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The main goal

Theorem (Reis, R.’23)

For convex body K C R"™ one can find a point in K NZ" in

time (logn)°™.

Previously best known:
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The main goal

Theorem (Reis, R.’23)

For convex body K C R"™ one can find a point in K NZ" in
time (logn)°™.

Theorem (Reis, R.’23)

One can solve an integer program max{c'z | Az < b,z € Z"}

in time (logn)°™.




Lattices

» A lattice is a set A = {Bx : x € Z*} where B € R"* has
linearly independent columns.

» B = (by,...,bg) is called basis of the lattice.
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Lattices

» A lattice is a set A = {Bx : x € Z*} where B € R"* has
linearly independent columns.

» B = (by,...,bg) is called basis of the lattice.

» The rank of A is dim(span(A))
» A lattice has full rank, if n = rank(A).



Determinants

» The fundamental parallelepiped of A is the polytope

P(B) ::{Z)\ibi|0§)\i<1we [k]}

i=1
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Determinants

» The fundamental parallelepiped of A is the polytope

P(B) ::{Z)\ibi|0§)\i<1we [k]}

i=1

» The determinant of lattice is det(A) := Volx(P(B))
In full rank case, det(A) = | det(B)|

" < P(B)
° 0 bl °



Shortest vectors

» Length of the shortest vector is

A(A) = mind][zfls | 2 € A\ {0}}
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» Finding shortest vector is NP-hard (under randomized reductions)
» Can be approximated within 2"-factor [LLL’82]

» Can be computed in time 20 (even w.r.t. arbitrary
norms || - ||x) [Ajtai, Kumar, Sivakumar '01]



Shortest vectors

» Length of the shortest vector is

A(A) = mind][zfls | 2 € A\ {0}}
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» Finding shortest vector is NP-hard (under randomized reductions)
» Can be approximated within 2"-factor [LLL’82]

» Can be computed in time 20 (even w.r.t. arbitrary
norms || - ||x) [Ajtai, Kumar, Sivakumar '01]

Theorem (Minkowski’s Theorem 1889)
Any full rank lattice A C R™ one has A (A) < /n - det(A)Y/™.




Closest Vector

Closest Vector Problem (CVP): Given lattice A and target
vector ¢ € R"™. Find vector attaining min{||z —t||» : € A}.
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Closest Vector

Closest Vector Problem (CVP): Given lattice A and target
vector ¢ € R"™. Find vector attaining min{||z —t||» : € A}.

o

Theorem (Micciancio, Voulgaris "10)
CVP can be solved (deterministically) in time 20,

» Only works for || - ||
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The Voronoi cell
Let A C R”™ be full rank lattice. The Voronoi cell is

V={zeR": |zl < |z —v|sVveA\{0}}

» ) is a symmetric, convex, compact set
» t €V < minf[|z —tf]s: € A} attained by 0
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» v € A is called Voronoi relevant if H, is a facet of V.
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The Voronoi relevant vectors

» v € A is called Voronoi relevant if H, is a facet of V.
» Obs 1: V=) H

v Voronoi rel ~*v
» Obs 2: If v Voronoi relevant, then unique closest lattice
points to 3 are 0 and v.




The Voronoi relevant vectors (2)

Lemma

The number of Voronoi relevant vectors is |R| < 27T,




The Voronoi relevant vectors (2)

Lemma

The number of Voronoi relevant vectors is |R| < 27T,

Claim. For v € A, consider coset A’ := v + 2A. Apart from
v* = argmin{||z||z : # € A’} and —v*, there is no other
Voronoi relevant vector in A’.



The Voronoi relevant vectors (3)
Proof.



The Voronoi relevant vectors (3)
Proof.

» Suppose that w € A’ is Voronoi-relevant where

w g {U*a _U*}
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The Voronoi relevant vectors (3)

Proof.
» Suppose that w € A’ is Voronoi-relevant where

w ¢ {U*a _U*}

» Consider u := (v +w) € A



The Voronoi relevant vectors (3)
Proof.

» Suppose that w € A’ is Voronoi-relevant where

w & {v*, ="}
» Consider u := (v +w) € A
» Then
w

| |9~ 2 +w), = Sl < 5wl
——ul| =|=—-—=z@"+w)|| ==]v —||w
2 2 2 o 20 122 ?

2

which is a contradiction.



The Voronoi relevant vectors (4)

Observation: We can find all Voronoi-relevant vectors by
solving 2" many CVPs in the same lattice, because

min{||z|]2 : € v + 2A} = min{||z —v|]2 : z € 2A}



The Voronoi relevant vectors (4)

Observation: We can find all Voronoi-relevant vectors by
solving 2" many CVPs in the same lattice, because

min{||z|]2 : € v + 2A} = min{||z —v|]2 : z € 2A}

Now assume:
» We know the Voronoi-relevant vectors R

» We have a target vector ¢ € 2V (scaling handles the
general case)



The Voronoi cell algorithm

Algorithm:

(1) Set s:=t

(2) WHILE s ¢ V DO
(3) Set &= [slly
(4) Find v € R so that s lies on the boundary of §H,
(5) Update s :==s—v

(6) Return t —s
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The Voronoi cell algorithm

Algorithm:

