Part 1: Introduction to Lattices

Thomas Rothvoss

Based the work [Micciancio, Voulgaris 2010], [Dadush, Peikert, Vempala 2011], [Dadush, Vempala 2012], [Dadush 2012]

UNIVERSITY of WASHINGTON

The main goal

Theorem (Reis, R.'23)

For convex body $K \subseteq \mathbb{R}^n$ one can find a point in $K \cap \mathbb{Z}^n$ in time $(\log n)^{O(n)}$.

Previously best known:

- ▶ $2^{O(n^2)}$ [Lenstra '83]
- ▶ $n^{O(n)}$ [Kannan '87]
- ▶ $2^{O(n)}n^n$ [Dadush '12], [Dadush, Eisenbrand, R. '22]

The main goal

Theorem (Reis, R.'23)

For convex body $K \subseteq \mathbb{R}^n$ one can find a point in $K \cap \mathbb{Z}^n$ in time $(\log n)^{O(n)}$.

Previously best known:

- ▶ $2^{O(n^2)}$ [Lenstra '83]
- ▶ $n^{O(n)}$ [Kannan '87]
- ▶ $2^{O(n)}n^n$ [Dadush '12], [Dadush, Eisenbrand, R. '22]

The main goal

Theorem (Reis, R.'23)

For convex body $K \subseteq \mathbb{R}^n$ one can find a point in $K \cap \mathbb{Z}^n$ in time $(\log n)^{O(n)}$.

Theorem (Reis, R.'23)

One can solve an integer program $\max\{c^T x \mid Ax \leq b, x \in \mathbb{Z}^n\}$ in time $(\log n)^{O(n)}$.

- A lattice is a set $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ where $B \in \mathbb{R}^{n \times k}$ has linearly independent columns.
- $B = (b_1, \ldots, b_k)$ is called **basis** of the lattice.

- A lattice is a set $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ where $B \in \mathbb{R}^{n \times k}$ has linearly independent columns.
- $B = (b_1, \ldots, b_k)$ is called **basis** of the lattice.

- A lattice is a set $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ where $B \in \mathbb{R}^{n \times k}$ has linearly independent columns.
- $B = (b_1, \ldots, b_k)$ is called **basis** of the lattice.

• The **rank** of Λ is dim(span(Λ))

- ► A lattice is a set $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ where $B \in \mathbb{R}^{n \times k}$ has linearly independent columns.
- $B = (b_1, \ldots, b_k)$ is called **basis** of the lattice.

- The **rank** of Λ is dim(span(Λ))
- A lattice has **full rank**, if $n = \operatorname{rank}(\Lambda)$.

Determinants

• The **fundamental parallelepiped** of Λ is the polytope

$$\mathcal{P}(B) := \left\{ \sum_{i=1}^{k} \lambda_i b_i \mid 0 \le \lambda_i < 1 \; \forall i \in [k] \right\}$$

Determinants

• The **fundamental parallelepiped** of Λ is the polytope

$$\mathcal{P}(B) := \left\{ \sum_{i=1}^{k} \lambda_i b_i \mid 0 \le \lambda_i < 1 \; \forall i \in [k] \right\}$$

► The **determinant** of lattice is $det(\Lambda) := Vol_k(\mathcal{P}(B))$ In full rank case, $det(\Lambda) = |det(B)|$

Shortest vectors

► Length of the **shortest vector** is

 $\lambda_1(\Lambda) := \min\{ \|x\|_2 \mid x \in \Lambda \setminus \{\mathbf{0}\} \}$

Shortest vectors

► Length of the **shortest vector** is

 $\lambda_1(\Lambda) := \min\{ \|x\|_2 \mid x \in \Lambda \setminus \{\mathbf{0}\} \}$

- ► Finding shortest vector is NP-hard (under randomized reductions)
- Can be approximated within 2^n -factor [LLL'82]
- ► Can be computed in time $2^{O(n)}$ (even w.r.t. arbitrary norms $\|\cdot\|_{K}$) [Ajtai, Kumar, Sivakumar '01]

Shortest vectors

► Length of the **shortest vector** is

 $\lambda_1(\Lambda) := \min\{ \|x\|_2 \mid x \in \Lambda \setminus \{\mathbf{0}\} \}$

- ► Finding shortest vector is NP-hard (under randomized reductions)
- Can be approximated within 2^n -factor [LLL'82]
- ► Can be computed in time $2^{O(n)}$ (even w.r.t. arbitrary norms $\|\cdot\|_{K}$) [Ajtai, Kumar, Sivakumar '01]

Theorem (Minkowski's Theorem 1889) Any full rank lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\lambda_1(\Lambda) \leq \sqrt{n} \cdot \det(\Lambda)^{1/n}$.

Closest Vector

Closest Vector Problem (CVP): Given lattice Λ and target vector $t \in \mathbb{R}^n$. Find vector attaining min $\{||x - t||_2 : x \in \Lambda\}$.

Closest Vector

Closest Vector Problem (CVP): Given lattice Λ and target vector $t \in \mathbb{R}^n$. Find vector attaining min $\{||x - t||_2 : x \in \Lambda\}$.

Closest Vector

Closest Vector Problem (CVP): Given lattice Λ and target vector $t \in \mathbb{R}^n$. Find vector attaining $\min\{||x - t||_2 : x \in \Lambda\}$.

Theorem (Micciancio, Voulgaris '10)

CVP can be solved (deterministically) in time $2^{O(n)}$.

• Only works for $\|\cdot\|_2$

Let $\Lambda \subseteq \mathbb{R}^n$ be full rank lattice. The **Voronoi cell** is

 $\mathcal{V} = \{ x \in \mathbb{R}^n : \|x\|_2 \le \|x - v\|_2 \, \forall v \in \Lambda \setminus \{\mathbf{0}\} \}$

•0

Let $\Lambda \subseteq \mathbb{R}^n$ be full rank lattice. The **Voronoi cell** is

 $\mathcal{V} = \{ x \in \mathbb{R}^n : \|x\|_2 \le \|x - v\|_2 \, \forall v \in \Lambda \setminus \{\mathbf{0}\} \}$

Let $\Lambda \subseteq \mathbb{R}^n$ be full rank lattice. The **Voronoi cell** is

$$\mathcal{V} = \{ x \in \mathbb{R}^n : \|x\|_2 \le \|x - v\|_2 \ \forall v \in \Lambda \setminus \{\mathbf{0}\} \}$$

Let $\Lambda \subseteq \mathbb{R}^n$ be full rank lattice. The **Voronoi cell** is

$$\mathcal{V} = \{ x \in \mathbb{R}^n : \|x\|_2 \le \|x - v\|_2 \; \forall v \in \Lambda \setminus \{\mathbf{0}\} \}$$

- $\blacktriangleright \ \mathcal{V}$ is a symmetric, convex, compact set
- $t \in \mathcal{V} \Leftrightarrow \min\{\|x t\|_2 : x \in \Lambda\}$ attained by **0**

The Voronoi relevant vectors

▶ $v \in \Lambda$ is called **Voronoi relevant** if H_v is a facet of \mathcal{V} .

The Voronoi relevant vectors

- $v \in \Lambda$ is called **Voronoi relevant** if H_v is a facet of \mathcal{V} .
- Obs 1: $\mathcal{V} = \bigcap_{v \text{ Voronoi rel}} H_v$

The Voronoi relevant vectors

- $v \in \Lambda$ is called **Voronoi relevant** if H_v is a facet of \mathcal{V} .
- Obs 1: $\mathcal{V} = \bigcap_{v \text{ Voronoi rel}} H_v$
- ▶ Obs 2: If v Voronoi relevant, then unique closest lattice points to $\frac{v}{2}$ are 0 and v.

The Voronoi relevant vectors (2)

Lemma

The number of Voronoi relevant vectors is $|R| \leq 2^{n+1}$.

The Voronoi relevant vectors (2)

Lemma

The number of Voronoi relevant vectors is $|R| \leq 2^{n+1}$.

Claim. For $v \in \Lambda$, consider coset $\Lambda' := v + 2\Lambda$. Apart from $v^* := \operatorname{argmin}\{\|x\|_2 : x \in \Lambda'\}$ and $-v^*$, there is no other Voronoi relevant vector in Λ' .

The Voronoi relevant vectors (3) Proof.

The Voronoi relevant vectors (3) Proof.

• Suppose that $w \in \Lambda'$ is Voronoi-relevant where $w \notin \{v^*, -v^*\}$

The Voronoi relevant vectors (3)

Proof.

• Suppose that $w \in \Lambda'$ is Voronoi-relevant where $w \notin \{v^*, -v^*\}$

• Consider
$$u := \frac{1}{2}(v^* + w) \in \Lambda$$

The Voronoi relevant vectors (3)

Proof.

- Suppose that $w \in \Lambda'$ is Voronoi-relevant where $w \notin \{v^*, -v^*\}$
- Consider $u := \frac{1}{2}(v^* + w) \in \Lambda$

► Then

$$\left\|\frac{w}{2} - u\right\|_{2} = \left\|\frac{w}{2} - \frac{1}{2}(v^{*} + w)\right\|_{2} = \frac{1}{2}\|v^{*}\|_{2} \le \frac{1}{2}\|w\|_{2}$$

which is a contradiction.

The Voronoi relevant vectors (4)

Observation: We can find all Voronoi-relevant vectors by solving 2^n many CVPs in the same lattice, because

 $\min\{\|x\|_2 : x \in v + 2\Lambda\} = \min\{\|x - v\|_2 : x \in 2\Lambda\}$

The Voronoi relevant vectors (4)

Observation: We can find all Voronoi-relevant vectors by solving 2^n many CVPs in the same lattice, because

 $\min\{\|x\|_2 : x \in v + 2\Lambda\} = \min\{\|x - v\|_2 : x \in 2\Lambda\}$

Now assume:

- \blacktriangleright We know the Voronoi-relevant vectors R
- ▶ We have a target vector $t \in 2\mathcal{V}$ (scaling handles the general case)

Algorithm:

- (1) Set s := t
- (2) WHILE $s \notin \mathcal{V}$ DO
 - (3) Set $\delta := \|s\|_{\mathcal{V}}$
 - (4) Find $v \in R$ so that s lies on the boundary of δH_v

(5) Update
$$s := s - v$$

Algorithm:

- (1) Set s := t
- (2) WHILE $s \notin \mathcal{V}$ DO
 - (3) Set $\delta := \|s\|_{\mathcal{V}}$
 - (4) Find $v \in R$ so that s lies on the boundary of δH_v

(5) Update
$$s := s - v$$

Algorithm:

- (1) Set s := t
- (2) WHILE $s \notin \mathcal{V}$ DO
 - (3) Set $\delta := \|s\|_{\mathcal{V}}$
 - (4) Find $v \in R$ so that s lies on the boundary of δH_v

(5) Update
$$s := s - v$$

Algorithm:

- (1) Set s := t
- (2) WHILE $s \notin \mathcal{V}$ DO
 - (3) Set $\delta := \|s\|_{\mathcal{V}}$
 - (4) Find $v \in R$ so that s lies on the boundary of δH_v

(5) Update
$$s := s - v$$

Claim. In each iteration $||s - v||_{\mathcal{V}} \le ||s||_{\mathcal{V}}$ and $||s - v||_2 < ||s||_2$.

Claim. In each iteration $||s - v||_{\mathcal{V}} \le ||s||_{\mathcal{V}}$ and $||s - v||_2 < ||s||_2$. Proof.

▶ By assumption $\frac{s}{\delta} \in v + \mathcal{V}$ and so by triangle inequality

$$\|s - v\|_{\mathcal{V}} \le \underbrace{\left\|\frac{s}{\delta} - v\right\|_{\mathcal{V}}}_{\le 1} + \left(1 - \frac{1}{\delta}\right)\underbrace{\|s\|_{\mathcal{V}}}_{\le \delta} \le \delta$$

• Bound on $\|\cdot\|_2$ clear.

