt l€-ilr"t i.rr thr Eit:nr:r'flllz-c.rj folm in which we shall develrlp

1t; it ir bauecl on thc,familiar pr.inciple that, z!t most pcints,

thc gl'aph i}f, ;:l cl:rnvt.,x f rurcti.itrt h*.s {}n* o1l more non-.vr:r,ticill tLr6gr1 ts,.

The othcr tryfl notions qt'l ginatc ri'ith Fenchel ,ISl. Through the

cievicc of cxten(.ling al l convex f unetions to tire whole space by

al lowing then to taiiie on tht: value +ffi, we a !"e able t<l pre:;ent

i'enchel.ng results in il notationally simpler form. Thig devicc:

ha s s l ready becn ucc.J in a simi la r- c*nte"xt by $6rrnanr.ler :ti

3nd i{oreau i.qg,.

i,et e ile a crln,.,q]){ j:rL-t j.n r, i.,,.,,her* j:. i:: a c:r:I>y- c{ 11" ,,,,

e;:plained tn $11. I'he t<rp*lc:g"i{t".i1 c1r,l$ure cf C wi"lt ir* c!r,:nr}teeJ

cy cl C" The rqlali.vjr:l$ij:lqJ' ri C of C ir ir:; lnterir:r rt,rlrrive:

:o the gmallest linsar manifoltJ ttl':::'n:ili,ltr,: of i sub-.;1:ac*:) cur:lsiuing

!t, rvhi. l* its l?l:rtivq X*f.,]ljl rt: C ic th(: s;et Ciff*rqncc berr,,,E:cn

c1 c and ri c. It is *.e11 known th;rt cl c an<i ri o alr"c conv$:-{

:c-ts, an<l

(:.f) cl(ri C) = c1 O rlnd r.iicl (;j., r.i C.

I:r particular, a non.**rnpty convex sct alv,'ays has a llon-cmpty lelirtivc-

-r--'.erit)r. (Sec l-. 15, p.!)-16..) l'hr,'ss facts rv<>rlltl not generally br: tr.ue
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if il were not finite*dimensionaL. llelative interiors are considered

i.n cletail in .,lppendix ,4.

A convex cone is a convex set K such that )"xel( whenever x€X

and O < ).rR.

DEFINITION 2-'t

A function f, defirred on a non-empty convex sc'e C in.A and

having values in the extended real interval -o; -*" f(;) :" 'r,

urill be called a convex function on C if

(2.2, f ()".xr+(l-),rxz, :; ,1+I + (1*L)p2 whenever

*1.a, *zre, f (xr) E lrre:l{, f (xr) s Pre n, 0 < }, .: l.

Unless f assumes both +x and -€, ln whlch case the ambiguous

combination s - o would arise , (2.2) can be slmplified to

(2,2', f(lrxr+(l-:i.\xr) s i-f(xl) + (l-X)f(xr) for "loC, *2,.C,0 <;'' < 1.

The following obvious conventions are to be used in (2.2') and

elsewhere ln calculations that involve +* and -.r:

(2.3) .^. + s = co * )" = o lf -6 { i. S @'

)' - o: =-elr + )r = -co if -": s 7.. ( cc,

,\,a,= oc'). ={*if O<h< $ot

{-*it-m(}.<O,

l'(-*)-(-*)',, =[-* if 0 < ]. '3 *,

\- *' if -.p ( ). i 0.

Scobinations other than those ln (2.3) will not appear. (tne

ionvention 0.o = e will, however, be i.ntroduced in a special

:ontext in !2. ) It is easily verif iecl that orclinary algebraic

li,rs, sucn as the associativity of additi.on, are still satisfled rvhcn
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(2,3) is used; at all events, every calculation in which we enproy

infinite .values can be fonnarized by repracing expresslons of form

(2,2') by those of form (2.2, whlch involve only real numbers.

Given a convex functlon fO cin C, we can define f on E by

setting f(x) = f'(x) for xeC and f(x) = o for x,CC. Then f is a

convex function on Ei thls follows trivlally f,rom Definltion 2-A.

Xbus, wlthout loss of generality, we can llmit the discussion below

:o convex functlons deflned on all of E, provided we do allow

such functi.ons to be lnflnite-valued.

Propertles of a convex functlon f on E can often be viewed

as geometric properties of its upper graph $!, whlch we define by

(2.{) cph f =k*,pr) lxeE, f (x) < uenlSr en.

(IIeE2 denotes the vector space;.whose elenents are the palrs /xr,xr).,

L.Ef , xr€Er.) It is easy to see, for example, that the convexi.ty

!f f is equivalent to tbe convexity of Cph f tn nOR. Another

:nportant set whlch we associate with f is lts effective domain:

donf ={*l f(x)<oolor.

l:ce dom f is essenti.ally the projectlon of gph f lnto E, it is

:-ear tbat dom f, too, 1s convex when f is convex.

One can always "close" a convex functlon ln the following sense.

fEflI\'ITION 2-B

Tbe closure of a convex f,unctlon f, on E ls the functlon cl f

cl t(x) = llm Lnf f(z) for each x€8.
z4x

r,el::ed by
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If cl f = f, f is said to be closed. (tn other words, a convex

function f on E is closed if and only if it is lower semi-continuous.)

Thls definition is simpler than Fenchelts [fa], because f

:s everywhere defined; a similar. oltinrtion is given by Moreau Lszl.

Trivially, cr f 3 f. Furthermore, cl f(x) < $€R if and only if there

exj-st sequences *k** and pn.+p such that f(xn) < pk€R for all k.

:)'deflnltlon (2.4), this means that the polnt (",p) e gph(cl f)

:.s a limlt of points (xU,!rU) e Cph f . Therefore

(2.s) gph(cr f) = cl(gph f).

ll'-ls the closure operation for convex functions merely reflects the

:l'osure operation for convex sets. rt follows at once from (2.5)

--:at cl(cl f) = cI f, that cl f 1s closed convex functlon on E, and

--rat f is closed lf and only lf cph f is closed. Definltlon 2-B

-nplies that

:.5) dom f Sdom(cl f)Scl(dom f),

:'-; simple examples show that f can be closed without dom f being closed.

The following propertles are trivial extenslons of properties

r::;"ed by Fenchef [fO, p.TS and p.ZS]:

:.i) c1 f(x) = f(x) whenever xl rb(dom f),

: :) cl f(x) =.liT* f(x +\(xo-x)) if xoe ri(dom f),
\-+0

: 
'') t,*, =n1l[* f(x+\(xo-x)) 1f cl f = f and xoe dom f.

*:ne :irst of these is a consequence of the well known fact that a

j-r::e-valued convex functlon on an open set is contlnuous (see [s, p.g2]

r: -:r, e.46]). By (2.7) and (2.8), a closed convex function on E

*r :r,mpietely deterrnined by its'values on the relative interlor of 1ts
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effective domain. Very little can be said, however, about the

o'ehavlor of a non-closed f on rb(dom f). f.or example, suppose g

:s two-dimenslonal and let r({r, Er) = O for El * ef,. t, t({r, E") = *

:or {f * E? r 1, assLgning arbitr-ary non-negatlve values to f for

€l * Ef,= t. Then f is a convex function on E. But if f is required

:o be closed, the arbltrarlness disappears and onl.y the value 0 can be

assigned ror tl * E: = ,

We say that a convex functlon f on E is proper lf f(x) > -o

:or all x€E and f(x) < @ for at least one x€E. Otherwise we say

irat f is improper. Geometrically, f is proper if and only if

3pb f is non-empty and contalns no vertical llnes. It is apparent

irorn Definitlon 2-A that f(x) = -co for all xe ri(don f) when f is

::proper. Hence

(2.9) cl f(x) = [-* for xe cl(dom
1

f * fo" xl cI(dom

fbs lmplies, via (2.7), that cl f is

;rcper. For the most part, we shall

::;vex functions; improper functlons,

f is lmproper.

if and only if f is

erned only with proper

r, are important

^\
f)[1f

f)i
proper

be conc

howeve

:: several proofs (e.g. ln 4-B).

We shall now descrlbe the propertles of Fenchel's fturdamental

:;-;ugate operation [fS], which lnduces a polar correspondence between

-e closed proper convex functlons on E and those on the dual
*

:;ace E .

:ETISITION 2-C

Tbe conjugate of a convex function f on E is the function f
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:F

on E deflned by
:F * (_ *_ J * *(2.10) t (x ) - ".rpx l[*,* ]-t(*)J for each x eE

***
The second conjugete of f is the conjugate f of f ,

** (. *- * * )f (x) = suP * tL",T J-f (* ) !for each xeE.
x

Observe that the supremum in the definitlon of f*, while formally

extended over all of E, could be expressed equivalentry as a supremum

over dom f (provided f is not identically +-). From Definitions 2-B

and 2-C we have

(ct t)*(x*; = ".ro[[*,**]-rim tnf. f (zi
x I z--rx J

(- *- 1
sup lim supl[",* ]-t(r) f
x ,+xl )

C*. 1r1 *
= sup{[r,*']-rtz)J =.f'(x ),

so that
:t*(2.11) (cI f) = f

trt j.s immediate from (2.10) that
**(2.L2) ft = fZ inplies ft = fe.

:aere is a simple geometrlc idea behlnd the conjugate operatisn.
* * :i - *_ :F

Let x €E , $ €R, and let h(x) = [*," ]-p . Then h is an affine convex

j'-:nction on E and gph h i.s a "non-vertical" closed half-space in E@R.

Moreover gph f €Cph h if and only if f (x) > h(x) for all xeE, i.e.
t* f _ rF- . r* *

l.r = ".,Fxllx,x J-f(x)J = f (x ).
;: f 1s proper, it is plausible that the closed convex set cl(gph f)

:: the intersection of all such half-spaces gph b, which means by

,:.5) that cl f is the supremum of all such affine functions h, i.e.
a- *- ,F tt 1cl f (x) = sup *llx,x j-f {x ) } .

x
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*,F
By the last expression, by definltion, is f (x). Using the

familiar separation theorems for convex sets, this argument can be

formalized to obtain the,following theorem. (lTe shall omlt the

forrnal proof, since it closely.pdrallels Fenchel's in [fSl, except

for notation. An infinlte-dimensional version of the theorem may be

found in Moreau ISZ),)

;HEOREM 2-D

Let f be a proper convex function on E. Then f* is a

:Losed proper convex function on E* "rd f** = cl f.

The theorem is almost, but not quite, true for improper
**

:onvex funetions. If f is -identically'ro, then trivially f (x ) = --
***:cr all x and f (x) = cl f(x) =.1o fep alL x. But if f assumes

* !t rl )**--:e value -or then f (x ) = {o for all x and f (x) = -o for

a-i x, whereas cl f is given by (2.9). Thus, in the latter case,
It

: and cI f agree on cl(don f) but not elsewhere.

];rcIlARY 2-E

l€t fl and f, be proper convex functions on E. ffren tf > fl

:i a::d only if cl f, < cL fr. In particular, the conjugate operation

l,:j::es a one-to-one order-inverting correspondence between the

:-::ed proper convex functions on E and those on E*.

3:-r,c:: Thi.s is immediate from (2.11) , (2,12) and Tlreorem 2-D.

:3::,.rgate pairs of closed proper convex functions also

:r::i":'ord to "best inegualities" of a certain type:
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::EOIIE[{ 2-F

Let f be a closed proper convex fwrcti.on on E, with conjugate
.*

j onE. Then

* t( *, ' * *
;:,.1.3) f(x) + f (x ) > [x,x ] tor all xeE and x EE .

Wr€over, for each x€ ri(clom f) there exists 
"oro" 

** such that (2.I3)

.mLcs wj.th eguatity, ancl clually for ..ch 
"*e 

rt(dom f ).

Ilgof: Inequality (2.13) 1s obvlous fron Definition 2-C. The

sbarpened final assertion was proved by Fenchel ln [fSJ.

If f is a dif,ferentlable convex function finite on all of E,

:- differentlal (or gradient) df(x) at x 1s given by

br(x) = {#r(x),...,#1 k)),
ro:.cb can be lnterpreted as an element x* of E*. (Our terminology

rmrs Botation agree with that of Dennls [ff] fn a sinl-lar context,)

'h affine functlon h(z) = f(x) + lz-x,Ef(x)] t" th.r, tangent to

f']"r) at z - xr with f(z) > h(z) for all zeE, With this fact i.n nlnd,

,f,t ertend tbe concept of differential to arbitrary proper convex

Smrc::on as follows.

mmToN 2-c

tret f be a proper convex function on E and let xeE. We say that
ilr*

r ff is a differentlal of f at x, and wrlte x = af(x), if

,ll!,-:{) 
-r,r, 

= ,a-, + ,--,J, for all zeE

& re.Lation af , which conslsts of all palrs (*r**; such that
|[

r = 5(x), is called the dlfferenttal of f .
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Observe that we have only defined thc expression x* = df(x),

and not df(x) by itself. This i.s due to the fact that f may have

more than onc: (t:r"no) differential at a given point x. (tnat

can happen, for instance, i.f the gr-aph of f has a vertex at x,

or if x is not an inte:rior poinl of clom -f .) 1"/e coulcj, however,

interpret df as a nrultiple-valued mapping. !?hen f is aetually

differentiable, ;,f is single-valued and coj.ncides with the

ordinary differential described above. This is proved forrnally

in Appendix C (see C-F), where the relationship between the

generalized differential:; of Dsfinition 2-G and the classical

theory of directlonal derivatives of convex functions is explained

in detail. Our theoretical development is based directly on

Definition 2-G ancl cloes not assume facts from the calculus

(although these would be useful in deter.mining the differentials

in certaln special applications) 
"

TIIEOREIU 2.H

Let f be a closed pr"oper convex f wrction on Ii, Then the

following statements ar€ cquivalent:
*

(a) x = ilf(x) ,

*tr
(b) x = tlf (x ),

*ri(c) f(x)+f(x)stx,xr.

In this sense the cli f f erential ,-if 
* is the inverse of Bf ,

Proof: Re-writing (2.14) and applying Definitiou 2-C, we see that
rl

x =,jf(x) if and only if
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.. * ,= *- * *
ixrx , - f (x) -'" "uPr lzrx ;*f (z) = f (x ) '

*
Since f is proper by &$cumption, and f is proper by 2*D, f(x)

must both be finitc if either this inequality or iuequality (c)

holds. Hence (a) is equivalent to (c). A dual. argument proves

that (b) is equivaLcnt to (.)r'b..uno.r, by ?*D and the assumptiotr
*

that f i.s closecl , f is the conJugatc of f .

COIK)LLARY 2-I

A closed proper convex function f on E has differentials at all

points xi- ri(dom f ), but no clifferentials at polnts xC dorn f .

Proof : This follorvs at once f ron 2-l' and 2-FI .

COIOLL,{RY 2-J

Let f be a prerper convex function en f such that Os: ri(dom f ).

Then

* rl.

-m{min*f(x}<*.
x

(f'ollowing the usual convention, we indicate that an extremum

is attained by replaciug "i-nf" by "min" or "max",)

Proof: If oe ri(dom f), then Oe ri(dom(clf)) by (2,I) and (2.6).

Since cl f is a closred proper convex function,2-I implies that
*****

x = l(cl f)(O) for some x :f, . Since (cl f) = f by (Z.ll)r
**

2-ll now irnplies that 0 * if (x ). This means by De'finition 2-G

tha t
****.-***+

f (z \ i f (x ) + i-O,z -x, * f (x )
)l**f

for all z eE . Furthermor"c, f (x ) must be finj.te in this case
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*
because f is proper by 2-D,

The next tlo theeircms provide formulas for conjugates in

conrmon si tuations .

THEOIIEM 2-K

Let f be a convex functiou on E. Thcn

* * * * _ +_(a) h(x) = f(x-a), a{8, i.mplies rr (x ) * f (x ) + La,x j,

(b) h(x) = f (x) + [-x,a*-1-, u*.8*, i.mptie s h*(o*) = fx(x*-a*),
****

(c) h(x) = Lf(x), O < }.€R, implles h (x ) - \f ((1,/\)x ),

(d) h(x) - f().x), o i Lr.It, implies h*(**) = 1*11111;rr*;,
'****

(e) h(x) = f(x) + (v, cv.eR, implies h (x ) = f (x ) - a.

Proof: These formulas are easy consequences of Definlti"on 2-C, and

have already been pointecl out by Fenehel [19, p.93-9a1.

TIINOR$M 2-L
***

Suppose that E = El. :En and E = EI- ...'tU, with
_ * t(_ *
[*,* ] - [*r,rrr1+...+[xo'xnl

****
for x = (.*l ,...rxu) eE and x =.(4"r...rxk 2€E . Let f . be a

>k*
proper convex function on 8., with conjugate f. on Err for i=11...,k,

and let

f (x) = f (xr,... '*k) = tr(*r.)+...+fU(xU).

Then f is a proper convex function on E, closed if and only if aIJ.

the f. are closed, and
].

****'fi****f (x ) - t (xt,...,xu) = fr(xr)+...+fn(xn)
tl.

on E . Moreover
**{((*l ... rxn) = x = 3f (x) - Df (xr, ...,*k)
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if and only if *l = at. (x. ) for j-=1,...,k.

Proof: Since the f. are proper, f does not assume the vaLue -@

and is not identicarly o; the convexlty of f is then easy to verlfy

using (2.2'). Thus f is a proper convex functlon on E. The assertion

about closure is an obvlous consequence of Definltion 2-8. lVe calculate

the conjugate of f directly from (2.10), obtaini.ng
*rff.-rt-f (x ) = suplf t"r,-l:-f r.(x.) | "inEi,i.=1,...,k i

= ) ',ro i[*, ,"] l-r, (x. ) | *, uu, ! = i rjr-il ./-.'iti-i'-i i t ,
Finally, by Definitloq z1c, ** = af(x) if and only if

i--*+
L,.tr("r) = f(z) > f(x) + lr-x,x I = LGi(x.)+[2,-".,*rl)ii

for all 
"iaEi, i=1,...,k. This happens if and only if

ti(rr) = ft(x.) + [".-*r,*]1
for all "i.Ei, 1.e. *l = afi(x.), for 1=1,...,k.

eonvex

define

(2 .15)

Clearly b^ is proper
U

if and only if C is c

V

(z .16) cr n (x lc)

If a convex function
V6r then f = EC, where

A simple but important example

Vcharacteristic functi.on D^ of

by

X.r*l = d(*lc) =

of a convex function is the

a eonvex set C, which we

is non-cmpty, ancl is closed

values other than 0 and

one-to-one correspondence

if

1o

f

c

;i0 lf xeC
1

I

\oo if xy'C.

only lf C

in fact

I cr c).

acSumes no

om f. This

and

sed;

8(x

onE

=d
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betrveen convex sets and certain convex functions les.cls to a useful

principle: general facts about convex functlons can ahvays be

specialized to facts about convex sets. For lnstancc the conjugate

of 6a is by definitlon
(. *"v , 

-l 
\= *_., i v *supx 

r 
Lx,x .j-E(xlc) | = sup l[*,* if xrc.= ,Ya{* )

(provided C I g>, where d^ ir called the convex suppo:'t functlon of C.\-

The well known theorems relating convex sets and their support functions

can be deduced from 2-D. This is demonstratecl in Appendix A.

convex characterlstic functions are very usefur in extremum

problems. Suppose that f is a convex function finite on all of E and

that C is a non-empty closecl convex set. Let

h(x) = f (x) + Xfrlcl for alr xen.

Then h is a closed propcr convex function on I by (Z.Zl, (Z.ti')

and (2.16), and dom h = C. Morcovcr

inf f(x) fx.C.- inf h(x).l_x

In this manncr constrained minimization can be treatec.l uniformly

as minimization on E, the constraints being incor;:orated into the

effective dcimains of the functions j.nvolvec.l . operations cjefined

for convex functions such as closure, conjugation, aclclition and

convolution (see E6), then lcad to an automatic calculus of

constraints in extremum problcms and their clrrals.

Concave functions will also be important in this paper.

DEFINITION 2.M

A function g on u- is concavc if -g is convex. The conjugate
*g of a concave function g on B is deflneci by



,r*
8(x)=inf )

xi,

_25_

-***[.x,x I-g(x)- for all x eE

Notice from thi.s definition that
****(2.18) if f(x) = -g(x) then f (x ) = -g (-x ),

rather than merety tt = -g* as one might guess. Aslcre fron this

p<.rssibly misleading point, the theory of concave functions mirrors

the theory of convex functions compl.etery. ive shal1 not explici.tly

state the obvious concave analogs of theorems anci cleflnitiorrs that

apply to convex functions, but these anarogs will nevertheless be

used in theoretical developments.

(2 .L7 
'

(2.1e)

lVe find it conveninent to empLoy a

for the concave charactcristic function

notation dual to (2.f5)

of a convex set C:

0.c*l = 6("ic) = 0 if xeC,.

-* if xlC,

rvhose conj ugate (i f
At<(2.2o> o"(x ) =

of course At*lal =

the concave support function of C:

*.-x lcl.

clF)is

6rJlcl =

-5(*lcl "

inr l[*,**l l'.c]
no 0(x*1sy = -i(
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Sf,CTION THNEE

The l,lodgl P.rgb,lqgg

lYe slull now elefine tlhe prcbX.ems whose tlieory is to be

developed in thls and later sections. It wil.l be aseu$ed in

these problems that f is a c.losed propen esnv€x fun*tion on E,
**

with conjugate f on E , and that g j.s a closeeJ proper concave

functlon on F witlr con.jugate g* or F*. By T!:eorem 2-D,
**

f and g are also closed and proSrer, and thelr conjugates

are in turn f and g. trt wllL also be assumed, as in ,1, that

A is the matrix of a linear transf,ormation from I to F, so that
*

the transpose l! of A Is the mat,rix of, a linear transformation
*rf

from F to S . The notatlon is .schematized in Figure l.

+r -*X 4--::. y max
a*

f* E* F.+. g *
4

I

li( * i
ir$
tA&"9

A

nnin x *--s y

Irigure 1



-27-

For each such system of elements we conslder the followlng four

problems:

(I) Convex Program:

rnlnimize f (x) - g(Ax) on E.

(II) Concave program:

*trfi:|.:fi*
maximi.ze g (y ) - f (A y ) on F .

(III) 9lE, or saddle-Point Problem:

find a saddle-point of the Lagrangian function
rt :fi * - *- :F 'tL(x,y ) = f(x) + C (y ) - LAx,y J, xe dom f, Y € dorn g .

(Iv) "Equilibrium" problem:

find vectors satisfying the equillbrium conditions
* ,t **

Ax = |g (y ) and A y = af(x).

Once a problem arlslng ln practlce has been formulated as any one

of the above, it automatlcally leads to three other problems. We shall

say that (I) and (II) are dual to one another.
.*

Clearly a solutlon to (IV) is a pair of vectors (xo,Yo)

satlsfying the equilibrium conditlons, while golu!1enq to (III) were

deflned in I-A. We say that xO ls a solutlon to (I) if
(l(g.r) -o ( f (*o) g(Axo) = min, { rtxl-s(e*t . -,

*
and that.y^ is a solution to (II) if

l. * ,t ,F* r* * * **?
(3.2) @ > s (vo) - f (A y0) =il8X *tc (y )-f (A V )! > --.

v
Thus we do not speak of solutlons to (I) or (II) if the extrema are

infinl te .

Although (I) and (II) are formally unconstrained, they actually

involve the implicit constrain_ts:
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(3.3a) xe dom f and Axi, dom g,
**t,f,t(3.3b) y e dom g and A y e dom f ,

respectively. Indeed, f (x) - g(Ax) is finite rvhen x satisfies (3.3a),

but has the value +o when x does not; so that the minimization in (I)

automatically subject to (3.3a) wiren this is possible at aII. lf

inf f (x)-S(i\x) = +": 1n (I), thi. means that the implicit constr.aints
x

+ * * **
cannot be satisfied. Similarly.sup * g (y )-f (A y ) * -ca if and

v
only if the impllcit constraints (3.3b) of (lI) cannot be satisfied.

It is important to keep thls in mind when interpretlng infinite extrema

appearing ln the duality theorems proved later.

Observe that the tagrangian functlon L(x,y*) is convex and

lower semi-contlnuous (by the closedness of f) on dom f for each
1:1.*

y e dom g , and is concave and upper semi-continuous on dom g for

each xe don f. Restrlction of L to the effective domains of f ancl

*
g ts necessary to avoid uo - Gr.

An lnteresting insight into the equilibrium conditlons can

be gained in the foll.owing manner. Suppose, for the sake of argument,

**
that f, f, E, g are all finite and dtfferentiable everywhere.

(Thls situation is studied in Appendix C.) Let h(x) = f(x) - B(Ax).

The differential (gradient) of h, determined by the ordinary methods

of the calculus, is then
*

0h(x) = bf (x) - .q be(Ax).

The solutions to (I) can now be found from the equatlon 3h(x) = 0,

which amounts to
** *

sf(x) = A y, where y = 1g(Ax).
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:i
Brt, by the concave analog of Theorem 2-H, y = dg(Ax) if and only if

**
lx = dg (y ). These are therefore just the equlllbrlum condltions. Thus

ttre equilibrlun conditions ln (IV) generalize the elementary idea that the

solutions to extrenum problems.are touni from the "partlal differential

eqnations" obtained by setting differentlals equal to zero. Of course

tle difkerentials 0f anO dgl* which we have deflnecl are not always

slngle-rralued, so that (IV) cannot be derived rigorously f'rom (I)

b1r the above argument ln the non-differentiable case.

In view of Theorem 2-Er w€ can also express the general eguilibrium

cmditions as a cyclic set of four conditions

(3.4) Ax - y, bg(y) = x*, A*y* = **, af*(x*) = x.

to t'complete a

2.

fbus (IV) ls solvable if and only if lt ls posslble

circult" via the four "mappings" Lndlcated in Figure

*
F+-:{-

A

*

Figure 2

asaf

F



-30-

\{e shalr now demonstrate how prolrlems (r) through (Iv) recJuce

to the corresponding problems of linear prograrnning theory through a

slmple choice of elements, Let b*cE and c€E, and let
*

(3.5a) f(x) = [x,b'] ft x .t O, .f(x] = * if x t O,

(3.5b) g(y) = 0 if y *:r s, g(y) = -e if y t c.

Then obvlously

f(x) - s(Ax) =;[x,u*] if x * 0 and Ax i] c,

.i-tn otherwiser

so problems (I) and (L.2a) coincide. Catculating the conjugates of

f and g from definitions 2-C and 2-M, we obtain
rf, !F rf-. - :|- !t :tf (x ) = sup [*,"'] - t*,b'.: = 0 if x s b ,

x*O :F *

* :r 
i'ooifx +b'

g (y ) = inf [y,y*] - \,t.,y*l it y* * o,
Y>ci*

r-mif y $0.

Therefore
*:t*

c(Y)-f
* * _. *- * * *(AY)= i"c,y..! lty ilrQilpd{ sb,

-oo otherwise,

be (1.2b). Moreover the l"agrangi.an functionand (II) turns out to

in (III) is just
* .. *" _. * *_ ,;

L(x,y ) = Lx,tr j + l-c,y J - LRx,y I ror x * o and y ir 0.

Hence (III) reduces to (f.5). Next we calculate the generalized

dlfferentials Ef and bg*. Applylng definition 2-G to (3.Sa), we see
*

that x = af(x) if and only if

[r,o*.j + E(zlzaol'Lx,t*] * b(xlxco) + lz-x,x*] for alr z.

-
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(D is defined in (2.15).) tnis is the same as

x z 0 anrt Lz,b*-**r r L*,b*-**l tor all z -:0,

which in turn is equivalent to
. + * ,. * !t"

(3.6a) x * O, b -x 2 0, and L.x,b -x .i s 0.
* rt,

By a simllar argument, y = bg (y ) it arrd only if
* *.

(3.6b) y ;r O, y-c !: O, and [y-c,y .] o O.

Sulrstltution of 
"* = A*y* and y ='Ax into (3.6a) and (3.6b) transforms

the equi.librlum eonditions fn (IV) into (1.6). Other spectalizations

of the model problems may be found itr 7 and 8.

An elementary fact about (I) and (II) wifl now be proved.