(1) Set s:=t

(2) WHILE s ¢ V DO
(3) Set &= [slly
(4) Find v € R so that s lies on the boundary of §H,
(5) Update s :==s—v

(6) Return t —s
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The Voronoi cell algorithm (2)

Claim. In each iteration ||s —v||y < ||s|ly and [|s —v]|2 < ||s]|2-
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The Voronoi cell algorithm (2)

Claim. In each iteration ||s —v||y < ||s|ly and [|s —v]|2 < ||s]|2-
Proof.
» By assumption £ € v +V and so by triangle inequality

s 1
s = ol < |3 ||, +(1-5) lsly <
N————— <5
<1
» Bound on || - ||z clear.
[ ] L ° [ ]
T 07s



The Voronoi cell algorithm (3)

Lemma
For any t € R™, |(t — A) N 2Y| < 200,
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Lemma
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Proof.
» Suffices to prove |[A N4Y| < 4™
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Lemma
For any t € R™, |(t — A) N 2Y| < 200,

Proof.
» Suffices to prove |[A N 4V| < 4™ Suppose otherwise.
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The Voronoi cell algorithm (3)

Lemma
For any t € R™, |(t — A) N 2Y| < 200,

Proof.
» Suffices to prove |[A N 4V| < 4™ Suppose otherwise.

» By pigeonhole principle, there are distinct x,y € A N4V
with z —y € 4A.
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The Voronoi cell algorithm (3)

Lemma
For any t € R™, |(t — A) N 2Y| < 200,

Proof.
» Suffices to prove |[A N 4V| < 4™ Suppose otherwise.

» By pigeonhole principle, there are distinct x,y € A N4V
with z —y € 4A.

» Then ||*2]]y <1 — contradiction as ANV = {0}. O
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The Voronoi cell algorithm (3)

Lemma
For anyt € R™, |(t — A) N 2V| < 200,

Proof.
» Suffices to prove |[A N 4V| < 4™ Suppose otherwise.

» By pigeonhole principle, there are distinct x,y € A N4V
with z —y € 4A.

» Then ||*2]]y <1 — contradiction as ANV = {0}. O

More generally: given t € 2FV, after 2°(" iteration we are in
281V using update steps 2¥~1v with v € A.
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Putting things together

» Define
Tvoronoi(n) = time to compute Voronoi cell for A C R"
Tove(n, k) = time to solve k many CVPs in the
same n-dim. lattice
» We obtain

TVOronoi(n) < TCVP (77,, 2O(n)) S TVoronoi(n) + QO(H) . 2O(n)

v

) char. of Voronoi relevant Vectors

v

v

(

(**) main algorithm

(x % x) By LLL algorithm: Can reduce CVP in dim n to
20 instances of CVP in same n — 1 dim. lattice.



Putting things together

» We obtain

T\/oronoi (n) S TCVP (n7 20(n) )

» (%) char. of Voronoi relevant Vectors

» (*%) main algorithm

» (x* %) By LLL algorithm: Can reduce CVP in dim n to
20(") instances of CVP in same n — 1 dim. lattice.



Putting things together

» We obtain

T\/oronoi (n) S TCVP (n7 20(n) )

(%) char. of Voronoi relevant Vectors

(*%) main algorithm

(¥ *x %) By LLL algorithm: Can reduce CVP in dim n to
20(") instances of CVP in same n — 1 dim. lattice.
Resolve recursion to Tyeronei (1), Tovp(n, 200M) < 200 ]

v

v



Enumeration of points

Theorem

For any ellipsoid €, one can enumerate points S := AN (€ +t)
in time 200 . (|S| + 1).
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Enumeration of points

Theorem

For any ellipsoid €, one can enumerate points S := AN (€ +t)
in time 200 . (|S| + 1).

» After applying linear transformation, assume £ = BY.

t+ &



Enumeration of points (2)
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» Define graph G = (A, E) with
E={{z,y} |z, y € A,z —y € R}. G has degree |R|.
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Enumeration of points (2)

» Define graph G = (A, E) with
E={{z,y} |z, y e A,x —y € R}. G has degree |R|.
Claim. G[S] with S := AN (B} +t) is connected.
Proof. [MV’10] shows 3 path xg, z1, 29, ... € S with
lzo — tl|a > ||z1 —t]]2 > - ..




Enumeration of points (2)

» Define graph G = (A, E) with
E={{z,y} |z, y e A,x —y € R}. G has degree |R|.
Claim. G[S] with S := AN (B} +t) is connected.
Proof. [MV’10] shows 3 path xg, z1, 29, ... € S with

» Then explore G[S] from point attaining CVP(A, )
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minimum number of translates of B to cover A.
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M-ellipsoids

» For convex bodies, A, B C R", let N(A, B) be the
minimum number of translates of B to cover A.

Theorem (Dadush, Vempala '12)

For any convex body K C R"™, one can compute an ellipsoid £
so that N(K,&), N(E,K) < 2°M in deterministic time 2°™.
Moreover one can compute the points x1,...,xN with

K CUY, (z:+ &) and N <290 as well,

» In convex geometry these are called M-ellipsoids



Application to arbitrary convex K

Idea: Cover K by 2°(") many M-ellipsoids, then
find /enumerate points in ellipsoids.
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Application to arbitrary convex K

Idea: Cover K by 290" many M-ellipsoids, then
find /enumerate points in ellipsoids.