Lemma

For any $t \in \mathbb{R}^n$, $|(t - \Lambda) \cap 2\mathcal{V}| \leq 2^{O(n)}$.

Lemma

For any
$$t \in \mathbb{R}^n$$
, $|(t - \Lambda) \cap 2\mathcal{V}| \leq 2^{O(n)}$.

Proof.

• Suffices to prove $|\Lambda \cap 4\mathcal{V}| \leq 4^n$.

Lemma

For any
$$t \in \mathbb{R}^n$$
, $|(t - \Lambda) \cap 2\mathcal{V}| \leq 2^{O(n)}$.

Proof.

• Suffices to prove $|\Lambda \cap 4\mathcal{V}| \leq 4^n$. Suppose otherwise.

Lemma

For any
$$t \in \mathbb{R}^n$$
, $|(t - \Lambda) \cap 2\mathcal{V}| \le 2^{O(n)}$.

Proof.

- Suffices to prove $|\Lambda \cap 4\mathcal{V}| \leq 4^n$. Suppose otherwise.
- ► By pigeonhole principle, there are distinct $x, y \in \Lambda \cap 4\mathcal{V}$ with $x - y \in 4\Lambda$.

Lemma

For any
$$t \in \mathbb{R}^n$$
, $|(t - \Lambda) \cap 2\mathcal{V}| \le 2^{O(n)}$.

Proof.

- Suffices to prove $|\Lambda \cap 4\mathcal{V}| \leq 4^n$. Suppose otherwise.
- ► By pigeonhole principle, there are distinct $x, y \in \Lambda \cap 4\mathcal{V}$ with $x - y \in 4\Lambda$.

• Then $\|\frac{x-y}{4}\|_{\mathcal{V}} \leq 1$ — contradiction as $\Lambda \cap \mathcal{V} = \{\mathbf{0}\}.$

Lemma

For any
$$t \in \mathbb{R}^n$$
, $|(t - \Lambda) \cap 2\mathcal{V}| \leq 2^{O(n)}$.

Proof.

- Suffices to prove $|\Lambda \cap 4\mathcal{V}| \leq 4^n$. Suppose otherwise.
- ► By pigeonhole principle, there are distinct $x, y \in \Lambda \cap 4\mathcal{V}$ with $x - y \in 4\Lambda$.
- Then $\|\frac{x-y}{4}\|_{\mathcal{V}} \leq 1$ contradiction as $\Lambda \cap \mathcal{V} = \{\mathbf{0}\}.$

More generally: given $t \in 2^k \mathcal{V}$, after $2^{O(n)}$ iteration we are in $2^{k-1}\mathcal{V}$ using update steps $2^{k-1}v$ with $v \in \Lambda$.

► Define

 $T_{\text{Voronoi}}(n) = \text{time to compute Voronoi cell for } \Lambda \subseteq \mathbb{R}^n$ $T_{\text{CVP}}(n,k) = \text{time to solve } k \text{ many CVPs in the same } n\text{-dim. lattice}$

► Define

$$T_{\text{Voronoi}}(n) = \text{time to compute Voronoi cell for } \Lambda \subseteq \mathbb{R}^n$$

 $T_{\text{CVP}}(n,k) = \text{time to solve } k \text{ many CVPs in the same } n\text{-dim. lattice}$

▶ We obtain

$$T_{\text{Voronoi}}(n) \stackrel{(*)}{\leq} T_{\text{CVP}}(n, 2^{O(n)})$$

► Define

$$T_{\text{Voronoi}}(n) = \text{time to compute Voronoi cell for } \Lambda \subseteq \mathbb{R}^n$$

 $T_{\text{CVP}}(n,k) = \text{time to solve } k \text{ many CVPs in the same } n\text{-dim. lattice}$

▶ We obtain

$$T_{\text{Voronoi}}(n) \stackrel{(*)}{\leq} T_{\text{CVP}}(n, 2^{O(n)}) \stackrel{(**)}{\leq} T_{\text{Voronoi}}(n) + 2^{O(n)} \cdot 2^{O(n)}$$

- \blacktriangleright (*) char. of Voronoi relevant Vectors
- ▶ (**) main algorithm

► Define

$$T_{\text{Voronoi}}(n) = \text{time to compute Voronoi cell for } \Lambda \subseteq \mathbb{R}^n$$

 $T_{\text{CVP}}(n,k) = \text{time to solve } k \text{ many CVPs in the same } n\text{-dim. lattice}$

► We obtain

$$T_{\text{Voronoi}}(n) \stackrel{(*)}{\leq} T_{\text{CVP}}(n, 2^{O(n)}) \stackrel{(**)}{\leq} T_{\text{Voronoi}}(n) + 2^{O(n)} \cdot 2^{O(n)}$$

- \blacktriangleright (*) char. of Voronoi relevant Vectors
- ► (**) main algorithm
- ▶ (* * *) By LLL algorithm: Can reduce CVP in dim n to $2^{O(n)}$ instances of CVP in same n 1 dim. lattice.

▶ We obtain

$$T_{\text{Voronoi}}(n) \stackrel{(*)}{\leq} T_{\text{CVP}}(n, 2^{O(n)}) \\ \stackrel{(***)}{\leq} T_{\text{CVP}}(n-1, 2^{O(n)} \cdot 2^{O(n)}) \\ \stackrel{(**)}{\leq} T_{\text{Voronoi}}(n-1) + 2^{O(n)} \cdot 2^{O(n)} \cdot 2^{O(n)}$$

- \blacktriangleright (*) char. of Voronoi relevant Vectors
- ▶ (**) main algorithm
- ▶ (* * *) By LLL algorithm: Can reduce CVP in dim n to $2^{O(n)}$ instances of CVP in same n-1 dim. lattice.

▶ We obtain

$$T_{\text{Voronoi}}(n) \stackrel{(*)}{\leq} T_{\text{CVP}}(n, 2^{O(n)}) \\ \stackrel{(***)}{\leq} T_{\text{CVP}}(n-1, 2^{O(n)} \cdot 2^{O(n)}) \\ \stackrel{(**)}{\leq} T_{\text{Voronoi}}(n-1) + 2^{O(n)} \cdot 2^{O(n)} \cdot 2^{O(n)}$$

- \blacktriangleright (*) char. of Voronoi relevant Vectors
- ► (**) main algorithm
- ▶ (* * *) By LLL algorithm: Can reduce CVP in dim n to $2^{O(n)}$ instances of CVP in same n 1 dim. lattice.
- ► Resolve recursion to $T_{\text{Voronoi}}(n), T_{\text{CVP}}(n, 2^{O(n)}) \leq 2^{O(n)}$

Theorem

For any ellipsoid \mathcal{E} , one can enumerate points $S := \Lambda \cap (\mathcal{E} + t)$ in time $2^{O(n)} \cdot (|S| + 1)$.

Theorem

For any ellipsoid \mathcal{E} , one can enumerate points $S := \Lambda \cap (\mathcal{E} + t)$ in time $2^{O(n)} \cdot (|S| + 1)$.

Theorem

For any ellipsoid \mathcal{E} , one can enumerate points $S := \Lambda \cap (\mathcal{E} + t)$ in time $2^{O(n)} \cdot (|S| + 1)$.

• After applying linear transformation, assume $\mathcal{E} = B_2^n$.

• Define graph
$$G = (\Lambda, E)$$
 with
 $E = \{\{x, y\} \mid x, y \in \Lambda, x - y \in R\}.$ G has degree $|R|.$

• Define graph $G = (\Lambda, E)$ with $E = \{\{x, y\} \mid x, y \in \Lambda, x - y \in R\}$. *G* has degree |R|. **Claim.** G[S] with $S := \Lambda \cap (B_2^n + t)$ is connected. **Proof.** [MV'10] shows \exists path $x_0, x_1, x_2, \ldots \in S$ with $||x_0 - t||_2 > ||x_1 - t||_2 > \ldots$

• Define graph $G = (\Lambda, E)$ with $E = \{\{x, y\} \mid x, y \in \Lambda, x - y \in R\}$. *G* has degree |R|. **Claim.** G[S] with $S := \Lambda \cap (B_2^n + t)$ is connected. **Proof.** [MV'10] shows \exists path $x_0, x_1, x_2, \ldots \in S$ with $||x_0 - t||_2 > ||x_1 - t||_2 > \ldots$

▶ Then explore G[S] from point attaining $CVP(\Lambda, t)$

▶ For convex bodies, $A, B \subseteq \mathbb{R}^n$, let N(A, B) be the minimum number of translates of B to cover A.

▶ For convex bodies, $A, B \subseteq \mathbb{R}^n$, let N(A, B) be the minimum number of translates of B to cover A.

Theorem (Dadush, Vempala '12)

For any convex body $K \subseteq \mathbb{R}^n$, one can compute an ellipsoid \mathcal{E} so that $N(K, \mathcal{E}), N(\mathcal{E}, K) \leq 2^{O(n)}$ in deterministic time $2^{O(n)}$.

▶ For convex bodies, $A, B \subseteq \mathbb{R}^n$, let N(A, B) be the minimum number of translates of B to cover A.

Theorem (Dadush, Vempala '12)

For any convex body $K \subseteq \mathbb{R}^n$, one can compute an ellipsoid \mathcal{E} so that $N(K, \mathcal{E}), N(\mathcal{E}, K) \leq 2^{O(n)}$ in deterministic time $2^{O(n)}$.

▶ For convex bodies, $A, B \subseteq \mathbb{R}^n$, let N(A, B) be the minimum number of translates of B to cover A.

Theorem (Dadush, Vempala '12)

For any convex body $K \subseteq \mathbb{R}^n$, one can compute an ellipsoid \mathcal{E} so that $N(K, \mathcal{E}), N(\mathcal{E}, K) \leq 2^{O(n)}$ in deterministic time $2^{O(n)}$. Moreover one can compute the points x_1, \ldots, x_N with $K \subseteq \bigcup_{i=1}^N (x_i + \mathcal{E})$ and $N \leq 2^{O(n)}$ as well.

▶ For convex bodies, $A, B \subseteq \mathbb{R}^n$, let N(A, B) be the minimum number of translates of B to cover A.

Theorem (Dadush, Vempala '12)

For any convex body $K \subseteq \mathbb{R}^n$, one can compute an ellipsoid \mathcal{E} so that $N(K, \mathcal{E}), N(\mathcal{E}, K) \leq 2^{O(n)}$ in deterministic time $2^{O(n)}$. Moreover one can compute the points x_1, \ldots, x_N with $K \subseteq \bigcup_{i=1}^N (x_i + \mathcal{E})$ and $N \leq 2^{O(n)}$ as well.

▶ In convex geometry these are called *M*-ellipsoids

Idea: Cover K by $2^{O(n)}$ many M-ellipsoids, then find/enumerate points in ellipsoids.

Idea: Cover K by $2^{O(n)}$ many M-ellipsoids, then find/enumerate points in ellipsoids.

Idea: Cover K by $2^{O(n)}$ many M-ellipsoids, then find/enumerate points in ellipsoids.

Idea: Cover K by $2^{O(n)}$ many M-ellipsoids, then find/enumerate points in ellipsoids.

But the method does actually work if the covering radius is lower bounded..