THEOIIEM 3-A

inf '. r(*)-g(er) > sup * g*(y*)-r*(o*y*)xy

Proof: By 2-D and lts concave analog, it is always true that

f(x) + t*(R*y*) : [x,o*y*j = I"Ax,y*] a s(Ax1 + g*(y*).

The theorem 1s an immedlate consequence of this.

Notlee that 3-A provides a method of estimating the extrema
**

ir (t) and (II). Namely, if xlen and IreF then by 3-A

(3.2) r(xr) * s(Axr) ;'Lo. r'f = B*(yl) - r*t^*rll,
where 

* * * ,f ,f *(3.8) hO = lnf*;f(x)*e(Ax) , \0 = sup,F.B (V )-f (n y )

v
In particular, if the implicit constraints (3.3a) and (3.3b) can be

satisfied, then LO and )rO must both be finite.

Suppose an algorithm were known for solvlng (I) approximately,

i.e. an algorlthm which constructs a sequence of vectors xn such that
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XO = f(xo) - C(AxO) decreases to LO. The same algorithn could be

used to construct a sequence of vecto"" yl such that i.l = sOil - r*<n*vl)
*

increa.ses to i.O. Then, as in (3.7),
:F* :| -*

\t = hz = ..: t Lri*\o.=\o*Lt = ... > 12 t Lt,

so at each stage one would have upper and lower'bounds on both LO

***
and LO. If LO and LO are finite and LO = \O, by continuing the

algorithm unti.I nn - 
^l 

<[one could obtain approxirnate solutions
*

xu and Vi to (I) and (II), respectively, with errors \k - Lo < [
**

and \O - \X a i. (Sinilar uses of dual programs have been

proposed by others, ,€.8. Duffin [f+].)

The above dlscusslon points out'one good reason for wantlng to

know when 3-A actually holds with equality. An even stronger reason

1s given by the theorem that we shall prove next. The fact that

extra hypotheses are needed to guarantee equallty in 3-A is one of

the results of. €4.

TI{EOREM 3-B

Tbe following conditlons a5e equivalent to each other:
*(a) *O .10 yO are solutiops to the dual programs (I)

respectively, and inf* irt*l-ste") ; = sup * l **(r*)-r*(o*,
.*YL(b) {xn,y'}is a solution to the game problem (III),

(c) 1*a,ff ;i" a solution to the equllibrium problem

and

{t -l

),.,
-i

(II ),

(rv).

Proof:
*

and y'e

concave

(a) implies (b): If (a) is true then certainly x'e dom f
*

dom g by definitions (3"f) and (3.2). Now by 2-D and its

analog, we have, fqr each x€ dom f arrd y*e dom g*,
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L(xo,r*) = f(xo) + s*(y*) - [exo,r*] " f(xo) - c(Axo),

l(x,yfl = r(x) * e*tvl) - [*,o*y*] = s*<rfl - r*te*vl).
But the right sldes of these lnequalities are equal accordlng to

(a). Therefore
*(3.1o) L(xo,yo) = f(xo) - ste*ol = ,*(ro) - ,*to*rl), and

rt
r. xg,Ig) ls a saddle-polnt for t by definitton L-A. flence (b)

holds

(b) lmplies (c): If -*O,ylt is a saddle-point for L, then by

deft-nltion xo€ dom f , ,1. oo* g*, 
"rO

f(xo) * **tr*f - [o*o/*J < r{xo} * **tr]l - [n*o,vfJ

for'all xe dom f and y*. do* g*. It follows that

c*(v*) s g*tyll + [R*o,r*-rl] tor rrr y*ep*,,

f(x) : f(xo) + [x-xo,o*rl] tor atr xeE"

These are just the equillbrlum condltions, accordlng to deflnltion

2-G and lts concave analog. Thus (c) holds

(c) lmplles (a): Theorem 2-H alLows us to express the

equilibrium conditions as

(3.r1) f(x) +t*(a*y*) s[*,A*y*]= [A*,y*jss (ex) +c*(y*).
Hence lf xO ana Vf satisfy the equllibrium conditions we have

:iri***
f(xo) - s(Axo) < s (vo) - f (A yo).

This ylelds (a) because of 3-A.

CONOIJARY 3-C

rf (rrl) has a solution at arl., then the mintmax value (1.4) of
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the Lagrangian functi.on coi.ncides with both the minimum in (I) and

tbe maxlmum in (rr). Moreover, the saddle-points can then be found

by sorving programs (r) and (rr) or can be determined from the

equi J.i briun condl tions

Proof: We noted this in the proof, of Theorern 3-Bu in (3.1O),

Theorem 3-B says that problems (III) and (lV) are equivalent

to one another, and that both are eguivarent to a combined version

of (I) and (II). The duality theorems proved later on are aimed

at showl.ng us what extent this combined version of (r) and (rr)

is equivalent to (I) and to (tl) indtviduaLly
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SSCTION FOUR

General Equivalence and Dual-ity Theorems

The theorems prov€d beLow are the eentral results cf this

paper. First of, allo we shall.study the general relationship

between the extrema in.programs/ (I) and (II)" In the case

**
already treated byFenchel, whereE=F, E =F, A= I is the

identity matrlx, and both extrema are fi.nite, Fenchel had

asserted that the Extrema would always be equal [L9, p.1O6]

(see also Kartrin's ascount f2?, p.22s1r, Thj.s is not true, as

we shall prove by counter-example (4-C). (ttre error stemmed

fron assurning that a certain fornula [19, p.95], tZZo Theorem ?.6.1],

was valid at all relatlve boundary points of the set where it was

deflned. C. lYitzgall also observed the error recently and reported

it to l(arlln. Fenchel has pointed out to the author that a slmilar

error occurs ln another formula [fg, p.97], [zz, tneorem 7.6.2].)

The preclse nature of the possible dlserepancy between th_e two

extrema will be determined in Theorem 4-8. By a separate argunent

not relylng on the formul.a in error, Fenchel proved (in the case

mentioned above) that the extrema would be equal and attained if

rl(dom t) nri(dom g) I fi and ri(dom f*) 
^tiloom 

g*; 3 g

(see [tSo p.L08] or [ZZ, p.228]]. The extra hypothesis requires

the i,mplicit constraints to be consisteni in a strong sense. We

shall show that thls result can be extended to the present case,

although FencheLns argument itself does not carry over, It will

be demonstfated that the generalized "strong eonsistency"
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conditi.ons also guarantee that problems (r) through (rv) are

equivalent, 1.e. that the solutions to all of them may be found

by solving any one of them. Dual. versions of the ,'strong

consistency" conditions wil.l also .be derived.

"Strong consistenclln can actually be rep}aced by a less

restrictive notion of Itstable consistency" whieh, however, is not

as simple to apply. This wirl be proved tn Qs (Theorem 5-J)

ustng the results obtained here,

Given the convex program (I) deflned in ES, we now consider

an associated famlly of convex programs depending on a parameter

z€F:

(I') minimize f(x) - S(Ax-z) on.E.

When z = 0, program (I') coincides wlth (I). The lemma below

descrlbes the properties of the function h(z) glving the infimum

in program (I'). These properties will be crucial in later proofs.

I,EMMA 4-A

I.or each z€f' let
i-

h(z) = 1nf* {f(x)-g(Ax:z)i
Then h is a convex funetion on F and

t-r!
(a) domh=d(domf) - domC=(,Ax-ltlx€ domf, V€domgq,

* * * ** * * 'F 't(b) rr (y ) = f (A Y ) - c (Y ) for each Y €F,
\' '-l

(e) h(o) = inf* lf (x) - c(Ax) i, ,

:tt* ,- * * * ** i(d) h (0)=suP*;c(y)-f (Ay)J.
v

Proof: To prove h is convex, it will be enough to prove that
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(4.1) if h(zr) ( Fl ( -, h(zr) ( p ( o, 0 <4. < 1, then

h(\zr+(l-x)r) <Lpl + (1-\)rrr,

since thls inplles the sllghtly stronger property requi.red

ln Definitlon 2-A. By the definition of h, the hypothesis

of (4.1) implles the existence of rell nunUuo" sll, $L2, g2L,

V22t and vectors x, and x, in E, such that

Pl = trlt- [lz, f(xr)'rll. *, s(Axr-zr) , ur, ) --,
v2 = vrr' v22, t(xrl a ur, ' ., c(Axr-2") a u", ) -o.

Since f ls eonvex and g ls concave,

f ().xr+(1-l',)*z) . nurr. + (l-\)*rr,

e(A(Lxr+(1-\)x2) - (\zr+(t-\)zr)=

s(tr(Axa-zr) + (r-x)(Axr-zr)) > \urr+ (1-^)p22.

Thereforgfor x - Axl + (l-\)xr,

h(r.z+(1-).rr] f(x) - B(Ax-(Izt+(t-L)zr))

< \$tI + (1-L)pz1 - (tUar+(l-L))Urr= Lfrr + (I-).)p2

Thus h is convex on E as asserted.

Observe next that

dom h ={rlrrlrl . *.1 = \rlf (x)-g(Ax-z)1 o for some

i,-l
= l,rzlAx-z=y€ dom g for some x€ don f J .

This verlfies (a).

The conJugate of h, accordlng to Deflnition 2-C, 1s glven

by the formula:
* :t i. *- ^t

h (y ) - ",rpz 
t, t z,! ]-h(z)i

"un, \[r, y* 1-rr,r* .- r (*l-*(o*-rlj j
r*

= sup J [z,V-]-f(*)+g(Ax-z) lxen, zef j .

.L
x\
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Taking a supremum over all pairs Jxtz',, is the sane as taking i.t

over all pairs ,!x,w.t where z = Ax-w. Therefore
**.-{.,-t

h-(y ; = sup:'iAx-w,y ]-f (x)lg(w) f xen,wer (
* *- *. t

= sup .. ([x,A-y-]-ttx)-(i*,y- j-g(r)) lxcn,w€F
{.***'F

=f(Ay)_e(y)

by the definition of the conjugate" f* 
"rrd 

g*. Thus (b) is true.

Final.ly, (c) is obvious from the definiti.on of h while (d)

1s immedi.ate from (b) and the clefinition 2-c of h**.

we now prove that the equalityi of the extrema in programs (I)

and (II) depends on the behavior of the infimun ir (t') as the

parameter z approaches 0.

THEOREM 4-B (Weak Duality Theorem)
(. 'r * * **l(a) liminf it(x)-e(y). = sup Je.(y )-f (A r ) iAx-Y +0 ( - {'v !

except when, trivially, the left side is r,oo and the rlght slde

is -o.
r' * * t *

(b) inf q f (x)-S(Ax) 'r = limsup { g (y )-f (x ) ':

x L '""' * * *t
A Y -x*>0

except when, trivially, the left side is 'to and the right side

i, s -o.

(The notation in programs (I) and (II) is assumed here,)

Proof: For the function h in Lemma 4-A, we have

(4.3) llm lnf t(x)-e(y) = llm inf h(z) = cl h(0).
Ax-Y -*9 z ---'--O

Thus (a) holds if and only if c} h(0) = h**1o;, by part,'b)of
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Lemma 4-A. But h is a convex function, so this is true by Theorem z-D

*+
and the remarks followi.ng i.t, except when *.1 h(O) = c" and h (0) = -m.

This proves (a); (b) is proved by a dual argument, valid because f and

g are in turn the conjugates of f* 
"rrJ r*, 

(Reca}l that f and g

are closed and proper in (I), 
"o an"a f** = f ancl g**= g by 2-D.)

The problem of determini.ng the "Iin inf" in (a) may be thought

of as a weaker form of progratn (r), 1n which the implicit constraints

(3.3a) need only be satisfied "in the limit". Theorem 4-B says

that (rr) is realry thedral of this weaker problem, rather than the

dual of (I)r while (I) is really the dual of the corresponding

weaker version of (rr) ' The extrema i.n (r) and (rr) wlll not be

equal, therefore, unless the weaker versj.ons of (I) and (II)

are equlvalent to (l) and (II) themselves. The next theorem

furnishes exarnples where the problems fail to be equivalent;

the third example, in particular, contradicts the result of

Fenchel mentioned above.

THEONSM 4-C

The following si.tuations are incleed possible in (I) and (rr),

with \,., = inf-- i tC*l-*(ox) - and ).1 = sup * ', 
go(y*)*f*{o*r*; . ,Ux:

-*(a) co>\O),\.O=-o,
-rt

(b) oo-\0r^Ot-*,
*(c) *t\O)1o)-o,
*(d) o-AO>LO=-o.

v

(\o
*

=\O ln all other cases by Theorem 3-A.)
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Proof: In each case we taken E = F = It2 and take A to be the

identity matrix,

(a) choose fr(x) = fr({1,{n) = ;<{r,dri{.=ol

sr(x) = er({, ,t,r"t '= , ({r{r)1/t ,r 6r.o,6r*0,

i -m otherwise.

Then obviously

(4.4> \o = inr i tt, 6rlt"iur=o,trru'j = o.

But lf we let

(4.b) xu = (orks), yt =(n-lrnt>, k = L,2,...,

then xn - yil+O but fr.(xO) - Cl(yk) = -k for all k. Therefore,

by part (a) of Theorem 4-ts,

-co = lim trrt..:'ft(x)-S, (V): = l.j.
*-y*,

(b) Thls is dual to (a).

(e) Let f, = f, and rr(x) = ffiiil{r,rrt*l] . Again taklng

the sequences ln (4.5), we have f'(xn) - CA(yk) - -1 for all k.

But evirlently fr(x) - Sr(f) * -l for all xeE and yeu, so by

part (a) of Theore* n-:., 
l

-1 = liminf jr=(x)-cstv) i= ll,
Y-x+O t r u

while L0 = 0 as in (4.4),

(d) Let f4 = fl, rn(6r,Er) = {, n 6t{r,{rl6r>o,{r>0,{rdr>r),

Thls time dom fn ..,dom g4 = g, 
"o \O = oo trivially. On the other

hand, for the sequences in (4.8) we have fo(xn)-sn(Vn) = -k3 1e1

all k, and therefore
(l*

-* = t:1 T: i f4(x)-c4(v) 
i = xo

x-y -'>u



-41-

by part (a) of Theorem 4-8.

A stronger theorem than 4-B will now be derived using

' additional assumPtions. I

DEFINITION 4.D

Frogram (I) will be called strongly cqnsisteu! if there exists

some x€ ri(dom f) such that Ax€ ri(clom g). Dually, program (II)
**

wlll be called stlgngLl consistent if there exists some y € ri (dom g )

tr* *
such that A'y € rj. (dom f ) ,

THEOREM 4-E (DualitY Theorem)

(a) If program (I) is strongly consistentr then

.inr* frt"t-*to*)? = max. * !r*tr*l-r*1o*r*) ixt ) y _

(b) If progran (II) 1s strongly consiqtent, then
',,-,F*!F**:

*:.t* I r(x)-g(Ax)i = "torfre'tv )-f (A v') i

Proof: (a) Let h be the convex function in Lerruna 4-A. Then,

by  -A(a) and two general facts about relative interiors proved

in Appendix A (namely A-D and A-G),

ri(don h) = ri(A(rlom f )--dom B) - ri(A(dom f ))-ri(dom e)

= A(ri(dom f ))-ri(dom g)= *' Ax-yf xe ri(dom f ),ye rj.(dom g)' .
{.

The assumption that (I) is strongly consistent is therefore

equivalent to the assumPtion that

(4.6) 0e ri(dom h).

If h ls improper, (4.6) implies that h(0) = -@ = fr**(o) by (2.7) and

the remarks after Theorem 2-D, In this case, (a) follows immediately
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fron parts (C) and (d) of 4-A, On the other hand, suppose h is
proper. Then h(O) = n**(O) again by (4.G), (2.2) and 2-D, and

hence "inf" = "sup" ln (a) by lemma a-A. Moreover (4.6) implles,

via 2-J, that
,f ,t(mln*rr(V)

v* ** *f(Ay)-e

ln (a). Part

rl*
Slnceh(y)=

ttsuptt by ttmaxtt
t

(o.

,t
(y ) by 4-A(b), we can therefore replace

(b) ls proved by a dual argument.

COROLIANY 4-F

If, programs (I) and (II) are both strongly consistent, then

o ) mln" ir1*l-*to*ll = niX--* ir*tr*l-r*(o*r*)f r --v
and, ln partlcular, both programs have solutions.

THEOREIvI 4-C (Equlvalence Theroem)

Suppose that (I) ls strongly conslstent. Then the fol.lowing

condltlons on xO are equlvalent:

(a) xO is a solutlon to the convex program (I),

(b) there exlsts "o." ,l such that {*o,Vl> ls a saddle-

point for the Lagrangian function in (III),
rt(c) there exlsts "o*" ,l.such that xO and yO satlsfy the

equillbrlum condltions ln (IV).

Moreover the vecto." y; occurring ln these condltions are

precisely the solutlons to the concave program (II).

The dual theorem, ln which (II) is assumed to be strongly

consistent instead of (I), is also valid.
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Proof: Dugllty Theoren 4-E(a) says tbat (a) tg equlvalent to

the longer statenentS

It$ there exlsts "o*" yf, sucb that xo.and vo are Bolutions

to (I) and (II) respectlvely, tanO

r- \ . * * ** -rtnf i t(")-sG*)i = sup * 1s"1y-)-t"(A"y-){. .x t -J y. -)

But (ar), (b), and (c) are equtvalent by Theorem 3-8.

ffiEOnEM 4-H (Mlnlmax Theoren)

rf (r) and (rr) are strongly conslstent, then the nlnlnax

value of tbe lrgranglan functlon ln (tt) e:dsts and equals both

the nlnlnnum ln (I) and the naxLnrn ln (II).

proofl Thls ls lnnedtate f,rom 4-p, 3-B and 3-C.

tn vlew of tbe lnportance of tbq strong congl,etency condltlons

ln applyLng the last severar resulte, one nould llke to know what

property of (t) 1e equlvarent to tbe strong consLstency of (tr),
and dually. Tbls questton is answered below.

THEONEil 4-I

(a) Choose erbltrary vectors xO€ don f, and IO€ dom g,

and let h(x) = f(xO+x)-g(VO*Rx). Then program (II) !s strongly

consLstent lf and only lf, for eacb x sucb that h(rx) ls a flnlte
non-lncreaslng functlon of L for o < r < o, h()rx) ls actuelly

conetant for -o ( ),. ( o.

(b) choose arbltrary vectors vfe oor g* ar,d *je oon r*,
, * rt rt * 'l * *!land leth(y ) =g (y'+y ) -f (r'+ey ). Thenprogran (I) ts
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strongly consistent if and only if, for each

is finite non-decreasing fu4ction of \ for 0

is actually eonstant for -co { }. { co.

Froof : l{e shall deduce

(Theorem B-F) about the

iunction. Let

(4.7, k(x, y) =

Thenkisaclosed

andMisasubspace

!{ is

v
*

such that h(\y )
*

L{sr n(Xy )

this from a general fact proved in Appendix B

effective domaln of the conjugate of a convex

f (x) - g(y), la = .'.;< y) | y=Ax I.
proper convex function orr E:'rF, ,lxOrVO-} e dom k,

of EIFF. The subspace of E*,f, F* orthogonal to

On the other
*

k(

and hence

ri (dom

(see Theorem A-H

i.f and only if
** !f

{.**i.

, y li I il*, *' ]+[y, y 
' 
;a=o f or

****
,Y ) l[*,* ]o-[nx,Y I tor

,F * tl **/
,-y) lx =A y :.
by Theorem 2-L and (2.18)

**rf*
) = f (x ) - g (-y ), dom k

It r,:F * :1.

k ) =i(* ,:y ) lx e ri(dom

tn Appendix A). Therefore

* * *-r
f ),y e ri(dom g )l
:**

M intersects ri (dom k )

*

= lt{x

=i+
:.

= 1(x
L

hand,
**

x rY

all (x,y> €M-;

all xeE t
_l

(or by direct
* 'i, * *-
='i* ''Y ?

calcula tion)
,*rF
lx e dom f ,

* *ry€domg"r

A y = x € ri(dom f ) for some y e ri(dom g ),

i.e. if and only if (ff) is strongly consistent. Now we apply the

general theorem B-F indicated above. According to this theorem,
rF*

M intersects ri(dom k ) if ancl only if , for each 'x,y. €M such

that k(x.+trx,yO+LY) is a finite non-j.ncreasing function for O { }. n( re
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ls actually eonstant
I

his statement proves

for -o ( L ( o. Substltution

(a). A dual argument proves (b).
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SECTION FIVE 
\

Stable Consistency

Theorems 4-8, 4-F, 4-G, and 4-H in the last section all depend

on assumptions of strong cgnsistency, ad defined in 4-D, The strong

consistency conditlons, which require that the implicit constraints

can be satisfled "wlth some to spare", were dualizec! in Theorenr 4-I

in order to make them easier to apply. Nevertheless, these

conditions are inconvenient in certaln situations because they

are too restrictive. The duality theorem for 11near programs, for

instance, needs no strong consistency assumptionsl henee it does

:rot completely follow when Theorem 4-F 1s applied to linear

f,rograms as formulated in E3. We shall prove here, however, that
'strong consistency" can be replaced by a far weaker (but rather

r.ore complicated) notlon of "stable consj.stency';, which takes

:dvantage of the special properties of a class of "stable" convex

::lnctions. In this way we obtain duality and equivalence

:reorems (see 5-J) which generalize the si.mpler ones in €4, and

. -, the same time are powerful enough to contain the linear

:rogrammj.ng theorems and other presently known results as easy

:crollaries (see iz).

'!Ve begin by considering a useful slass of functions whose

:efinition is motivated by an interestlng argument of Fenchel [19,

:.113-115] tor deriving the linear progranrming duality theorem.

lenchel's argument is weak in two respects. In the first place,

:: rests on the invalid result discussed in $+. Secondly, it
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assumes that a t'piecewise linear"

below always attains lts ninlmun.

the following examPle indicates.

1et

f ({1,E} = dr * dt{r,{r16, = o, {, = o, ErE, > 1).

Although f would seem to be "piecewlse linear", i.ts minirnun is

approached at best along a hyperbolic path. Evidently, "piecewlse

llnearity" ought to somehow take effective domains into account.

Now for convex sets, the nearest thing .to ltpiecewise linearity"

is the familiar "polyhedral" property. A convex set C is said

to be pofyhedral if it can be represented as the intersection of

flnltely many closed half-spaces
| - *- -)(b.t) s =J* I [*,"1i <di, i = r,...," i.ilL-

It ls known ]ZZT tnat C is polyhedral lf and only if 1t can be

expressed as the convex hu1l of, finitely nany points and rays:

a(5,2, c = i x=)"rbr+...+Lnbntri.l+...s*"rl 
^;*,2^r=',ur= 

oJ .

Th5.s suggests the following notion as a replacement for

"piecewise lineari tY. "

eonvex function whi.ch is bounded

This is not altogether clear, as

Let E be two-dimensional, and

DEFINITION 5-A

A polyhedral convex

upper grapb set gPh f ls

function on E is a function f whose

a polyhedral convex set in E@R.

Applying (5.1) to gPh f

polyhedral if and onIY if it

(s.3) r(x) = '.- [ t*, u]l

ean readily see that f ls

be represented in the forrn

rl
I j=t,...,kj

5t*l [",11] . or,i=l,.;.,m).

, one

can
*

-ts.
J

+
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(In the improper case where tk = 0, set f identically -- where

the charaeteristic function is zero in thls formula.) Dually,

by (5.2\, f is polyhedrai. if and only if it can be represented

in the form

(5.4) f (x) = m1n 2 LrFr+. . .+\kpk+ptct+. . .tr*a* 
1

* dt^r, ...,Apipl, ...,u*l*J\;oj*)u... , 
^r=0, 

Z L.=1,ur*)j,

This fact was already used by the author elsewhere [Sf1'

(Needless to say, polyhedral convex functlons can arise from more

complicated mixed expressions as we}1.)

THEOREM 5-B

If"f is a polyhedral convex functlon, then dom f |s a polyhedral

convex set. Moreover f and dorn f are'closed.

prooft Obvious from representation (5.3).

T}IEOREM 5.C

If f is a polyhedral convex function on E, tfren f* i" a

***
polyhedral convex function on E , and f = f when f is proper.

Furthermore, the fundamental representations (5.3) and (5.4) are dual

to one another.

*
Froof: By calculatlng f directly from Definitton 2-C using a

representatlon (5.4) for f, one obtains a representation (5.3)

***
for f . The fact that f' * f when f ls proper follows from

Theorems 2-D and 5-8.
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One of the most common polyhedral convex functions in extremum

;roblems i s l

/

O(* lx>O)='0if xzO,
\,
I

i - it xls.

It: should be noted that the functl$ns f and g used to formulate

::e linear programs in *3 (see (3.5a) and (3.5b)) are polyhedral.

It is reasonabl.e to expect that the strong consistency

assunptions Ln34 can be weakened when polyhedral functions are

:nvolved. Actually, we shall be abre to bring about this weakening

:or a far broader class cf ftrnctions.

3EFINITION 5.D

Let f be a elosed proper couvex function on E. For each

:*€ dom f and each subspace M ln E, let

(5,5) f*,g(") = f (z) * d(r**lm) tor atl z€8.

(Tben f is a proper convex funetion on E which may be thought- X,M

:f as the restriction of f to the linear manifold x+M.) Let M*
rF

ienote the subspace of E orthogonaL to M,i.e.
*i*1.*(5.6) M = 1, i Lr,, j =o for all zeM - .

I
\,

re shall say that f is sjla.b]..e if
(-c,7, (f",tt)*(**) = Trrr*ir*(*n*"*)*[*, "*l if or *tt **.E*,

touM*' 
j

for every x€ dom f and subspace M. rf f and f* ar" both stable, we

shall say that f is cornpletely stable.



-50-

The lemrna below shows that this definition is "reasonable."

LEMMA s-fi

Let f be a closed proper convex function on E and let
*

xe dom f.. Let M, M , and,t*,*.be as ln Deflnitin 5-D. Then

(5.8) tt*,*)*{x*) = *} l"r* i f*1***r*)-[*,**] ,ror "rl **.E*.
x zeM

Moreover (5.8) san be strengthened to (5.7) if the linear manifold

x,+ M intersects ri(dom f).

proof : r.et h(x*1 = inf f ,*t***"*)-[*,"*] lr*.M* . . Then h ts a

;- functlon o' E*, *" orru can show by the argument used ln

Lemna 4-A. Furthermore,
* i- tt- * I'h'(z) - sup__*'(Lz,x j-tr(* )j= f",g(r)

x
by stralghtforward calculation. Since the latter function 1s proper,

Theorem 2-D and the remarks after lt imply that
***(f*,*). = h - cl h,

which ls just formula (5.8). The final statement of the lemma

tt tf
must be proved by a dlfferent argument. Let x €E and let

g(z) = 1",** ]-Xtr-*lu) tot all z€E.

Then g is a closed proper concave functlon on E and
,1. ,i - {. tF* , * *, * * t}

e Q \ = Lx,z -x J-b(z -x lm ) tor all z eE

(as one readlly calculates from Defini.tlon 2-M). Moreover

domg= ri(dom g) = x +M. If the llnearmanifold x +Mlntersects

ri(dom f), we can apply Theorem 4-E(a) to f and g (with E=F, E*=F*,

A-I) to obtaln:
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. (_. .1 r * * * *-)(5.e) inrz tr{e)-e{lz) ! = nax 
* i* (y )-t tr ) f .

v
**

The left si.de of (5.9) is -(f*,*) (x ) by definition, while the

right side is .

-min ir*,r*r-[*, r*-** ]*X(y*-** l*-t l*r
v

( * * * *)
= -min 1 f (x +z )-[x," ]i .

"*aM* 

L r

Hence (5.9) is equivalent to (S.Z).

Thus a closed proper convex function f fails to be stable

onJ.y when (5.8) cannot be strengthened to (5.2) for some x and M

such that xe dom f but (x+tr[)6 ri (dom f) = A .

TIIEOREM 5-F

Let f be a closed proper convex function on E such that

rl(dom f) = don f. Then f is stable.

Proof: rn this event, the exceptlonal cases just mentioned cannot

occur.