» But the method does actually work if the covering
radius is lower bounded..



Covering radius

» For K convex, the covering radius is

wAyK) = min{r>0|A+rK =R"}
[ ] o [ ] [ ] ([ ]
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» For K convex, the covering radius is

wAyK) = min{r>0|A+rK =R"}
= min{r >0| (x+rK)NA#0VreR"}



Covering radius

» For K convex, the covering radius is

wAyK) = min{r>0|A+rK =R"}
= min{r >0| (x+rK)NA#0VreR"}
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Covering radius

» For K convex, the covering radius is

wAyK) = min{r>0|A+rK =R"}
= min{r >0| (x+rK)NA#0VreR"}

rK



Dadush’s lattice point upper bound

Theorem (Dadush 2012)
For full rank lattice A C R™ and convex body K C R™ one has

Vol (K)
det(A)

|IKNA| <N :=2"max{p(A, K)", 1} -

Moreover, can compute points in same time.
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Vol (K)
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Dadush’s lattice point upper bound

Theorem (Dadush 2012)
For full rank lattice A C R™ and convex body K C R™ one has

Vol (K)

|IKNA| <N :=2"max{p(A, K)", 1} - “det(A)

Moreover, can compute points in same time.

Proof of moreover part:
» Bound holds for any translate of K
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Dadush’s lattice point upper bound

Theorem (Dadush 2012)
For full rank lattice A C R™ and convex body K C R™ one has

Vol (K)

|IKNA| <N :=2"max{p(A, K)", 1} - “Fet(A)

Moreover, can compute points in same time.

Proof of moreover part:
» Bound holds for any translate of K
> Any shifted M-ellipsoid £ also has |£ N A| < 200N
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Dadush’s lattice point upper bound

Theorem (Dadush 2012)
For full rank lattice A C R™ and convex body K C R™ one has

Vol (K)

|IKNA| <N :=2"max{p(A, K)", 1} - “Fet(A)

Moreover, can compute points in same time.

Proof of moreover part:
» Bound holds for any translate of K
> Any shifted M-ellipsoid £ also has |£ N A| < 200N
» Hence can enumerate all points in K in time 29 N,
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Dadush’s lattice point upper bound

Claim. For any convex body K C R™ with u(Z", K) <1 and
any € R" one has |K N (z + Z")| < 2"Vol,(K).
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Dadush’s lattice point upper bound

Claim. For any convex body K C R™ with u(Z", K) <1 and
any € R" one has |K N (z + Z")| < 2"Vol,(K).
Proof of Claim.
» Assume 0 € K
» Define equivalence relation with x =y < ¢ —y € Z™.
»Let V={2€e K|z <ixy Vy€(z+Z")NK} (picks 1
element from each equiv. class)

» Picking one per class = Vol,,(V) <1
» For all z € R" one has (z +Z")N K # 0 = Vol (V) =1
» Translates x + V disjoint for x € Z". Hence
n disj.
p— = <
|KNZ"| g Vol,,(z + V) Voln< U (.CE+V)> < Vol,,(2K)

TEKNZ" ~ z€EKNZ"



End of part 1

Open problem 1

Can one even solve Closest Vector problem (or shortest vector)
in || - ||z in time 29 and polynomial space?

n)

» In poly space so far only n°™-time known [Kannan ’87]



End of part 1

Open problem 1

Can one even solve Closest Vector problem (or shortest vector)
in || - ||z in time 29 and polynomial space?

n)

» In poly space so far only n°™-time known [Kannan ’87]

Thanks for your attention!
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Revisiting Minkowski’s Theorem

Theorem (Minkowski’s Theorem 1889)
Any full rank lattice A C R™ with det(A) =1 one has

M(A) </

» Can also give a lower bound on the number of short
vectors. How about an upper bound?

0

» What if det(A’) > 1 for all sublattices A" C A?
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Warmup

Lemma

Let A C R"™ be lattice with det(A") > 1 VAN C A. For allr >1
one has N := |ANrBy| < (3r)"
Proof.
» Clearly A\i(A) > 1.
» Can pack N disjoint balls of radius § into (r + 3)Bj. So
N -Vol,(5B5) < Vol,((r + 3)Bg). Then N < (3r)». [




The Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R" be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for s = O(logn),
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The Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R" be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for s = O(logn),

prs(8) = Y exp(—ms®|z]3) <

TEA

S
2

> Means for all r > 1, [A N 7By| < n®Uos)7* (e # of
points grows quasi-polynomial in r)
» First conjectured by [Dadush, Regev 2016].

» Conjectured that s = O(y/log(n)) is enough which would
give [A N 7By < not* for r > 1.



Stable lattice

Definition

A lattice A is called stable if det(A) = 1 and det(A’) > 1 for
all sublattices A’ C A.

Example: Z" is stable.
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Stable lattice

Definition

A lattice A is called stable if det(A) = 1 and det(A’) > 1 for
all sublattices A’ C A.