▶ For K convex, the **covering radius** is

 $\mu(\Lambda, K) = \min\{r \ge 0 \mid \Lambda + rK = \mathbb{R}^n\}$

K

▶ For K convex, the **covering radius** is

$$\mu(\Lambda, K) = \min\{r \ge 0 \mid \Lambda + rK = \mathbb{R}^n\} \\ = \min\{r \ge 0 \mid (x + rK) \cap \Lambda \neq \emptyset \; \forall x \in \mathbb{R}^n\}$$

•0

▶ For K convex, the **covering radius** is

$$\mu(\Lambda, K) = \min\{r \ge 0 \mid \Lambda + rK = \mathbb{R}^n\} \\ = \min\{r \ge 0 \mid (x + rK) \cap \Lambda \neq \emptyset \; \forall x \in \mathbb{R}^n\}$$

▶ For K convex, the **covering radius** is

$$\mu(\Lambda, K) = \min\{r \ge 0 \mid \Lambda + rK = \mathbb{R}^n\} \\ = \min\{r \ge 0 \mid (x + rK) \cap \Lambda \neq \emptyset \; \forall x \in \mathbb{R}^n\}$$

Dadush's lattice point upper bound

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

T7 1 (

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{Vol_n(K)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Dadush's lattice point upper bound

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

TZ-1 (

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{\operatorname{vol}_n(\Lambda)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Proof of moreover part:

• Bound holds for any translate of K

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

TZ-1 (

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{\operatorname{vol}_n(\Lambda)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Proof of moreover part:

• Bound holds for any translate of K

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

TZ-1 (

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{\operatorname{vol}_n(\Lambda)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Proof of moreover part:

• Bound holds for any translate of K

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

TZ-1 (

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{\operatorname{vol}_n(\Lambda)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Proof of moreover part:

• Bound holds for any translate of K

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

17-1 (

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{\operatorname{Vol}_n(\Lambda)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Proof of moreover part:

- Bound holds for any translate of K
- Any shifted *M*-ellipsoid \mathcal{E} also has $|\mathcal{E} \cap \Lambda| \leq 2^{O(n)}N$

Theorem (Dadush 2012)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

17-1

$$|K \cap \Lambda| \le N := 2^n \max\{\mu(\Lambda, K)^n, 1\} \cdot \frac{\operatorname{Vol}_n(\Lambda)}{\det(\Lambda)}$$

Moreover, can compute points in same time.

Proof of moreover part:

- Bound holds for any translate of K
- Any shifted *M*-ellipsoid \mathcal{E} also has $|\mathcal{E} \cap \Lambda| \leq 2^{O(n)} N$
- Hence can enumerate all points in K in time $2^{O(n)}N$.

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$.

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$. **Proof of Claim.**

• Assume $\mathbf{0} \in K$

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$. **Proof of Claim.**

- Assume $\mathbf{0} \in K$
- Define equivalence relation with $x \equiv y \Leftrightarrow x y \in \mathbb{Z}^n$.

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$. **Proof of Claim.**

- Assume $\mathbf{0} \in K$
- Define equivalence relation with $x \equiv y \Leftrightarrow x y \in \mathbb{Z}^n$.
- ► Let $V = \{x \in K \mid x \leq_{\text{lex}} y \quad \forall y \in (x + \mathbb{Z}^n) \cap K\}$ (picks 1 element from each equiv. class)

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$. **Proof of Claim.**

- Assume $\mathbf{0} \in K$
- Define equivalence relation with $x \equiv y \Leftrightarrow x y \in \mathbb{Z}^n$.
- ► Let $V = \{x \in K \mid x \leq_{\text{lex}} y \quad \forall y \in (x + \mathbb{Z}^n) \cap K\}$ (picks 1 element from each equiv. class)

• Picking one per class $\Rightarrow \operatorname{Vol}_n(V) \leq 1$

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$. **Proof of Claim.**

- Assume $\mathbf{0} \in K$
- Define equivalence relation with $x \equiv y \Leftrightarrow x y \in \mathbb{Z}^n$.
- ► Let $V = \{x \in K \mid x \leq_{\text{lex}} y \quad \forall y \in (x + \mathbb{Z}^n) \cap K\}$ (picks 1 element from each equiv. class)

- Picking one per class $\Rightarrow \operatorname{Vol}_n(V) \leq 1$
- ▶ For all $x \in \mathbb{R}^n$ one has $(x + \mathbb{Z}^n) \cap K \neq \emptyset \Rightarrow \operatorname{Vol}_n(V) = 1$

Claim. For any convex body $K \subseteq \mathbb{R}^n$ with $\mu(\mathbb{Z}^n, K) \leq 1$ and any $x \in \mathbb{R}^n$ one has $|K \cap (x + \mathbb{Z}^n)| \leq 2^n \operatorname{Vol}_n(K)$. **Proof of Claim.**

- Assume $\mathbf{0} \in K$
- Define equivalence relation with $x \equiv y \Leftrightarrow x y \in \mathbb{Z}^n$.
- ► Let $V = \{x \in K \mid x \leq_{\text{lex}} y \quad \forall y \in (x + \mathbb{Z}^n) \cap K\}$ (picks 1 element from each equiv. class)

- Picking one per class $\Rightarrow \operatorname{Vol}_n(V) \leq 1$
- ▶ For all $x \in \mathbb{R}^n$ one has $(x + \mathbb{Z}^n) \cap K \neq \emptyset \Rightarrow \operatorname{Vol}_n(V) = 1$
- Translates x + V disjoint for $x \in \mathbb{Z}^n$. Hence

$$|K \cap \mathbb{Z}^n| = \sum_{x \in K \cap \mathbb{Z}^n} \underbrace{\operatorname{Vol}_n(x+V)}_{-1} \stackrel{\text{disj.}}{=} \operatorname{Vol}_n\Big(\bigcup_{x \in K \cap \mathbb{Z}^n} (x+V)\Big) \le \operatorname{Vol}_n(2K)$$

End of part 1

Open problem 1

Can one even solve Closest Vector problem (or shortest vector) in $\|\cdot\|_2$ in time $2^{O(n)}$ and **polynomial space**?

▶ In poly space so far only $n^{O(n)}$ -time known [Kannan '87]

End of part 1

Open problem 1

Can one even solve Closest Vector problem (or shortest vector) in $\|\cdot\|_2$ in time $2^{O(n)}$ and **polynomial space**?

▶ In poly space so far only $n^{O(n)}$ -time known [Kannan '87]

Thanks for your attention!

Part 2: The Reverse Minkowski Theorem

Thomas Rothvoss

Based the work [Regev, Stephens-Davidowitz 2016]

Theorem (Minkowski's Theorem 1889)

Any full rank lattice $\Lambda \subseteq \mathbb{R}^n$ with $det(\Lambda) = 1$ one has $\lambda_1(\Lambda) \leq \sqrt{n}$.

Theorem (Minkowski's Theorem 1889) Any full rank lattice $\Lambda \subseteq \mathbb{R}^n$ with $det(\Lambda) = 1$ one has $\lambda_1(\Lambda) \leq \sqrt{n}$.

 Can also give a lower bound on the number of short vectors.

Theorem (Minkowski's Theorem 1889) Any full rank lattice $\Lambda \subseteq \mathbb{R}^n$ with $det(\Lambda) = 1$ one has $\lambda_1(\Lambda) \leq \sqrt{n}$.

Can also give a lower bound on the number of short vectors. How about an upper bound?

Theorem (Minkowski's Theorem 1889) Any full rank lattice $\Lambda \subseteq \mathbb{R}^n$ with $det(\Lambda) = 1$ one has $\lambda_1(\Lambda) \leq \sqrt{n}$.

Can also give a lower bound on the number of short vectors. How about an upper bound?

• What if $det(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$?

Lemma

Let $\Lambda \subseteq \mathbb{R}^n$ be lattice with $\det(\Lambda') \ge 1 \ \forall \Lambda' \subseteq \Lambda$. For all $r \ge 1$ one has $N := |\Lambda \cap rB_2^n| \le (3r)^n$

Lemma

Let $\Lambda \subseteq \mathbb{R}^n$ be lattice with $\det(\Lambda') \ge 1 \ \forall \Lambda' \subseteq \Lambda$. For all $r \ge 1$ one has $N := |\Lambda \cap rB_2^n| \le (3r)^n$

• Clearly
$$\lambda_1(\Lambda) \ge 1$$
.

Lemma

Let $\Lambda \subseteq \mathbb{R}^n$ be lattice with $\det(\Lambda') \ge 1 \ \forall \Lambda' \subseteq \Lambda$. For all $r \ge 1$ one has $N := |\Lambda \cap rB_2^n| \le (3r)^n$

- Clearly $\lambda_1(\Lambda) \geq 1$.
- Can pack N disjoint balls of radius $\frac{1}{2}$ into $(r + \frac{1}{2})B_2^n$.

Lemma

Let $\Lambda \subseteq \mathbb{R}^n$ be lattice with $\det(\Lambda') \ge 1 \ \forall \Lambda' \subseteq \Lambda$. For all $r \ge 1$ one has $N := |\Lambda \cap rB_2^n| \le (3r)^n$

- Clearly $\lambda_1(\Lambda) \geq 1$.
- ► Can pack N disjoint balls of radius $\frac{1}{2}$ into $(r + \frac{1}{2})B_2^n$. So $N \cdot \operatorname{Vol}_n(\frac{1}{2}B_2^n) \leq \operatorname{Vol}_n((r + \frac{1}{2})B_2^n)$. Then $N \leq (3r)^n$.

The Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $s = \Theta(\log n)$,

$$\rho_{1/s}(\Lambda) = \sum_{x \in \Lambda} \exp(-\pi s^2 ||x||_2^2) \le \frac{3}{2}$$

► Means for all $r \ge 1$, $|\Lambda \cap rB_2^n| \le n^{\Theta(\log(n)) \cdot r^2}$ (i.e. # of points grows **quasi-polynomial** in r)

The Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $s = \Theta(\log n)$,

$$\rho_{1/s}(\Lambda) = \sum_{x \in \Lambda} \exp(-\pi s^2 ||x||_2^2) \le \frac{3}{2}$$

- ► Means for all $r \ge 1$, $|\Lambda \cap rB_2^n| \le n^{\Theta(\log(n)) \cdot r^2}$ (i.e. # of points grows **quasi-polynomial** in r)
- ▶ First conjectured by [Dadush, Regev 2016].
- Conjectured that $s = \Theta(\sqrt{\log(n)})$ is enough which would give $|\Lambda \cap rB_2^n| \le n^{O(r^2)}$ for $r \ge 1$.

Stable lattice

Definition

A lattice Λ is called **stable** if det $(\Lambda) = 1$ and det $(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$.

Example: \mathbb{Z}^n is stable.

Stable lattice

Definition

A lattice Λ is called **stable** if det $(\Lambda) = 1$ and det $(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$.

Example: \mathbb{Z}^n is stable.

▶ It suffices to prove Reverse Minkowski for stable lattices (later more on that..).

The Voronoi cell

▶ Recap: Let $\Lambda \subseteq \mathbb{R}^n$ be lattice. The Voronoi cell is

 $\mathcal{V}(\Lambda) = \{ x \in \mathbb{R}^n : \|x\|_2 \le \|x - v\|_2 \, \forall v \in \Lambda \setminus \{\mathbf{0}\} \}$

The Voronoi cell

• Recap: Let $\Lambda \subseteq \mathbb{R}^n$ be lattice. The Voronoi cell is

 $\mathcal{V}(\Lambda) = \{ x \in \mathbb{R}^n : \|x\|_2 \le \|x - v\|_2 \, \forall v \in \Lambda \setminus \{\mathbf{0}\} \}$

Volume of the Voronoi cell

Lemma

A full rank stable lattice Λ has $Vol_n(\mathcal{V}(\Lambda)) = 1$.

Volume of the Voronoi cell

Lemma

A full rank stable lattice
$$\Lambda$$
 has $Vol_n(\mathcal{V}(\Lambda)) = 1$.

Proof.

• Translates $v + \mathcal{V}(\Lambda)$ tile \mathbb{R}^n and density is $\frac{1}{\det(\Lambda)} = 1$.