Remark: certairil.y ri(dom f) = dom f if don f is a linear manifold,

and ln particular if dom f = E. If both don f and dom f* are

linear mani.folds, then f is completely stable. The properties that

f must have in order that dom f* b. a linear manlford, or dom ,* = ,*,

are given in Appendi; B (sqe Corollaries B-C and B-E). Completely

regular convex functions (see C-I and C-M in Appendix C) are completely
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stable. AI1 quadratic convex functions are completely stable

(see B-E and also Appenclix C). In .'6 we shall shorv that complete

stability is preserved by varj"ous operations, such as addition.

TT{EOREM 5-G

Every proper polyhedral convex function on E is completely

s table .

Proof: If f is proper and potyhedral, then f is closed by Theorem 5-B

:| ,;
and f is polyhedral by Theorem 5-C. Hence f can be represented as

in (5.4). By choosing a basls for M*, *t can then also represent

the function h in the proof of teruna 5-E as in (5.4). It follows

that "inf" can be replaced by 'rmin" in the formula for h, and that

h is polyhedral. But the latter implies that h is closed, so (5.8)

can be strengthened'to (5.?). Thus f is stable. Now f* nust also

be stabte, since it ls also polyhedral and proper. Hence f is

completely stable.

lfe now define the condition which, as will be seen betrow, can

be substituted for strong eonsistency.

DEFINITION 5.H

Suppose that the functions f and g in program (I) can be

expressed by

(5.10) f (x) = f'(x) + fr(x) for all xeE,

C(y) = CO(y) + Cf(y) for all y.Fo

where fO is a stable convex function on E, f, is a closed proper
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convex functlon on E, gO is stable convex function on F, and E, is

a closed proper concave function on F. Suppose that there exists

sone x such that

(5.1f) x€ dom fOnri(dom fr) and Axe dom BOnrl(dom gr).

Then we shall say program (I) is stably. conslstent. Stable

conslstency is defined simllarly for progran (II).

THEOREM 5-I

Strong conslstency lmplies stable consistency. Also, if

f and g are themselves stable j.n (I) (tn particular if f and g

are polyhedral), then (I) is stably consistent whenever i.t is

merely conslstent, i.e. whenever there exists some x such that

(5.12) xe dom f and Axe dorn g.

Proof: If (I) is strongly consistent, choose fO and gO identically

zero in (5.10). Then fO and Bg are stable (by either 5-F or 5-G)

and (5.1I) holds. Hence (I) is stably consistent. On the other

hand, lf f, and g are stable, choose f, and Ea identlcally zero

in (5.10). Then (5.11) coincldes wlth (5,L2>.

The uraln result of this sectlon 1s the followlng.

THEONEM 5-J

"Strong consistency" can be replaced by "stable conslstency"

ln Theorens 4-E, 4-F, 4-G and 4-H.

COROLIARY 5-K (Fundamental Theorem for "Completely Stable" Programs)

Suppose that f and g are completely stable (or, ln partlcular,

-lr
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polyhedral) in (I). Suppose that any one of the following holds:

(a) * > infx irt*l-*to*)i > -*,
(b) @ > sup *rg*(y*)-t*(A*y*) i ) .-*,

YL

(c) oo > infx f ,(*)**(ox)i. and sup * g*(y*)-f*qo*r*l , ) -co.
v

Tben both (I) and (It) have solutions and

(s.13) * > minxirt*l-uCo*ll = max *.g*(y*)-r*,o*r*, i > -6.
v

Moreover the conclusions of 4-H, 4-G and the dual of 4-G are

then valid.

Proof of the corollary: (5.12) holds if and only if the infimum

ir (l) is not {d, as pointed out in $3., when f and g are completely

stable, lt forlows fron 5-r and s-J (apptied to a-s(a)) ttrat (a)

is equivalent to
(.

- t lnfx.,f(x)-e(Ax); = max * C (y )-f (A y'):> -6.
v

rr*
since f and g are also stable (by definition of complete stabillty),

a dual argument shows that (b) is equivaLent to

- > maxx {r<*l-r(ox)1" = sup * f**(r*)-r*(o*r*) i " --.v

rn particular (a) and (b) lmply eaeh otlrer, so each one actually

lmplles (5.13). Moreover: (c) lmpties both (a) and (b), and hence

implies (5.i.3), by Theorem 3-A. The rast assertign of the corollary

ls a direct consequence of 5-t and 5-J.

This corollary contains aLl. the linear programmlng theorems
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;:-icribed earller (see also the beginning of 7).

Two lemnnas are needed in the proof of Theorem S-J.

-Jh6f,{ 5-L

Let fO be a stable convex iunction on E and let f, be any

:::er closed proper convex function on E. If dom fonrl(dom fr, I g,

;-ne: fO + f, is a closed proper convex function and

(fo+fr)*(**) = rr.r* if;(x*-z*)+fi(z*) i ,o" alt x*eEr.

i':pof; It ls elementary that fo n ft is a proper convex function.

-rer x€ dom fO,"rri(dom fr) and let M be the subspace of E such that

n g M is the smallest linear manifold containing dom fr. Then

"i.r+) to(z) + f ,(z) = f i(z) + f o(z) tor arr zeE,

uSere

r;(r) = fo(z) + dtr-*lul.
Soreover

(s.r5) ri(dom ti)., ri(dom fLt I g"

Assume for a moment that this has been proved. Then, by an argument

very simi.lar to the one used in the last half of Lemma 5-E, one can

prove that
*,F,**:F:**f(s.16) (fi+fr) (x ) = iliil__*.i (f6) (x -y l+ritv ) i .

v

On the other hand,
* * * C+ * * * - 'r-j(5.I7) (fl) (x -y ) = mln 

ito(* -y +u )-[x,u']'u 
u*aM*

by deflni.tion of the stability of fn, with M* as in (5.6).
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Combining (5.14), (5.16) and (5.17), we get
* * * * * 't * * . **(s.r8) (fo+fr) (x ) = *tl Ttr* fo(x -y +u )+tr(v )-Lx,u I .

y ueM

But by definitlon of x, M and M*,

-*-***[r,r"] = [*,u i for aLI ze dom f, and u eM .

Therefore, for .11 y*eE* "nd ,.*€M*,

* * * - * *"
fr(v -u ) - supz " Lz,y -u J-fr(z) ,

= -[*,.,*]*".ror ' l",y* -r-rrtz) j = fl(y*)-[*,..,*].

Applying this fact in (5.18), and repla.ir.g y* - t.* by ,*, *" obtain

the desired formula in the Lemma. AIso, straightforward calculation
1*of ((f'+fr) ) from this formula yields fO + f, asaln; hence fO + f,

is elosed by Theorem 2-D. The proof of the lemma will therefore be

complete as soon as (5.15) has been verified. By definitlon,

(5.r9) xe dom fj':x + M, xe ri(dom fr).

Let ze ri(dom f[), (Such a z exlsts because a non-empty convex set

has a non-empty relative interior [15, p.16].) Then there exists some

tr, O(\<1, suchthat

"0 = \* + (l-).)ze ri(dom fr),

because, by (5.19) and the definition of M, ze.x + M and x is an

interior point of dom f, reJ.ative to the linear manifold x + M.

But also zoe rt(dom fi). This follows from the general fact that

if C is convex, x€C, z€ ri C, O < L < 1, then Lx + (l-tr)ze ri. C

(see [1s, p.9J.) Hence (5.r5) ls true as asserted.

LEMMA 5-M

Let f be a stable convex function on E, let x'e dom f and let



*57-

**
xO€E " Let

r'(x) = rExl + 6(xl [*,*fi]= [*0,";]).
Then f is a stablu *&nvex funst**i} cn E and

* * :- * * * * *- * *(5.20) (f ') {x } "= misi " f. (x +}"}i0}*}"i-xn,*ftj . for all x eE
*o$ft"{e*

Ilogg: Let fo = f an,:i f ,{x} = d<*l[*,ro[]= [**,*iil.
Then fo = f0 + fro wtrere f,O is stable convex funetion, and f, is

a closed proper c<lnvex functier:,, /llso, ri(dom fr) = dom fa, and

th:is set Lntersects dom f* aeaerrding to lts deflnition. Lemma 2-L

therefore implles that f is a closed proper convex functlon.

Furtherrnore, one sees readiS"p thet
4 *. r *r s gfr(x ) =, hi-x6,x'J i.f x - \xO, -m<ft{co,

')

i*oc' othenwi se '

rormula ($.?0) now foLl"ows frsa tremma $*L. we muet show next that

f' 1s stable. L€t

x€ dom f' s (xn+\),-, dom f,

where M, = ,ll-r,"[]=o is the subspaee of E orthogonal to xl. Let

M be any clther subspa*e of E. Then

f tx,ful = t*,uoo ' where Mt = Mr''Mo'

since the linear rnanl"folds x + id' and oO * % colncide. Henee

iry the stabj.l"j.ty *f f

{b,21) (f '-- ."}o{**} *, {i'-- =*, 
}n{ou} = min foq**ou*;-[", u*]Xrtrli .Xrfcl' ,F *u € {$tr')

But it folls$/s fror* tlee d*finitisn of l"{t that
*a**,4*(hI') =i'* *].o0 i u elt{, *co<}*{.F,y:

= #* - :&',.
whiLe Lx,x0-l= Lxfi,xO j hS defi"nitl.on, Therefore the last term
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in (5.2L) becomes

\**r.**-.*_*:l.l
min ]t (x +\xoa2 )-I[xg,*o]_l*,"- Jlr"elt-, _o{<o\

= lrr* ftl l*1**+"*1-[*,.*]i
zeM

by (s.20). Thus f' satisfies the definition of stability.

Proof of Theorem b-J: suppose program (r) is stably conslstent
but not strongly consistent. lfe shall show that then (I) and (II) can

be replaced by an "equlvalent" dual palr of programs (I,) and (II,)
which are stlll stably consistent, and are "significantly nearer,, to
being strongly consistent.

r****
Let x'e dom f and y'e dom g and let

. rf. ,F- rt * * )F .,t *h(y ) = s (yo+y") - r' (xi+e-v-).

Then h is a proper concave function on F't such that 0e dom h. Slnee

(r) is not strongly conslstent, there exists by Theorem a-r(b)
*rl*

some yteF such that tr(Lxr) 1s a non-decreaslng fwrction of ). ) o,

but is not constant for -o ( \ ( e. Let xO be a vector
satisfying (S. tt ) . Let

(s.zt) r'(x) = r(x) + 5(x I [",o*vf J= [*o,o*rl]),
e'(y) = s(y) * 8ty I tr,rfl = [nxo,vf]1.

lYe claim that then

(5.22) f '(x) - g'(ax) = f (x) - c(Ax1 for atl xeE.

To prove thls, we show first that

(5.23) [*,e*yf1 < [y,rfJ ro" a1t xe dom f and ye dom g.

By deflnition of 
*

Yl, we have

(s.24) *tr*,rJ+r.rf) - r*t"J*rn*rfl ,s*tvll - r*t*lt
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for all \ > 0. Thereorn 2-F and lts concave analog impLy that, for all

x€ dom f and y€ dom g,
ri ti * - tlt *-

c (Vo+)rYr) s LY,YO+IY'J - s(Y)'
tt,t+tt-tf'**-

f (xO+\A yr) = Lx,xO+AA YrJ - f(x).

Comblning thls with (5.24, and manlpulatlng 1t algebralcally,

we get

r.([y,vf1-[*,n*rl:l =

c[*, *]1-t(x)-r* t"llt - ([y,rjl-ccvt-c*(y;)).

But the expression on the rlght is flnlte when xe dom f and ye dom g,

and the lnequality holds for all ),. > O. Therefore (5.23) ls true.

l{ow we prove (5.22r. Whenever the left slde of (5.22) Ls less tlran

*@, both sldes are flnite and equal by deflnltlon (5 .2L>, Hence,

to prove (5.22r, we need only show that lf the right slde of (5,22,

1s less then *or then the left slde ls also. Let x be a vector such

that f(x) - g(Ax) < o. Then xe dom f and AxE dom g. The vector

xO also has the latter property, since it satlsfies the even stronger

conditlon (5.fl). Consequently

[*,o*vl] < [Axo,ti] = [*o,e*l*J = ;e*,vf 1,

by (5.23), so that

[*,n*yf1 - [*o,o*ri] = [Rxo,vfJ = [o*,yl].
Therefore, by (5.2L), the left side of (5,22) nrust also be less then to

for this x, as we wanted to prove. Thus (6.22) ls true.

Glven the functlon ln (5.10), we now let
' '[*,A*ri] = [*o,n*ri]), ri = rr,(5.25) ri(x) = fo(x) + 6(xl

cd(v) = Bo(y) * Scrltv,rf: = [Rxo,rfll, si = er.
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Then ff anO Ci are stable by Lemna S-M, and

(5.26) f' = f; + fi and s' = gi * ei

just as ir (S.10). Furthermore, the vector *0, whlch satisfies
(5.11) by assumption, also sati.sfies

(5.27, x'e dom f[.,"i(Com fi) anO Axne dein *6.,tt(dom g').

rt follows now from 5-L that f is a crosed proper convex function

on E and gr is a closed proper concave fr,uretion on F. Hence we can

eonslder the dual programs

(I') udnimizel f '(x) - s'(ex; on E,

(II') maxlmize (g')r(y*) - (f')*(a*y*) or, ,.*.

In view of (5,22), programs (I) anO (I,) amount to the same tlring.

Prcgran (r') ls also stabry consi,stent, accordlng to the above

remarks. we shalr. compare programs (rr) and (rI') next. By (5.26),

(5.27, and Lemma b-L, we have
rt_ tf- \- .-* * * * * i(f') (x ) = min_* t (f;) (x -z )+(ti)'("') I .

L

Applylng Lemma 5-M to (b.45), we can re-express thls as
* :F i'x * * * * - * *_ ,F * -:(f,') (x ) = min min

,* -oasr{oiritx 
+i'A yr-z )-\[xo'A'yrJ+fr(z ) ( '

But, from (5.10) and Lemma S*t,
tft\*****1

f (x ) = min * lfO(x *z )+fr(z ) I .

z
Therefore

**_r*,frt***(s.28) {f ') (x ) = min j f (* +\A y;}-h[*o,A*yi]j.
-ooe(co'

Actuall'y' the expression i"n brackets is a non-increasing funeti.on

of L. Thls ls proved as follows. By (b.23) and the cholce of *o,
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[*,o*vl] s [A*o,rf ] = [*o,o*ri] tor arr xe dom f .

Hencer for -c { }" ( m and arbltrary il } 0,
* * * 'F _ * *_f (x +(].+p)A yr; - (\.fl;)Lxo,A vrJ

= -(h++r)[*o,o*rlJ + s.rp* ] [*,***{i.+ule*vf :-rt*li
< - (L+p) [*o,n*vl ]*ir[*o,o*rl l+sup* ),- [*, **+rt-vi :-t t*li

*:t*rl.-{.*
= f (x +M yr) - llxo,A vrl.

A dual argument proves that
. * *. 1..* * rF _ *_t(5.29) (g') (y ) = nax I e (y +Iyr)-l[a*O,YrJ t,-cr+<@ r u r- )-

where tbe expresslon in brackets 1s,a non-decreaslng function of i,.

Tberefore
rf*,ft*(5.3o) (s') (y ) - (f ') (A y )

= ,n"* j e* tv**xyf )-r* (R*(yo*nrlr t-i
-.4<J r r J

where, agai.n, the expression ln brackets ls a non-decreasing functlon

of 1,. It follows from this that
i . .-* *. --*- :| :F. I f * * * rr r: 

.^l

sup * I (g') (y )*(f ') (e y )\ - ".rp ,r. le (y )-f (A y ) !yyL

and that both of these suprema are attained whenever one ls attalned.

Thus program (IIt) is "equi.valent" to program (II).

We want to show next that (I') and (II') are in a certain

sense slmpler than (I) and (ff). Conslder the function h defined

at the beglnnlng of the proof. Let
:'*rtF#***-:

M = i y l h(z +Ly )=h(z ) for. alt z eF and -c,Or<ool
,t-It ls not Affticult to see that M ls a subspaee of F . l{ext, for
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**tbe same xO and IO used ln the definltion of h, let
* * * * ,l :i **' hr(y ) = (e') (yo+y ) - (f') (x'+l y ),

'and let
(t, * * * :F * ]Itt = lV lfr'(" *i.y )=h'Cz ) f,or al.l. z eF and -ogcoJ.

By the results above, we have
,***tf*

h'(y ) = rnax h(y +\yr) for all y eE

-o$\<co

It is apparent from thls that M':)M. Also, VleU'. But VltU,

by the cholee "f yl. Thus the dlmenslon of the subspace M' ls

strlctly larger than that of M.

Now if program (I') ls strongly conslstent, Theoren 4-E(a)

implies that the extrema tr (t') and (IIt) are equal, and that

the second ls attalned. This must alsb be true then of the original

programs (t) and (II), as we have observed earller. On the other

hand, (I') ts itself stably consistentl hence, if (fr) is not

strongly consistent, we can use tbe same procedure to construct

another pair of prograrns (I") and (II") equlvalent to (Ir) and

(II'), and so forth. The procedure can be carried out at most

finitely many times, since I.* i" finlte-dimenslonal and a certain
rf

subspaee of F ls replaced by a strlctly larger one at each

iteration. Theref,ore we must eventually reach a point where

Theorem 4-E(a) can be applied. This proves that "stnong

. conslstency" can be replaced by "stable consistencyrr 1n 4-E(a).

The same thi.ng now foll.ows for 4-E(b), 4-F, 4-G and 4-H, slnce

these results needed strong consistency onry because tbelr proofs

depended on 4-E(a).



*63-

SECTION SIX

Comblnatorla 1 Operations

Convex funetions appearing in ext{emum problems freguently

arlse from other convex functions through certain eombinatorlal

operations. For example, as pointed out in{2, the effective domaln

of a glven convex function f can be restricted to a convex set C by

adding f and the charaeteristic function of C. Therefore, 1n

calculating the dual (Il) of a program (I), it is often necessary

to apply the conjugate operatlon to a sum of convex functlons.

We have al.ready done this in speclal cqses fn {S (see 5-E, 5-L,

5-M)" The generaL case witl be studi.e( here.

The strongest results in the duality theory that we have

developed (namely 5-J and 5-K) depend pn the use of stable and

completely stable convex functions. Tbe definj.ti.on of stability

is rather complicated, so that one cannot easiLy check whether

a glven function satisfies it. It will be proved below, bowever, that

the class of completely stabLe functlons is closed under addition,

direct sum constructicns (as ln Theorem 2-L) anct other operations.

Consequently, eny function constructed by such operations from

polyhedral, quadratie and connplete}y regular convex functi.ons,

among ottrers (see 5-G and the renark after 5-F), will be conpletely

stable. This resembles the situation ln the calculus, where one

relies on a coRnbinatorlat angument to prove that algeUif. functions

are eontinuous and di.f,ferentiabtre where defined.

A formutrE fcr tlre conjugate of a suno of convex f,unctlons has
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already been given by Fenctret [ts, p.95] (see also [22, p.2221r,

but this formula ls sllghtly lncorrect. (The error was potnted

or..,a 1r, f,+; it was ihe source of the false duatlty theorem.) The

conjug4te of a sum of convex functipns j.s obtained from the conjugates

of the individuals functions by an operation useful ln itself. This

operatlon, whlch we denote by #, has recently been investigated in

a one-dimensional case by Bellnan and Karusn [f ].

The term "convolution" Is suggested by the fact that, when

only tro functions are involved, one bas

(6. s) (f ,rtr) (x) = inf , ir, t*-rt + t r@) 5

THEOREM 6.8

Let fr,...,fU be proper convex functions on E. Then f, +...+ fn

and f, #.,.# fn are also convex functions on E, although not

necessarlly proper, and

(6.4) dom(fr+...+fO) = dom fl n ... 6dom fnr

(6.5) dour(fr#...#fk) = dom ft *...* dom fn = i,*Ii...+xkly. e dom f . ..

Additlon and convolutlon are commutative and associatlve where they

are defined (1.e for proper functlons).

con

ons

, (x)
C

"ft
ed (r

DEFINITION 6-A

Let f,, . . ., fo be proper

and fr#...#ft* are the functir

(6.1) (fr+...+fo)(x) = f

(6.2) (fr#...#fk)(x) = 1r

The operatlon # wlll be call,

ti

in

k(

.*

unct

defi

+f.
K

)+..

81)

f

I

vex

onE

+..

f, (x

mlni

on

)+

.ft
(rnl:

on

by

*t)
olu

),

k(x
nvo

ii,ons

ned

(x),

L,e ,t ^k'

conv

+...+

tr(xr)+

nlnimal

Then f, +...* f*

-
..+x = x l.kJ

E.

l* +.'1
tlon.
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Proof: Ife shall omit the proof, slnce it conslsts merery in

. 
checktng the deflnittons,

THEOREM 6-C

tet fr, .., rfn be proper. c0nvex functioni on E. Then

, (tr#...#fk)* = ,l +...+ fl.
rf fr'...'fo are arso closed, and fro...n fk is not identicalry
{s, then

(frn.,.+fk)* = crtrl*...#fl)

Proof: We use the definitlons directly
**(^(tf .. "#r;) (**) = "rpl[*, **]-- - t":.- =j 

rr(x.)+. . .*fk(\{i
x xl+...+xk

= sup sup [,f*r,**]-frtxr]r...+([*k,x*]-rotx*)) ,
x *l*...*xO=x t 

- 
- k- " -k- k' 

-i

= sup \t*r,*nl-rrtxr)f +. ..+sup i [*n,x*]-rotx*) i*LL--*k'

tk***
= fr(x )+.. ,+fo(x ).

Applylng this f,act now to tf ,.,.,ff,, we rrave

--* :f * ** ,t*(ft#...#fk) = fl *...fn .

rf fl '...o'f* are closed and fl+...*fo is proper, it now follows fron
?heorem 2-D that

(rr*' ".+r*) = ttl**...*tl*l* = trlr...,*rf,)*n= crtrlr...#rl).

CONOLIARY 6-D

If f-r..u,fr k are closed proper eonvex functions on E then

fl*...+fu is closed
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Frcof : As poj.nted out above, in this case f,,
**:: fr#. ".#fk, and hence j.s elosed b3l Theonern

lrilowlng lt. (fi*s faet rmay also be proved

:i closure directLy")

+. ".+f,- is the conjugatet-n

2-D and the rernarks

usj"ng the definition

of 6^ (see Appendlx A) s
U

It is not always true that fr#,..#fk j's closed w!:en fr, "'tn

are elosed. In fact cl(fr#...#fk) nay not agree wlth fr#...#fU at

ai1 points of the ef,f,ective domain of the latter" An example of

':eh mi.sbelravlor ;is readtl3r constructed frorn the exarnpl.e in Theo{em

i-c(c). trt is true, incidentally, that

cI(f.#. . .#f. ) (x) = (f.#. ..#f. ) (x) if-t k L I{

xe ri (dom f ,)+. , .+ri' (dom fn).

this follows fronn (2.7r, (6.5) and a tabt proved in Appendix A

(namely A-D).

Before showtng that Theorem 6-C can be strengthened ln certain

rnportant cases, we shall illustrate some uses of + and #. Vihen the

:haractenlsttc functions of non*empty convex sets Cr, ... 'C* are

:cnblned by 4 and #, the eets themsel.ves are eambj.ned as Ln (6.4)

::rcj (6 ,5i . Thus
vVrr

''6 "7, **u*' ' '+ bc* u*u n. " .,lck,

!:X{6'8} uot*""o o*u "*, u"'* cx'

Since the suppor"t functiott d* ls the eonjugate

r t follows f,rom Theorem 6*C that

(6.9) J^ = &^ +.. "* &^ !-cl *...* cL c:. cx
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and, if Cl,...,Cn are elosed and have a point in eommon,

. 'J - -v - ^! \(6.10) o^ A = cl(J,- #...#{^ ) '' ctr,...r.,cu --'cl cx

If f is a closed proper convex functlon on E and C ls a non-empty

elosed convex set lntersecting dom f, we have

(6.11) (f+dc) = crtr*rd;)

by Theorem 6-C.
(t

If K = ]_ xlxsO I and f is a proper donvex function on E, then

by (6,3)
v.-^ -(---r I

(6.12) (f#dK) (x) = rnr J 
f (z) I z>x ! tor each xeE .

This 1s the large.st convex functi.on h < f such that h(xt) < h(xr)

whenever *L < *Z in E. I'urthermore
v * * V rt. *

(6K) (x ) = s(x'I x x)),

so that'by Theoren 6-C

V -* * ti * V- *,
(f#6K) (x ) = f (x ) + 0(x I x >o).

More generally, if C is a non-empty convex set in E'

v.. i -

tr*d")(x) = inrj_f(x-z)lzec3 for each xeE'

Closures, too, can be expressed in terms of convoLution. Suppose

o(x) = ll"ll is some norm on E, and for each f,> o tet

6.(x) = X(,0 I li"ll st).
,.

Then, for any proper convex funetion f on E,

(r#b€)(x) = rnr {.r12) | l1*-"ll<e t

Convolution with SE can be viewed as a "smoothing" or "smearing"

operation. It is clear that (f#6€)(x) increases, if anything, as g

approaches O. !n fact

f#6O = f, 11mo(f#br)(x) = el f(x).
t+o*
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Notice that, for o(x) = ll*ll and a non-empty convex set C,

vC1tord.)(x) = inr iil*-ril lzecJ

gives the distance of x from c. rf cl and c, are non-empty closed

convex sets, then mlnimizing

r-5^+(o*X^)ct cz'
on E ls the same as determining the distance between c1 and cz.

we now prove some speclal results lnvolving stabre convex

functions.

THEOREM 6-E

Let f be a stable (completely stable) convex function on E.

Then the following functions are also stable (completely stable):

(a) h(x) = f (x+a), &€E,

(b) h(x) = f(x) + [*,o*], r*.8*,

(c) h(x)-If(x),0<\€R,

(d) h(x)=f(Ix),01\eR,

(e) h(x) = f (x) + 0, G€R,

Proof: Elementary consequences of Definitlon s-D ancl rheorem 2-x.

TIIEONEM 6-F

rf fl,...'fn are stable convex functlons on E such that fl+...*fu

is proper, then ft*...*tr. t" stabre. Moreover, trren rf*...utl is closed,
**

and for all x eE

_*. 1 i *- * * * , * * *j(6.13) (fr#. . .#fk) (x ) = min 
trr<.rl+. 

. .+ri<xil ll.i.. . .**i=** f .

Proof: lYe shall prove the second half first. suppose k = 2 and
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**
and let x €E " l.et

,r*
f(x) = tr(x) - [*ox'l and 8(x] = -fr(x)'

Tben f is stable convex (by 6-E), I is stable concavc' and
-* 

* i - ^ 
* tl

(6.14) -inf*.f(x)-S(x) = sup* .[*''.,*]-(fr*fZ)(x) = (fr+fr] (x ).

AIsc, dom f .dorn g l6 Ay the apsunrption that f, + f, Ls proper'
rl ,t

Hence by Theorerns s-tr, 5*J .and 4-E(a) (with E=F, E =F End A=I),

'Ftl*t(6.15) -inf* .f(x)-S(x) = -max * . g (y )-f (v )'
v

s mi.Ir * ,n (y* )-e* (y* ) !

v

But by elementarY calculation
:l*,Ft**tl:S**

f.(y ) = fl(x +y ) and s (Y ) = -f'(-Y )'

Comblning thls with {5.14) and (6"15} we get

* * '+. tt *- a tt^
(6"16) (fr+fr) (x ) '" dt * fl(x r'y )+fr$ |

UJ

The seeoncl half o*' the theorem now follows frorn Theorem 6-C for

k = 2o and for general li by illduction" l{e now prove the first half .

Let x{ dom(f,r+" ".+fn} ancl let M be any subspace of E. Let

f.,"(23 = i(a-xiu).
K++

Then f. - is also a stable convex fturction on E {bV Theoren 5-F)
K+I *

and, by e}ementary calculation with S{ as in (5.6),

4 $- ,, *' -'. *' *
ri*rtz') = [.x,2'] + 6(z lm l.