Example: Z" is stable.

o o o 0(e o o
e o o o o o o

» It suffices to prove Reverse Minkowski for stable lattices
(later more on that..).
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The Voronoi cell
» Recap: Let A C R" be lattice. The Voronoi cell is

V(A) = {z e R" - [[z]lz < [lz — vll; Vo € A\ {0}}

(A
[ ] [ J . = A
° ° e *\O
. rank{A) & 1



Volume of the Voronoi cell

Lemma
A full rank stable lattice A has Vol,(V(A)) = 1.




Volume of the Voronoi cell

Lemma
A full rank stable lattice A has Vol,(V(A)) = 1.

Proof.

» Translates v + V(A) tile R™ and density is t(A) =1.




Some notation

» Gaussian density p,(z) = exp(—7||z/s||3)

e A AR




Some notation

» Gaussian density ps(z) = exp(—n||z/s||3)

e A, A

» Gaussian measure

s (K) = —— /K ps()da




Some notation

» Gaussian density ps(z) = exp(—n||z/s||3)

e A AR

» Gaussian measure

) = @ /K pula)dz

» Standard gaussian measure

8) = o [ (= EB) e =, )




Voronoi cell large = p(A) small

Lemma
For any lattice A CR™ and s > 0, ps(A) - 1,.s(V(A)) < 1.
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Voronoi cell large = p(A) small

Lemma
For any lattice A CR", py(A) - v, (V(A)) < 1.

» For v € A one has 7,1 (v + V) > e ™IVl34, (V).



Voronoi cell large = p(A) small

Lemma
For any lattice A CR", py(A) - v, (V(A)) < 1.

» For v € A one has v, (v+V) > 64”7’”%%,1(]7)'
» Summing gives 1 =) )\ Yn1(v +V) > pi(A) - 7,1 (V) O



Convex geometry

» Is it true that a symmetric convex body K with
Vol,,(K) = 1 has large Gaussian measure (after scaling
with ©(logn)?

» Maybe, maybe not..
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Convex geometry

» Is it true that a symmetric convex body K with

Vol,,(K) = 1 has large Gaussian measure (after scaling
with ©(logn)?
» Maybe, maybe not..

K A(K)
0

Theorem

For any symmetric convex body K C R"™ with Vol,(K) =1
there is a matric A € R™™ with |det(A)| =1 so that
1 (O(logn) - A(K)) > 3.




Isotropic position

Definition

A symmetric convex body K C R" is in isotropic
s-Gaussian position if

/ ps(z) - xtdx = al,
K

for some a > 0.

» Means Gaussian mass is equally spread in all directions.

e




Isotropic position (2)

» If K is in isotropic position, then K maximizes Gaussian
measure under volume-preserving rescaling:

Theorem (Bobkov 2011)

Let K CR" be a symmetric convex body and let s > 0. If K 1is
in isotropic s-Gaussian position then v, s(K) > v, s(A(K)) for
all A € R™™ with | det(A)| = 1.

K

e




Isotropic position (2)

» If K is in isotropic position, then K maximizes Gaussian
measure under volume-preserving rescaling:

Theorem (Bobkov 2011)

Let K CR" be a symmetric convex body and let s > 0. If K 1is
in isotropic s-Gaussian position then v, s(K) > v, s(A(K)) for
all A € R™™ with | det(A)| = 1.

K

e
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Theorem
For stable lattice A one has v,(0(logn) - V(A)) > %
» Consider
X = {BeR""||det(B)] =1}
Xgaple = {B € R™" | A(B) is stable and || B|r < 3n*°}

» Fix B € Xgtable min. F(B) := 7,(0(logn) - V(A(B))).

» Case (I). B is on boundary of Xgaple-
» Case (II). B not on boundary of Xaple-



The main technical theorem (2)
Recall:

X = {BeR"™"||det(B)| =1}
Xgaple = {B € R™™ | A(B) is stable and || B|r < 3n*°}

Case (I). B is on the boundary on Xgaple-



The main technical theorem (2)
Recall:

X = {BeR"™"||det(B)| =1}
Xgaple = {B € R™™ | A(B) is stable and || B|r < 3n*°}

Case (I). B is on the boundary on Xgaple-
» Then 3 sublattice A’ C A with det(A’) = 1.



The main technical theorem (2)
Recall:

X = {BeR"™"||det(B)| =1}
Xuable = {B € R™" | A(B) is stable and || B||r < 3n>°}

Case (I). B is on the boundary on Xgaple-
» Then 3 sublattice A’ C A with det(A’) = 1.

» A’ also stable. Case incomplete for now... but we made
progress..
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Recall
X = {BeR""||det(B)] =1}
Xeable = {B € R™" | A(B) is stable and || B||r < 3n*°}
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» Then B is local minimum of function F': X — R
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The main technical theorem (3)

Recall
X = {BeR"™"||det(B)| =1}
Xiable = {B € R™™ | A(B) is stable and || B||r < 3n*°}
» B € Xtable minimizer of F'(B) := 7,(0(logn) - V(A(B))).
Case (II). B not on the boundary of Xple
» Then B is local minimum of function /' : X — R

Set A := A(B).