Some notation

• Gaussian density $\rho_s(x) = \exp(-\pi ||x/s||_2^2)$

Some notation

• Gaussian density $\rho_s(x) = \exp(-\pi ||x/s||_2^2)$

► Gaussian measure

$$\gamma_{n,s}(K) = \frac{1}{\rho_s(\mathbb{R}^n)} \int_K \rho_s(x) dx$$

Some notation

• Gaussian density $\rho_s(x) = \exp(-\pi ||x/s||_2^2)$

► Gaussian measure

$$\gamma_{n,s}(K) = \frac{1}{\rho_s(\mathbb{R}^n)} \int_K \rho_s(x) dx$$

Standard gaussian measure

$$\gamma_n(K) = \frac{1}{(2\pi)^{n/2}} \int_K \exp\left(-\frac{\|x\|_2^2}{2}\right) dx = \gamma_{n,\sqrt{2\pi}}(K)$$

Voronoi cell large $\Rightarrow \rho(\Lambda)$ small

Lemma

For any lattice $\Lambda \subseteq \mathbb{R}^n$ and s > 0, $\rho_s(\Lambda) \cdot \gamma_{n,s}(\mathcal{V}(\Lambda)) \leq 1$.

Voronoi cell large $\Rightarrow \rho(\Lambda)$ small

Lemma

For any lattice $\Lambda \subseteq \mathbb{R}^n$, $\rho_1(\Lambda) \cdot \gamma_{n,1}(\mathcal{V}(\Lambda)) \leq 1$.

Voronoi cell large $\Rightarrow \rho(\Lambda)$ small

Lemma

For any lattice $\Lambda \subseteq \mathbb{R}^n$, $\rho_1(\Lambda) \cdot \gamma_{n,1}(\mathcal{V}(\Lambda)) \leq 1$.

• For $v \in \Lambda$ one has $\gamma_{n,1}(v + \mathcal{V}) \ge e^{-\pi \|v\|_2^2} \gamma_{n,1}(\mathcal{V})$.

Voronoi cell large $\Rightarrow \rho(\Lambda)$ small

Lemma

For any lattice $\Lambda \subseteq \mathbb{R}^n$, $\rho_1(\Lambda) \cdot \gamma_{n,1}(\mathcal{V}(\Lambda)) \leq 1$.

• For $v \in \Lambda$ one has $\gamma_{n,1}(v + \mathcal{V}) \ge e^{-\pi \|v\|_2^2} \gamma_{n,1}(\mathcal{V})$.

• Summing gives $1 = \sum_{v \in \Lambda} \gamma_{n,1}(v + \mathcal{V}) \ge \rho_1(\Lambda) \cdot \gamma_{n,1}(\mathcal{V})$

Convex geometry

- ► Is it true that a symmetric convex body K with Vol_n(K) = 1 has large Gaussian measure (after scaling with Θ(log n)?
- ▶ Maybe, maybe not..

Convex geometry

- ► Is it true that a symmetric convex body K with Vol_n(K) = 1 has large Gaussian measure (after scaling with Θ(log n)?
- ► Maybe, maybe not..

Convex geometry

- ► Is it true that a symmetric convex body K with Vol_n(K) = 1 has large Gaussian measure (after scaling with Θ(log n)?
- ▶ Maybe, maybe not..

Theorem

For any symmetric convex body $K \subseteq \mathbb{R}^n$ with $Vol_n(K) = 1$ there is a matrix $A \in \mathbb{R}^{n \times n}$ with $|\det(A)| = 1$ so that $\gamma_n(\Theta(\log n) \cdot A(K)) \geq \frac{2}{3}.$

Isotropic position

Definition

A symmetric convex body $K \subseteq \mathbb{R}^n$ is in **isotropic** s-Gaussian position if

$$\int_{K} \rho_s(x) \cdot x x^T dx = \alpha I_n$$

for some $\alpha > 0$.

▶ Means Gaussian mass is equally spread in all directions.

Isotropic position (2)

▶ If K is in isotropic position, then K maximizes Gaussian measure under volume-preserving rescaling:

Theorem (Bobkov 2011)

Let $K \subseteq \mathbb{R}^n$ be a symmetric convex body and let s > 0. If K is in isotropic s-Gaussian position then $\gamma_{n,s}(K) \ge \gamma_{n,s}(A(K))$ for all $A \in \mathbb{R}^{n \times n}$ with $|\det(A)| = 1$.

Isotropic position (2)

▶ If K is in isotropic position, then K maximizes Gaussian measure under volume-preserving rescaling:

Theorem (Bobkov 2011)

Let $K \subseteq \mathbb{R}^n$ be a symmetric convex body and let s > 0. If K is in isotropic s-Gaussian position then $\gamma_{n,s}(K) \ge \gamma_{n,s}(A(K))$ for all $A \in \mathbb{R}^{n \times n}$ with $|\det(A)| = 1$.

Theorem

For stable lattice
$$\Lambda$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

Theorem

For stable lattice
$$\Lambda$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

 \blacktriangleright Consider

$$X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5} \}$

Theorem

For stable lattice
$$\Lambda$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

► Consider

$$X := \{ B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1 \}$$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5} \}$

► Fix $B \in X_{\text{stable}}$ min. $F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

Theorem

For stable lattice
$$\Lambda$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

► Consider

$$X := \{ B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1 \}$$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5} \}$

► Fix $B \in X_{\text{stable}}$ min. $F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

• Case (I). B is on boundary of X_{stable} .

Theorem

For stable lattice
$$\Lambda$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

► Consider

$$X := \{ B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1 \}$$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5} \}$

Fix $B \in X_{\text{stable}}$ min. $F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

- Case (I). B is on boundary of X_{stable} .
- Case (II). B not on boundary of X_{stable} .

 $X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$ $X_{\text{stable}} := \{B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5}\}$

Case (I). B is on the boundary on X_{stable} .

$$X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$$

$$X_{\text{stable}} := \{B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5}\}$$

Case (I). B is on the boundary on X_{stable} .

• Then \exists sublattice $\Lambda' \subseteq \Lambda$ with $\det(\Lambda') = 1$.

$$X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$$

$$X_{\text{stable}} := \{B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \le 3n^{2.5}\}$$

Case (I). B is on the boundary on X_{stable} .

- Then \exists sublattice $\Lambda' \subseteq \Lambda$ with $\det(\Lambda') = 1$.
- ▶ Λ' also stable. Case incomplete for now... but we made progress..

$$\begin{split} X &:= \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\} \\ X_{\text{stable}} &:= \{B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \leq 3n^{2.5}\} \\ \bullet B \in X_{\text{stable}} \text{ minimizer of } F(B) &:= \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))). \end{split}$$

Case (II). B not on the boundary of X_{stable}

 $X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \leq 3n^{2.5} \}$ $B \in X_{\text{stable}} \text{ minimizer of } F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

Case (II). B not on the boundary of X_{stable}

 $X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \leq 3n^{2.5} \}$ $B \in X_{\text{stable}} \text{ minimizer of } F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

Case (II). *B* not on the boundary of X_{stable}

 $X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \leq 3n^{2.5} \}$ $B \in X_{\text{stable}} \text{ minimizer of } F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

Case (II). B not on the boundary of X_{stable}

 $X := \{ B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1 \}$

 $X_{\text{stable}} := \{ B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \leq 3n^{2.5} \}$ $B \in X_{\text{stable}} \text{ minimizer of } F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

Case (II). B not on the boundary of X_{stable}

 $X := \{B \in \mathbb{R}^{n \times n} \mid |\det(B)| = 1\}$

 $X_{\text{stable}} := \{B \in \mathbb{R}^{n \times n} \mid \Lambda(B) \text{ is stable and } \|B\|_F \leq 3n^{2.5} \}$ $B \in X_{\text{stable}} \text{ minimizer of } F(B) := \gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda(B))).$

Case (II). B not on the boundary of X_{stable}

Theorem

Let
$$f : \mathbb{R}_{\geq 0} \to \mathbb{R}$$
 and lattice $\Lambda \subseteq \mathbb{R}^n$, let

$$G(A) := \frac{1}{|\det(A)|} \int_{\mathcal{V}(A(\Lambda))} f(||x||_2^2) dx$$

Then

$$(\nabla_A G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$$

Theorem

Let
$$f : \mathbb{R}_{\geq 0} \to \mathbb{R}$$
 and lattice $\Lambda \subseteq \mathbb{R}^n$, let

$$G(A) := \frac{1}{|\det(A)|} \int_{\mathcal{V}(A(\Lambda))} f(||x||_2^2) dx$$

Then

$$(\nabla_A G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$$

Then set
$$f(z) := \frac{e^{-\pi t^2 z}}{\rho_{1/t}(\mathbb{R}^n)}$$
 with $f'(z) = -\frac{\pi t^2}{\rho_{1/t}(\mathbb{R}^n)} \cdot f(z)$
 $\lambda I_n = \nabla_A (G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$

Theorem

$$f: \mathbb{R}_{\geq 0} \to \mathbb{R} \text{ and lattice } \Lambda \subseteq \mathbb{R}^n, \text{ let}$$
$$G(A) := \frac{1}{|\det(A)|} \int_{\mathcal{V}(A(\Lambda))} f(\|x\|_2^2) dx$$

Then

Let

$$(\nabla_A G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$$

Then set
$$f(z) := \frac{e^{-\pi t^2 z}}{\rho_{1/t}(\mathbb{R}^n)}$$
 with $f'(z) = -\frac{\pi t^2}{\rho_{1/t}(\mathbb{R}^n)} \cdot f(z)$
 $\lambda I_n = \nabla_A (G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$
 $= -\frac{2\pi t^2}{\rho_{1/t}(\mathbb{R}^n)} \int_{\mathcal{V}(\Lambda)} \rho_{1/t}(x) x x^T dx$

Theorem

$$f: \mathbb{R}_{\geq 0} \to \mathbb{R} \text{ and lattice } \Lambda \subseteq \mathbb{R}^n, \text{ let}$$
$$G(A) := \frac{1}{|\det(A)|} \int_{\mathcal{V}(A(\Lambda))} f(\|x\|_2^2) dx$$

Then

Let

$$(\nabla_A G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$$

Then set
$$f(z) := \frac{e^{-\pi t^2 z}}{\rho_{1/t}(\mathbb{R}^n)}$$
 with $f'(z) = -\frac{\pi t^2}{\rho_{1/t}(\mathbb{R}^n)} \cdot f(z)$
 $\lambda I_n = \nabla_A(G(A))_{|A=I_n} = 2 \int_{\mathcal{V}(\Lambda)} f'(||x||_2^2) x x^T dx$
 $= -\frac{2\pi t^2}{\rho_{1/t}(\mathbb{R}^n)} \int_{\mathcal{V}(\Lambda)} \rho_{1/t}(x) x x^T dx$

• $\mathcal{V}(\Lambda)$ is in Gaussian isotropic position!

• $\mathcal{V}(\Lambda)$ is in Gaussian isotropic position!

- $\mathcal{V}(\Lambda)$ is in Gaussian isotropic position!
- ► By Bobkov: $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \gamma_n(\Theta(\log n) \cdot A(\mathcal{V}(\Lambda)))$ for any A with det(A) = 1

- $\mathcal{V}(\Lambda)$ is in Gaussian isotropic position!
- ► By Bobkov: $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \gamma_n(\Theta(\log n) \cdot A(\mathcal{V}(\Lambda)))$ for any A with det(A) = 1
- Pick A so that $\gamma_n(\Theta(\log n) \cdot A(\mathcal{V}(\Lambda))) \ge \frac{2}{3}$.

- $\mathcal{V}(\Lambda)$ is in Gaussian isotropic position!
- ► By Bobkov: $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \gamma_n(\Theta(\log n) \cdot A(\mathcal{V}(\Lambda)))$ for any A with det(A) = 1
- Pick A so that $\gamma_n(\Theta(\log n) \cdot A(\mathcal{V}(\Lambda))) \ge \frac{2}{3}$.
- ► Then $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \gamma_n(\Theta(\log n) \cdot A(\mathcal{V}(\Lambda))) \ge \frac{2}{3}$. Done!