Moreover

({f r+" ,"nf,k}*,M} (z) = (fr+. . .+fu+f,.or) (z)

accorciing to def,inition (5"S). Now 6-C and the second half of the

theorem impLY that
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:F rt
((tr+.. .+fo)*,*) (x ) =

rk*rt***,*'*i(t
min ; f, (xr)+. . .+fn(xr,)+f t.*l(*r,*t) ixr+. . .**t.**k*t=*

= miil o \ttr+. " .+fn)* (** -r*>nfl,*r ("*)
z,

= S1^* 
,' (ft*., "+fn)*(rr*n"*)-ix, ,* J

zeM

lius fr+...nft 1s stable by Definition 5-D

:}iEOREM 6-G

***
Suppcse that il = Sl! .,. i,Ek and E = El .:' ... En as in

laeorem 2-L. Let f , bc a stable (conrpletely stable) convex f rrnction
*4.

:r E, with conjugate f. on 81, for i = 11...rk. Let

f(x) = f(xr,...,*k) = fl(*l) + ... + fr.(xn).

Then f is a stable (conrplet€ly stabi.e) convex function on E,

Proof: Let fl(x) = f:(x-'re .'x.) = f.(x.) for i = 1,...,k. ltte:' ----t'- -i I k i i
shall show that each fl is stable on E. Fix i and xe dom fl, and let

Il be a subspace of E" Lut **uE*. Let

g(n) = [", o* I - a<r-* lrra) "

Then g is a stable concave f,unction on E (by 5-F.). Furthermore,

let A, be the nntrix such that z- Arz=2. is the projectlon of E onto

E. . 'then f j(zr) = t. (A.z: , while f . is stable on E. by assurnption.

A1so, xe dom g anrl A.xe dom fi by the cholce of x and g. It follows

now from Theorems 5-I, 5-J and 4-E(a) that
i'.* "l'. * * *(6.r2) sup- ^ e(r)-.fi(Ar") ' = min_n ( f:(z:)-s- tnizll I .z ,- r r ,'i, t \

Due to the ctroice of eLenents, the }eft side of (6.I?) is just

((ur)*,*)*{roo}
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(see deflnition (5.5))" On the other hand, one calculates that
** .. ,3 - a *Alti= <0""'z!'0"')forall z:€Ei' 

,

**i*+(fj) (z)=)t.(zr)\f z= -0,...,ZL,o,... ,r 
ir 

1

:F :| - 
t;-tttt:t"::":

g (2, = [*,2 ) - 6(z lm i,
*

with M as in (5.6). The right side of (6.17) is therefore the

same as

min itrll*1***"*;-[*,=*J' .
tf*\r

zeM

Hence (6.17) ls tlre desired eguation (5.7r, and fj is stable by

Definltion 5-D, as asserted. The rest of the proof is easy. Since

obvlously f = fi +...+ fi, Theorem 6-F says that f is stable. If

the f, are actually completely stable, i.e. if fl,o..,tf, are afso

stable, then the same argument shows, by Theorem 2-L, that
{.tf*rF*trlr*:}f (x ) = f (xr,...,fO) = fr(xr) +...+ fk(xk)

is stable" Ilence f is completely stable when the f. are completely

stable.

TIIEONEM 6.H

Let fr, o.,,tn O" completely stable convex functl<lns on E.

Then fr+...*tn and fr#'".*t* are also cornpletely stable, and

(6.I8) (ff#.,.#fk)(x) = mn lfr(xr)+...+fn(xo) lxr+...*xn=x r,

whenever proper.

Proof: Suppose f =
*fr#...#fU ls proper. Then f is proper (by 2-D)

by Theorem 6-C. By the clefinitions of complete
***

and f = fr+.".*ft



stabllity, each tf i" stable. Also, t;* = fi for i = 1,...,k by

Thebren 2-D because the fr, being stable, are closed and proper.

Theoren 6-F therefore 5.mplies that f* i= stable, that f is elosed,

and tlrgt (6.18) is true. Now let xe dom f, *nar*, and let M be a

subspace of E. We must verri-fy tha't (5.?) holcls. Let F = EQ...e,E
***

and F = EiD...::jE (k times), and let A be the matrix giving the

linear transformatton

y =<xl ,...,xn)'+Av = xr+...n*k

from F to S. Let

h(y) = rr(xr)+". ".rfo(xo) , E(z) = lz,**]-$tr-"lu).

Then b is a stable concave function on F by Theorem 6-G, while g

is a stable concave function on E by Theorem 5-F. Also, by (6.5)

and the choice of x, there does exist at least one y€ dom h such

that Ay€ dom g. fience by Theorems 5-I, 5-J and 4-E(a),

(6.le) lnr-- fh(y)-e(Ay)i = unx * \ u*(r*)-h*{R*"*1 iyL ', 
u

The left side of i6.19) is the same as

inf ,,rf, \ tr(xr)+...+foixn)+d1z-xf m)- l-"rt*f'^
Z xl+". "*Xn=z

s -sup, \[r, **]-(rr#. " .#fk) (z)-Btz-xlru) i
-l.l( !F

= -(f*,M) '(x ) .

But also, with M* as in (5.6),
,1.:1.*ti**

h (y ) = tn(xr)+. . .+fo(xn) (by Theorem z-Lr,
* * - * *- v * tt. *

S @ ) = [.x,2 -x .l-b(z ->r lM ),
** r* * * rF

A z - 4r, ,...,2 2 fot all z eE

*



ilence the right side of (6.19) is

. a-* * 'F * *
-mi'n *ih ta z )-e (z )i

z'
+ * * - * +- , * *r *.

= -min * ifin...+foi(z )-lx,z -x l+b(z -x iu ) I
.z
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.*+**:r
= -mln j f (* +u )-[-x,u J:. ,.**'

u€M

:hls flnishes the proof that fl#...*tn is completely stable.

:icw suppose instead that f = fr+"'*tn is proper. Then f is
**6:t

;tab1e, and 1 = fr#...#fOr by Theorems 6-C and 6*F. A.lso, f
:fi*

rs proper by Theorem 2*D. But fl,...rfn are completely stable by

*
:efinition. llence, in part,icular, f is stable by the first part

:f the proof. Therefore f is completely stable.

i.emark: As a speclal case, suppose that f is a quadratic convex

:-:netion on $ and that C is a non-empty polyhedral convex set in E.

V

lSen f and D^ are conpletely stable (see ?heorem 5-G and the remarks
C

aiter Theorem 5-f). Hence f + Da and 1 tr Dg are eompletely stable

::; the above theorein. Irtore generally, suppose that the functions

: and g 1n the model. sonvex program (I) are constructed from

:rnpletely stabi.e convex functions by means of the operation

-; Theorems 6-8, 6*G and 6-H" Then f, and g are contpletely

::-able, and Corollary 5*K is valid for (I) ' Thus, through 5-K

a::d the above results, we hove extended the linear programming

:5eorems, without weakentng them at all, to a much larger class

:1 problems 
"

t;
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In the next theorem we describe an important case where

Theorem 6-c can be sharpened and at the same time generarize the

:ule that "the differential of the sum is the sum of the differentials."

SEOREM 6-I

Let f, , ... rf" be stable convex functions

j.+I, . . ., fk be closed proper convex functlons

:: functions may be empty.) Suppose that

=
*

lli::'eover, then x
r{.

r such that x. =-t

-::cof : Let F = EO... *8, F
r*

r €E and let

iE (k times). Fix

and let

. (nither set

y = 1xL, . ..,*U) at.

is closed proper and

linear transformation

-1*, **]+{fr+. . .+f

onE

onE

,a.2o> dom frn.., ,adom f"..ri(dom fr+l)A... n ri(don tn) I A.
**rFrF

l:en fr#...#ft is closed and proper, and, for all x €E ,

:;.2L) (fr*...+to)*(**) = trir. . .#f;) (x*)
(* * {( *, * *

min j fr(xr)+...+fn(xn) lxr+...+xU=x i .
J

= d(fr+...*tr.)(x) lf and only if there exist

af. (x), i = ir...,k, urd ** = ** 
*

- I "'At qrre A = xt*"'*"k'

**
= E j-

lhen h is

concave.

h(x) - -[*,**] tor al.l xeE,

g(y) = -ta(xr)-...-fO(xn) for all

closed proper and convex, while g

Let A be the, matrix inducing the

x*->Ax = 1xr... rx>

from E to F. Then

(6.22') -inf* ''-h(*)-g(n*)l) = -inf* i

- (fr*...+tn)*{x).

;n fac$ the convex program on the left

k) 
(*{

of (6.22) Ls stably
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consistent. Namely, let
- *-

rro (x) = - [x, x ], rr, (x) - o f or all xeE,

co(v) = -ft(*r) . ..-f"(xr), sr(v) = -fr+l(*"*1)-. ..-fn(xn).

These functions satisry the conditi.ons of Definition 5-H in vlew

of (5.2O). (See 6-C and Theorem A-H in Appendix A.) Now we can

apply Theorems 5-J and 4-E(a) to (6.22) obtalning
tt * * * * **-,(6.23) (fr+...+fu) (x ) = -max *.8 (y )-h (A y )t.

yr
Inasmuch as

,t * v *. * :l
h (z ) = E(z lz =-x l,
*****rtg (y ) = -ft(-*f)-...-fn(-xu) (see 2-L and 2.18),
,** * * * * :i *

A Y = Xr*...**k for Y = (*ri... 'xk;' eF ,

the left side of (6.23) ls

nin * { o*tu*r*l-s*tr*l (
Y*******

= min t fr(-xr)+. ..+fu(-xo) l-*f-. . .-xk=-x -
a**

= (f L#. . .#fk) (x ) .

This pnoves (6,2L), ano flf...*t; must now be closed and proper

by Theorem 2-D, since it is the conjugate of fl+...*fk. The

final statement of the theorem ls deomonstrated as follows. By

*
Theorem 2-H, x = a(fl+...+fn)(x) if and only if

*rfi(6.24> O > (f1+...+fo(x) + (fr*...+fn) (x )
f * * * tt . * * :l)

fr(x)+...+fu(x) + min 1fr(xr)+...+fu(xn) l*f*...*Xn=X j .

since o = fr(x) +.tit"il for alL *l o, Theorem 2-t', for 1 =1,...k,
(6.24, holds if and only if there exist *1,...,xf, such that

**rl,f*
1| x =Xr*...**kandO>t.(x) *fr("r) fori = 1,...,k.
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tha t *x, = |f. (x), so the proof of the
But by 2-H

Theorem is

the latter means

complete.
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SECTION SEVEN

Sone Applications of the Gene_ral Theory

Some uses of the precedlng theory will. now be demonstrated

cy appLying lt to the various types. oi .orru"* programs that have

attracted attentlon in the li.terature. In eaeh example we begin by

specifying a closed proper convex functj.on on E or E* and a closed

proper concave function on F or F*. The conjugates of these functi"ons

are caLculated from Definitions 2-c and 2-M, often with the aid of

the fonnulas in {,6, and their generalized differentials are

derlved from Defi.nltion 2-G and rheorem 2-H, or by the methods

of Appendix c. This cornpletely determines two dual programs (r)

and (II), a "game" (III) and an "equillbrium" problem (IV), as

explained in {9. $re then descrlbe the corresponding strong

consistency and stable consLstency conditions, and explain how the

corresponding speclal versions of theorems 4-E, 4-F, 4-G, 4-H, b-J

or 5-K are related to known results.

It is convenient to start by reviewing the linear programming

case (see t3).

E)(AMPLE 7-A (Linear Frogramming)
'**
Let b €E and ceF. Let

f (x) = [",u*] * {t*l*>o),
:t rF rr *. rl *f(x)=b(xix<b),

n
e(y) = 6 (y [y>c) ,

{. ,F - *- A tt. tt
c (y ) = Lc,y J + 6(y lv >o).

Plogramsi

(r) rninlmlze [*, o*] + b(x !xeo,Axec],

(rr) maximlze [c,y*] * b(y*ly*>0,A*y**lr*].
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Lagrangian Function;
' * ,f_ _ * *L(x,y ) = ix,b ] + i.,y'] _ [a*,y-] fo" x ] o,

Equillbri um Condi tions :

x k o, y* E 0, Ax*c & o, b*-A*y* * o, [.tx_c,y*]< o, [*rb*_4*y*]=0.

The fr:nctions in this example are polyhedral, so that the
fundamental theorern b-K for "cornptetery stable prograns,, is apprlcable.
This yietds arr the fasts about rlnear programs that were discussed
tn _al.

we shall rn*ke use next of the correspondence between convex sets
and positively homogeneous functions, which is explained in Appendix A.

*y > O.

,1.

andF,

EXAMPLE 7-B (flomogeneous prograrnming)
z*

Let B and C be non_empty closed convex sets in E

respectively. L€t

r(x) = 6t* le*), g(y) = 6(y icl,
* *, ! irr * * s ., *,f (x )=6 (x is ) , E (y' )=a(y- lc) .

(See Appendix A for the notation.)
DuaI Prograrns:

(r) minimi.ze dtrls*l * 6r* !*xec),
(rr ) maximiT-e o(y* lcl + 

,i(r* 
lo*r*.8*),

Iagrangian lunc!!on:
ri,f*

L(x,y ) = i(xf e'l + o(v'lc) _ [e",y] ror

xe dom du* aud v*e dom oa.
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Equi librium Condi tions :

Axec anct [a",y] < d(y*lc),
:*-* {< - * *

A'y' €B and [*,A'y- ] ] UCx lnl .

6.

To justify these equllibriurn conditions, we note from Theorem 2-H

that, for the present choice of f, O*y* = bf(x) if ancl only if
v | * v * *, * - * *_d(xls ) + b(A y" lB ) < [x,A y ].

This leads to the second condition; the first condition is deriverJ

similarly. In vievr of the definition of support functions, the

equilibrium conditions have an int,eresting geometric meaning: the
rt*

hyp&rplane [y,y ] = p in F is to be tangent to C at the potnt

AX, ancl the hyperplane [x,**] = p in [* is to be tanget to B*
* * * 

^ 
*, , ,fat the point A y , 'rhere p = G(y lC) "tO 

p = 56*fn'y.

observe that z-B specializes to z-A when u* = {** l***b*J ur,,tL' J

{rl
C = lyly>cl. More generally, 5-K can be applied to these problems

LJ
,:

if the sets B and C are polyhedral. In the case where

(?.r) oom J * = {*1.*l ancr ctom 3, = [v*lr*.o] ,

B
the dusl programs (I) and (ll) have been studied by Eisenberg [fO].

It follows immediately from the rvell known properties of support

functions of convex sets (see Theorem A-A) that, given rrry 
"luB*

,i
and yOeC, (7.1) implles:

**r*(7.2a) xO + \x eB for all \ > 0 if and onty if x 3 0,

(7.2b) y0 + \y€C for all }' > 0 if arrd only if y > 0.

/fe can easily determine from this the duals of the strong consi.stency

conditions (see Theorem 4-I). Namely, let x^ = 0 and yO€G. Then,
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by (7.2b) :'

f (xo+\x) - s(yo+Mx) = 8(xxls*) t Stro+uxfc)

is a flnite, non-increasing function of L >.O lf and onty if

ut*ls*l 3 o and Ax ) o, but it is not constant for -o { \ ( co

unless x = 0. Therefore, accordlng to Theorem 4-I, program (II)

is strongly conslstent if and onl.y if,
rt

(7.3a) dtxlB ) < o and Ax e o imply x = O.

By a slmilar argument, program (I) ls strongly consistent if and

only if
n *. :l tt tl(7.3b) ij(y lc) > O and A y < o lmply y' = O.

Condltions (7.3a) arrd (7.3b) are the ones employed by Elsenberg.

More general conditions equivalent to strong or stable eonsistency

can also. be derived when (7,L, ls not -assumed, and of course one

can always apply the definltion of strong consistency itself,

determining the relatlve interiors of the characterizations in

Theorem A-C.

EXAMPIJ 7.C
!t*ti

Let b €E and c€F, with b { o ano . + o. Let

f (x) = 6(*l*ro, [", o*]-1), c*(y*) = b(yr ly*=0, [*,y*]=t).

The conjugates of these functions are calculated as follows.
'rJ r- t* 't ,

Let fr(x) = D(xlLx,tr j=1) and fr(x) = 6(xlx>01. Then t, utd t,

are polyhedral (and hence completeLy stabte by 5-G) and f = fL * fz

is proper (slnce u*{o). Therefore by Theorem 6-I
**t'***:l*--f (x ) = min * tff(x -z )+tr(z li

z



Elementary calculation from Definition 2-C shows that
. * * '.; *. * . * * * :f * * *

. f"(x )=6(xfxso;,fr(x)=i}' lf x =\b,--(\(po,

'. * otherwise '

Therefore
* + * iz tl . * * 'F . tl ^t

f (x)=min'}. +0(}'"r).b>x) l-*'I.*i.
-tlso, it 1s easy to shown from 2-G and 2-H that x* = af, (x) if

I
*- * * * :t *

and only if [xrb ] = I and x = X b for some }' , -cc ( \ ( -,
:l. _ * - tF-

rhilex =bf^(x) ifandonlyifx)0, x 30and Lx,x j>0.
2

*
Hence by Theorem 6-I, x .= Af(x) if and only if

* rF * * - * * *- *
x 2 O, [*,b'"j - 1, x - ].'b' s 0 and [*,*'-t-b ] s o for some L .

Slnilarly one shows that

=g**(y)) = max l'r-$tLlr."syl i--.aa*: ,

* * ' * = *-"
and that y = dg (y ) if and only if y E O, [.,y ,] - I,

*y - trc ) O and [y-\c,y ] 5 0 for some L.
rl*

Since f and g are polyhedral, so are f and g by Theorem 5-C.

Note that
. * rl * *-.
lx<l,b forsomeL :,

I y = 4." for some Lr

*
dom f

dom g

Duq! Prograns:

-8t-

** -**
Xb -Ay ?0,

Ax-Lc*O,

.*
= *' X

=ly

(I) mlnlmize -L + B(I
*/\(II) naximize -}. + 8(L

Lagrangian Function:
rl rfi

L(x,y ) = -[A*,y ] tor x E O,

Equilibri t{n Qoryli tionF :

I e*>r.") * [(*fx>o,[x,b*i=r;,
, * ri * rt n *. ,* - *-
ln y <}. b ) + D(y ly >o, Lc,y -i=l).

* * - *^
[*,U'] = 1, and y P O, [.,y ] = 1.

x E o, [*,b*] = l,

y > o, [",y*] = 1,

** **
[x,].b-Ry]so,
[e*-rc, y*] < o.
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since the functions are poryhedrar, s-K is applicable. rt
yields' among other things, a duality theorem proved elsewhere by

the author [sr, Theorem 21. lthen b* - i, .. ",I/ and c = ]r..,,1 ,

the duar programs are the strategy problens for a matrix game. rn
this case the i.nplicit eonstraints in (r) and (rI) can always

be satisfied,-and hence by 5-K both problems al_ways have solutions"

Also, 5-K and 4-H say then that the rninimax value ol the Lagrangian

function always exists; this 1s the von Neurnann minimax theorern [s01.

For other special cases of 7-C, see [Sfj.

We can generalize'l-C in the same way we generalized Z_A

by 7-B .

EXAMPLE 7-D

*
Let B and C be non-empty closed convex sets in E ancl F

respectively. Let

f (x)
**

f(x)

Dual Problems

= Y(* lr), g(y)
,.r *, * *

= u(x lB), c (y
= 'o1y 

f c*),
, *. *

)=b(y ic I .

(I ) rninimi ze -'o(Axla*)*tj 1x f n) ,

(II) maximize -u(,c*y* Inl+o(y* lc*),
Lagrangian Function:

* , *_ *L(x,y ) - -h*,y ] tor xeB and y eC

Equili brium Condi tlons

x€8, y€c, [*,A*y*] > ...r{a*y* te), [o*,y*] ', (a* lc* ) .
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The equlll.brlun conditlons are justt.fled by the argument used

in ?-8, and they have a siniler geometric neanlng. Some applicatlons
rl

ofprob1en(III)hereareworthmentlonlng.IfBandCare

polyhedral, Theorems {-H and 5-K yleld Wolferg minlnax theoren f<ir

polybedral games [gg] wnen applieO to (III). If B and C* """
bounded, then oon &, = E* and oom t * = F; the strong conslstency

c
condltlons are trlvially satlsfied ln thls case, and another well

known nlnlnax result (see tZZ, p.28]) then follows from 4-H. More

generally, a mlnimax theoren can be stated for sets B and C* whl,cb

are not necessarlly conpact but satlsfy condltlpns based on Theoren 4-I.

These condltions resemble those derived in ?-8.

It frequently happens ln apptrlcatlons that the nodel problems

The case where

all the component spaceg are one-dimenslonal is of partlcular

importance ln network tbeory, as w111 be explalned ln detall fn Ee.

E)GMPLE ?-E (General Deconpositlon Princlple)

Suppose, nuch as ln Theorem 2-L, that

of fe are "separablel Ln the sense described below.

E = ElO ... sE", F = Frs "' sFs.
'**'t***

E = EtCI ... OE"r F = FlS.... (EF".

Comespotdlngly, ?uppose that A 1s partltloned

A. . such tbat
1J

-*"{
into submatrlees

x. 
-+ 

A. .lr.J UJ
is a llnear transformation fron EJ 

,ro 
Ur, "o

x =1xu, ...xr) -*) Ax = (fA, ixi, . ..
\LJ. t4 J

tbat

.,f.e
J

(

"r*i 
) '
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Denote the transDose of A- bv A*pose of Af; by A;i. tror i = 1,...1r, let

f. be a closed proper convex f,unction on E. with conjugate f]JJJ*
on 8.. For I = l...rs 1et g. be a closed proper concave furctlonJr.

:l*
on F, with conjugate gi on Fi. Let

f(x) = fr(xr)+.. '+f"(x"), g(y) = Br(vr)+...*Bs(y"),
**:t***t|****f (x)= fr(xr)+. ..+fr(x"), I (y )=sr(Vr)+. . ..res(v") .

(See Theorem 2-L)

Dual Programs:

(r) *1nr'1ze f r.(x.)- I-uJ J J .,rtrEori"i)'forxrEE''i=l 1"'2t1

(rr) maxf i"e 
\sirvir - \tlt^liyl), for x. €E. I 1=11...1s

Iagranglan Functlon:

r(xr,...rx,ryl,...,rll = Ltr(x 
) +[*ioir- 

Irrtorr*r,rf :

for xr€ dom fr,j=1, .. .,r, and vfe aor sf,r=r, ...,s.
Equlli brl un Condi tions

The ;gtrong consl.stency condltlons for (I) and (II)

respectively, arel

(7.4a) there exist;.€ ri(dom f .), i=lr...1r1 such that

r
) A..*je r1(don 91), i=l,...,s;
tt't'

(7.4b, there exist vfe "r(oon 
g*;, i=11...1s, such that

ft :l :t :i

 
ort Yr€ rl(don fr), i=11" '1r'

Tlrls ls a consgquence of a general fact about relatlve lnteriors

proved ln Appendlx A (see A-H). On the other hand, if the fj "rd gt

-
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are all conpletely stable then, in view of 6-G, we can apply the

powerful theorem 5-K to the above problems. The nnuch broader

conditions for stable consistency are satisfied in the followlng

situatlon. Suppose, just as ln Definition 5*H, that f. = tj' * tj,

ior j = le...rr, and gi =. gi. * *rl'for i = 1,...rs, where the f;o

"nd BiO are stable. Then (I) is stably consistent if

(7.5) there exlst x.e dom tj' n"t(dorn f .r), i = I2,., et1 sueh that

) o.,.*je dom Btonrl(dorn Btt), i = 1,...,s.
t'J

To prove this, we note first that

hr(x) = nr(*r, ...,*") = frr(xr)+...+frr(x")

i.s a closed proper convex function on E by 2-L, whi.le

rro(x) = ho(*1, ...,**) = fro(xr)+....+f"o(x")

is a stable convex function on E by Theorem 6-G. Obviously

t = oo * hl. slmilarlY

t<r(v) = nl(y,,...,t") = err(vr)+...+B"t(y")

is a closed proper concave functlon on F,

t<o(v) = no(Vl, "..,Y") = cro(yl)+...*g"o(y")
j.s a stable eoncave functlon on Do and g = kO * nr" Hence by

Definition 5-H, (I) is stably consistent is there exlsts some x

such that

xe dorn hg nrl(don hr) such that Axe dom OO n"t(dom kr).

This ls equlvalent to (7.5). (A-tt ts used here to calculate rl(clom hr)

and ri(dom kr).) Therefore (7.5) guarantees, as asserted, thst (I)

is stably consistent.
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EXAMPIE 7-F (Convex programming with Linear Constraints)

Let h be a closed proper convex function on E such that

r x I xEO . l-= dom h, and let c€F. Let

f (x) = h(x) + d(xix>ol, s(v) = D(yly>.),
,F * * *,* * * *f '(x ) = mi'-.h (x )lr=* r,, g (y ) = [.,y*] * $tr*;y*-o)"

(The forrnula for f* fotlo*s from 6-I; see also (6.12).) Then
*

x = Df(x) 1f and only if x 2 0 and there exists 
"ornu 

,* = *** - * *. * *such that z = dh(x) and L*," -x ] < 0. Also, y = dg (y-) it
rfi _*and only if y ) o, y 2 c and [y',y-"] < o. (ttris nay be proved

as an Example 7-C.>

Dual Programs:

(I) minimize h(x) + E(xlx>OlAxls)

(rr) maximize [c,y*] * d(y* ly*>o) - mln ]n*("*) l"***r*-(

Lagrangian Function:
*- * *_ :*L(x,y ) = h(x) - [ex-c,y ] tor x ] o and y > o.

Equl li bri um Condi tions :

x l 0, Ax - c 2 0, [Ax-c,y*] < 0,
*****:f,f,t

y 2o,z =dh(x),2-Ay 20, fx,z-Ay]<0.

we prove first from Theorem 4-r(a) that, given an arbitrary

vector *0 , O, (II) is strongly consistent if, and only j"f

(7,6) the only vector x such that x > 0, Ax ) O ancl

h(x^+\x) is non-increasing functlon of X ) O,U

is x = 0.

Namely, for each xeE consicler

k(\) = f(x^+).x) - g(c+Mx) - h(x^+\x) + SCll*^+Lx>O, Mx>o).00
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This i.s a finite non*Lnsreaslng f,unction of io F 0 if and only i{

x 2'0, Ax b O and tr{x*+hx} i.s non-lncreestrng, On t}ee other hand,

k(h) is constant f*r *oo < L < ao if and cnSy *.f x = 0 (ln fact is

is not even finite for aLt L unlese x s G). ?hus (7"6i speciallzes

tlre ceiiadj.ti.cn In a*I(a) equivalent to tlae streirug esnsistency af,

(nI) as asserted, I.{ext we show t}iat {I} is stably consistent

if

ET "7, there exists some x€ ri(dorn h) such that x 2 0 and Ax l c.

i,et co{xi = 6(xf"ml, f,(x}'= it(x}, c'{y} = 6(yiy>*}, B,(f} = o

for all y. Then fo and g, are stabl.e because they are polyhedral

(Theorern 5-G). Ttrese functions obviously satlsfy the reqr.lirements

of Definlti.on 5*rI, and (?.7) Is the speclalization of (5.I1),

A*ccrdlng to Theorem 5*.T, stable conslsteney ean be used in place

of, stnong Eonsisteney ln the duality and eguivarence theorems

cf 44. Th.us, l'$r exana1r3.e, if {7.?} ho]"ds we san conc}ude from

4*s that (Il) has a solution whenever (I) has a solutlon, that
:

th* pa*rs elf soStetdsins tq {I} to satisfy tire equilibrlum relatlons, and

so fcg"th" l{{}te espeeiatr}y that, when {?.6} holds, 4-E(}r} inrp}.ies

th*t {5} has a soSlltis}n whenever i.t is mer.erSr consi"stent, ,

i 
" 
e rvhenever

{?.?'} thex"e exists sonr* ?{ k 0 sueh t&aat Ax h e ,

FrobSern {r} has been st.ud{ed by norn [rs] under restrlction
tluat {*n the present ternni.xro}.ogy}

(.
{7.s} | xfxao!e r*{dom h}

and that *c tle flj.fferentiable threiughout r:{<ism h}, In this case
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l: is single-valued on ri (dom h) (see Appendix C). The dual program

-ven by Donr, however, ls not (fI) but

,II') maxlmlze [",y*] + h(x) - [*,ah(x) I

subject y* = o, o*y* s dh(x), x€ ri(dom h).

lThis is usually not a convex or concave program.) Dorn proved

('.urder the above restrictions) that if (f) has a solutj.on then (II')

:as a solution and the extrema it (l) and (II') are equal. tYe

::all show that 111r) and (II) are closely related, and that Dornrs

-reorem ls included ln the above results. Let xe rl(dom h) and

*
-et z = Eh(x). Then by Theorems 2-F and 2-H

**h(z)=[x,Dh(x)]-h(x).

:ence (II') can be re-expressed as

:I") naxlmize [.,y*] - b*(r*) subject to y* > o, A*y* < "*
*

and z = bh(x) for some x€ ri(don h).