Let G(4) = acty = ranpa1n(Ollogn) - V(A(N)
Then G|x has a local minimum at I,

X determined by det(A) =1 and (Vadet(A))ja=r, = I,

vV v vV Y



The main technical theorem (3)

Recall
X = {BeR""||det(B)] =1}
Xeable = {B € R™" | A(B) is stable and || B||r < 3n*°}
» B € Xtaple minimizer of F(B) := v,(0(logn) - V(A(B))).

Case (II). B not on the boundary of Xple
» Then B is local minimum of function F': X — R

Set A := A(B).

Let G(A) := Zé:‘{i; = gt n(©log ) - V(A(A)))
Then G|x has a local minimum at I,

X determined by det(A) =1 and (Vadet(A))ja=r, = I,
Then V4G(A)a=1, = M, for some A € R

vV v v.Vv VY
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Then




The main technical theorem (4)

Theorem
Let f:R>p — R and lattice A CR", let

G(A) = |det |/ FllzlI5)d

Then o
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The main technical theorem (4)

Theorem
Let f:R>p — R and lattice A CR", let

G(A) = |det |/ FllzlI5)d

Then o
(VaG(A))a=1, =2 fllzl|2)zz" dz
V(A)
» Then set f(z) := = WJRn with f'(z) = _pl/tg{n) - f(2)
My = ValGAmr, =2 [ (el do
V(A)
2mt?

= - p1(z)zal dx
p1(R™) /V(A) v




The main technical theorem (4)

Theorem
Let f:R>p — R and lattice A CR", let

CA) = i) Loy 1D

Then o
(VaG(A))a=1, =2 fllzl|2)zz" dz
V(A)
» Then set f(z) := = WJRn with f'(z) = _pl/lrg{n) - f(2)
My = ValGAmr, =2 [ (el do
V(A)
2mt?

= - p1(z)zal dx
p1ye(R™) /V(A) v

» V(A) is in Gaussian isotropic position!
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The main technical theorem (5)

» V(A) is in Gaussian isotropic position!

» By Bobkov: 7,(©(logn) - V(A)) > 7,(0(logn) - A(V(A)))
for any A with det(A) =1

> Pick A so that 7,,(O(logn) - A(V(A))) > 2.



The main technical theorem (5)

v

V(A) is in Gaussian isotropic position!

By Bobkov: 7,(O(logn) - V(A)) = 7, (O(logn) - A(V(A)))
for any A with det(A) =1

Pick A so that 7,(©(logn) - A(V(A))) > 2

Then 7,(©(logn) - V(A)) = (O (logn) - A(V(A))) = 3.
Done!

v

v

v
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Consider a lattice A C R™ with a primitive sublattice A" C A.
The quotient lattice is A /A" = I ans (A).

span(A’)*-
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Quotient lattices

Definition

Consider a lattice A C R™ with a primitive sublattice A" C A.
The quotient lattice is A /A" = I ans (A).

span(A’)*-
o o @ o o s e

. .. .'.. .
ooo..oo

S .-'j.o.-jji S
TA/A/

» Intuition: We can factor A into A" and A/A’



Quotient lattices (2)

Lemma

For lattice A and a primitive sublattice A C A:
(i) det(A) = det(A’) - det(A/A")

(i) For any s > 0, py(A) < py(A') - py(A/A)

(iil) m(V(A)) 2 m(VA)) - m(V(A/A))

span(A’ )+

. .. .'..
ooo..oo
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Theorem
For stable lattice A C R™ one has 7,(0(logn) - V(A)) > ’
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» Fix n. Prove by induction over rank, any stable A C R"
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The main technical theorem (6)

Theorem
For stable lattice A C R™ one has 7,(0(logn) - V(A)) >

CX)IN)

» Fix n. Prove by induction over rank, any stable A C R"
has 7,(©(logn) - V(A)) > exp(— W) >1- rank(A)
» Fix the stable lattice A minimizing 7, (©(logn) - ( )
Case (II). DONE! (after some boosting)
Case (I). 3 prim. sublattice {0} C A’ C A with det(A') =
» A’ and A/A are stable
» Then for ¢ := O(logn)

Wt V(A) = (- VA)) -yt - V(A/AY))
i rank(A) rank(A/A)
= e (- 3n ) e (- 3n

— e ( B rangl;(/\)) O




Proof for non-stable lattices

Corollary
For stable lattice A C R", p1/6(0gn)(A) <

][9]

» But what if A is not stable (only det(A’) > 1 VA’ C A)?



The canonical filtration

» For lattice A C R"™, consider canonical plot

Q := {(rank(A’),In(det(A"))) | sublattice A’ C A}

° ° ° rank(/A)




The canonical filtration

» For lattice A C R"™, consider canonical plot

Q := {(rank(A’),In(det(A"))) | sublattice A’ C A}

ln(dﬁt(A’))

conv(Q) (A
ran




The canonical filtration
» For lattice A C R"™, consider canonical plot
Q := {(rank(A’),In(det(A"))) | sublattice A’ C A}

» Lower envelope of conv(Q)) is called canonical polygon

ln(dﬁt(A’))

conv(Q) (A
ran




The canonical filtration (2)

In(det(A"))

ran\k(A’ )




The canonical filtration (2)

In(det(A"))

Ao = {0}




The canonical filtration (2)

In(det(A"))

Ao = {0}

Theorem (Canonical filtration)

(a) The vertices of the canonical plot form a chain
{0} =AgC A C...C A=A

(b) 7 := det(Ay/Aj_q)/romk A/ M) satisfy ry < ... <1y

(c) Each %(Ai/Ai_l) is stable.