Definition

Consider a lattice $\Lambda \subseteq \mathbb{R}^n$ with a primitive sublattice $\Lambda' \subseteq \Lambda$. The **quotient lattice** is $\Lambda/\Lambda' = \prod_{\operatorname{span}(\Lambda')^{\perp}}(\Lambda)$.

Definition

Consider a lattice $\Lambda \subseteq \mathbb{R}^n$ with a primitive sublattice $\Lambda' \subseteq \Lambda$. The **quotient lattice** is $\Lambda/\Lambda' = \prod_{\operatorname{span}(\Lambda')^{\perp}}(\Lambda)$.

Definition

Consider a lattice $\Lambda \subseteq \mathbb{R}^n$ with a primitive sublattice $\Lambda' \subseteq \Lambda$. The **quotient lattice** is $\Lambda/\Lambda' = \prod_{\operatorname{span}(\Lambda')^{\perp}}(\Lambda)$.

Definition

Consider a lattice $\Lambda \subseteq \mathbb{R}^n$ with a primitive sublattice $\Lambda' \subseteq \Lambda$. The **quotient lattice** is $\Lambda/\Lambda' = \prod_{\operatorname{span}(\Lambda')^{\perp}}(\Lambda)$.

• Intuition: We can factor Λ into Λ' and Λ/Λ'

Quotient lattices (2)

Lemma

For lattice
$$\Lambda$$
 and a primitive sublattice $\Lambda' \subseteq \Lambda$:

(i)
$$\det(\Lambda) = \det(\Lambda') \cdot \det(\Lambda/\Lambda')$$

(ii) For any
$$s > 0$$
, $\rho_s(\Lambda) \le \rho_s(\Lambda') \cdot \rho_s(\Lambda/\Lambda')$

(iii)
$$\gamma_n(\mathcal{V}(\Lambda)) \ge \gamma_n(\mathcal{V}(\Lambda')) \cdot \gamma_n(\mathcal{V}(\Lambda/\Lambda'))$$

Theorem

For stable lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

Theorem

For stable lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

► Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda)}{3n}) \ge 1 - \frac{\operatorname{rank}(\Lambda)}{3n}$

Theorem

For stable lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

- ► Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda)}{3n}) \ge 1 \frac{\operatorname{rank}(\Lambda)}{3n}$
- Fix the stable lattice Λ minimizing $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda))$

Theorem

For stable lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

- ► Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda))}{3n} \ge 1 - \frac{\operatorname{rank}(\Lambda)}{3n}$
- Fix the stable lattice Λ minimizing $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda))$

Case (II). DONE! (after some boosting)

Case (I). \exists prim. sublattice $\{\mathbf{0}\} \subset \Lambda' \subset \Lambda$ with det $(\Lambda') = 1$

Theorem

For stable lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

- Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda))}{3n} \ge 1 - \frac{\operatorname{rank}(\Lambda)}{3n}$
- Fix the stable lattice Λ minimizing $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda))$

Case (II). DONE! (after some boosting)

Case (I). \exists prim. sublattice $\{\mathbf{0}\} \subset \Lambda' \subset \Lambda$ with det $(\Lambda') = 1$

• Λ' and Λ/Λ' are stable

Theorem

For stable lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

- Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda))}{3n} \ge 1 - \frac{\operatorname{rank}(\Lambda)}{3n}$
- Fix the stable lattice Λ minimizing $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda))$
- Case (II). DONE! (after some boosting)

Case (I). \exists prim. sublattice $\{\mathbf{0}\} \subset \Lambda' \subset \Lambda$ with det $(\Lambda') = 1$

- Λ' and Λ/Λ' are stable
- Then for $t := \Theta(\log n)$

 $\gamma_n(t \cdot \mathcal{V}(\Lambda)) \geq \gamma_n(t \cdot \mathcal{V}(\Lambda')) \cdot \gamma_n(t \cdot \mathcal{V}(\Lambda/\Lambda'))$

Theorem

For stable lattice
$$\Lambda \subseteq \mathbb{R}^n$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

- ► Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda))}{3n} \ge 1 - \frac{\operatorname{rank}(\Lambda)}{3n}$
- Fix the stable lattice Λ minimizing $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda))$
- Case (II). DONE! (after some boosting)
- **Case (I).** \exists prim. sublattice $\{\mathbf{0}\} \subset \Lambda' \subset \Lambda$ with det $(\Lambda') = 1$
 - Λ' and Λ/Λ' are stable
 - Then for $t := \Theta(\log n)$

$$\begin{array}{ll} \gamma_n(t \cdot \mathcal{V}(\Lambda)) & \geq & \gamma_n(t \cdot \mathcal{V}(\Lambda')) \cdot \gamma_n(t \cdot \mathcal{V}(\Lambda/\Lambda')) \\ & \stackrel{\mathrm{ind.}}{\geq} & \exp\left(-\frac{\mathrm{rank}(\Lambda')}{3n}\right) \cdot \exp\left(-\frac{\mathrm{rank}(\Lambda/\Lambda')}{3n}\right) \end{array}$$

Theorem

For stable lattice
$$\Lambda \subseteq \mathbb{R}^n$$
 one has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \geq \frac{2}{3}$.

- Fix *n*. Prove by induction over rank, any stable $\Lambda \subseteq \mathbb{R}^n$ has $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda)) \ge \exp(-\frac{\operatorname{rank}(\Lambda))}{3n} \ge 1 - \frac{\operatorname{rank}(\Lambda)}{3n}$
- Fix the stable lattice Λ minimizing $\gamma_n(\Theta(\log n) \cdot \mathcal{V}(\Lambda))$
- Case (II). DONE! (after some boosting)
- **Case (I).** \exists prim. sublattice $\{\mathbf{0}\} \subset \Lambda' \subset \Lambda$ with det $(\Lambda') = 1$
 - Λ' and Λ/Λ' are stable
 - Then for $t := \Theta(\log n)$

$$\begin{array}{lll} \gamma_n(t \cdot \mathcal{V}(\Lambda)) & \geq & \gamma_n(t \cdot \mathcal{V}(\Lambda')) \cdot \gamma_n(t \cdot \mathcal{V}(\Lambda/\Lambda')) \\ & \stackrel{\mathrm{ind.}}{\geq} & \exp\left(-\frac{\mathrm{rank}(\Lambda')}{3n}\right) \cdot \exp\left(-\frac{\mathrm{rank}(\Lambda/\Lambda')}{3n}\right) \\ & = & \exp\left(-\frac{\mathrm{rank}(\Lambda)}{3n}\right) \quad \Box \end{array}$$

Proof for non-stable lattices

Corollary

For stable lattice $\Lambda \subseteq \mathbb{R}^n$, $\rho_{1/\Theta(\log n)}(\Lambda) \leq \frac{3}{2}$.

▶ But what if Λ is not stable (only det $(\Lambda') \ge 1 \forall \Lambda' \subseteq \Lambda$)?

The canonical filtration

• For lattice $\Lambda \subseteq \mathbb{R}^n$, consider **canonical plot**

 $Q := \left\{ \left(\operatorname{rank}(\Lambda'), \ln(\det(\Lambda')) \right) \mid \text{sublattice } \Lambda' \subseteq \Lambda \right\}$

The canonical filtration

▶ For lattice $\Lambda \subseteq \mathbb{R}^n$, consider **canonical plot**

 $Q := \left\{ \left(\operatorname{rank}(\Lambda'), \ln(\det(\Lambda')) \right) \mid \text{sublattice } \Lambda' \subseteq \Lambda \right\}$

The canonical filtration

▶ For lattice $\Lambda \subseteq \mathbb{R}^n$, consider **canonical plot**

 $Q := \left\{ \left(\operatorname{rank}(\Lambda'), \ln(\det(\Lambda')) \right) \mid \text{sublattice } \Lambda' \subseteq \Lambda \right\}$

• Lower envelope of conv(Q) is called **canonical polygon**

The canonical filtration (2)

The canonical filtration (2)

The canonical filtration (2)

Theorem (Canonical filtration)

(a) The vertices of the canonical plot form a chain
{0} = Λ₀ ⊂ Λ₁ ⊂ ... ⊂ Λ_k = Λ.
(b) r_i := det(Λ_i/Λ_{i-1})^{1/rank(Λ_i/Λ_{i-1})} satisfy r₁ < ... < r_k
(c) Each 1/r_i(Λ_i/Λ_{i-1}) is stable.

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \geq 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $t = \Theta(\log n)$, $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \geq 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $t = \Theta(\log n)$, $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

Proof.

▶ Consider canonical filtration

$$\{\mathbf{0}\} = \Lambda_0 \subset \Lambda_1 \subset \ldots \subset \Lambda_k = \Lambda$$

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \geq 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $t = \Theta(\log n)$, $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

Proof.

▶ Consider canonical filtration

$$\{\mathbf{0}\} = \Lambda_0 \subset \Lambda_1 \subset \ldots \subset \Lambda_k = \Lambda$$

• We know $r_k > \ldots > r_1 = \det(\Lambda_0) \ge 1$

Reverse Minkowski Theorem (Regev, Stephens-Da.) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \ge 1$ for all

sublattices $\Lambda' \subseteq \Lambda$. Then for $t = \Theta(\log n)$, $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

Proof.

▶ Consider canonical filtration

$$\{\mathbf{0}\} = \Lambda_0 \subset \Lambda_1 \subset \ldots \subset \Lambda_k = \Lambda$$

- We know $r_k > \ldots > r_1 = \det(\Lambda_0) \ge 1$
- ► Then

$$\rho_{1/t}(\Lambda) \leq \prod_{i=1}^k \rho_{1/t}(\Lambda_i/\Lambda_{i-1})$$

Reverse Minkowski Theorem (Regev, Stephens-Da.) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $t = \Theta(\log n)$, $\rho_{1/t}(\Lambda) \le \frac{3}{2}$.

Proof.

▶ Consider canonical filtration

$$\{\mathbf{0}\} = \Lambda_0 \subset \Lambda_1 \subset \ldots \subset \Lambda_k = \Lambda$$

- We know $r_k > \ldots > r_1 = \det(\Lambda_0) \ge 1$
- Then $\rho_{1/t}(\Lambda) \leq \prod_{i=1}^{k} \rho_{1/t}(\Lambda_i/\Lambda_{i-1}) \stackrel{r_i \geq 1}{\leq} \prod_{i=1}^{k} \rho_{1/t}\left(\underbrace{\frac{1}{r_i}\Lambda_i/\Lambda_{i-1}}\right)$

Reverse Minkowski Theorem (Regev, Stephens-Da.) Let $\Lambda \subseteq \mathbb{R}^n$ be a lattice that satisfies $\det(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$. Then for $t = \Theta(\log n)$, $\rho_{1/t}(\Lambda) \le \frac{3}{2}$.

Proof.

▶ Consider canonical filtration

$$\{\mathbf{0}\} = \Lambda_0 \subset \Lambda_1 \subset \ldots \subset \Lambda_k = \Lambda$$

- We know $r_k > \ldots > r_1 = \det(\Lambda_0) \ge 1$
- ► Then

stable lattice

$$\rho_{1/t}(\Lambda) \leq \prod_{i=1}^{k} \rho_{1/t}(\Lambda_i/\Lambda_{i-1}) \stackrel{r_i \geq 1}{\leq} \prod_{i=1}^{k} \rho_{1/t}\left(\frac{1}{r_i}\Lambda_i/\Lambda_{i-1}\right)$$
$$\leq \prod_{i=1}^{k} \exp\left(\frac{\operatorname{rank}(\Lambda_i/\Lambda_{i-1})}{3n}\right) \leq \frac{3}{2} \square$$

End of part 2

Open problem 1

Is it true that already for $t = \Theta(\sqrt{\log n})$ and any stable lattice Λ one has $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

• Known proof works for $t = \Theta(\log n)$.