:f the last conditlon w.r" "z*€ dom h*", then (II") would be

:;uivalent to (II). In general, the set of ,* satisfying the

-ast condition in (rt") ls a subset of dom h* 1r"hi"r, contains
rf

-(don h ) in varlous casesr for instance when h is finlte on all

:: Ei see Appendlx C). Thus Dotn's dual program (II') is "smaller"

:een (II); so that, conceivably, the extrema in (I) and (II) could be

:,qual when the extrema in (I) and (II') are not, or (II) might

:rovide solutions not contained in (II'). l{tren (I) actually has

: solution, such discrepancies cannot arise. Indeed, beeause of (7.8),

:.ee stable conslstency conditlon (7.7) for (I) ls the same as mere

:cnsistency (7.7'), Hence if (I) has a solutJ.on, 4-n(a) implies
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that (II) also has a soluti.on and that the extlemEr in (I) and (II)

are equal. Moreover then, by 4-G, pairs of soluti.ons satisfy the

above eqrdllbrium relations; it follows from this that the solutions

t. (tI) are also solutj.ons to (II.") (and hence to (II')) . Thus Dornf s

theorem is lmplied by the special versions oI .{-E(a) and 4-G that

use condition (7.7). Thc latter are more general ln that they do not

require (7.8) or clifferc"ntiability. The special versions o{ 4-E(b),

4-F and the dual of 4-G that use (7.6) are new.

Dennis [11, ,- f] has treated (I) under the more restrictlve

assumption that

h(x) = tr(*r\ + t"(xr) for * = *I,x, rE, Ez = E,

where f, is linear and f, is strictly convex as well as differentiable.

The dual problem constructed by Dennls ls almost the same as (II)

above, but 1t is based on the Legendre transformation (see Appendix C)

rather than on the conjugate operation.

The dual programs in 7-F can be embedded in a symmetric pair

of dual programs resembling those below. For the sake of variety,

however, we shall state these symmetric prclgrams in a particularly

strong foim, rather than in a particularly general form.

EXAIvIPLE 7-G

suppose r = s = 2 in 7-E. Let uieui, rri.ni, .t'Fl , "2.-Fz.
Let h be a convex function oll E, such that

(7.9a) h is finitc on all of Er, and

(7.9b) Iim h(,\"x)/X = * for all xo / O.

L ro I -
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Then h is closed and proper by (7.9a) and (2.7), and don h = E.

Moreover (7.9b) ls equivalent to the assumption that dom h* = E*

(see Corollary B-C in Appendix B). Theretore h* "^tlsfies the

same conditlons. 1n partlcular, h.1s cornpletely stable by Theorem 5-F.

Similarly let k be a concave function on F, such that

(7.loa) k is finite on alt of Fr, and

(7.f0b) lim k().yr\/X =-u, for aLL yr 4 O.
I-;co

*
Then k is completely stable, and k satlsfj,es the same condltlons.

Let

-*rr(xr) = l*l,rrlj + ot"rl*t'o),

tr$r) - [*z,ulj + *(*2fl*rs) + h(xr].

Ihen f, and f, are completely stable by- 5-G and 6-H, and

* * \' 1... * l'fr(*r) - 5(xrixrsbr),

ric"]r = nintit$ | "l*l-"13.
(Thi.s may be proved from €i-I , as in earller examples.)

Sinilarly we take

cr(vt1 = Stva fvr>"r),

c,2$ 2t = trraX i k(zr) lY ru"r*',' ,

***1.*
cl(yr) = [.r,vrl + s(yl iyrho),

* * - ,|-r *. * * *
ez$z>' l-cz'YrJ + *(Yz lyzs) + k (yr).

lrese functlons, too, are completely stable.
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Dual Programs:

(r) minimize [.xr,uf i + f*r,of,J + htxr) - k(zz:'

subject to x, E 0, *, u t,

Alt*t*or?*r=tl'
Azr*l *Azz*z*"r*'r'

(rr) rnaximizc [.r,rl] + ["2,y*] * u*trll - n* (rr*)

subject to vf > o, ,j = o,
g:lc,|**

AttYr*AtzYzubt
+:t*a:f*

AzfYt *AZZIZ=b2*12

Lagrangian EuLctjlo]r:
,|rl.**

L(xr,*zrYL,yr) = h(xr) + k (Vr)

* I,t"r,ulj * Irt"r,rll - {rinr;*;,rf lJ
*rtfor x, * 0r x, P 0, yt =0r X2 > 0.

Equi llbriun qondl tigqs :

the constraints of (I) and (Il) along with
,|^**

nz = dh(xr) , z, = dk (fil,
[nrrxr+'t, z*2-"L,vf J u o, [Rzr*r*Az ?*z-"2'"z,vj] * o,

- + :tr {r * *_ _ * * * d. * *
Lxr, br-A, tyt-Atzyzi < o , l^2,2;+b;'-l.ztv t-Azztz] < o.

Slnce the functions are completely stable, b-K applies to the

above problems (see the discussion following ?-E). Thus, for example,

if the infimum i. (l) is finite, or if the suprenum in (II) is finite,

or if the constraints in both (t) ano 111) are consistent, then both

probrems have solutions and the extrema are equal. Notice that the

above problems reduce to linear programs when E, and F, are zero-
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dimensl.onal. when merety Ez is zero-dimensional, these problems

are very simllar to problems treated by Ghouila-Houri LZ, p.99-IO2].

Ghouila-Hourl's result could be applied here to prove that (I) has

a solutlon if and only if (II) has'a solution, j.n whj.ch case the

extrema are equal and the solutions may be determined from the

equilibrium relations. The present result 1s rnore general in that

F2 need not be zero-dimensi"onal, and it is stronger because it

guarantees that the extrema are attained whenever they are finite.

The guadratic case of 7-G is especially worth mentioning.

,nt" o""rrlil-
h(x) = t[x,sx] and k*1y*) = *[cy*,y*]

for a positive definite matrix p and a negative definite nnatrie C.

Then

h*(**) = $1n-1**,**] "r,d 
k(y) = *[y,c-ry],

-r -lwhere B'and C ^ are the inverses of B and C. (See the end of

Appendix C.) Cottle [eS] has recently studied a s;rmrnetrically dual

pair of quadratic programs of a different form, in which the duality

resembles that Dorn's papers [fZ] anO [fe] lsee the detalled

discussion following 7-P). Cottle's results, too, could be deduced

easily from the theory developed here.

We would like now to give a general interpretation of (I)

and (II) in 7-G. For this purpose we assume that

(7.f1) O = h(O) = min-h and O = k(O) = ilBX k.

Actually (7.11) imposes no slgnificant restrj.ction. Namely,

we can always change h by an addi.tive constant to make h(0) = 0;
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:bis would not essentially change the problems. On the other hand,
**'.ake any a, such that a, = Eh(O) (this ls posslble by 2-I); let

h'(xr) = h(xr) - [*2,";), o'l = ai + "i
lhen h'(O) = mln hr (frour D,efinition 2-G) and h' stlll satisfies

i7.9a) and (7.9b). l{oreover the problems are not essentially

:r,anged when h anA uj are replaced by h' and b'1. A sinple argrnsr6

ilso works for k. Thus (7.11) is just a "norrrsli.zati.on". It
jollows fron (7.11) that, dually,

rl:t*rl7,L2, 0 = h (0) = rnln h and O = k (O) = rax k .

;cw consLder the function^ kO on F, defined by
{r

ko(Y2) = DlX Jx(zr) lYr'"r\

:'.;e to (?.11), kO has the following properties:

;.I3a) XO(Vr) 3 O for .tt tr, t<o(Vr) = 0 lf !2, O,

;.r3b) ko(cr) < ko(vr) if z, = yr,

We can re-express (I), uslng kO' as

:') minlmize [*r,oi] + [*z,u]l + h(xr) - ko(ArrxL*Azz*2-"z)

subject to x, 2 O, *2 = O, Att*t * ALZ*, = "r.
ae last tenr in the ninimand is zero by (7.L3a) whenever

i.14) Azt*l + Arrxr 2 e,

-: satlsfied. Otherwlse 1t contrlbutes a non-negatlve amount

;osltlve lf k attalns its maximum only at O) which may be thought

:i as a "penalty" for violatlng (T.L4r. According to (Z.Igb)

:-e greater tbe vlolatlon, the greater the penalty. Thus (It) is

n-ch like a modlfed verslon of 7-F ln whlch it is deslrab,'.e, but

::: absolutely necessary, to satisfy all the constraints exactly.
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{hen F, is zero-dlmensional, the penalty for violating a

:s always inflnite. A completely dual lnterpretation can
*Ior program (II), in which the penaltles arise from h .

quadratic case, the penalties lrave a. "distance" meani.ng.

We shall now apply the general theory to the slmple

cf rdntmlzlng a convex function on a convex set.

constraint

be glven

In the

SXAMPI.E 7-H

*
LetE=FrE

iulction on E and

iaking

problem

= I " Let f be a closed proper convex

a non-empty closed convex set in E.

l

:r
=FrA

let C be

B(x) = tr* lcl,
se have

g*(**) - inf* . [*,**j-i;t*lc) = int i [*,**]lxec i ='o(x*lc),
sb.ich ls the concave support function of C (see Appendix A). Then

{r :t - *_ .\ :f
E = bg'(x ) if and only lf x€C and [*,*'] < ]Cx'lCl. (See ?-B),

f:sl Programs:

(I) minimize f (x) + 5t*fC) ot
.. *. ,l t(rr) maxlmize. 6(x lcl - f (x )

3grangian I'uncli.on:
* . *. rl

L(x,x'1 = f (x) + 'o(x' icl - [*,*'] tor

xe dom f, **a oo^ aa.

Iquili briun Condi tlons :

* - *- ,, *,
x€C, x = dI(x), /x,x J s o'(x /C).

-tuErzz (/l z.q ,strozgiy can,sl,ttent zf ancl only if
n'/daz f)-, -t/ € ,/,A.

E,
*

onE
,ll
li,
Li

il:i.

;i

;l

..,*.

L-
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Theorem a-f(a) implies that glven any xC€ dom f and *l€C, (II) will

be strongly consistent if and only if the following conditton is

satlslfied:

(7.16) for each x such. that x, + A.x€C for all )r > 0 and

f(x'+l.x) is flni.te and non-increasing in 0 ( ). ( o,

it is actually true that x, + \xeC and f(x'+\x) = f(x')

for -co { L ( .o.

The results of $4 rnay be specialized using these conditions.

In view of the fundamental nature of (I), we shall state two of

these results as theorems.

THEOREM 7-I

and suppose that condition (7.16)

f aqd x-€C. Then f attains a mlnimum'I

Proof: This specializes part of a-E(b).

Remark: ?he theorem would not generally be true if (7.16) were

+ ).x€C for -o < tr < 0.weakened by removing the statement that xl

For example, Iet E = R2 and let

1s

on

Let f and C be as above,

satisfied for some xO€ dom

c (possibly .rc).

c = \ *= <tr ,Ez, l€r4.'i, r(x) = r({r{z) = {r. rake

*O = *l = <O,O > . Then the weaker version of (7.16) is satisfied,

but f is not even bounded below on C.

THEOAEM 7-J

Let f and C be as above and suppose that (7.f5) holds.
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Then f attains a mlnlmum on C at the point x if and only 1f there

exists 
"o*r 

** = Df(x) such that the llnear fwretion h(z) - [r,**J

attains a minimum on C at x.

Proof: The last condition is just tfr" .orrOition that there exist
**

some x such that x ancl x satisfy the equilibrium conditlons. TIre

theorem is therefore a consequence of 4-G. (Notice further from

4-G that the vecto"" ** ln question are precisely the solutions

of (rr).)

Programs (I) and (tI) are of the same type when C ls a convex

cone, since the support functlon of a convex cone is the

characteristic function of another convex cone (see Appendlx A).

This case ls treated ln the next theorem.

THEONEM 7-K

Let h be a closed proper convex function on E. Let K be

a non-empty closed convex cone in E and let

x* = {** I [*,**] = ol ,ot alr xeK.
\*,t

(Then K is a non-empty closed convex cone in E .) Let aeE and

**
a €E . Suppose that

(a) a + x€ ri(dom h) for some x€ ri K,

and suppose either that
*****(b) a + x e ri(dom h ) for some X € ri K,

or that

(b') there exists some xo€ dom h such that, for each xeK

such that h(x.+)'.x) - L[x,u*1 i" a finite non-increasing



-97-

function of L for O ( L ( or it is actually true that

-xcK and h(x'+Lx) = X[x,t*i fo" -o ( \ { o.

Then

- *-' * rf * ,- *-,(7.L7, o ) mi.n .rr(a+x)-[*,"o1 ; *- Tlrr. ]h-(a-+xt)-[a,*n]i = ;","*1,
x€K ', XeK !i

Moreover the minima in (7.17) occur at x and x if and only lf

(z.l8) x€K, **.K*, l*,**1 = o, u* * ** = Oh(a+x).

lroof: Let f(x) = h(a+x) - [.,x*].rrd C = K. Then by Theorem 2-K
rFrl.rl****

f (x ) = h (a +x ) - ["," ] - [.,a ],

whl le
,, tt, rI *r *
o(x' ls) - inf ., [x,x ] lxer = D(x' ir I

(see (A .L7r). Conslder the coryesponding programs (I) ana 111;

in 7-H. Conditlons (a) and (b) are the conditlons that (I) and

(II) be strongly consistent, while (b') ts an equivalent verslon

of (b) derived from (7.f6). But

(7.r9) o ) min" . 11*1-'6"{*) = **** . {t**)*t*(**)t- 
t -*

by 4-I'when (I) and (lI) are both strongly consistent. por the

present choice of f and C, (7.19) ls the sane as (7.L7). The

equillbrium conditions in 7-H r:educe likewlse to (7.18), so the

flnal assertion of the theorem is a consequence of 4-G.

COMLI"ARY 7-L

Let K and K* be as in Theorem 7-K. Let h be a convex function

finite on all of E such that, for some x'r

(7 .2O) lirn h(x^+trx)/\ = o for all x I O.
\-ro u
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Then the conclusions of Theorem 7-K are true for every aeE

.rf ,i
and a eE

Proof: In thls case dom h = E, atrd.h is closed by (2.7).

Furthermore, as proved ln Appendijr B (see B-C), conditlon (7.20)
,**

guarantees that dom h = E . Therefore (a) and (b) of Theorem 7-K
**

are satisfied for every a€E and a €E

This rather strlking fact is essentlally a generallzation of

Theorem 2-F. (The latter deals with the cases where 6 = . O ,.

and K = E.) Partlcularly interestlng applications occur when K

is the non-negative orthant ln E (and K* i" the non-negatlve orthant
*:F{.

in E ) or when K ls a subspace of E (and.K is the subspaee of E

orthogonal to K). A weaker version of ?-K in the subspace case,

using the Legendre transformation rather than the conjugate

operation (see Appendix C), has recently been proved by Duffin [fal.

Observe that the quadratic convex function

h(x) = *[x,sx],

where B is a posltve definite matrlx, satisfles the hypothesls of

7-L; the conjugate of thls function. is
* rr ._ -l ri_

h(x)=tLS-x,xJ
(see the end of Appendix C).

Theorem 7-K was obtalned by taking C to be a convex cone in

7-H. We shall now consider convex sets defined by lnequalities; for

such sets C, problem (f) in 7-H is the type of convex program

studled by Kuhn and Tucker [Za]. It is necessary, first of all
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C = i*l er(x) ) o for i=1,...,k t

is a non-empty closed convex set and

,. *, '' 1 tF tt I t( * * '(2.22, 'o1x lc) = nsxi I ^r*r(xr) 
llr>0, 

I, ^r*r=* ,.
i=l 1=l'

(The convention 0'o = oo is to be used'in thts formula.)

Moreover
* *.

(7.23a) x€C and [*,* ] s 'o(x 
lCl

holds lf and only lf, for some chotce of vectors *l .rrO scalars
].

)". It
.*,fi*(?.23b) x' = r"rxi +...+\xk, tr181(x) +...+ \kck(x) < o'
*x. = Dg.(x), \, > 0, Sr(x) > 0 for i=1,...,k.

to determln_e the support functlons of such sets.

TTIEORSM 7-M

Let ga,-..,Br,Br+1,.r.,{t bu convex functions finite on all

of E, where B1r...rB" are.affine, and suppose there exists at least

one x€E such that

(7.zLll $x) > o,...,8"(x) > o, c"*r(x) ) o,'.',so(x) ) o'

Then

Proof: A concave function is continuous on any open set where

it is finite [tg, p.+O]; hence the g. are aLl actually continuous

on E (and ln particular are closed). tet

h. (x) ='ot*l ,. (x)>o) for i=r,...,k.
11

Each h. is a closecl concave function on E because the g. are closed

and concave, and is proper because (7.2L, can be satisfied. Also,
,/,(7.24, 'O(xlc) 

= h- (x) +...+ hr(x) * hr*t(x) +...+ hn(x)
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The functions hr' ... 'h, are polyhedral, and hence stable, since

gl, ... rB, are affine. Therefore if

(7,25, dom hr,-\.,.,-,dom h* ,,,ri(dom hrnl) - ri(dom t.k) I g'

we can conclude that
11 :r. .. F * * , F * *(

(7 .26) o'(x lc) = *ux j n, (", ) i i zr=x

i i=l i=l
by the concave analog of Theorem 6-I. We must veri fy (7.25>.

Trivlally,

(7.27, dom h. = ,.xl Br(x)>O -, 
for i=1,...,k"

The fact that

(7.28) ri(dom *r) = i*l tr(x)>O ; for i=r.rl, ...,k.

ls proved as follows. Fix i ) r, and Let Br(xO) > 0, Sr(xr) > 0;

this is possible by the hypotheses. then

sr(\xo+(l-L)xr) > 
^ci(xo) 

+ (l-h)ci(*t) > o for o < L < l.

This shows that

cl xig. (x)>O: = ,*lS. (x)>0 - = dom h. '

$ince ts, is continuous, ttrre reverse inclusion is obvious, and

the set of x for which *r1") ) O is open. Therefore

ri(dom h.) = ri(cl. \ *l*r(x)>o., ) = *lei.(x)>o 
.

by (2.1). Now (7.25) follows f rom (7.27r, (7.28) and the

assumptlon that (7.2L) ean be satisified. We show next that

(7.26, irnplies the desired formula (7.22). According to (the

concave analog of) a general result in Appendix B (Theorem B-I),
,*(**:r(r.zs> inf ' [2.,*]lst(x)>o 3 = 

i olller(vzrl/v 
if z.=o,

i o tt zl=o,t1
provided donn g. - E and sup g. ) 0' These conditions are satisfied
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here for i=lr...rk, except '{ gi happens to be a non-negatlve

constant function; in the latter case, however, (7.29) is true

trivially. Furthermore' the left slde of (7.29, is the same as

inf ' [zl , x]-tr, (x) ' = ui <,il .

Adopting the convention 0,co = cor we can therefore re-express (7.29) as

* * :r * * *'
(7.30) hr(xr) = max : lsr(xr) | \r.no, tri*i=,i

Formula (7.22, ls now obtained by substituting (7.3O) into

(7,26). Flnally, due to (7.221, conditlon (7.23a1 is satisified

1f and only lf there exist vectors *l "na 
scalars )'. such that

l1
* * :f . r rl- * *

(7.31) x =LtxI*...*trk*k l}.tLx;xtJ

where L. > O and gr(x) > O for i=lr"',k'
*

We must show that, glven x and x , (7.3f) can be satisified if

and only lf (7.23b) can be satisified. If (7.23b) holds, then

(7.32' cr(x) * *it*il > g*,r,f J

for i=1,...,k by the concave analog of Theorem 2-H so that

(7.33) [',*l: = *lc*fl it sr(x) = o.

But tbe condltions in (7.23b) lnply that Li = O unless g.(x) = O,

*tlwhile c;(xi) is flnlte by (7.32) (since a proper concave functlon

cannot take on the value +o). Therefore (7.31) holds also. To

prove the converse we note first that, |f (7.31) can be sati,sfied,

1t can be satlsfied along wlth the addltional requirement

*(7.34, *l = dgf(x) for each I such that L. = 0'

On the other hand,

*i<.1, < [*,-i] - sr(x) ror i=1, '"',k
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by the concave anaLog of 2-F, so (7.31) implies that
a *_ - *-sr(x) = 0 and sr(x) + gi(xt) = Lx,x..i if \i t o.

But the second equatlon says that *f = Der(1) by 2-H. Thls

shows that (7.23b) can be satisfied if'(7.31) can be satisfied,

and completes the proof of the I emma.

Remark: Suppose that r = k above, 1.e. that the g. are all afflne
I

functions:
*- I tt

sr(x) = Lx,"il - di, ai€E , ctieR.

Then we have

l. :r *, !t *
Cr(x.) = di + 6(xri xr=ar), i=I,...,k.

Formula (7.22, reduces in this event to

rnf -' [*,**]f [*,.f 1>n'i=r,...,k ,

rnax : ) r,d, I x.>o, j 1."]=*n,tr11,iLir
' for each x* such that either slde is flnite. This is a well known

alternate form of the linear programmlng duality theorem. ("infl'

., ".n be replaced by "min" because C is polyhedral.) Conversely,

::,, we may vlew the linear programmlng result essentially as a
-.:

., 
general formula for the support function of a polyhedral convex set.

,;, *e shall now speclalize 7-H to convex sets of the above type.

ii;i:

$ 
E)GMPLE ?-N

,ii!; Assume that the hypothesis of Theorem 7-M is satlsfled, arrd
;i
';. let C be the convex set defined there. For simplicity, let f be
,.1i,

il
. convex function finite on all of E. Then, by 7-M, problems Z-H
l
' Uecome the followlng.
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Dutl Programs:

(I) minirnlze f(x) + dt*lsr(x)>o,1=1,...,k),

(rr ) maximize max : i Lrsf<*il lrr=o,! rr*f=** - t*(**) .
't

(The convention O'o = o is to be used ln (II).)

Lagrangi.an Function:
* l.; * * -,' + ,l ,l

L(x,x ) = f(x) + **,,,q^rsitxr) l\i=o,l \.xi=x', -[*,* I
**

1e1 x€Er x eE . (See the remarks below.)

Equil.l brium Condi tlons :

rfl
x = bf(x), and x. = dg.(x), trl P O, er(x) ! Orfor i=1,...,k,
:ii*Ix = 4^t"r' Lr^ttr(x) s o'

Programs (I) and (Il) can also be.expressed as

(I') nlnlmize f(x) subject to Sr(x) ) 0,..:,Bn(x) > 0,

(rr,) maximize ) ^ruit-i) - r*t) 
r.. *ly

l**1
subject to Li > 0, *1.E , i=1,...,k,

which is an extremurm problem for
r;.**(7.35) X = ilt,...,trk,*lr...,*k) .

(Program (II') also contains the implicit constralnts

(2.3G) xle oom sf ,i=r ,...,n, ) ^r*le 
o"* r*. )il 11

Since f is finite on all of E, it 1s not really necessary to
*

restrict x in the lagrangian function (inasmuch as oo - @ cannot

arise). fn any case, problem (III) for this L is the same as

(III') tinO a saddle-point ,.*O,Xj'. of
*\-?*-*tl'

L'(x,x ) = rtx) -L\. (Lx,xrl-ci(xr))
gl

for xeE and X (as in (2.3S)) satlsfyine L, > O and
,t :*

' x.e dom 91, 1=lr,..rk.
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We shall compare this with the Kuhn-Tucker saddle-point problem

in a moment.

Program (I) is strongly consistent because of the assumption

that f is finite on all of E and that {7.2L} can be satistfied.

Given any xO satlsfying the constraints of (I), program (II) is

strongly consistent if and only if

(7.37\ for each x such that f(x'+\x) is a non-increasing

function }. > 0 and Br(x'+Lx) ) 0 for all \ ) 0 and

1=1,...,k, it is actually true that f(x'+}'x) = f(x')

er(xo+Lx) > 0, i=1,...,k, for -* ( L { e.

This specia!.izes (7.L6). fncidentally, the strong consistency

of (II) is also equivalent.to the condition that
*(7.38) there exlst xr€ ri(don gi) and ).. > 0, i=1,...k,

such that trl*l*...*LO*n. ri(dom f ).

The proof of this fact, which we shall not use, is an extension of the

argument ln Theorem A-D. The theorems of'4 now yield the following

results.

TIIEOREM 7-O

(a) The maximum in (II') (possibly -*) is always attained,

and it always equals the lnfimum in (I').

(b) ff $.37) holds, the i.nfimum ir (t') is fini.te and

attalned.

Proof: This is inplied by 4-E, since (I) j.s strongly consistent

by the assunpttons in 7-N.
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TTIEOREM 7-P

The following condtlons in xO are equivalent to one another
*(with Xo as ir (2.35)):

(a) xO is a solution to (I'),

(b) there exists so*" xf such that i'*o,xll: ls a saddle-point

in (rrIf),

(c) there exists "o*. Xj such that r*O,Xj, sattsfies the
***equilibrium conditlons in 7-N (with x = \l*1*...*\*t ).

:1.

More the vectors XO satisfying (b) and (c) then preclsely the

soltutlons of (IIr).

Proof: This follows from 4-G, slncg (I) is strongly consistent i.n

7-N and (IIIr) ls equiValent to proQlem (III) for ?-N.

The dual program (II I ) which we have given for (I') is

finite-dimensional and does not requl,re differentiability;

moreover lt ls "independent" of (I), in that it does not involve the vector x

it (l) as one of the rurknowns. In contrast, the dual programs

constructed by Hanson i-ZS] anO Wolfe [SO], while finite-dimensional,

require differentiability and are not "independent" of (I') (See

below.) ttre dual program which Charrres, Coop,er and Kortanet< [S]

consider, whlle "independent" of'(I) and free of differentiabillty

assumptions, ls an infinite-dimensional linear program.

Assume temporarily that the functions in (I) are actually

differentlable, Hanson's dual program is then
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(rrr) maximize L.\i([ro,BBr(x)l-ci(x]) - ([-x,br(x)]-rtx)l
I

subject to )ure 0, . ".,t,,t, O, x€H, ) L,iig. (x) = Bf (x),
KLi1r

and Wolfe's dual program 1s

(tt2> maximize f(x) -)x.e.(x)

subject to ht E 0, ...,Ln z 0, ,ur, L.^rE*r(x) = 3f (x).
1

(lte have made some inessential changes in the form of these problems,

in order to make then conform to the present context. ) Let
,t*

x = 3f(x), Xi = bg, (x), i=1, . . .,k.

Then

(7.3e) [x,Or(x)J * f (x) - r*(**), [*,bsr(x)l - sr.(x) = cl(**)1 i=I,...,k,
by Theorems 2-F and 2-H (and their concave analogs), Hence (IIf)

can be expressed as

(rr^) maximi-- \ -+' *' t *
'--3 '"" \^r'i(*i) 

- r (Lti"i)
i. ,f

subject tc Li ) o and x. eE for i=l , ...,k, and the condition that
,!k*

l_rLr*r = 3f (x), *i = dg. (x)1i=1,...,k, for some x€E.
i-- ^ r

Similarly, the maximand in (ffr) ls

ix,Bt(x)l - r*(**) - j- tr(lx,Ee. (x)l - sit"ill

=')}. 
* * *

- L .ist(*i) - f (x ) + [*,bf (x)-7].;r.. be. (x)l
1

by (?.39), so (I IZ, Ls also equivaJ"ent to (II3). It 1s clear

that (trIr) is more restrictive than (II') in general. However,

under the assumption that, (I') has a solution, (llr) anO (II') are

equivalent (even in the non-differenti.able case). .Thj,s follows

from Theorem 7-P and the nature of the equilibrlum conditions

in 7-N.
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Kuhn and Tucker [eS] assoclate the following problem with (I'):

(IIIi') tinc a saddle-point for

L"(x;Ll,...,^n) = f(x) - Lf.S. t"l
I

subject to x€Erand Lf ) O, ... r),k > O.