Proof of Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R™ be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for ¢t = O(logn), p1,+(A) < 3.
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Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R™ be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for ¢t = O(logn), p1,+(A) < 3.

Proof.
» Consider canonical filtration

{0} =AgCAC...C A=A
» We know 7, > ... > 1 = det(Ag) > 1



Proof of Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R™ be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for ¢t = O(logn), p1,+(A) < 3.

Proof.
» Consider canonical filtration

{0} =AgC A C...C A=A
» We know 7, > ... > =det(Ag) > 1
» Then

pi(A) < HPl/t(Ai/Ai—l)

=1



Proof of Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R™ be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for ¢t = O(logn), p1,+(A) < 3.

Proof.
» Consider canonical filtration

» We know 7, > ... > =det(Ag) > 1

» Then stable lattice
—

k
Pl/t(A < le/t A/Az 1 SZ H 1/t<%Ai/Ai—l)

=1



Proof of Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let A C R™ be a lattice that satisfies det(A’) > 1 for all
sublattices A’ C A. Then for ¢t = O(logn), p1,+(A) < 3.

Proof.
» Consider canonical filtration

» We know 7, > ... > 1 = det(Ag) > 1

> Then stable lattice
ri>1 F gl ‘
pl/t(A) < :[[pl/t A /Az 1 é H 1/t<r_iAi/Ai—l)
k
rank(Ai/Ai_l) ) 3
< — L )< - [
< [lew < 3n =2

=1



End of part 2

Open problem 1

Is it true that already for t = ©(y/logn) and any stable lattice
A one has py;(A) < 3.

» Known proof works for ¢t = ©(logn).
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Is it true that already for t = ©(y/logn) and any stable lattice
A one has py;(A) < 3.

» Known proof works for ¢t = ©(logn).

Open problem 2

Is it true that for any symmetric convex body K C R" with
Vol,,(K) = 1, there is a volume-preserving linear map A so

that 7, (0(y/log(n)) - A(K)) > 5

A(K)
= >

» Problem 2 = Problem 1




End of part 2

Open problem 1

Is it true that already for t = ©(y/logn) and any stable lattice
A one has py;(A) < 3.

» Known proof works for ¢t = ©(logn).

Open problem 2

Is it true that for any symmetric convex body K C R" with
Vol,,(K) = 1, there is a volume-preserving linear map A so

that 7, (0(y/log(n)) - A(K)) > 5

A(K)
= >

» Problem 2 = Problem 1
Thanks for your attention!
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Lower bounds on the covering radius

LI

P
19292950, 9:9,9,9,

X
WO 0 9:9:9,. 7294
» Recall: det(A) =volume of fundamental parallelepiped
» Simple lower bound: u(A, K) > (\231((/}3))1/”
» For all » > 0,

R—oo Vo, (rK)

A K| ~ —2~—~
:c~IIE%:B§l #y € A:w eyt rk] det(A)




Lower bounds on the covering radius

AR

e
1 92959500 99:9:9

—

PN N AN a N a NSV A2
OuN 9494949, 72:94
» Recall: det(A) =volume of fundamental parallelepiped
» Simple lower bound: p(A, K) > (St )1/

» For r:= pu(A, K), R—oo Vol (1K)
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Recall: det(A) =volume of fundamental parallelepiped
Simple lower bound: u(A, K) > (\ii(( )))l/n
For r := p(A, K),

R0 Vol,,(rK)
A K
:c~IIE%:B" #y € A:w eyt rk] det(A)

For any subspace u(A, K) > u(Iy (A), Iy (K))
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Kannan, Lovasz (1988)

» Consider the best volume-based lower bound

det(ITyy(A)) >1/d
)

,UKL(Aa K) = nax <W

W Cspan(A) subspace
d:=dim(W)
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» Consider the best volume-based lower bound

det(Hw(A)) 1/d
ANK)= WA
MKL( ’ ) Wgspagg\a)iubspace <V01d(Hw(K))>
d:=dim(W)

Theorem (Kannan, Lovasz (1988))
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Kannan, Lovasz (1988)

» Consider the best volume-based lower bound

det(Hw(A)) 1/d
AK) = det(
(A, K) Wgsgé_nrc(?%?%space <Vold(HW(K))>

Theorem (Kannan, Lovasz (1988))
For any full rank lattice A, convex body K C R"

prr(d, K) < p(A, K) <n-prr(d, K)

Subspace Flatness Conjecture (Dadush 2012)
For full rank lattice A C R™ and convex body K C R™ one has

p(A, K) < O(log(n)) - pxr (A, K)

» Dadush shows consequences for solving IPs.
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Theorem (Reis, R.’23)
For full rank lattice A C R™ and convex body K C R™ one has

p(A, K) < O(log*(n)) - pxr(A, K)

Theorem (Reis, R.’23)

For convex body K C R"™ one can find a point in K NZ" in

time (logn)°™.