End of part 2

Open problem 1

Is it true that already for $t = \Theta(\sqrt{\log n})$ and any stable lattice Λ one has $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

• Known proof works for $t = \Theta(\log n)$.

Open problem 2

Is it true that for any symmetric convex body $K \subseteq \mathbb{R}^n$ with $\operatorname{Vol}_n(K) = 1$, there is a volume-preserving linear map A so that $\gamma_n(\Theta(\sqrt{\log(n)}) \cdot A(K)) \geq \frac{2}{3}$

• Problem $2 \Rightarrow$ Problem 1

End of part 2

Open problem 1

Is it true that already for $t = \Theta(\sqrt{\log n})$ and any stable lattice Λ one has $\rho_{1/t}(\Lambda) \leq \frac{3}{2}$.

• Known proof works for $t = \Theta(\log n)$.

Open problem 2

Is it true that for any symmetric convex body $K \subseteq \mathbb{R}^n$ with $\operatorname{Vol}_n(K) = 1$, there is a volume-preserving linear map A so that $\gamma_n(\Theta(\sqrt{\log(n)}) \cdot A(K)) \geq \frac{2}{3}$

• Problem $2 \Rightarrow$ Problem 1 Thanks for your attention!

Part 3: The Subspace Flatness Conjecture and Faster Integer Programming

Thomas Rothvoss

Joint work with Victor Reis

• Consider a lattice $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ with $B \in \mathbb{R}^{n \times k}$

- Consider a lattice $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ with $B \in \mathbb{R}^{n \times k}$
- ► For a convex body K, the **covering radius** of a (full rank) lattice Λ is

$$\mu(\Lambda, K) = \min\{r \ge 0 \mid \Lambda + rK = \mathbb{R}^n\}$$

- Consider a lattice $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ with $B \in \mathbb{R}^{n \times k}$
- ► For a convex body K, the **covering radius** of a (full rank) lattice Λ is

$$\begin{split} \mu(\Lambda, K) &= \min\{r \geq 0 \mid \Lambda + rK = \mathbb{R}^n\} \\ &= \min\{r \geq 0 \mid (x + rK) \cap \Lambda \neq \emptyset \; \forall x \in \mathbb{R}^n\} \end{split}$$

•0

- Consider a lattice $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ with $B \in \mathbb{R}^{n \times k}$
- ► For a convex body K, the **covering radius** of a (full rank) lattice Λ is

$$\begin{split} \mu(\Lambda, K) &= \min\{r \geq 0 \mid \Lambda + rK = \mathbb{R}^n\} \\ &= \min\{r \geq 0 \mid (x + rK) \cap \Lambda \neq \emptyset \; \forall x \in \mathbb{R}^n\} \end{split}$$

- Consider a lattice $\Lambda = \{Bx : x \in \mathbb{Z}^k\}$ with $B \in \mathbb{R}^{n \times k}$
- ► For a convex body K, the **covering radius** of a (full rank) lattice Λ is

$$\begin{split} \mu(\Lambda, K) &= \min\{r \geq 0 \mid \Lambda + rK = \mathbb{R}^n\} \\ &= \min\{r \geq 0 \mid (x + rK) \cap \Lambda \neq \emptyset \; \forall x \in \mathbb{R}^n\} \end{split}$$

▶ **Recall:** $det(\Lambda)$ =volume of fundamental parallelepiped

▶ **Recall:** $det(\Lambda) = volume of fundamental parallelepiped$

▶ **Recall:** $det(\Lambda) = volume of fundamental parallelepiped$

• Simple lower bound: $\mu(\Lambda, K) \ge (\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)})^{1/n}$

• **Recall:** det(Λ) =volume of fundamental parallelepiped

► Simple lower bound: $\mu(\Lambda, K) \ge (\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)})^{1/n}$

► For all
$$r > 0$$
,

$$\mathbb{E}_{x \sim RB_2^n}[\#y \in \Lambda : x \in y + rK] \stackrel{R \to \infty}{\approx} \frac{\operatorname{Vol}_n(rK)}{\det(\Lambda)}$$

- **Recall:** det(Λ) =volume of fundamental parallelepiped
- ► Simple lower bound: $\mu(\Lambda, K) \ge (\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)})^{1/n}$

For
$$r := \mu(\Lambda, K)$$
,

$$\mathop{\mathbb{E}}_{x \sim RB_2^n} [\#y \in \Lambda : x \in y + rK] \stackrel{R \to \infty}{\approx} \frac{\operatorname{Vol}_n(rK)}{\det(\Lambda)} \ge 1$$
Lower bounds on the covering radius

- **Recall:** det (Λ) =volume of fundamental parallelepiped
- Simple lower bound: $\mu(\Lambda, K) \ge (\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)})^{1/n}$

For
$$r := \mu(\Lambda, K)$$
,

$$\mathop{\mathbb{E}}_{x \sim RB_2^n} [\# y \in \Lambda : x \in y + rK] \stackrel{R \to \infty}{\approx} \frac{\operatorname{Vol}_n(rK)}{\det(\Lambda)} \ge 1$$

► For any subspace $\mu(\Lambda, K) \ge \mu(\Pi_W(\Lambda), \Pi_W(K))$

Kannan, Lovász (1988)

▶ Consider the best volume-based lower bound

$$\mu_{KL}(\Lambda, K) = \max_{\substack{W \subseteq \operatorname{span}(\Lambda) \text{ subspace} \\ d:=\dim(W)}} \left(\frac{\det(\Pi_W(\Lambda))}{\operatorname{Vol}_d(\Pi_W(K))}\right)^{1/d}$$

Kannan, Lovász (1988)

▶ Consider the best volume-based lower bound

$$\mu_{KL}(\Lambda, K) = \max_{\substack{W \subseteq \operatorname{span}(\Lambda) \text{ subspace} \\ d:=\dim(W)}} \left(\frac{\det(\Pi_W(\Lambda))}{\operatorname{Vol}_d(\Pi_W(K))}\right)^{1/d}$$

Theorem (Kannan, Lovász (1988)) For any full rank lattice Λ , convex body $K \subseteq \mathbb{R}^n$ $\mu_{KL}(\Lambda, K) \leq \mu(\Lambda, K) \leq n \cdot \mu_{KL}(\Lambda, K)$

Kannan, Lovász (1988)

▶ Consider the best volume-based lower bound

$$\mu_{KL}(\Lambda, K) = \max_{\substack{W \subseteq \operatorname{span}(\Lambda) \text{ subspace} \\ d := \dim(W)}} \left(\frac{\det(\Pi_W(\Lambda))}{\operatorname{Vol}_d(\Pi_W(K))} \right)^{1/d}$$

Theorem (Kannan, Lovász (1988)) For any full rank lattice Λ , convex body $K \subseteq \mathbb{R}^n$ $\mu_{KL}(\Lambda, K) \leq \mu(\Lambda, K) \leq n \cdot \mu_{KL}(\Lambda, K)$

Subspace Flatness Conjecture (Dadush 2012) For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has $\mu(\Lambda, K) \leq O(\log(n)) \cdot \mu_{KL}(\Lambda, K)$

▶ Dadush shows consequences for solving IPs.

Main results

Theorem (Reis, R.'23)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

 $\mu(\Lambda, K) \le O(\log^3(n)) \cdot \mu_{KL}(\Lambda, K)$

Main results

Theorem (Reis, R.'23)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

 $\mu(\Lambda, K) \le O(\log^3(n)) \cdot \mu_{KL}(\Lambda, K)$

Theorem (Reis, R.'23)

For convex body $K \subseteq \mathbb{R}^n$ one can find a point in $K \cap \mathbb{Z}^n$ in time $(\log n)^{O(n)}$.

Previously best known:

- ▶ $2^{O(n^2)}$ [Lenstra '83]
- ▶ $n^{O(n)}$ [Kannan '87]
- \blacktriangleright 2^{O(n)} n^n [Dadush '12], [Dadush, Eisenbrand, R. '22]

Theorem (Reis, R.'23)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

$$\mu(\Lambda, K) \le O(\log^3(n)) \cdot \mu(\Lambda, K - K)$$

Theorem (Reis, R.'23)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$ and convex body $K \subseteq \mathbb{R}^n$ one has

 $\mu(\Lambda, K) \le O(\log^3(n)) \cdot \mu(\Lambda, K - K)$

Theorem (Reis, R.'23)

Flatness constant in dimension n is at most $O(n \log^3(n))$.

Previously best known: O(n^{4/3} log^{O(1)} n)
 [Rudelson '98+Banaszczyk, Litvak, Pajor, Szarek '99]

Theorem (Reis, R.'23)

Flatness constant in dimension n is at most $O(n \log^3(n))$.

- Previously best known: O(n^{4/3} log^{O(1)} n) [Rudelson '98+Banaszczyk, Litvak, Pajor, Szarek '99]
 Equivalently:
 - If $K \cap \mathbb{Z}^n = \emptyset$, then $\exists c \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ so that at most $O(n \log^3(n))$ many hyperplanes $\langle c, x \rangle \in \mathbb{Z}$ intersect K.

Theorem (Reis, R.'23)

Flatness constant in dimension n is at most $O(n \log^3(n))$.

- Previously best known: O(n^{4/3} log^{O(1)} n) [Rudelson '98+Banaszczyk, Litvak, Pajor, Szarek '99]
 Equivalently:
 - If $K \cap \mathbb{Z}^n = \emptyset$, then $\exists c \in \mathbb{Z}^n \setminus \{\mathbf{0}\}$ so that at most $O(n \log^3(n))$ many hyperplanes $\langle c, x \rangle \in \mathbb{Z}$ intersect K.

- (1) Shrink K so that $\mu(\Lambda, K) \geq 1$
- (2) Find subspace W attaining $\mu_{KL}(\Lambda, K)$ approx.
- (3) Compute $X := \Pi_W(K) \cap \Pi_W(\Lambda)$
- (4) Recurse on fibers $K \cap \Pi_W^{-1}(x)$ for all $x \in X$

- (1) Shrink K so that $\mu(\Lambda, K) \ge 1$
- (2) Find subspace W attaining $\mu_{KL}(\Lambda, K)$ approx.
- (3) Compute $X := \Pi_W(K) \cap \Pi_W(\Lambda)$
- (4) Recurse on fibers $K \cap \Pi_W^{-1}(x)$ for all $x \in X$

- (1) Shrink K so that $\mu(\Lambda, K) \ge 1$
- (2) Find subspace W attaining $\mu_{KL}(\Lambda, K)$ approx.
- (3) Compute $X := \Pi_W(K) \cap \Pi_W(\Lambda)$
- (4) Recurse on fibers $K \cap \Pi_W^{-1}(x)$ for all $x \in X$

- (1) Shrink K so that $\mu(\Lambda, K) \ge 1$
- (2) Find subspace W attaining $\mu_{KL}(\Lambda, K)$ approx.
- (3) Compute $X := \Pi_W(K) \cap \Pi_W(\Lambda)$
- (4) Recurse on fibers $K \cap \Pi_W^{-1}(x)$ for all $x \in X$

Analysis:

Analysis:

• Can find W in time $2^{O(n)}$ [Dadush '19]

Analysis:

- Can find W in time $2^{O(n)}$ [Dadush '19]
- One has $|\Pi_W(K) \cap \Pi_W(\Lambda)| \le O(\log^4 n)^d$ w. $d := \dim(W)$
- Can enumerate those points in time $O(\log^4 n)^d$

Analysis:

- Can find W in time $2^{O(n)}$ [Dadush '19]
- One has $|\Pi_W(K) \cap \Pi_W(\Lambda)| \le O(\log^4 n)^d$ w. $d := \dim(W)$
- Can enumerate those points in time $O(\log^4 n)^d$
- Recursion

$$T(n) = 2^{O(n)} + \operatorname{polylog}(n)^d \cdot T(n-d) \quad \Rightarrow \quad T(n) \le \operatorname{polylog}(n)^n$$

Theorem (Dadush)

For full rank lattice $\Lambda \subseteq \mathbb{R}^d$ and convex body $P \subseteq \mathbb{R}^d$ one has $|P \cap \Lambda| \leq 2^d \max\{\mu(\Lambda, P)^d, 1\} \cdot \frac{Vol_d(P)}{\det(\Lambda)}$ (*). Can compute points in same time.