This problem ls simpler and more convenient than (III'). Actually,

thr.- two problens are equivalent. Saddle-polnts i. (tII') are the

solutions to the equilibrium conditions in 7-N, according to

Ttreoren 7-P. But (trII"), too, is equivalent to solving these

equllibrium conditions. rn the differentiable case, thls was proved

by Kuhn and Tucker fn [Ze]; the argurnents ln the generaL case is

similar. Thus the Kuhn-Tucker saddle-point theorem (according to

which, under the assump.tions ln ?-N, xO is a solution to (Ir)

if and only if *Oi\l, ..'Lk i.s a saddle-point in (III")

for some choice of L, > O, \l > 0) can be deduced from ?-p.

The original version of this theorem i.n [ZS] requires differentiabi.lity,

however an extension identieal to the present one is given by

Ghouila-Houri in [2, p.81-j. Other versions not requiring

differentiability nay be found in [12] anO LZZ, p.20f].
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:ICCTIOI{ EIGHT

Completely Separable Problerns and Monotone Relations

o"oor*,* illrrr, ,r* "". ,* ;t * "'-*ill*'.*r,
s+:parabJ"e if they can be expresged in the manner of Example 7-E

wiuh al.l the component spaces one-dlmensional. The llnear

pregramnning problems, for instance, are completely separable;

sq) are eertain probJ.ems cf importance in network theory. In

ena,l.yzing such problems here, we shall find that the

equiIel:rium conditions pJ"ay an especially significant role. It

tu.:"ns out, tlaat the generaliaec! dif{erentials of one-dimenslonal

el*;csi proper convex fun*tions can tre described axj"omatically as

"rnaxi;xai increasing relatSons," so that (IV), which up to this

p*i.:rt h"zs been a derived problem, arises of its own aecord in

t!ei* eqr:l$l"etely separabx.e osse as the problem of solving a system

of suq:lh "r€l"ations".

*{.}mpleteLy separab}e pr"oblems, by thelr cleflnlti.on, have the

fo.i}*w:;ag form. net f,. be a closed proper convex f,unction on R,
rk

with e"*njugate f,. on ft, Jor j=l ,...,n. Let g, be a closed proper
, 

* 
-l

c{ii:sar.ri+ function on R, wf th eonjugate B, on R, for i=l ,...,m.

Le1 A .= {{etj}} be an. rn x n nratrix with transpose A* = ((dli)).

?h,e:r, as ln ?*6u we have:

*t ,. eo.nvex prGgr"am:

irlj, I
i-i

mlninri-ze ) f <{rl-jJ
C&ncave pregram:

for d.€R, j=I,...rn.-{*,t",,6,'

r .F * * * *-
maximi-ze ) A, {nr} -) f .(; A..?. ) for

t aJLJJrI.

!S

4re&, i=l,...,m.
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(III^) Game Problem:
v

Find a saddle-point for

"1dr,...,6.,,q1,...,ni, = i r,(€,) .i *ltnil - Lt"rili.-jJ J {-'1 rJ
*

subject to {je dom f,r, 
l=1 ,...,n and ?re dom g.r i=l 1...slll .

(Iv^) Equlli.brlum probient:

flnd {r,...,{r, "rrd ?i,...,4* satisfying

) *' '€; = 3'ltn]t ro' i=r' ""'m and
tj tJ

) ol.nl = ar.({.) for j=},...,n.
e1 lilr i -i

These become the linear programming problems in 7-A if, given
r*

real numbers $., j=l ,...rn, and !rr i=l ,...,ttl, we choose
rlrv"r\.(8.1) f (\) - }.,lj + E(\il"xti, Bi()").= 8().1\>Ar),

I rlr *, * *- * * ,r *. rlr

f .(\ ) = d(L li. <9.), s. (i. ) - ?iI' + D(\ ll >o).

The completel.y separable programs (tO) anO (lIO) are

consistent when thei,r lmplicit oonstraints can be satisfled,

i.e. when

(S.za) there exist {j. O.* tj, for j=} I . . . srl

such that \ .r. .{.e dorn g for 1=1p ... ptlr'

^jtJJ 
I

(8.2b) there exist qTe aom sf to" J.=1", ..,,m

such that i o].rf. o.r* r] to. i=1, "..'D1LJi JL A J

respectively. As we pointed out more generally in the remarks

following 7-8, (tO) anO (IIO) are strongly,consistent, respectively,

if and only if

(8.3a) there exist tre- ri(dom f.) for i=f,...,r
i"'

such that I ft, ,.{.e ri(dom g" ) for 1=1,...;lll,r-j 'tJ J
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(8.3b) there exist ?re ri (dom g. ) for i=1, . . .,m,

such tha t ) d:,41e rildom f*) ft'r i=1, ...,n.
-i J. r J

We now consi.der an intermediate pair of conditions. Suppose that

h is a closed proper convex function on R" Defj.ne

I * * j

dom dh = li. I l. = Eh(i,) for some \ ,

,l*
range bh ,= )" I l" = dh().) for some }.' ,

and simil.arly for h*. Then by 2-H and 2-I we have

(8.4a) ri(rion h) -" dom bh = range Ah* dom h,

***
(8.4b) ri(dom h ),,r range th = donr Dh - dom h

The analogous relations hold, of course, for cLosed proper concave

functions. Probi.e* (IV9) involves j.mplicit constraj.nts which we

ean express, using this notation, as

(8.5a) there exist {-e dorn Df . for j=l , ...,n-JJ

such that I 11. ,E.u dom $g. for i=l I ... prn,

J IJ -'l *i

(8.5b) there exist 41. oo* Aef ror i=1, ...,m,

such tlrat ) ol*nl. oo* 8r] ro. i=1, ...,n.
-i Jl -r J

In vlew of (8.4), these are weaker than condtions (8.3) but stronger

than conditlons (8.2). l{e shall prove below that (8.5a) and (8.5b)

are preclsely the conditions that (IO) and (II0) respectively,

bo t!"IU sgs:Lslgl!. It is necessary first to examine the

propertles of differentials of convex functions in the one-dimensi.onal

case.

THEOREM 8-A

Let f be a elosecl proper eonvex function on R. l'hen the right

and left derivatives of f can be defined by
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(8.6) f;({) = lim (f
\${

f'({) - lim (f
)'t{

f'(d) = f'(6)
+

Furthermore, for all deR,

(8.7a) sup f i (I) = f' ({) ,

L<€ +

(8 .7b)

inf f'(\) = f '(q),
\>E++

Iinf f '(L) = f .(6).
t>{ 'F

().)-f G)>/

(x)-f G)r/

=f* tt U

L-* rr',

(t-{l

(r-{l
if {e dom f,

F }. for a1l ),.e dom f ,

( \ for all Le dom f,

and they satisfy

(8.7) t't{r) . f'({r) < r'({r) s t'(Er) whenever €r. = €r.

Finally,

(8.8) €* = br({) it and only ir 41.n and f,({) s {o < r;({).

Proof: since f is closed and don f is an lnterval in the present

case, f is aetually continuous on cl(dom f)" This follows from (2.g).

Secondly, it is well known that the difference quoti.ent

(f(I)-fGrr/ (f-{l is a non-decreasing function of each of 1ts

arguments as long as L and ( are in the interval dom f and ). I {
(see [+, p.t9] or [rs, p.4?:l); this is trivlal1y true also if either

).1 dom t or QE dom f (but no.t both). AIf the asserttons of the

theorem, except (S.8), follow Oirectly from these two facts. To

prove (8.8) we observe that,according to Definition 2-G, {* = af(6)
*

if and only if f(t) > f({) + (f-6)d for att }.eR. .But this happens

if and only if {e dom f and
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By the remarks just made, the left and right sides of this

inequality are f'({) ana f'({), respectively, when {e clom f.

On the other hand, when {l dom f neither side of (8.8) can be

satisfied. This proves the theorem..

&emark: ffre conjugate of a one-dimensional closed proper convex

function can be calculated using (8.8) and Theorem C-H in Appendix C.

THEOREM 8.8

Let f be a closed proper gonvex function on R. Then

(a) f ls stable if ancJ only if dom bf = dom f. Moreover,

this is true except when either dom f has a Iower end-point (t ) -o

at which f(O) < co but f'(x) = -€r or dom f has an upper-end polnt
+

I ( * at which f (fl) < oo but f '(F) = -.

(b) f is completely stable if and only if, in addition to
,t

being stable, range Bf = dom f lloreover, the latter is true

except when the graph of f has a proper non-vertical asymptotlc llne,

1.e. except when, for some g€Il, f (i.) - (yh approaches a finite

minimun without attaining it as tr "co or as h -@.

Proof: (a) Since E = R is one-dimensional here, lts only subspaces

are M = .i O ' and M = R. It follows from Definition 5-D and the remark

after 5-E that f 1s stable on R if and only if
t*(8.e) sup.,qC- - (r({) + ot{-€^l 0 ))-or'' 

* * * - ,t

= mir * f (€ +). )-qoi
T

for each €oe Oo* f and 6*.o. The left side of (8.8) is trivially
*r.just {O{' - f({O), so (8.9) holds for all {' if and only if there
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*
exists some ).O such that

.* * * * rfi

€od - r({o) = r (d +l.o) - €o\o

i.e. if and only if there exi.sts to*" {[ such that
* * .*

(8,10) f(€o) + f ({o) = €o€o.
*

But (8.IO) hol<ls if and only if'do = 3tt{o) by Theorems 2-F and 2-H.

Therefore f is stable if and only if dom f:,,dom 3f. The reverse

inclusion has already been pointed out in (8.4a), so this proves

the first part of (a). Now, since dom f is an interval, (8.4a)

implies that dom df = dom f unless the latter contains

an end-point not contained in the former. But lf fl j.s a lower

end-point of dom f , thc'n f '(ty) = --. Hence ryE dom ilf by (8.8)

except when also f'(fy) = -@. A sinilar observati.on for upper

end-points completes the proof of (a).

(b) If f is stable, then, by cleflnition, f is completely

stable lf ancl onj.y if f,* i" stable. The first part of (b) therefore

folLows from (a) and (8.4b). Also, by the clual of the argument in (a)
*

f ls stable if and only 1f
-.* ;lr * *(8.e') g€o - f ({0) - minr. f ({+x)-\{o ,

for all {ett ano {1. oo* t*, i.e. if and only lf
***r(8.10) -f ({ol = rnin}. f (\)-\{o 

,

,f ,F

for all {Oe Oo* t But, by definition,
* .+ * *

-f ({0) - -supi. }.Eo-f (L) = inf^ f (\)-160
,1. *

Hence f wi.ll be stable if, and only if f().) - ).{O attains its

infimum 1n )r f,or eacfr {l such that the infimum is finite. Since

f is lower semi-continuous (because 1t is closed by assumption), the

infimum in question is allays attained unless it is approached
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asymptot j.cal.ly as ). -co or as L '-co.

COROLI,ARY 8-C

If f is a closed proper eonvex function on & such that

dom bf is closed and range df ls closed then f iscompletely

stable.

Proof: This foli,ows immediately fron the theorem and from (8.4a)

and (8.4b).

COROLI,ARY B-D

Suppose that f, f," are closed proper convex functions on R

which are non-asymptotic, and are not infinitely steep at end-points

incl"uded in their effective domains, as. described in Theorem 8-8.

Suppose that g, , n.. 
' 
g- are closed proper eoncave functions having

IM

the analogous. properties. Then the fundamental theorem 5-K for

compLeteLy stable programs can be applied to the completely separable

programs (lO) antt (IIO).

P{oo-f : In thj"s case the furrctions irr (trO) are all conpletely

stable. But then, according to the remarks f,ollowing ?-8, (IO)

is a conrpletely stable program and 5-K is applicable.

T}TEOREM 8-E

Program (l^) is stably consistent if and only if (8.5a) holds.
U

Program (II^) ls stably consistent if and only if (8.5b) holds.
U
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Proof: We shall prove first that (8.5a) guarantees the stable

consistency of (fO). Due to the remarks after 7-8, it will be

enough to prove that: if h is any closed proper convex function

on R, then there existq a stable convex function hn on R and a

closed proper convex functj.on hl on R stich *Lfiat

(8,ff ) h = hO + h, and dom bh:dom hO ,,ri(dom trr).

We prove thls by exhaustlng several possible cases. If

dom Dh = dom h, then h is stabie by Theorem 8-B(a). Then we

can let hO = h and let h, be identicalLy zero. If dom dh = ri(dom h),

we can let h, = h and let hO be identically zey.o, Because of (8.4a),

we are now left only with the following possibility:

(8.12) dom h -trl 0 < }. < dl
where deR, l3€R, 0 < 3, but

(8.13) dorn 3h = \ I o<r<3 . or dom Bh =. \l o<Lsp;...ti
l4te shall only consider the flrst case in (8.13); the argument for

' the other case is si.milar. Since g€ don dh there exists some a*€R

*
. with d = Dh(d), Let

V,
h'(I)=b(Llla)
h_ (}') = ih(I) if X>d,-_r(*

I n(o)+(r-o)a if \{a.

Since by definition of cl*

h(\) > h(cr) + (X-a)cr* for arl tr ) cr,

while h(L) = oo for n 4 orit is readlly seen that h, is a proper

convex function; moreover

oorntr- =fl' l-*<\< 9;,l.\i
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so ht must be c.los<:ei by (2,7) bi:cause h is ci.ogerd. Iltasmuch as

dom f and dom df ar.e givcn by (8.12) ancl the fir.st half of (ri.I3),

respectively, hO and h, satisfy (8.ff)' I'his finishes the proof

of the sufficiency of condition qe.Sa). In p:"oving its necessity we

shall actuatly prove a mors general fact. Suppose that the

gener.al progfam (I) satisfics the definition 5-H oI stable consistency'

and assume the notaticln given there. ife shall show that then

(8 .14) there exists some x€ dom ef

sr,rch that Axc dom i-\g

Of course, (ti.14) recluces to (8.5a1 when (I)

separable. Frorn def inition 5-H, we have f *-

is stable, fl is slosed and proper, and

don f,O ri(dom fr) = S.

Therefore, by ?her::"em 6*I , -* = iir(*) if and

for certain vector" "j ur,r: *f *l'r.r, trrat xl -
This implies in particular that

is completely

fO * ft, where fO

onl,y if x *
r*

Bfo(x) and x,

*
i.J

=

*, 
"r.

af1 (x) .

' dorn Bf = dom bf o 4i:om 
-f 

a.

Ilut ri(dorn fr$-*t>* &f, ny z-l , while dom efo = dom f, because

f* is stable. The .l.atter fol,Iols, nantely, f t'<lm specializing the

rleflnitj.on 5-D of the stability of fO to the subspace M = I 0 ,

much as in the proof of Theorem 8-B(a). Hence

dom fon:'i(deim fl)=dom af '

rt dual argurnent demonstrates that

clom BU 4l r'1 (dom e, )9dom Bs.

Therefore conditlon (5.1.1) lmplies (8.14), anrl the first half of
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of the theorem is proved. The second half fol'lows now by duality.

conoLLtRY 8-rf

Theorem:i 4-fi, 4'F, 4-G and 4-H may be appliecl tt: thtl cornpletely

separable problerns (10), (I1o), (IIIo) ano (IVo) using (8.5a) 1n

place of the conclition that (fVO) be strongly consistent and

(8.5b) i.n place of the conditlon that (IIO) bo strongJ"y consistent.

Proof: Thls combines the present theorem vrith 5-J.

Remark: Theorem 8-E cannot, ir, general, be extended to programs

which are not completely separable; in other words, (8.14) does

not usually guarantee the stable consistency of program (I). This

may be seen from the example in Theorem 4-C(c), where x - -0,0'.;

satisfies (8.f4) but the extrema in (I) and (II) are not equal.

The latter would be lmposslble, by 5-J and 4-E(a), if (I) were

stably consistent.

The differentials of one-dimensional closed proper convex

functions were described in Theonem 8-A in tel:ms of one-sided

derivatives. We shall now characteri.ze such differentials

abstractly, using the following concept.

DEFINITION 8.G
*

Let r be a non-empty set of orderecl pairs 'E,t where
t

{en anO { en. It wil] be convenient to introduce the notatlon

that
*t

{' = r'{{} means '{,d {r.



-I18.

i{e shalL say that r is an increa:l}g relatio! if
. * * i( _*(8.15) d, -- {, whenever {, = r({r), E, = r(F,r) and E, * tr.

An increaslng relation is ggl*rng} if it sannot bc embecided in

any properly larger increasi.ng relation, i.e. if the set of

orclered pai rs i s nraxiuraL wi th respect to property (B ,lS) .

The doqgit and."range of an increasing relati.on r are defined by

dom r = {l {n = .({) for some {* ,

r8*
range r" = { l,€ = r({) for son.. E . .

(Degleagllg relations are defined by reversing the inequallty

in (8 .15) . )

It :is easy to prove, Lry means of Zorn's temma, that every

increasing relation i.s contained in a maxinal one. This concept

has been important in recent developments in netwo:'k theory; incJeecl ,

outr "maxj'maL i.ncreasing relations" are "resj.stors" i.u the terminology

of Minty [Sf .] , i{e,shall see below (Theorenr g-I) that such relations

correspond precisely to continuous "j.ncreasing" curves whlch are

unbounded (i,e. not l"imited to a bounded region of the plane).

Moreover, they are precisely the rjif,ferentials bf of closed

proper convex funct,ions f, on the real line (g-J). rn this sense,

maximal increasj.ng relations are armost functi.onal relations

(whieh is why we have chosen to use functional notation to

dessrlbe them). For example, the graph of, a conti.nuous non-clecreasing

function on the rear .lj.ne is a maximal. increaslng relation (see g-ll).

Glven the gnaph of an increasi.ng "step function" on the real linp

one also obtai.ns a maximal. increasi.ng relation by supptying the
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vertlcai segnentg rvhich connect thc "steps". If thert' are finitely

many "steps," this is the differentj.al of a p-o,Lyheq{"il convex

funeti.on. It is a "stcp resistcr" in Mintyos terminology.

"Ilesistor" is perhaps too narrow a de s!gnati.nr: f cr sttch relatiotrs,

even in network theory, sittcc Olhcr elements such as sources of

current or potential, or diodes' can also be charaeterized as

certain types of maximal increasing relations (see Mi1lar lSOl,

Dennis J.ff, p.3-6j and Berge [2, p.ros]]. The fact that maximal

increasing relations give rise to one*dimensional convex functj.ons

(as we are about to prove) is well known in netwr:rk theory,

at least in special cases. It has been an important tool in

proving the existence of s;oluti.ons to non*1j"near networl< problems,

as we shall explain later.

TTIEOREM 8-H

(a) Let { be a non-decreaslng extcnderi-rea}-valued function

defined for all {ett, such that,i({) is not alrvays -e or always +co.

Let

6+({) * inf rJ(}"} = llrn *(}.),
i,">{ }, {

,tit{l - suF f'(;.} * lim S(i.)
\<g i" {

for alt deR, and def,ine r bY

**-*+
(s.16) { = r({) if and only if { eil and'i (6) { { s,i'({).

Then r is a maximal irtcreasing relation

(b) Conversely, let r be any maximal increasing relation'

Define 4 as foLlows. For each {*e dom r, let rI;({) denote some
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*
partlcular d €R such that € = r(t). Let {,(q) = -rc i.f { < r. tor

all he dom r, and let &(6) = * if { } ). for all i.l dom n, Then {

has the properties required in (a) and r is given by (4.16).

3"ool, (a) Let r be defined by'(8.16). Srrppose that {l = tf{r)
ri

and {, = r(lr), with {r. " 6r. Then

f*o,.I + - *
>t -' ; t{l s {' ({2) " €r,

Thus (8.15) is satisfied, and r is an increasj.ng relation. Next

clroose any {e R and d*eR such tha t E* I r({). Then sit,Ssr

go >..X*{6) or {* < *:(d). rn the first case, by definition
* - .*ot tl, there exists some {o > { such that {' > c,(5o) = {1.n.

now {l = r({o} and { < {o u.rt g* t {1, so that r cannot be

extended to lnclude the paf r (,{*) ,rithout violating (8.15).

A similar argument works in the second case. Thus r is maximal.

, (b) We show first that <I.is defined for all {eR. This is

true unless lhere exists some d'd dom r such that {O > {, to"

some dre dom r and {O < {, to" some {r€ dom r. In this event,

by (4.15),

(8.f G) -- < 
"rrp.. {*l €*= "(6) for some €"to ;t 

*. *
6 lnf ' t i{ = r(€) for some {{o o*.

,t
tt €O is any real number lying between the extrena tn (8.17),

we can add "{o,{f', to r without violating (8.15). This contradicts

the maxlmallty for r. Theref,ore 4 is Oefined for aII {en, as

asserted, It 1s lmmedlate from (8.15) that rf, is non-decreaslngl

trlvlally, {r is not ldentically '-m or irJentlcally r*. Thus

{; satlsfies the hypothesls of (a). Moreovcr (t}.15) lmplies that
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q;t4l o g* = *+t{l whenever {* = "(t). since r ls already a

maximal lncreaslng relation, lt follows fron (a) that r colncides

wi th the relation clef lned as in (s.16) by '1.

The next theoren explai'ns the exact sense in whlch the

nnaxinatr lnereaslng relatlons are the unboundeci contl'nuous lncreasLng

curves ln the Plane.

THEOREM 8.I

Let k and k* be contlnuous flnite non-decreaslng functlons,

deflned for all ;.eR, such that k + k* ls strlctly lnereaslng and

unbounded above or below. Def,ine r by

(8.r8) €* = r({) lf and on}y lf 6* = k. (}') ano { = k(\}

for some LeR.

Then r ls a maxlmal increasing relatlon" Moreover, every maxlmal

lncreaslng relatlon can be represented 1n thls manner.

Proof: Slnce k and k* are non-decreasing, (8.15) 1s satisfied

when r ls deflned by (8.18). We show next that r ls maxlmal.

**
suppose {eR, f eR ano €'l r({). choose \€R such that

(8.1e) { * €* = k(L) + k*(^)'
*

Thls ls posslble by i,he hypothesls. Let.do = k(L) and tO = tt*(h);
**

trren {o = r(qo) by deflnltlon (8.r8). slnce {'l n({), it follows

from (8.1e) that 6. - €; = -({-{o} I o' rherefore<8,€n>

could not be added to r without vlolatlng (8.1,5), ;o that r ls

maxlmal as asserted.
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Conversely, suppose now that r ls a naxinaL lncreaslng relation'

Then, for each }.€Br there exists a wtlque {eR anO a unlque { en eucU

ttrat {* = r(€) and € + {* = }.. we sball prove tbe unlquenees first"

suppose that {, + {; = }' = €z * t;'y'"""-{l = r({t) 'no €l = r({')'
rf ,l

rben {, - {r = -(g2-61)' and hence ei= Ciand {' = €t bv (8'13)'

Iu provlng the existence' we may suppose that r has been represented

as in (8.16) for some functlon Q' The properttes of Q lnply that

{+0({)lsstrietlylncreaeingandunboundedaboveorbelow"llenoe,
glven any )\€&, there existg sorne €Oen sucb that { + ot€) 2 }r f,or € t €o

and { + fX€) 3 \ for €' 6o' Then

6'<{o)<l'-{o<o+t{o)'

so that \ - €o = r(€o) bv (8"16) "' Therefo"" €o ""4 {f = ^ 
- €o

havetherequlredpl'operti'es'Now'foreacb}.€R'fetk(I)andk*(\)

be the unique real numbers { ano {* such that €* = "(€) 
and { + {* = \"

Then (8"18) holds' Moreover k and k* are non-decreaslng by (8'15)'

Inasmuclr as

k(\) + k*(\) = )" f,or all I'eR

bydefinitionrk+k*lsstrictlyincreasingandunboundedaboveor

below' Furthemore, k + k* has no jumps' so k and k* are actually

continuoug. Thls completes tbe proof of the theorem'

fl{EoRmf, 8-J

If f is a closed proper convex function on Il' then Ef ls a

maxlnal lncreasing relatlon' Conversely' if r is a maxlmal

Lncreaslng relatlon' then there exists a closed proper convex
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f,unction f on 9,, unique up to an

r 5 ;"\f 
"

additive cs,'is1s111, suela that

Fr"seif I The first assertir:n follows lmmediately frorn Theorems g-A

ar:d li*It. Tcr prove the eonverse part of the theorem, we ean assrlrne

that :' ls given by (s "16) for some functlor: ri, having the p:.opertiss
fsp*eifit*cl in 8*H. Choose.ny {O€ tiom.f. .firen $({i { * for all { < {,.

ari.u d,('t) ,F *m f or arr d = {o. Deflne

{s . ?0}

?l"tc ir:tegral rnakes $ense (at reast as a Lebe ,.sque i'tegrar ) clespi te

the inflnite values, crue tel the chorce ot {o and the fact Hrat 4,,

is non-decreasing. For the same reasons, f(f;) ) -co for aj"l { anel(I
dcxr f =J €iI({)<-* | is an interval"! non-empty since f (A^) = 0.\ J ----r -J - ",O
Alsn, f is co*tinuclus on er"(dom f ) by ttre orerinary properties of
ini*grals, so that f is leiwer: seni*continuous orr ri. Thus we shali
know that f is a closed proper convex funetion on Il as soon as vJ*

have pr"i:vecl that f is convex, It 1s enough to prove that { is
{Jonvex on tire inter-val clon f , where the rntegral 1s flnlte, tet

{re darn f, {re ciom f, {, * {r, 0 ( }, { L
,Tir*ri {j,{{.,) is finite anct

Lct t = (-t*i.)fi + "f
".a 

-" 11 " ,.t)",
or t L

(i-i.)f (dr)",. r({r:}-t{{,) .= (i*..}(r(f. )- r, 
,,}} 

*: {i(i.-}-i-{ {.i))
3- .a

, f: .|.

= (f -:.) i '1 f (L:)cttr + ., ''2 
,J(i, )Cp

E-ti)3'j

.* (L-),) ({1-{3)dt{r} + h({?*{3)#({^}

= [qt-;'.;;t(,ir-#rl+a,(1*]') (6?*f,1 ) 14t4*] - o

.P

f (6) = i ' +f ,.)du for aIl {en"
'-)tt
Eo

H
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beeause S is non-decreasing. Thus

r( (l-\){r+t{r) * (r-}')r(6r) + rr(82).

This proves that f is convex. Flna1ly, given any {e dom f and L > {

we have
(),

f(^) - f({) = / "{'{u)ou > (\-€)8+(€)
J,
;

is non-decreasi"ng. Fron this, and from the dual fact

we conclude that

r:(g) s d({) ano *+(€) < r'({)
dom f. But this is trivially ture also tor $l dom f.

maximal" it follows now from (8.8) and (8.16) that

because

forh{

#

fr,

for all

Since r

r = df ,

l€

is

The fact that f is unlque up to an additive eonstant ls not

obvious, because f is not necessarily differentiable in the ordinary

sense. Suppose that dfl = r - bfr, where f, and frare closed proper

convex functions on R. Then ri(dom fr) = ri(dom fr) = D, saJ,

by (8 "4a), ano rid{) = fi{6i and ri_(€) = rrl (t) tor all {eo

by (8.8). lfe may assume that D is an open i.rterval, for i.f it trs

a sj"ngle point then trivially fa and f2 dj.ffer by at most an additive

constant. Let h({) = fr({) - fz(d) tor {en" Then h has left and

right derivatives at all points of the open interval D, and these

are all zero. Thus h is actually a differentiable function on D

whose deri.vative vanishes ldentically, so that h is constant. This

shows that, for some d€R, f2(6) = ff(€) + a for all {eo- But f,

and f, are closecl, so the same formula must hold for all {eR by

(2,8) and the definition of D. This proves the theorem.
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4grne{k: It is true in general that, if fl and f, are elosed proper

convex functions on an n-dimensional spaee E such that Aft = bfr,
then f, = fr * ft for some a(&. one can prave this by an argument

similar to that given above,. using Theorem C-C.

s{aximai" decreasing relations correspond in an entirely analogerus

manner to the differentlals Dg of erosed proper concave functions on B"

we sharl now appJ"y the results proved above to the forlowing
problem:

(V;) Given maximal increasing relations r.1...1r I maximalIn
decreasing relatlor" 

"fr..,,u*, ancl an m x n real

matrix ((a. .)), find real numbers f f * *
"-13 -'l ,"o,on utd ?1 ,."",il*

such that

TI{EONAM 8.K

The general" pr.oblems (IVO) anO (VO) *r" iclentical . trndeed,

given (Vn), there exist closed proper convex anci coneave functions

f . ancj SU on fl such that

bf. = r. for i=1.^-^.n * *
S 'j for j=l n and dg1 = oi for i*1,..",*.