Previously best known:
» 200") [Lenstra ’83]
» n9M [Kannan '87]

» 20Mnn [Dadush '12], [Dadush, Eisenbrand, R. '22)]
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Theorem (Reis, R.’23)

Flatness constant in dimension n is at most O(nlog®(n)).

» Previously best known: O(n*/?310g®" n)
[Rudelson '98+Banaszczyk, Litvak, Pajor, Szarek '99]
Equivalently:
» If KNZ" =1, then 3¢ € Z™ \ {0} so that at most
O(nlog®(n)) many hyperplanes (c, z) € Z intersect K.

<O(nlog?(n))
hyperplanes
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Input: K C R", lattice A

Output: Point in K NA

(1) Shrink K so that pu(A, K) >1

(2) Find subspace W attaining pxr (A, K) approx.
(3) Compute X := Iy (K) NIy (A)

(4) Recurse on fibers K N1I; (x) for all z € X
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Dadush’s algorithm (analysis)

Analysis:

Can find W in time 290 [Dadush 19]

One has Iy (K) NIy (A)] < O(log*n)? w. d := dim(W)
Can enumerate those points in time O(log* n)?
Recursion

T(n) = 2°®+polylog(n)"-T(n—d) =  T(n) < polylog(n)"

v

vV vy



Dadush’s algorithm (analysis) (2)

Theorem (Dadush)

For full rank lattice A C R? and convex body P C R? one has
VOld(P)

o) )

|PNA| < 2%max{u(A, P)% 1} -

Can compute points in same time.




Dadush’s algorithm (analysis) (2)

Theorem (Dadush)

For full rank lattice A C R? and convex body P C R? one has
VOld(P)

o) )

|PNA| < 2%max{u(A, P)% 1} -

Can compute points in same time.

Vola(Iw (K)\1/d — Olog*(n))
> Then (i) < S

» In any case (*) < O(logn)*?
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Recap: Stable lattices

Definition

A lattice A is called stable if det(A) = 1 and det(A’) > 1 for
all sublattices A’ C A.

o o o o o o o
o o o o0(e o o
o o o o o o o

Example: Z" is stable
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» For a symmetric convex body K C R",

k= E [lz%]"?
x~N(0,I)
» Intuitively: (x = “average thinness” of K

» Polar is K°={z e R" | (z,y) < 1Vy € K}
» Possible that i and (k. arbitrarily large

o0 K
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» Intuitively: (x = “average thinness” of K

Theorem (Figiel, Tomczak-Jaegerman, Pisier)

For any symmetric convex body K C R"™, there is an invertible
linear map T : R™ — R™ so that {pk) - Lir(iyye < O(nlogn).
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» Also called /-position
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» For a symmetric convex body K C R",

k= E [lz|%]"?
2~N(0,I,)
» Intuitively: (x = “average thinness” of K

Theorem (Figiel, Tomczak-Jaegerman, Pisier)

For any symmetric convex body K C R"™, there is an invertible
linear map T : R™ — R™ so that {pk) - Lir(iyye < O(nlogn).

o0 |T(K)

» Also called /-position
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Urysohn Inequality

» The mean width of a convex body K is

w(K):= E 1[max{(9,x—y>:x,yEK}] \\~/\0

width in
direction 6

~

Theorem (Urysohn Inequality)

Among convex bodies of the same volume, the Euclidean ball
minimaizes the mean width.

Consequences:

1/n
» For any convex body K CR", w(K) > 2- (;211:(%))) )
» For symmetric convex body K, {xo =< y/n-w(K) and so

Vol,, (K)V/n < b
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Let K be a symmetric convex body and let A be stable
lattice.

(a) If K in ¢-position then u(A, K) < O(log®n) - uxr(A, K).
(b) Onme has u(A, K) < O(logn) - k.
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Proposition
Let K be a symmetric convex body and let A be stable
lattice.

(a) If K in ¢-position then u(A, K) < O(log®n) - uxr(A, K).
(b) Onme has u(A, K) < O(logn) - k.

First (b). Set t := O(logn). After scaling £ < o(1).
Suppose for contradiction that (u+ A) NtK = 0.

Then pi((u+ A) \t- K) < o(1) - p:(A) [Banaszczyk 1996]
A* also stable.

p1¢(A"\ {0}) < o(1) [Reverse Minkowski Theorem, RS]
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Main theorem for stable 4+ /-position

Proposition

Let K be a symmetric convex body and let A be stable
lattice.

(a) If K in ¢-position then u(A, K) < O(log®n) - uxr(A, K).
(b) Onme has u(A, K) < O(logn) - k.

First (b). Set t := O(logn). After scaling £ < o(1).
Suppose for contradiction that (u+ A) NtK = 0.

Then pi((u+ A) \t- K) < o(1) - p:(A) [Banaszczyk 1996]
A* also stable.

p1¢(A"\ {0}) < o(1) [Reverse Minkowski Theorem, RS]

Lemma (Variant of Poisson Summ. Formula)
For full rank lattice A CR™, uw € R™ and t > 0 one has

% = 1) < pupe(AT\{0)).

vV v v.vyYy
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(i) pt(A) = pe(u+ A) for all u.
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» We summarize
(i) Then pi((u+A)\t-K) <o(1)-p(A) [Banaszczyk 1996]
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(i) pt(A) = pe(u+ A) for all u.
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» Use det(A) =1 and Urysohn inequality.