Theorem (Dadush)

For full rank lattice $\Lambda \subseteq \mathbb{R}^d$ and convex body $P \subseteq \mathbb{R}^d$ one has $|P \cap \Lambda| \leq 2^d \max\{\mu(\Lambda, P)^d, 1\} \cdot \frac{Vol_d(P)}{\det(\Lambda)}$ (*). Can compute points in same time.

• Then
$$\left(\frac{\operatorname{Vol}_d(\Pi_W(K))}{\det(\Pi_W(\Lambda))}\right)^{1/d} \leq \frac{O(\log^4(n))}{\mu(\Lambda,K)}$$

• In any case
$$(*) \leq O(\log n)^{4a}$$

SKET<u>CH OF MAIN PROOF</u> $\mu(\Lambda, K) \leq O(\log^3 n) \cdot \mu_{KL}(\Lambda, K)$

Recap: Stable lattices

Definition

A lattice Λ is called **stable** if det $(\Lambda) = 1$ and det $(\Lambda') \ge 1$ for all sublattices $\Lambda' \subseteq \Lambda$.

٠	٠	٠	٠	•	٠	٠
•	٠	•	•	•	•	•
•	•	•	•0	•	•	•
٠	•	٠	•	٠	٠	•
•	٠	٠	•	•	٠	•

Example: \mathbb{Z}^n is stable

• For a symmetric convex body $K \subseteq \mathbb{R}^n$,

$$\ell_K = \mathop{\mathbb{E}}_{x \sim N(0, I_n)} [\|x\|_K^2]^{1/2}$$

• Intuitively: $\ell_K =$ "average thinness" of K

• For a symmetric convex body $K \subseteq \mathbb{R}^n$,

$$\ell_K = \mathop{\mathbb{E}}_{x \sim N(0, I_n)} [\|x\|_K^2]^{1/2}$$

- Intuitively: $\ell_K =$ "average thinness" of K
- **Polar** is $K^{\circ} = \{x \in \mathbb{R}^n \mid \langle x, y \rangle \le 1 \; \forall y \in K\}$
- ▶ Possible that ℓ_K and ℓ_{K° arbitrarily large

• For a symmetric convex body $K \subseteq \mathbb{R}^n$,

$$\ell_K = \mathop{\mathbb{E}}_{x \sim N(0, I_n)} [\|x\|_K^2]^{1/2}$$

• Intuitively: $\ell_K =$ "average thinness" of K

Theorem (Figiel, Tomczak-Jaegerman, Pisier) For any symmetric convex body $K \subseteq \mathbb{R}^n$, there is an invertible linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ so that $\ell_{T(K)} \cdot \ell_{(T(K))^\circ} \leq O(n \log n)$.

► Also called *ℓ*-position

• For a symmetric convex body $K \subseteq \mathbb{R}^n$,

$$\ell_K = \mathop{\mathbb{E}}_{x \sim N(0, I_n)} [\|x\|_K^2]^{1/2}$$

• Intuitively: $\ell_K =$ "average thinness" of K

Theorem (Figiel, Tomczak-Jaegerman, Pisier) For any symmetric convex body $K \subseteq \mathbb{R}^n$, there is an invertible linear map $T : \mathbb{R}^n \to \mathbb{R}^n$ so that $\ell_{T(K)} \cdot \ell_{(T(K))^\circ} \leq O(n \log n)$.

► Also called *ℓ*-position

▶ The **mean width** of a convex body *K* is

▶ The **mean width** of a convex body *K* is

Theorem (Urysohn Inequality)

Among convex bodies of the same volume, the Euclidean ball minimizes the mean width.

▶ The **mean width** of a convex body *K* is

Theorem (Urysohn Inequality)

Among convex bodies of the same volume, the Euclidean ball minimizes the mean width.

Consequences:

• For any convex body
$$K \subseteq \mathbb{R}^n$$
, $w(K) \ge 2 \cdot \left(\frac{\operatorname{Vol}_n(K)}{\operatorname{Vol}_n(B_2^n)}\right)^{1/n}$.

▶ The **mean width** of a convex body *K* is

Theorem (Urysohn Inequality)

Among convex bodies of the same volume, the Euclidean ball minimizes the mean width.

Consequences:

- For any convex body $K \subseteq \mathbb{R}^n$, $w(K) \ge 2 \cdot \left(\frac{\operatorname{Vol}_n(K)}{\operatorname{Vol}_n(B_2^n)}\right)^{1/n}$.
- ▶ For symmetric convex body K, $\ell_{K^{\circ}} \asymp \sqrt{n} \cdot w(K)$ and so $\operatorname{Vol}_n(K)^{1/n} \lesssim \frac{\ell_{K^{\circ}}}{n}$

Proposition

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.

Proposition

Let K be a symmetric convex body and let Λ be stable lattice.

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.

• First (b). Set $t := \Theta(\log n)$. After scaling $\ell_K \le o(1)$.

Proposition

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.
 - First (b). Set $t := \Theta(\log n)$. After scaling $\ell_K \le o(1)$.
 - Suppose for contradiction that $(u + \Lambda) \cap tK = \emptyset$.

Proposition

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.
 - First (b). Set $t := \Theta(\log n)$. After scaling $\ell_K \le o(1)$.
 - Suppose for contradiction that $(u + \Lambda) \cap tK = \emptyset$.
 - ► Then $\rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996]

Proposition

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.
 - First (b). Set $t := \Theta(\log n)$. After scaling $\ell_K \le o(1)$.
 - Suppose for contradiction that $(u + \Lambda) \cap tK = \emptyset$.
 - ► Then $\rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996]
 - Λ^* also stable.
Proposition

Let K be a symmetric convex body and let Λ be **stable lattice**.

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.
 - First (b). Set $t := \Theta(\log n)$. After scaling $\ell_K \le o(1)$.
 - Suppose for contradiction that $(u + \Lambda) \cap tK = \emptyset$.
 - ► Then $\rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996]
 - Λ^* also stable.
 - ▶ $\rho_{1/t}(\Lambda^* \setminus \{\mathbf{0}\}) \leq o(1)$ [Reverse Minkowski Theorem, RS]

Proposition

Let K be a symmetric convex body and let Λ be stable lattice.

- (a) If K in ℓ -position then $\mu(\Lambda, K) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.
- (b) One has $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$.
 - First (b). Set $t := \Theta(\log n)$. After scaling $\ell_K \le o(1)$.
 - Suppose for contradiction that $(u + \Lambda) \cap tK = \emptyset$.
 - ► Then $\rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996]
 - Λ^* also stable.
 - ▶ $\rho_{1/t}(\Lambda^* \setminus \{\mathbf{0}\}) \leq o(1)$ [Reverse Minkowski Theorem, RS]

Lemma (Variant of Poisson Summ. Formula)

For full rank lattice $\Lambda \subseteq \mathbb{R}^n$, $u \in \mathbb{R}^n$ and t > 0 one has $\left| \frac{\rho_t(\Lambda + u)}{t^n \det(\Lambda^*)} - 1 \right| \leq \rho_{1/t}(\Lambda^* \setminus \{\mathbf{0}\}).$

▶ We summarize

(i) Then
$$\rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$$
 [Banaszczyk 1996]
(ii) $(u + \Lambda) \cap tK = \emptyset$.
(iii) $\rho_t(\Lambda) \approx \rho_t(u + \Lambda)$ for all u .

► We summarize

(i) Then $\rho_t((u + \Lambda) \setminus t \cdot K) \leq o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996] (ii) $(u + \Lambda) \cap tK = \emptyset$. (iii) $\rho_t(\Lambda) \approx \rho_t(u + \Lambda)$ for all u.

► Hence

$$\rho_t(\Lambda) \approx \rho_t(u + \Lambda) = \rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$$

► We summarize

(i) Then $\rho_t((u + \Lambda) \setminus t \cdot K) \leq o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996] (ii) $(u + \Lambda) \cap tK = \emptyset$. (iii) $\rho_t(\Lambda) \approx \rho_t(u + \Lambda)$ for all u.

► Hence

$$\rho_t(\Lambda) \approx \rho_t(u + \Lambda) = \rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$$

► Contradiction! Hence $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$, giving (b).

► We summarize

(i) Then $\rho_t((u + \Lambda) \setminus t \cdot K) \leq o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996] (ii) $(u + \Lambda) \cap tK = \emptyset$. (iii) $\rho_t(\Lambda) \approx \rho_t(u + \Lambda)$ for all u.

► Hence

$$\rho_t(\Lambda) \approx \rho_t(u + \Lambda) = \rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$$

- ► Contradiction! Hence $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$, giving (b).
- For (a), choose $W := \mathbb{R}^n$. Then

$$\mu_{KL}(\Lambda, K) \ge \left(\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)}\right)^{1/n}$$

► We summarize

(i) Then $\rho_t((u + \Lambda) \setminus t \cdot K) \leq o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996] (ii) $(u + \Lambda) \cap tK = \emptyset$. (iii) $\rho_t(\Lambda) \approx \rho_t(u + \Lambda)$ for all u.

► Hence

$$\rho_t(\Lambda) \approx \rho_t(u + \Lambda) = \rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$$

- ► Contradiction! Hence $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$, giving (b).
- For (a), choose $W := \mathbb{R}^n$. Then

$$\mu_{KL}(\Lambda, K) \ge \left(\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)}\right)^{1/n} \gtrsim \frac{n}{\ell_{K^\circ}}$$

• Use $det(\Lambda) = 1$ and Urysohn inequality.

► We summarize

(i) Then $\rho_t((u + \Lambda) \setminus t \cdot K) \leq o(1) \cdot \rho_t(\Lambda)$ [Banaszczyk 1996] (ii) $(u + \Lambda) \cap tK = \emptyset$. (iii) $\rho_t(\Lambda) \approx \rho_t(u + \Lambda)$ for all u.

► Hence

$$\rho_t(\Lambda) \approx \rho_t(u + \Lambda) = \rho_t((u + \Lambda) \setminus t \cdot K) \le o(1) \cdot \rho_t(\Lambda)$$

- ► Contradiction! Hence $\mu(\Lambda, K) \leq O(\log n) \cdot \ell_K$, giving (b).
- For (a), choose $W := \mathbb{R}^n$. Then

$$\mu_{KL}(\Lambda, K) \ge \left(\frac{\det(\Lambda)}{\operatorname{Vol}_n(K)}\right)^{1/n} \gtrsim \frac{n}{\ell_{K^\circ}} \stackrel{\ell\text{-position}}{\gtrsim} \frac{\ell_K}{\log(n)}$$

• Use $det(\Lambda) = 1$ and Urysohn inequality.

Definition

Definition

Definition

Definition

- Intuition: We can factor Λ into Λ' and Λ/Λ'
- For example $\det(\Lambda) = \det(\Lambda') \cdot \det(\Lambda/\Lambda')$.

Recap: The canonical filtration

Theorem (Canonical filtration)

(a) The vertices of the canonical plot form a chain
{0} = Λ₀ ⊂ Λ₁ ⊂ ... ⊂ Λ_k = Λ.
(b) r_i := det(Λ_i/Λ_{i-1})^{1/rank(Λ_i/Λ_{i-1})} satisfy r₁ < ... < r_k
(c) Each 1/r_i(Λ_i/Λ_{i-1}) is stable.