?hen ({r, '..,$r,,fli,,.","1) is a solurion re, (vo} if aneJ onry if
it is a saddle-point in (rrro); mor"eover this happens if and only

ir 1frr,...,fi,r) is a solurion to (ro), 1ri,""",d> is a sotution

to (IIO), antl the extrema in (IO) utO (II0) coincide.

/- *, * .' *
ry- .F, = s" (4. ) anci ) n.a. . * r. ({. ),*j t, ,t i 'i" - i_r't--ij -- -J j

for i=l,or.rm and j=1,..",n"
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Proof; The first part follows from Theorem B-J, while the rest is

* si;ccialixation of, Theorem 3-8.

cett*I"LARY 8-L

In order that (VO) have a solution, it is necessary and

suf,flclent that

(tl.21a) there exist {re Oo* r. for j=1,...,n
ir*

such that ) on ,{re r.nge 
"l 

f"" i=1, .. ",m,LJi rJ J

ancl also

(S.21b) there exist 4le Oo* "l ,or i=L, . ".,m'I I

such that ) tf"* ,c range r, for j=I, . ".,n..-i. ', ..1 J

Proof: The necessi.ty of the condition is trivial. Its sufficiency

is an immedlate eonsequence of 8-F, 4-F and 8-K.

Problem (V^) appears in network theory with ((4..)) as the, rJ
iueidence matrj.x of the network, t. "" the flow in the;th br"anch,

J
*

and t. as the potential at the ith node. Birkhoff ancj Diaz ISJ proved'I

an existenee theor.em for (VO) in this context. This theo:neur rnay be

vierved as a speeial case of 8-L in which the r . &r'e actually stric.tly

increesj.ng catrtinuous fune tions un'buunded above or beJ.ow, with
*

cioln r" = il and r. (0) = 0, ancl eaeh s. is either a continuousJJ].
ncn-increasing function with clom *] = ,n *,rc *l1O; = O, or is of11

the fclrm i

,F***
,I" = s. (). ) if and only if i. = J. (antl ,-. is arbltrary),1-1

*
where J" is a given eonstant. Under these assumptions, eonditionst"

($.?ta) anel (8.2f b) are always trivially satisfi"ed " A sornewhat more
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general" result along these lines has been proved by Dwyer, [eg]. An

existence theorem f,or netrvorks due to Minty [51, Theorem 8.1]

f,ollows from 8-L when the sl aff vanish identically, i.e. whenI
:F**

\ = s.(\ ) ff and.only if ). = O (\ arbitrary).
1

These authors all eharacterize the solutions of (VO) (ln the varj"ous

special cases) as the solutions of some problem of form (lO) or (IIO)

(or both) " (See also Millar [SO, Theorem 2], Berge [+e] anO

[SO, p"162ff.1.) Mint]r also eeinsiders a problem related to (tII0).

Aside from these results in network theory, and the llnear programming

case, 8-K and 8-L are new.
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APPETfDIX A

Supgo_rj Funclions ang ltela_tive trnter'1o{g g{ Conv_ex $ets

As Fenchel has polnted out h9, p"lotr ], the conjugate

correspondenee 2-S betwe"r, 
"anur* 

functlons includes the classical

correspondence between convex sets ancl their support functions [4, p"23]"

After statlng this fact here in a form convenient for referenee, we

shai.l use i.t to charaeterize relative interiors" Some new resul,ts

wlll then be obtained about the behavior of relative lnteriors

under certain operations, such as the addition of convex sets.

Farnilarity rvith tire material in $ Z witl Lre assumed 
"

A convex funetlon f on El is sald to be pogitive,lJ hotnoeegeege if

(A.f ) f (}.x) = Lf (x) for all x€n and h > 0"

?his happens 1f and only if gph f ls a eorlvex coneo Slnce the closure

of a eonvex cone is again a convex cone, it follows fron (2.5) that

cl f is positively homogeneous if f is"

Let C be a non-empty convex set in E" The convex support functlon

o_ of C is then deflned by
c

v * v *1 (,(A"2a) d" ,* ) = i(x i C) = sup{Lx,r

- ,,r'xf[*,*n3 - Xrr*lJ for

DuaJ.ly, th* cerneave support funetrtrn

(A.zb) 0" ,**) = #(**lc) * inr$x,x

- inr* f [*,**: -$" r*{ r"*
Notice that, by definition,

(A"3) Ye = 5j ."0 { = f;
i"e. the support functions of eonvex

"C 
of

*l l"
eaeh x

*l 
i

each

)
x.C J
**x€E

eis
."1-)
**

€E

sets are precisely the conjugates
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of the

tt2 cz

(A"4)

?}IEOREM

and (2"16)!
Vro(xlcl C) =

whicla says that xe cl
*for all x .

eharaeteri stie functions

if and only if f * X^,
vV'luz
"ar- 

oa, rt and onlY if

A.A.

iru (?"15) anO (g.39) " Sbviously

_ i:*

2

6!t(t

def ineel

so tnai,

cl C-) clC

(a) If C is a non-empty convex subset of E, tlaen

closed, proper, posltively homogeneous convex funetion

(A.5) cr c = f* l[*,"*: = 6(**lc) for arr **'**]L!5

(b') If h is any proper, posltively homogeneous, convex fune€icn
*onE,thenclh-Uawhere

Cc = 1* I [*, ** ] < rr(x*) f or arr **ur* [J
is a non*empty closed convex subset of E.

gqc{: (a) The fact that V" 1s a closed propcr"eonvex funstion is a

specialization of Theorem 2-D, Ln view of (A"3), whi"re the pore:Ltive

homogeneity is obvious from the definiticns" ft{oreover by (A"g), z-fr

voaisa
*onF,

.l*{ 
,

v4- s(x

V*!k C *
6a'Cxl = sup {[*,* J

C if and oni"y if 0 = [

f tx) = "uou* f[*, ^"* 
] - nt,."r*{ =

- c(x
*

xrx l

(b) Observe first that, by 2-D witir rhe noles of, S and E#

reversed, el h = f , where
a**)(A.6) f(x) = sup * ][*,*'J * rnt"'l Ix*

is a e l"osed troper eonvex functisn on E" Sulrstituting x =

(for an arbitrary fi.xed X > 0) and appJ"ying the f,@et thet il

homogeneous, we see that

hu

l^

*?,l*[*,"

le>

posi ti veny

L sup
*"l * iutu = ),f (x) 

"
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This is true for every l. > O, so f(x) is either
v

x€8. Thus f = 5,-,, and hence cl h =' Ya o, (A,3)

set C (closed and norr-empty because f is closed

asserted formula for C is now a consequence of

tJ tl;. co for eaeit

, for some ccanvl-:x

anil proper')" 'ltr':

(n"o)"

CONOLI,ARY A-B

The closed pfpper convex characteristic functions on E eorrespond

one-to-one with the closed proper positively homogeneous convilx
:i

functlons on E under the conjugate operation"

Of course convex sets in E

homogeneous convex functions on

correspondenees for convex sets

f uncti.ons.

corresporld dually to posi.tj.veny

E. There are also analogcus

anr.i ositive ly hornogeneoue crrnc:av*

It is interesting to note that a proper ct;nv€x functlon i* !:i4

a characteristi.c function and positrveiy hcmogeneous if and only if

it is of the forrn X,,, where K is a non*€rnpty convex coire" ''Ihe eonjll$tut*lit

of such a functlon must again be the cheraeteristic funetion *f rl

non-cmpty col'ivsx corir;, for the proi::er"ties o{ being *l eheract*:ri=i.ic

frrnr:tioil and positively homogeneou:i are,-irlal to one another by'i nu

abErve results. In fact if K is a nor!*crnpty cclnv$,:; cune iu Ho tl:i:ll

(A"za, b; = Y* * X**, where *- -Lol[*,,**i s: t'[o:'ali x,-nl 
"

-rF
?he closed convex cone K g, fi ir (.C.74) is called th* palar of K"

.Applying (n"S) ts (A.7a), rve conclude that the polar af K is in turn

cl K. fn partlcular, the rvell knowtr p,t1ar correspontlence betrveen

non-empty closed convex cones (see [C, p"52]) is a speclal case of, the
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conjugate correspondence. For concave functions, one has the dual

result
 * n 4 ^ C +,- *.- 1(A.7b) 'b; 

='dK = bK * , where K- ={x lL*,* I * o.for all xexJ '

In particular, when K = M is a subspace of E, then

(A.7c) Xil = Y* = X"*, where u* =f** I [*,**] = o for arr x€M].

Usef,ul properties of the relative interlor of a convex set are

descrlbed by the next theorem.

flIEONEM A-C

Let C be a non-empty convex set in E and let x€8. Then if x has

one of the following propertles it has them all:

(a) ,x€ ri c,

(b) For eaeh zeC there exists some 9) O such that x -!(z-x) eC,

(c) 0t**lcl l [x,**] ro" each x*er* s.r"h that N(x*lil n [*,**]

Proof: (a) implles (b): Let L be the smallest linear manifold containing

C, Eo that ri C is the lnterior of C relative to L" If xe ri C and zeL,

we will have x + \(z-X)e ri C C for -€* f <€, providei€> O rs

.smafl enough. In partlcular, thls wlll be true when zeC.

(b) irnplies (c): rf 0<**lcl ( [x,**] , then by definition (A,2b)

there must exist some z€c such that [2,"*] < [",**]. Applying (b), we

get
*1 r ;*,**1

by definl tion (A .2a) .

(c) lmplies (a): Suppose ;l ri C. We shall show that then (c)



-;5a-

there exlgts "o* *f.f* sucb thst

But trlvtalry U(x;lcl = Ot*f lct,
so (c) ls violated bV xf. Therefore we can.suppose xe rb C. It ls

well knoun tbat a non-enpty open convex set can be separated from a

point not 1n tt by a hypelplane [15, p.2O]. Slnce r1 C ls an open

convex eet relatlve to a certain llnear nanlfold whlcb also contalng

and rl C * I lLL, p.161, there exlsts (by en elementary'argunent

based on the fsct Just mentloned) sone hyperplane ln E contrlnlng x

but disjoint fron ri C. Thus tbere exlsts "orr *f,.n* such that

[*,*f 1 e Erxf lo " tr*f lcr

In thls event x cannot have property (c). Tbus (c) lnpllea (e) aa

cannot hold. If actually x,/ cl C,

t*,*f J f Y({lcl uy rheoren A-A.

Ct and C, are convex sets ln Er so ls

c, + C, = fi+*2f xrecr, *rec21

dlrect calculation

B(** lcr*r) = X{** lcr) + J(x* lcz),

A(** lct+cr) = 0{x* lcrl * 8t** lcz) "

where Ct * g I CZ. It 1s easy to sbow tbst

(A.9) c1(c1{€2) ? cl c, + c1 cr,

but examples are known where the Lncluslon ls

proved, however, for relatlve lnterLors.

THEOREM A-D

If Cl and C, are convex sets ln E, then

proper. llore can be

If

and by

(A.8)

rt(Cl+CZ) = ri C, + rl Cr.
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Proof: We can suppose CI I A * Cz, for the theorem is tr:i.via} other.Hidee,

First we prove ri c, + ri cr€ri(c**{r) using condition (e} of ?heorem A-o

Let xr€ ri c and xre r! cr".rf [xr+xz,**] r J!**ian*r), ilren

[*r,**J + [*r,x*] > y(x*ler) .,. U(x*lcp)

by (A.s). slnce in particurar xr€ca and *zrc2, tus lmplles
,.*Lx,x ] " $(**lcr) ar,.t lror,**) > Yt"*lcr),

and henee by Theorem A-C

[i, ** ] < 6(** lc, ) .r,o [*r, ** ] r 0(** lcr> .

Therefore

[*r**e, x*] s 6t** f cr) + '6(x* l.r) = 0(x* ler€s]
by (A.8). Thus x, + xZ€ ri(Cfrcel accorcllng to conciition (e) CIr

Theorem A-c" The reverse incluslon wi.rr forlow from (z.I) aneJ {e.*; "

NameIy

r' Cl + ri Clrl(ri Cgi Cr) - rJ.(ct(ri Cr+ri. C*))

) ri (ct(ri Cr)+ct(rt Cr)) = ri"(ct C*+ct Cr)2lJ,(er+e*)"

This completes the proof of the theorem.

The above fact has not previousJ.y appeared i"n the tri.terature"

rt is very closely related, hclwever, t$ the next theorern, wlaieh xs

essentially one of F.enche1's results [fe, p.4g]"

THEOf,FM A-n (Fenchel's Separation Tlaeorem)

Let Cl and. C, be non-empty convex sets in E " Then ri eX 
^ri 

en = fu

if and onry lf there exists "o** **a** *"d c€R such that
-*rtL*r,* ] < r"r = [*z,x ] for all xr€Cr, *z.Cz.

with strict i.nequality for at reast one xuee, or for at }*ast. on€ xff;.fl!"
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Proof: Tlnls foLlowe from the last condition ln the proof above, $inee

Ir"glr using the notation -c ={-*f".cJ, we see from Theorem A-D

that ri err"ri C2 = g lf and only if
(A.10) Od rl C - ri CZ = ll C, + ri (-Cr) = ri(Cr-Cr)),

It is obvious that

(A.1r ) J(** f -c) = -d(** f c) , vt** ;-c) = -!(** lc) ,

whiclr by {4"8} implies

(A.12) J{**fcr-cr) = }{x*l.r) 0l;* lcr>,

${** lcr-cr) = S{x* lcr) Jt** lcrl .

Furthermore, according to Theorem A-C, Cl ri C if and only if
o * Y(x* lcl r d1** 

f cl

for some **.8*" By (A.rz), condltion (A.10) is therefore equlvalent

to the exlstence of some **aE* such that

o ; I,(x* lcr) 0(** lcr) r 0(** lcr) vt** lczt .

Thus ri e1 6 ri Cz = g if and only if, for "o*" **,

Xc** lcr) s 6(** lcr) uut 6(xr lc1) < X(** lczr.
The theorem now follows from the definitions of the support functions"

COROLLARY A-F

Let en and e, be non*empty convex sets in E. Then ri clAri czl fr

if anct only ir ,I(***lcr.) " $(-**lcn) ror every x* sueh that

Jt"uler) * ,i(x* b").

(A"ts) $(***lc) = -t(**lc) ancr t(-**lc) = -!t"*lcl
according to the definitlons.

The n*:*t rersu}t i.s new, except for special cases.
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THEOREM A*G

Let x-)Ax lre a llnear transfomation frorn E to r,. Let c be a

convex set in s anct let A(c) = fe*f *.c]. Then A(c) is a convex set

in F and

ri(A(c)) = A(ri c).

.llog{: 'lhe convexity of A(c) ls welr known, and easy to chcch.

Also, tlrt-" forurr.rla is trivia] t.t e, = U, Suppos.e therefore tlnt C * g,

flnd J,*rt lt -\"f .ro=o ] , 'l'hen M is a s;rbr,;prci: o:l Il nni:l AxcA(o) if irnrl

only if xec+M. :'Iorv from condltion (b) of Theorem A-c, we see that

Alr€ ri(A(c)) if ancj only if, for each AzcA(c), there exlsts some

€> o such rlrst .rrx- E(Az-nx)cA(C). ilcnce r.l(A(C)) is the set of

veetors x with the property that, for each zecrd[, there exists some

[> n r.;uch t,h:rt x*[.(z*x)s,o+M. ]jut x has this property if ancl only if
xe ri (C+tt) , by Theorem r\-U, Ttrerefo:.c

ri(A(C)) = A(ri(C+M)).

Moreover

ri(C+M) - ri C + ri M = ri C + lrl

by Theorem A-D and the fact ttrat nl is a subspace. But by the clefinition

of l{,

A((ri c)+M) = A(ri C).

?his provr:si the thcr:renr.

Ineidentall.y, the theorem is not true if "ri." is replacecl by "c1",

This can be seen from geometric considerations; for instance, the

projection of a half-hyperbora into a llne perpendlcular to one of



-9a-

its asymptotes will not be a closed set.

Flnally, we explain how closures and relatlve lnterlors of convex

sets behave under direct sum constructlons.

Proof: For I = 1,..1k1 let

IIIEONEM A-H

Let E = 8l(E ...OEk, and let C, be a convex set i'n E, for i e lr.,.k"
L€t

c:)c =lx= 1*t,...,*k) f*r.cr,l=I,...,k{ .

Then C ls a convex set ln E and

ri c =F*r,...**> 11. rt cr,l=t,...k1,
cl C ={.*a*r,...;x*) lx.e ct C*,1=1,...,*?.

C.i =F,...,xrr0,..., l*l.arl .

Then ci is convex ln E and, by the deflnltlon of relatlve lnterlor
ri Cl =8),...,xi,O,..., f*r. "1 clj.

Moreover C - Ci + ... + Ci, so C ls convex and by Tbeoren A-D

ri C = ri Ci + ... + rl ci =I4r,...,*k) l*re-rl Cr,i=Ir...,n3.
The statement about cl C ls trivlal.
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APPENDIX B

Effectlve llonatns and Level Sete

This Appendlx ls reatly an extenslon offZ, attnougb some background

materlal is drawn from Appehdlx A. It ls devoted to the study of

convex sets assoclated wlth a convex functlon and lts conjugate. The

resuLts obtalned are entirely new, and are neant to be counted anong the

mainr results of this paper.
**

Let f be a proper conv€x functlon on E wlth conjugate f on E

The first problem we shail consider ls that of characterizlng the convex
*

set dom f by expressing its support functlon (see Appendtx A) in terms

of f. Thls will enable us to deteruine the propertles of f dual
'*

to varlous useful properties of dom f euch as boundedness.

Secondly, we shall calculate the support functlon of the zero leve1

set

(B.r) lev r =$lr(x) < oJen
:| ...,.

in terms of f . It ls lnnediate from Deflnltlons 2-A End 2-B that lev f

is a convex set, and that lev f ls closed when f ls closed. Other level

sets can be represented as zero level sets, for example

(a.21 , lev(r-e) =f*lrt*l = a], lev(f-e) {.tf(x) < s(x)f ,

where d€R and g ie concave. An lnvesti.gatlon of such setg is worthwhile

because of their importance in eonstralnted extremum problems.

THEOREM B-A

Let f be a proper closed convex functlon on E and let x'e dom f.

Tben the convex support functlon of the convex get don f* 1r, E* is



-1la-

glven by

l(*lou' r*) = 
il5,t(xo+).x)-1(xo))/\ 

= 

^I:,t,xo+trx)-r(xo))/L.
Proof: The second equality ls due to the fect that (f(x'+\x) -f(x.))/t

is a non-decreasing function of \ ) 0 as long as xO + 
^x€ 

dom f
(see [fS, p.47J), To prove the flrst equality, we observe first that

Xt** ldon f+) = ig (f (xo)1f*(**)-[*o,*];71.,
)>o

This fotrows from the inequallties in Tlreorem 2-F. But the support

functlon of a convex set is the conjugate of its characteristic function,

as pointed out 1n Appendtx A. Tberefore

Y6'rl.io* r*) = ",ro{[*,.--,-iS { ttxr)+r*(**)-[*',**]z^J

= sup sup (r/I)(-f(xo)+[xo+i.x,**]-r*(**))* l">o (

x

= i:B(t/t) 
(-r(xo)+sul {[xo+\*, **]-r*t**l] t

x

= sup(ll\) (-f (xo)+t**1xo+xx)).
).>0 *:t

Since f is closed and proper, f = f by Theorem 2-D; hence thls is

the desired formula"

COROLL\NY B.B

Let f be a closed proper convex functlon on E and l.t *O€ dom f 
"

*
Then don f ls. bounded lf and only lf

lim(f (x'+).x)-f (xO))/\ ( o for all xeE
.n4oo

Proof: A non-empty convex set is bounded if and only lf its support

functions are flnite everywhere.
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COROLI,ARY B*C

Let f be a closed proper convex function on E and let xoe eiern f.
**

Then dom f = E if and only.if

lim(f(x.+}.x)-f(xO)rht = o for all non-zero x€8.
\-t oo

l:qg-{r According t. (e.4), ctlOom t*1 = E* if and only if
Y(*.lo** r*) = $t*lsll = X(*fx=o).

*rl.**;f
But cl(dorn f ) = E if and only if dom f- = E-, since dom f is csnvex.

COROLTS.IIY F*D

f"et f be a closecr proper convex f unction on E and ret xoe darn f,.

Then xe$ &nd rlen have the property that
rt

[*,**j * rx for all xe dom f*
if, anrJ only if

f{xn+}ux) = f(x.)+ }.0 for aLL ze dorn f and -e ( i, € oa"

!ro_g{: The first condition is equlvalent to

n = J6*loo* r*) = -$(-*f oo* t*),
which by ?lreorem B-A is in turn equivalent to

(n"e1 rr = sS(r(xo+).x)-f(xo)),/x = -;;;ttCxo-),x)*f(xul)/h"

?he seeond condition 1n the cororlary certainly implles (g"a).

ConverseJ"yu tf (8"3) holds then

{f {x*+hx}*f (xo) )/X s a < -(f (xo-lx)-f (xo) )lr
for aLl h > 0. This impJ"ies

f{xn+}.x}*f(xo} < \d anrl f(xo'l.x)-t(xo) s *}"cr

for all ).' 4, in other words

3:(L) = f(x'+Lx)- A.e < f(x.) for -o ( ). ( o.
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Now h ls a convex functlon for -oo ( [ ( o whose naxlmum

On the other -hand, convexl.ty lmplies that

is h(o).

h(0) = rr ( t*ll+t*) (-I) ) < (b (h(r)+h(-}.) )

for all L, so v/e must have h(f) = h(O) for all )r. Therefore

f (xo+)rx)-trfi = f (xo) for arl X,

whlch is the gecond condltlon ln the corollary.

COROruTRY B-E

Let f be a closed proper convex functlon on E and let xO€ dom f.
:f

Then don f ts a rinear manifold lf, and only t f, for each x sucb tbst

lim(f (xO+Lx)-f(x')h. = Q ( o,
L+6

it ls actually true that

(f(xo+Lx)-f(xo))/\ = o for -o ( \ ( o.

Proofl Ry Theorem B-A and Corollary B-D, the latter conditlon means that
- lta tl tl
Lx,xl=oforallxedonf

whenever

- ) d - X<*loon t*; = supf[*,**11**. oor t*J.
Thus the condition says that every linear functlon bounded above on

*1
dom f must be constant there. Tbls ls certalnly true if don f ls

a linear manifoLd" On the other hand, suppose dom f* is not a linear

manlfold. Then <lom f* has a relative boundary nofnt xf. Applying

Fenchel's separ.atlon theorem (Theoren A-E) to Cl = dom f*
:f' C {r\ *

and C, = t"O I with the roles of E and E reversed, we can flnd sorne
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x€R and ft€R such that
r *. - , ? *. I :[
Lx,xlJ < d 3 Lx,xOJ for aII. xre dorn f

with strict equality f,or at least orr" *lu dom f*. But xfe cf(dom f,*),

so this linear function tr(**) = [*,**] r" not constant on dom f*,

although it ls bounded there. Hence the condltlon is both necessary

and sufficient.

The next theorem duallzes some useful lntersectlon properties
*of rl(dom f ).

T}MONEM B-T

Let f be a closed proper convex functlon on g and let xoe dom f.
* -reLet M be a subspace of E*and let

u = f* l[*,**] = o for atr **.**JL
be the subspace of E orthogonal to M*. Let *far*. Then the linear

g{<:}
manifold xO + M lntersects rl(don f ) if and only if, for each

xeM sueh that f(x'+Lx) - \[x,*f] t" a flntte non-increaslng function

of L )'0, actual.ly f(x'+Ix) - \[x,*f] t" constant for -o ( \ ( o.

Prggg: We shall apply Theorem A-F" l,et Cl = dom f* and al = *l * M*.
x*t

Since xO + M is a llnear manifold, it lntersects rl(dom f, ) if and

**only if ri C, 6rL C, I O. Also,

dt*lcll = d(*l*f*r,a*l = 8(*lut + ;*,*f J,

Yt*lcll = Y(*fao* t*;= sup (f,(x,"+),.x)-f(xo))/\.
\>ou

(See Theorem B-A") A necessary and sufficient condition that
1t**

xO + M intersect ri(dom f ), according to Theorem A-F, is therefore
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that

(f (xo-l'x)-f (xo) )/x s tt-*lul - [*,*]l tor art ]" ),0

for each xeE such that
. 

f(xo+Lx) - f(xo)/I "'a'(*ful + [*,*l] ror atL A > o"

This ls equi.valent to the condition that:

(8"4) f(40+Lx) - r[*,xfl < tlxo) f,or all L ( o:

for eaclr xeM -such that

(8,5) f (xo+\x) * I[x,d: t 1(*o) for all L > o.

But (ts.4) and (8.5), taken together are equivalent to f(x'+Lx) - l"[x,xfl

being constant for -co < \ < - (by an argument already used j,n the

proof of Corollary B-D), On- the other hand, (S.S) by itsei.f ls

equivbtrent to f(xo+\x) - L[x,*f] o"trrg a finite non-Lncreasing

functi.on of L ) 0" Tbe Latter condltlon trivially irnpl"ies (8"5),

so to prove this assertion it wiU. be enough to prove that if h(h)

is a convex functi.on such that

(8"6) h(L) 3 h(o) for all \ ) o,

then h ts non-Lnereasing for L ) o. tet 0 * Lt L2 o L, and set

(8"7) Ft = (L-).2)/(\-t1) , *2.= (xr'Lr)/(L-ht).

Then p, h Oo p2 E O, pI + p2 = 1, lnd pltrl + lrZL = trZ"

Therefore by (S,6) and the convexity of h

h()"2) * ur*(ur) + p2h(\) s prh(,tr) + prh(O) 
"

Substitutirg (g.?) into this lnequallty and taking the l"imit as

L*oa we get h(),.2) s tr(Lr)" Thus we have vertf,ied that h()"r) > h(I"g)

whenever S E )'.I 3 \2, and the proof of the theorem ls compX.ete"
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In particular, by choosing M* =IOJ (and hence M = E) one obtains

from ?heoren B-F a characterizatlon of the points *f in ri (Oom f*) "

lfe turn now to the study of the zero leve1 set lev f, def,ined

' in (s"r)

THEOREM B-G

Let f be a closed proper convex function on E. Then

(8"8) xt** llev f ) = cI inf f*(Lx*),/\
** o9'<*

except when i.ev f = fi, in whlch case the function on the right is

improper 
"

* c* * -r .+ *ql9o4: Leth(x ) =inf fr tLx )ri" 1O<A<*Jforeaefix inE

We shall prove first that h is convex according to Definition 2*A.

It wilL be enough to show that

(n"01 if h(xl) ( pt( -, rrtxll . ur. -,0 { p { 1,

then h(pxl+<r-rr)*l) . prrr + (t-u)pz.

The hypothesi.s of (8"9) implies thc existence of pos:Ltive e"eal'

nurnbers h, and \, such that
*4**(8.r0) f (Llxtili'.",< u, and f (x2x2)-lx2 * ur.