Main theorem for stable 4 /(-position (2)

» We summarize
(i) Then pi((u+A)\t-K) <o(1)-p(A) [Banaszczyk 1996]
(i) (u+A)NtK = 0.
(i) pt(A) = pe(u+ A) for all u.

» Hence
pe(A) = p(u+ A) = p((u+A)\ - K) <o(l) - p(A)

» Contradiction! Hence p(A, K) < O(logn) - (k, giving (b).
» For (a), choose W := R™. Then

1/n (-position
det(A) ) / S no el Uk

>
'MKL(A’K)—<VOIH(K) ~lge  ~ log(n)

» Use det(A) =1 and Urysohn inequality. O]
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Recap: Quotient lattices

Definition

Consider a lattice A C R™ with a primitive sublattice A" C A.
The quotient lattice is A /A" = Ty ans (A).

spam(/\’)L
e o @ o o o o
U e e _gpan(A)
o e e ® e R

- o
) ° ° ° ® ° )
TA/A’

» Intuition: We can factor A into A’ and A/A’
» For example det(A) = det(A’) - det(A/A).



Recap: The canonical filtration

Ao = {0}

 n(det(A")) A
k g
conv(Q)
rank(A’)
A;
A
" A

Theorem (Canonical filtration)

(a) The vertices of the canonical plot form a chain
{O}:AOCA1C...CAk:A.

(b) 7; := det(A;/Ai—1

)l/rank(Ai/Ai—l) satisfy r <...<rg

(c) Each %(Ai/Ai_l) is stable.
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Simplifying assumption: K symmetric.
First proof attempt:

» Apply a linear transformation so that {f - {xo < O(nlogn)
» Now treat K like scaling of B and use only information
from Canonical Filtration of A (as [Regev,
Stephens-Davidowitz 2016] do it).
Problem: p(A, K) might be determined by a low-dimensional
subspace and for a subspace W C R™ with say dim(W') = ©(1),
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Main proof

Proposition
Let K C R™ be symmetric and convex, let A C R™. 3 subspace
U:dim(U) > 2 and u(ANU,KNU) < O(log’n) - uxr(A, K).

2

» Full result follows by induction paying an extra log(n)
factor!
Proof.
» Apply a linear transformation so that {f - {xo < O(nlogn)
» Consider canonical filtration {0} = Ag C ... C Ay = A.
» Define

d; -=rank(A;/A;—1) and ;= det(Ai/Ai_l)l/di

v

Group indices of similar density together: r; < %TZ'J,_Q
Let ¢* € {1,...,k} minimal s.t. rank(As) > %.
Set U := span(A;«)

v

v
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Main proof (3)

Claim I. y(ANU,KNU) <log(n) - rix - lg
Proof of Claim I. We bound

i*
triangle ineq.

WANU,KNU) < > n(Ai/Ais, K)

i=1 r;-stable lattice
i*
i=1

< log(n) - ri - U

> K = Hgpan(a, )+ (K Nispan(A;))
» Recall: %(Al /A\;_1) stable

» Use monotonicity of ¢-value: (xnr < (i for subspace F
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Claim II. ,uKL(A K) = log(n) 'KK.
> Set W :=span(Ay_y)* and d == dim(W) = SF .. d; > 5

det(ITy (A)) \1/d
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Claim II. ,uKL(A K) = log(n) 'KK.
> Set W :=span(Ay_y)* and d == dim(W) = SF .. d; > 5
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We use
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» Urysohn inequality and Iy (K)° = K°NW
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Main proof (5)

Claim I. u(ANU, KﬂU) <log(n) - 1 - U
Claim II. ug (A K) 2

Putting everything together

~ log(n KK

w(A, K) <log(n) -1 - U < log2(n) prp(AK) O
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The asymmetric case

Proposition

Let K C R"™ be symmetrie and convex, let A C R™. 3 subspace
U:dim(U) > 2 and w(ANU, K NU) < O(log*n) - prr (A, K).

» Assume barycenter is at 0

» Let Kgm = K N —K (inner symmetrizer)
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» Use p(ANU,KNU) < pu(ANU, Kgymy NU).
» Need that

Voly(Tly (K))Y4 < Volg (T (Kgym )/

Proposition (Vritsiou ’23)
Let K C R™ be a convex body with barycenter at 0. Let
F C R™ be a d-dimensional subspace. Then

Voly(TTp(K))? < (%)6 NVoly(Tp (K N —K))/*.




The asymmetric case

» Use p(ANU,KNU) < pu(ANU, Kgymy NU).
» Need that

Voly(Tly (K))Y4 < Volg (T (Kgym )/

» Works for us since we have d > g!

Proposition (Vritsiou ’23)
Let K C R™ be a convex body with barycenter at 0. Let
F C R™ be a d-dimensional subspace. Then

Voly(TTp(K))? < (%)6 NVoly(Tp (K N —K))/*.
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End of part 3

Open problem 1

Can one solve every n-variable integer program in time
90(n)7

» Right now, no candidate pathway known!

Open problem 2

Is there a certificate for K N7Z" = () that can be verified in
time 20(m)?

Thanks for your attention!
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