##+
tet x = F*tr + 6l"5.ilx, and set

7, = I'XLZ/(pl"r+(f-f)\2) > O,

Xi = LirlLr t 0, \, = r.(l-p)ltrz t 0.

rhen )"f + Xl = t, and therfore by (B.IO) and the rlefinltion of h,
B tF i( * lt o *. | *- -ht;;xf *trf -lrixr) s f (\x 1rrtr = f (II (I.rxr) + \, (\rxn) )/i'"

* (h./).) f* eor*l l +tLizxl t* rrr*l l = (p/\r l r# tl,r*f l +( ( t *p)ll* ) r* rl"rxj )

* trrl + (f*L)li,"



T'hus h is convex as clatmed, Now we calculate the conjugate
t(rFSlnce f = f by Theorem 2-D,

rr*(") =_supx*f[x, x*.J -di: r*o"**yzL]

= *,ro[rr^, sup_-*t*,r*i] - ,*,^"*iB
0q.<€- x'v

= sup f (x)lt. = E(*lr(*)Eo)= V(*lr.u r).
O<L<@

But a convex functj.on 1s proper is and only if its conjugate

proper, by 2:D and the remarks following it. Therefore h is

lf ancl only if Lev f I A, and, when this happens,

ct tr(x*) = h**(**) = V(**lrev r)

by 2*D ancl (A.3) " This proves (B.B).
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CCROLIANY B-}I

t-et f be a cl.osed proper

trrenfxlrt*) " "J 
is a compact

interior of dom'f*. When this

( B .8 ) can be omi'tted .

convex function on E and let 6l ) inf f.

convex set if and only if 0 is in the

happens, the closure operation ln

of h"

is

proper

Fr**f: f.ttlinf f if andonlyif O>inf(f-ry). Also, (f*r:y)*f *d,
**

so tlaat'dora(f*d) = dom f . Therefore we need only pr"oge thrs for Lh+

ca.*e u'here (Y = O " Since now O )> inf f by assumptlon, the closed

convex sef; trev f is non-empty" It is bounded if and on),y ir the
,F

effectrroel domain of lts convex support function is all of E

Aceordi;rg to Theorem B-G this occurs lf and only if, for aLt
****x =H, th':r'e exists some }" ) 0 such that ),"x € dom f " The latter

is ec;uivalent to the conditlon that 0 is in the interior of dom f*,
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f6

because cJom f ls convex. The final statement of the corotrlary

is valid, because a convex functlon whose effective domaln is the

whole space is automatically closed (see(2.7)).

In applying forrnula(8.8), it is important to know when the

closure operation can be omltted and when the infimum is attalned.

corollary B-Il gives one case where the first hotds" we now describe

a simp3"e case where both hold.

TIIEONEM B-tr

Let f be a convex function, flnite on all of E, such thet

inff<0. Then

v *r f * * *o(x llev f) =\ min f (Lx )/X it x l O,
, Oq.<oo

1
lott**=0..L

"!fegl: The hypothesis inplies that f is a closed proper eonvex

function"on E and that lev t I g. The formula is trlvlally true for
*x = 0. In view of Theorem B-G, it will therefore suffice lf we

prove that:

(s"rl.) whenever \"1(*t- u'o \ro>ol "r" sequences such that
+*-*1 tF*

xk+x l0 and f (f.oxo)/\+uen, then f (Lx 171 < p for

some h 3, 0"

Under the lrypcthesis of (8.11) we have
*, - *- * *(B.Lz) [*,*', = oI: 

(r/rk)([x,roxiJ-r' (\kx;))

{ ti.minf (Ilhk)f (x) for all xeE,
lq-+m
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by Theorem z-tr'. rf the 1/\n were unbounded above, the Last expression

would be -o whenever f(x) < 0 (whtch is possible since inf f { o),

and thls woulcl contradlct the assumed flniteness of p" Therefore,

taking subsequences if necessary, we can suppose that

fim (I,/Ln) = \0, O 3 \O . -.
k4e

since f is finite everywhere, we can now re-express (g"lz) as

p > [x,"*] - \of (x) for all xeE.
*This implies \O ) 0r because x I O and p is finite. Therefore

\O = (Il).) for some positlve real number l, and

F > supx {[*,**] - (r/r)ttxl] = r*(\**)/\.

This proves assertion (B.Il), and hence proves the theorem.

It is interesting to observe that if f ls a closed proper

convex functlon on B, the graph sets of the co4vex support functions
*rtof dom f and lev f are related in a sinple geometric manner to

gph f" ?he second graph set ls the closed convex cone in E@R

generated by gph f, whlle the flrst ls the asymptotic cone of gph f"
(The asymptotic cone of a closed convex set C consj.sts of all vectors

x such that z + l"xeC for all zeC and }. > 0. See h9, p"4I]")
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APPENDIX C

Some Differential Properties of Convex Functions

fn $z we generalized the concept of "differential* by definirrg
*

x = bf(x), where f is a proper convex function on Er to mean simply

tha t

(c.r) f(z) > f(x) + L"'*,**] ro" all xeE.

It was pointed out that if f were actually dlfferentiable in ttre

ordinary sense at x, then there would be exactly one oe"tot **

satisfyinc (e.l), nanely
x ,af tf(C.2) x #l-,'..., fft*t)

Thus the new eiefinition ls compatible with the fanlliar one (in which

the dif,'ferential 1s often called the "gradient"). Neverthetress,

one would liice to knoiv whether the new differentials are somehow

related to limits of difference quotients, so that the termlno}"ogy

i.s msre justif,ied, Ordinary differentials are characterized by their

relation to dlrectional derlvatives. Namely, if f is differentiable

at x, then tl:te directional derivative of f at x with respeet to

r * <3r, " . ,() is given by

(e .s) 
Silrt(x+Lz)-f(x))/h 

= f, fft") + ".. * lr, #j", = L*,af{x}l

One mlght wonder whether an analog of (C.3) is true for the new

differentials ae wel,l,. Actually, the answers to these questions are

atready eontaineel in Fenchel's work, although Fenchel dic not make use

of the vectors x* satisfying (C.l) in theoretical deveLopments (as

we do, for example ln devlsing "equilibrium conditions" in 33).
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We shall explai.n Fenchelrs result below,

The conjugate operation is essentially an extension of the

classical Legendre tranformation (see [10; vol. I, p"2Bg-242, and

vol" II, p"26-3I] which was.used by Dennis lff,3F] tCI eonstruct

duals for certain convex prograns with linear constraints" ir/e shall

analyze Legendre transformatlon here from the standpornt of the

generar theory of convex functions and their differentials as

outtrined fn!2. In particular, we shall explain the extent to whieh

conjugates can be determined by the methocls of the caLculus.

DIFINITION C*A

Let f be a proper convex function on E and let xe dom f 
"

Let z€8" Then ttre {i{ect:Lonpl derl.vative f'(x iz) g,I ! q! x y*jb

r_e-qpqgJ ,tg- z is glven by

f '(x' ,z) = llf (f (x+tr2) - t(x)/i, = rim.(f (x+).2) - f (xffh
\>o ltc'

By a well irneiwn argurnent [15, p.49], the difference quoti.ent appearing

in ttlis definitlon is a non-decreasing function of \ ) O, whenee the

equallty bet,ween the "inf" and the "Ilm"" The classical theory of

clirectionatr derivattves of convex functj.ons on open convex set6 was

developed by Eonnesen and Fenehel [4, p.18-21], and was extended to

other c$nvex sets by Fenchel fn Lfg].
''.'

THEOREM C-E

Let f be a proper convex function on E and let xe dom f" Then

f (x ;z) is a positively homogeneous (A.1) convex function of z€.n,

whielr 1s al.ways elosed and proper when. xe ri(dom f).
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3tqg4, This can be proved by an el"ementary extension of the classlcal

argurnents (see also [19, p,?9 f f ]) . lthen xe ri (clom f ), the ef f eetive

tlanrain of f '(x ;u ) as a function of z is a subspace of E, aecording

to the characterization (b),oi reiative intericrrs in Theorern A-C"

The faet that fo(x iz) is closed in this case follows frono (2"7)r

because a subspace has an empty relative poundary"

The directional derivatives in Definition C-A are related to the

generalized diffeirentials in Definition 2-G by the following resuXt,

due to Fenchel [rg, p.I03], which is based on tire theory of support

functlons (see Appendix A).

TI{EOREM C-C

Let f be a proper convex function on E and let xe dom F. Then

t
x = bf(x) if and only if

!t
(c.a) f '(x 'l z\ > lz,x'] for all zen"

f6

[]roof : If x is a <lifferenti.al of f, at x, i "e. satisfies (C.f ]u then

in particular
*

{C"5} f(x+hz) a f(x} + [(x+]'z)-x,x -] for all zc]i, h ] O,

*
from ivhich (C"4) follows blF Definj.tion C-4.- tf x satisfies (e .4) then

(C"51 trolds by Definition C'A which in turn implies (C.f X u i.G" that
*

x * df(x).

CONOL},ARY C*D

Let f be a proper convex function on E anel let xeH. Then

:F

x = ilf (x) for at least one x if arrd only if x{, d$:n f anci f '(x;a} ls

proper J"n z, and ln this case
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(f .e; et-f '(x:a) = supT[=,**i , *" = at(*Jz L "'J
The closure operation in (C.6) is unnecessary when xe rl(dorn f,)"

Rennrkl This i"s the analog.of (C.3) 
"

i:roof: It is obvious from (C.1) thar f has no diff,erentials at

x if x{ eiom f,, since then f(x} = *" The eoroliary tire::efore f,oll*ws

frsm Th€Grerns e*E and A*A(b) 
"

CtrROI-].ARY C*E

Let f f:e a pe"oper convex f uncticn on E. T'hen
(-tr*-*
I x .x = df ix)f rs a closed conl,ex subset oi' E for eaeh xeH"r -)

ilr,g,of : Th1s results, alon; wlth ttrle }ast corotrlary, from Theorenns e:S

and vl-A ( ba\ .

eCIft0t"I*ABY e-Fr

I,et f be a proper convex function on E and let xeE. ?ha*n tlre

f,ollowing qituations are equivanent ts each o,tlter.

(rc) x is tn tlre int,erlor" of, dorn f and f is di.f,ferentlable at

x Iu thrc"' slrdtna!:y sel}se,

(tr) f '{x; zV in a i.inear fune t,lsn of, a,
*

(e ) { Saces exaritly one dif,fel.entlan x at x 
"

*
&{oa:eover, in t}rese situatipns the unique eiifferential x of

I afl x. ie givcjlr bV fu"2\, anil

{u {a; z} = [i:, **.1 tor e,.l]- ar,,ir:.

..,:_j,:it ".{'i:t": eqri:i."r'a 1r:nf€ of (b) **nd (r:) is evicient from gor"*1l.ary e**"

Jii.*io, if {i:} !i.elrls s munt N:* in thr: interior of, dcm f,, -fsr cll-h--rniss
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f'(x;z) would not be finite for all z" (See Theorem A-C") This reduces

the corol"Iary to the classical case [-4, p.zOJ.

Suppose for a moment that f ls a diff,.erentiable eonvex function
*defined on an open convex set C ln E. Then the relation x = Ef(x)

reduces to a system of partial dlfferential equations

!* af.. ,. .E, = 6E(€r, ..c, Err), I = 11 ..,1 D,
-l

whlch conceivably can be solved for {,, Do., {r, in terms "t {;, rco, {;.
-I*Denote the general solutlon abstractly by x = (bf) -(x )" T,he function

L(f) given by

r,(t)(x+) = [(ar)-1(**),**] * f((af)-1(**))

is then called the l€gendre- transform of f" rf L(f) happens to be

deflnecl on an to*r, ill ;tt."entiabte there, the same

procedure ean be applied to L(f)" It turng out that t(t(f)) = f.

ordinarily this transformation is treated rather lnforrnarly, and, in

particui"ar, questions about domalns are neglected, Dennis [ff,3n]
proved rigorously, however, that, if f is strictly con\lex an e,, the

domain of I"(f) is open and L(f) is also differentiabre and strictly

convex" IIe then derived a class of dual convex programs tlased on

this Legendre oorrespondence. (IIe seems to asEume ln proving theorems

about these programs, however, that f and L(f) are both everywtrere

defined [fr,gf]") Actually, the Legendre transf,ormatlsn Is quite

ctose to the eonjugate operation" If rve extend f to all, of E,

by assigntng f the value o outslde of e in accorclance wi th our custom,
{.

f, may be eal"culated and compared with the similarly extended

function t{f), If x*e dom L(f) anct x = (df)-t(**}, then x* = Df(x)
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flnd, by definitlon of L(f),

L(f )(x) = [**,*j - f (x) 
"

*rhBut thls expression is also f (x ), by Theorems Z*F and Z-ln" Thus
*'

f cgincicies with t(f) where L(f) is defined, €ct least in the case

studier by Dennis" The reverse is not necessarily true; in fact f*

may be finite on a much larger set, as we shall see"

Our objectlve below is, flrst of at1, to deduee an analog of

the Legendre transformation formula for general conjugate pairs of

closed convex functions" Secondly, we shall characteri.ze tlre closed

convex functione whose differential nappings are one-tcl*one where

defined, and then compare this situation with the crassical one.

tr'or a proper convex function f, on E we define

com Bt = fx I ** = df(x) for some **3 ,

range dt =f **1 ** = af (*) for ".rn* *i ,L)'xrF
and similarly for the differential df of f

LEMMA E*S

$ullt)o$e thet f, ls a closed proper eonvex function on E. Then

{*} r'i. {der:lr f,} c gl*m i}f :* r{ing* *f* S-do:l f ,

1+*
(b) ri{clom f )=range }f = dom rJf c dom f 

'.

Ilroof : -fiets 
;j ust comtrines Theorem 2-H with Sorotrlary 2-I and its

dual.

re:$i Ttie hypothesls that f is elosed is crucial in thc tenun*,

a can be seen frcm the following example in the one-dimensi.anel ease"

Let

f({} = o lf *1. < 6 < t, f({) = *11 l{l } 1"
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The* f is a non*eXoseel proper ecnv*x funstiern and

!F + -:k. .*f (1 > = l{"1 for ali {'"
Mgre(}ver, n0w

rr(dom f) = <Jom df = rior f =t{ I -i < { * f 1,
ri(dom f*) = do^ df* = dsm t* =f{* I -""= gt * *-1 ,

ranse or ={ol , ranse at* =f{ i -t o 6 = ItJ,

i{erte especially the fact tlrat range Df can be nuch smallen than
*

ri(dom f ) rvhen f is not closed"

It is Ig! necessarily true, incldentatly, that clom bf snel

renge bf are convex sets, even when f is closed" I{olveves", wlren f is

closeel these sets must be "almost convex" by thc l-emma, because they

dlffer then fram the convex sets dom f and elom fu ny at mo6t the Lack

of eertain retratlve boundary points.

The next thecrem demonstrates that the conjugata operation cein

be thaught of as a generalized Legendre transforrnation"

Tl{n$riEM e*!I

Suppo$e tl-lat f is a closed proper convex function on E. ?hen

the f,onlowing facts are true, and provide a neans of ealeuSating f

wlrreneve r Df r s e omp.te tely known .

+ * * ., *-(a3 Tf, N e; range bf, then f (x ) = Lx,x' j - f(x), where x is

any veet+r sueh tlaat. x* : Ef (x) 
r

d. 4 &

(b) If x { cl(range }f), then f (x } = oo,

(r:) r"i(range af) Is non-empty,
;K*

{d} If x e cl(range af) and xoe ri(range bf), tlren

r"xl + ttr*Llx*e ri(range Bf) for 0 < L < 1,
1,1
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and f (x ) is given by

,F****f (x ) = *Sn 
t (\xo+(1-1")x ).

***-*
Proof: Ifx =Af(x) thend(x) +f (x ) = [*,x ]byTheorems Z-F

and [-H. This proves (a). Next we observ.e f rom (2.1] ancl terffna C-G

tha t

(C.21 cl{range af) = cl(dom f*; and ri(range dt) = riqdom f*).

It foi"l"onrs that (b) and (c) are true and that range 3f can be replaced
*

by derm f wlrere it occurs in (d). Tlre first assertion in (d) now

redrrecs to a familiar fact about convex sets [tS, p"9], whlle the

second ls a eonsequence of t2"8),

Needl.ess to say, Theorem C-H is easy to appl5/ only when bf is

easy to saleulate. Thls wilL often be the ease, however, when the

methods cf the ealeulus can be applied, for example when f is finits

and diffcrentj.able everyvrhere. (See atso [e) "

Dl:rI$I Tr*i{ {:*t

A pr',u'per e{rnvex funstion f on E will be called qggqlg{ if f is

elosed and *f Is a one-to-one mapping from dom bf onto range bf. If

f is rcgutar: and dom bf = E, range al - S*, f will be called conrpletelSr

regular.

?HEOftEM L]*"}

lf f is a regular (completely reguJ.ar) convex function on

*
then f 1s a regular {completetry regular) convex function on E

Proof s Xmrnediate f rom Theorem 2:lI .

E,
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T}{EOREM C-K

Let f be a proper convex functlon on E 
"

if and onj"y lf f has the followi"ng properties"

(a) ri (dom f) is acpultly open, and f is

Then cl f 5.s regr"ltral

differenttable at

every point of r1 (don f).
(b) f is gr5!g!]g e_qrygI on ri (dom

f(Lxr+(1-h)xr) < Lf(xr) +

f,or all x, and x, in ri (dom f), x, # xr;

(e) tlrene exists a polnt x'e ri(dorn

xe rb(dom f) o

(C"S} lim f '(xlfr(x'*x); *O-*) = *€s"

L)o+

Ilemark: If (c) holds for one

f), i""e"

(l-h)f (xr) fcr" 0 < l, < 1,

f) such that, for eaeh

such xOe ri(dom f ), then it p.'itrI lecld

as tlee argument bel"ow shows" trliitt!

says that f beeomes inflniteXy steep

for every point

ri(da,m f) open,

al.ong caeh ray

boundary point

of rj. (dom f ) ,

as in (a), (c)

proceeding from

x of dom f,

the interior point x
o

cfdsnfton

Prosf : Tlre iorear:f, is divlded into several parts"

Fart L; It is enough to prove tlae theorem in the ease whaene

f is already eJ"csed" We shall show, narneXy, that f, has ttaese thx'ee

properties lf and only if el f tras them" Properties (a) nnd (b)

depend only on the vatrues of f on a"i-(dorn f) " The s*rne is true of,

(e) beeause of tlre general fact (see hS, p"gl): if, e is er:nvex,

x'e ri 0 a.nd xe cl e, then LxU + {l*h}xe l:i e for 0 < }, < 1"

${oreover el f(x} = f(x} for al.l xe ri(dom f) by (2,7)" Finally,
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r.i (doin{e J" f } ) = ri (dorrr f,),

rb(clom(cl f)) = rb(dom f),

can easily be proved from (2"1) by appi.ylng the operatx@n,s n'ri"

"e1," to (2.6,,

qalt, 2r bf is singre-valued at alL points of dom dr rc and only if

holeis and dom Bf = r.i(elom f), This is a direet eonsequenee of
aneJ C*ti,

(a)

j]ullj 3: Suppose f is closeri and 1et x^€ ri{rjs:m f } " Then

ej,u,rn *f * ri(dorn f) if anel only if, for each xt: rb(dom f), etther

f (x) .= ae, or f (x) <i m, but f ,{x;x**x) = *eo" Indeeei, by Lernma e*G,

dom bf a ri{derm ft lr ancr onry if, for each xc r"b(dorn f), eit}xer

r& dom f , i"e" f(x) = m, or x€ dom f i:ut x{ erorn .}f . Ths .latter

rneans tirat f '(x;z) is improper in z, aeeording to eorollary e*D,

whieh ls ccrtainly the case if f'(x;*0-") = -0oo Moreover ft(x;O) = 0

trivtali.y, so if f u(x;z) is improper it must take on the val.ue -eo.

In this event f'(x;z) = -o for all ze xi K, where K is the eff,eetj-ve

domain of f'(x;z\ in z, by (Z.Z) ancj (Z"g>" But by Definition e*A
co^-.u t -"-,--' -1 e )K =Jr.(z*x) ! zr dom f , i, > o\2\z-* j.. - I "\s*al, I at u(![ri I J L z{ dam ts,

nntl tiri i S npt it n

r! r, >f *-n I *. n{dom t)g .

?hnu xr-xr t"i. K, ur: that f o(x;oO-*) = *co if f,{x;u} as improper j.n s"

eg.gL 4: Supp*se f is elosed and Let xOe ri(dom f), xe rb(dom f),

Then (e"8) holds if and onJ"y rf either f(x) = @, or f(x) < oo but

f,'(x;o*-*) = *eso To prove this, we flrst reduce the sltuation to

the rine*d*nnenslsnax ease" Let h(L) = r(x+\(xo-x)) for all tro ?hen
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h i-s a prcper eonve:]r function on the r"eal. Line, 1€ ri (donr hlo

Ss rb(cjom hlu and h is elosed bgr (g"S). Mcreovsr, f,(x) = h(.S) and

f,' (x+h{x#*x; ; x**x} = hr (\; 1}

for e.Xl- )".; dom h, trlde must'prove that

(A.g) iirn* hr (L;1) = -*,
i>o

i{ and onlLy if

(e .eC) e{tteer h(0} = oo, or h(0} { oa but hu(CI;l,} = :*."

tr'ir.st rue show that h'(x;x) is a nsn*dcer.easing funetien of, h on the

inter'vaL derm h" I€t )ue dom h ancl ;ie derm lr, and suppose p.r {,h" Ey

tlae def,ini tion sf, di rectiernal. der"i va tf ves ,

Ix(^") : tr(pr) = h(pr+lth*plrr(rr) * tr'(pi)**u) "

rnterEhanging X. and;.r are addins tire sesond inequatrity to the firsf,

we get

0 a hu(p;L*p) + h'(1";g-A) = (t*rr)(h'{u;).}+h,(L;-}}}
'ny positlve taor*ogeneity (see Theorem A:B). Fienee

(e "el)i h'(p.;I) E *h'(L;:1)

Oil the othe:" handu

(e "leX -h.'{h;*n} s h*(tu; t} for },c- dom h,

This ls tr{rala} {f }, is an end-point of, the inte:"vaL qiern tr. Othervrise

x* ri (denn h) i.re, hu(L;i.u) is a proper sonve:< functisn of hu by Theox.ern e--8"

?hen

0 =, tau{,\;CI} = hs{h; *(f l+ *t-ll} s {i(hi(}"; ut}+rro(}.;-1}},

fronn whleh (c"lP) folLows, Thrrs h!{},;I) is rron*deca.easing on

dom h as asse:"ted " Ttrerefore

@ > rnf, ho (1"; tr) = lrm.h' (\;l1 = i.* -j -,. ,

0s"<1 )-+0'
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*
and h* ) h'(0;1) whenever 0e dom h" rt is abvious frsm ttlls that

(C"S) lmptries (C.fO;. Conversely, suppose lf; is ftntte, We shatL

show that then h(O) < o and h,(0it) ) -*; thj"s wittr prove that (C"l"O)

impJ'ies (C"9) " I"et I > Il , Lru " "., be a sequence ef posittrve real

numbers decreasing to O, and let

xl = hu(Lu;r)' k = 1'2e"" 'k--
(nacfr LOe ri(dom n), so the ll a"e all finite), Then

(C.13) lim h,- = O and frm I"l = inf fl = fl ) -o.
**k**Kk+ookxl{o

tet h (I" ) be the conjugate of the convex function h. Then
***(c-r+) h(hk) + h (f,t) * trnln for k = 1,2,""" o

This ean be prcved in the following way. By Theorem Z*H, {C.14}
*says that { = Ah(},g}, while the latter is true if and only if

(e .:.s) h(hk;p) E rfil for all pre It

by Theorem C-C" By the positive homogeneity of direetional. derivatives,

(C,15) is equivaLent to
*

-h' (Ln; *1) < Lk = h' (\u; 1) .

This is cer"tainly true for the fl *u have chosen, l"nasmuch as the

outer' lnequality holds for all Lt by (C.fZ;. The proper eonvex

funeti-clnii tr *nd h* u"n both closed, ss {e.13) and (C.I4) now gives us

h(0) *n*t;,.j) so,)";"
T'i:is inrpli.+s that h(0) { oou and that }"; = ah(O) by Theorem 2*}I"

lUclresvel' !1" (0;1) F *co in thls case lry Corollary C*D"

I.g{j! S: Suppose 0f is single:valuecl on rl(dom f)" Tlren Ef

is al.so one*to*one on ri (dom t) if and onJ.y if f has proper"ty (b) 
"

Nametry, Let x'e ri{dom f), xre ri(dsm f),*l = Af(xl), *} = attxr),

o <l.. < 1. If f has property (b) and *l = *l = **, Theorems Z-F and
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2-I{ imply that

"^":.:-;1,, :1,=-t,:;ll;':';:::,,,:,::-1,.("u) )

> \f(xi) + (1*\)f(xr),

and hence that x, = xZ, Thus Ef must be one*to*sne in tiris case"

* x2" trrun *f , ,nl
*

and x = bf(\xl+(l-h)xr) are all dj.fferent" Agaln applying Theorems

2-F and 2*H, we have

***
'*^-:.1' 

'.r 
' 
:l 

'-'l 
t.* 

' 
i'-^i'::' r:.,' :. l-'i 

'.- ' '
< \f(xr) + (l-h)f k],

By thls argurnent, f must have property (b),

Fart 6: As shown in Part 1, f can be assumed elosed" From

Parts 2, 3 and 4, we knsw that bf is then slngle-valued at all

points of dom Af if and only rf (a) and (c) hola. Finalty, bf, is

in additiein one*to-one if and only if f lras property (b), according

to part 5" Th*.s proves the theorem, and at the same time proves;

t,r}tlilL:t;3-j{ e*t

Let f, be a pnoper cunvex funetion on E" Then b(cl f) j.s

singtrt-t'a.iut'd on dom b{cl f) if and on}y if f has properties (a}

and (c)) 1n Tlreorenn e-H" In this case dom D(cl f ) = ri(dorn f ),

Tlreorern e*K preclsely characterlzes those convex functieins

for whieh tlre eonjugate operatlon amounts to the Iregendre transfomatton

eonsidered by Dennis. Indeed, the convex functions f whose closures

are regular frr'e those whose con;jugates can be cJeterrnined as follows"
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Caleu3.aLe df on the open convex set rl{doni f,} }:y erre}inary *iff*:"entiation.
*

Then r*:rige CIf is an open convex set and the equation x = ilf(x) tras

-r * *e uniqu* s*lution x:: ($g; *{x } at,+ach point x ":f rang5* }f .

;d1$r'€elvc i"

+ * -1 )F *- -l #(e.i6) f (x ) = L(af):(x ),x l - f((Af) -(x ))

cn raugqe frf , and uris set is actualty ri (dcia f ). Finally, cale ulate
.+

th* i;r:ugrJaly values of f by tire closure operation (l"Bl ancl give
d

i thei r';l 1u* i,+ €il,el*",vh*rri. {fareulate the values of, cl f sLmi}arJ.y,

Eo as trl get a eo:r"jugate pai.r of cj,osed eonvcx functisne.)

It is impo!'tant ta note that the above procedure is lg!
ila,

enougir to cieternninei f vrhen f satisf iss {a) *.ilr.l ii:} hut nc;t (e },

r,ri,.i. ri;:.,u*tl Ii-ri L:-.gc-n6:'c transform ir we]]-geI'rtr{.d lir thi:; { ase.

Fg;-r" exampi.eu sclr,qicier the qrne dinrensisn*1" situ&tle:n where

'i'lrr-::i L(f l| ,* f , -FuL

'r'!1* j:r-:?il.[ ti]{.cre!:r *f this a3:penci:.x cha;'sct*rf,ii€3s th* eorny-rletei-y

,:'r6;,t.: ! l r L:{i'!rv {jX i T ;rle.:'i i aiti,j .

THFtCIt?EF,{ e*&ld

i eerlllr<."x frulc{,i$i:i f Lr.i-t ff is **mp}etely regular if and onny if

{a} f, i s fi-n" te, eiifferentiable and strietJ"y eonvex every-rvhere

+n iq , and



(b) lim (f(x'+\x)-f(xO))lL for alL non-zero x€8,
lP*

for some xOeE,

-344-

Froofl Property (a) guarantees that f

by Theorem C-K. But (b) ls equivalent

by eorollars B*c and Lemma c*G"

If f is completeLy regular, then,
**

holds for every x eE . An example of a

f unc tion :. s

(c.rz3 f(x)= *[x,sx],
rvhere B is a positive definite matrix.

for aL1 x, so by (C"16)
* * . _ -1 * #-,(e.rg) f (x ) = * Le -x ,x J,

*1
where B is the inverse of B"

is regular and ihat dom Df = g,

the condition that range bf = E

of course,

completely

formula (C.16)

regular eonvex

In this case bf(x) = Ex
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