Simplifying assumption: K symmetric.

Simplifying assumption: K symmetric.

First proof attempt:

• Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$

Simplifying assumption: K symmetric.

First proof attempt:

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Now treat K like scaling of Bⁿ₂ and use only information from Canonical Filtration of Λ (as [Regev, Stephens-Davidowitz 2016] do it).

Simplifying assumption: K symmetric.

First proof attempt:

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Now treat K like scaling of Bⁿ₂ and use only information from Canonical Filtration of Λ (as [Regev, Stephens-Davidowitz 2016] do it).

Problem: $\mu(\Lambda, K)$ might be determined by a low-dimensional subspace and for a subspace $W \subseteq \mathbb{R}^n$ with say dim $(W) = \Theta(1)$, $\operatorname{Vol}_d(\Pi_W(K))^{1/d}$ only determined up to $\Theta(\sqrt{n})$ factor!

Simplifying assumption: K symmetric.

First proof attempt:

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Now treat K like scaling of Bⁿ₂ and use only information from Canonical Filtration of Λ (as [Regev, Stephens-Davidowitz 2016] do it).

Problem: $\mu(\Lambda, K)$ might be determined by a low-dimensional subspace and for a subspace $W \subseteq \mathbb{R}^n$ with say dim $(W) = \Theta(1)$, $\operatorname{Vol}_d(\Pi_W(K))^{1/d}$ only determined up to $\Theta(\sqrt{n})$ factor!

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Full result follows by induction paying an extra $\log(n)$ factor!

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Full result follows by induction paying an extra $\log(n)$ factor!

Proof.

• Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Full result follows by induction paying an extra $\log(n)$ factor!

Proof.

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Consider canonical filtration $\{\mathbf{0}\} = \Lambda_0 \subset \ldots \subset \Lambda_k = \Lambda$.

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

• Full result follows by induction paying an extra $\log(n)$ factor!

Proof.

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Consider canonical filtration $\{\mathbf{0}\} = \Lambda_0 \subset \ldots \subset \Lambda_k = \Lambda$.
- ► Define

$$d_i := \operatorname{rank}(\Lambda_i / \Lambda_{i-1})$$
 and $r_i := \det(\Lambda_i / \Lambda_{i-1})^{1/d_i}$

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Full result follows by induction paying an extra $\log(n)$ factor!

Proof.

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Consider canonical filtration $\{\mathbf{0}\} = \Lambda_0 \subset \ldots \subset \Lambda_k = \Lambda$.
- ► Define

 $d_i := \operatorname{rank}(\Lambda_i / \Lambda_{i-1})$ and $r_i := \det(\Lambda_i / \Lambda_{i-1})^{1/d_i}$

• Group indices of similar density together: $r_i \leq \frac{1}{2}r_{i+2}$

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Full result follows by induction paying an extra $\log(n)$ factor!

Proof.

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Consider canonical filtration $\{\mathbf{0}\} = \Lambda_0 \subset \ldots \subset \Lambda_k = \Lambda$.
- ► Define

$$d_i := \operatorname{rank}(\Lambda_i / \Lambda_{i-1})$$
 and $r_i := \det(\Lambda_i / \Lambda_{i-1})^{1/d_i}$

Group indices of similar density together: r_i ≤ ½r_{i+2}
Let i^{*} ∈ {1,...,k} minimal s.t. rank(Λ_{i*}) ≥ n/2.

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \ge \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \le O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Full result follows by induction paying an extra $\log(n)$ factor!

Proof.

- Apply a linear transformation so that $\ell_K \cdot \ell_{K^\circ} \leq O(n \log n)$
- Consider canonical filtration $\{\mathbf{0}\} = \Lambda_0 \subset \ldots \subset \Lambda_k = \Lambda$.
- ► Define

$$d_i := \operatorname{rank}(\Lambda_i / \Lambda_{i-1})$$
 and $r_i := \det(\Lambda_i / \Lambda_{i-1})^{1/d_i}$

- Group indices of similar density together: $r_i \leq \frac{1}{2}r_{i+2}$
- Let $i^* \in \{1, \ldots, k\}$ minimal s.t. rank $(\Lambda_{i^*}) \geq \frac{n}{2}$.
- Set $U := \operatorname{span}(\Lambda_{i^*})$

Claim I. $\mu(\Lambda \cap U, K \cap U) \lesssim \log(n) \cdot r_{i^*} \cdot \ell_K$

•
$$K_i := \prod_{\operatorname{span}(\Lambda_{i-1})^{\perp}} (K \cap \operatorname{span}(\Lambda_i))$$

- $K_i := \prod_{\operatorname{span}(\Lambda_{i-1})^{\perp}} (K \cap \operatorname{span}(\Lambda_i))$
- Recall: $\frac{1}{r_i}(\Lambda_i/\Lambda_{i-1})$ stable

•
$$K_i := \prod_{\operatorname{span}(\Lambda_{i-1})^{\perp}} (K \cap \operatorname{span}(\Lambda_i))$$

• Recall: $\frac{1}{r_i} (\Lambda_i / \Lambda_{i-1})$ stable

- $K_i := \prod_{\operatorname{span}(\Lambda_{i-1})^{\perp}} (K \cap \operatorname{span}(\Lambda_i))$
- Recall: $\frac{1}{r_i}(\Lambda_i/\Lambda_{i-1})$ stable
- ► Use monotonicity of ℓ -value: $\ell_{K \cap F} \leq \ell_K$ for subspace F (potentially huge loss!!)

Main proof (4) Claim II. $\mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K.$
$\begin{array}{l} \textbf{Main proof (4)} \\ \textbf{Claim II. } \mu_{KL}(\Lambda,K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K. \end{array}$

• Set $W := \operatorname{span}(\Lambda_{i^*-1})^{\perp}$ and $d := \dim(W) = \sum_{i=i^*}^k d_i \ge \frac{n}{2}$

Main proof (4) Claim II. $\mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K.$ • Set $W := \operatorname{span}(\Lambda_{i^*-1})^{\perp}$ and $d := \dim(W) = \sum_{i=i^*}^k d_i \geq \frac{n}{2}$ $(\det(\Pi_W(\Lambda)))^{1/d}$

$$\mu_{KL}(\Lambda, K) \geq \left(\frac{\operatorname{det}(\Pi_W(\Lambda))}{\operatorname{Vol}_d(\Pi_W(K))}\right)^2$$

$\begin{aligned} \mathbf{Main proof} \ \mathbf{(4)} \\ \mathbf{Claim II.} \ \mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K. \\ \bullet \ \mathrm{Set} \ W := \mathrm{span}(\Lambda_{i^*-1})^{\perp} \ \mathrm{and} \ d := \dim(W) = \sum_{i=i^*}^k d_i \geq \frac{n}{2} \\ \mu_{KL}(\Lambda, K) \ \geq \ \left(\frac{\det(\Pi_W(\Lambda))}{\operatorname{Vol}_d(\Pi_W(K))}\right)^{1/d} \\ \geq \ \frac{r_{i^*}}{\operatorname{Vol}_d(\Pi_W(K))^{1/d}} \end{aligned}$

We use

•
$$\det(\Pi_W(\Lambda)) = \det(\Lambda/\Lambda_{i^*-1}) \ge r_{i^*}^d$$

Main proof (4) Claim II. $\mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K$. • Set $W := \operatorname{span}(\Lambda_{i^*-1})^{\perp}$ and $d := \dim(W) = \sum_{i=-i^*}^k d_i \geq \frac{n}{2}$ $\mu_{KL}(\Lambda, K) \geq \left(\frac{\det(\Pi_W(\Lambda))}{\operatorname{Vol}_{\mathcal{I}}(\Pi_W(K))}\right)^{1/d}$ $\geq \frac{r_{i^*}}{\operatorname{Vol}_d(\Pi_W(K))^{1/d}}$ $\gtrsim r_{i^*} \cdot \frac{d}{\ell_{**}}$

We use

- $\det(\Pi_W(\Lambda)) = \det(\Lambda/\Lambda_{i^*-1}) \ge r_{i^*}^d$
- Urysohn inequality and $\Pi_W(K)^\circ = K^\circ \cap W$

Main proof (4)Claim II. $\mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K$. • Set $W := \operatorname{span}(\Lambda_{i^*-1})^{\perp}$ and $d := \dim(W) = \sum_{i=i^*}^k d_i \ge \frac{n}{2}$ $\mu_{KL}(\Lambda, K) \geq \left(\frac{\det(\Pi_W(\Lambda))}{\operatorname{Vol}_J(\Pi_W(K))}\right)^{1/d}$ $\geq \frac{r_{i^*}}{\operatorname{Vol}_d(\Pi_W(K))^{1/d}}$ $\gtrsim \quad r_{i^*} \cdot \frac{d}{\ell_{K^\circ}} \overset{\ell\text{-position}}{\gtrsim} \frac{r_{i^*}}{\log(n)} \cdot \underbrace{\frac{d}{n}}{\cdot} \cdot \ell_K$ >1/2

We use

- $\det(\Pi_W(\Lambda)) = \det(\Lambda/\Lambda_{i^*-1}) \ge r_{i^*}^d$
- Urysohn inequality and $\Pi_W(K)^\circ = K^\circ \cap W$

Main proof (5)

Claim I. $\mu(\Lambda \cap U, K \cap U) \lesssim \log(n) \cdot r_{i^*} \cdot \ell_K$ Claim II. $\mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K$.

Main proof (5)

 $\begin{array}{l} \textbf{Claim I. } \mu(\Lambda \cap U, K \cap U) \lesssim \log(n) \cdot r_{i^*} \cdot \ell_K \\ \textbf{Claim II. } \mu_{KL}(\Lambda, K) \gtrsim \frac{r_{i^*}}{\log(n)} \cdot \ell_K. \end{array}$

Putting everything together

 $\mu(\Lambda, K) \lesssim \log(n) \cdot r_{i^*} \cdot \ell_K \lesssim \log^2(n) \cdot \mu_{KL}(\Lambda, K) \quad \Box$

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \ge \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \le O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \ge \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \le O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \geq \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \leq O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

▶ Assume barycenter is at **0**

Proposition

Let $K \subseteq \mathbb{R}^n$ be symmetric and convex, let $\Lambda \subseteq \mathbb{R}^n$. \exists subspace $U : \dim(U) \ge \frac{n}{2}$ and $\mu(\Lambda \cap U, K \cap U) \le O(\log^2 n) \cdot \mu_{KL}(\Lambda, K)$.

- ▶ Assume barycenter is at **0**
- Let $K_{\text{sym}} := K \cap -K$ (inner symmetrizer)

• Use $\mu(\Lambda \cap U, K \cap U) \le \mu(\Lambda \cap U, K_{sym} \cap U)$.

- Use $\mu(\Lambda \cap U, K \cap U) \le \mu(\Lambda \cap U, K_{\text{sym}} \cap U)$.
- ▶ Need that

 $\operatorname{Vol}_d(\Pi_W(K))^{1/d} \lesssim \operatorname{Vol}_d(\Pi_W(K_{\operatorname{sym}}))^{1/d}$

- Use $\mu(\Lambda \cap U, K \cap U) \le \mu(\Lambda \cap U, K_{\text{sym}} \cap U)$.
- ▶ Need that

 $\operatorname{Vol}_d(\Pi_W(K))^{1/d} \lesssim \operatorname{Vol}_d(\Pi_W(K_{\operatorname{sym}}))^{1/d}$

Proposition (Vritsiou '23)

Let $K \subseteq \mathbb{R}^n$ be a convex body with barycenter at **0**. Let $F \subseteq \mathbb{R}^n$ be a *d*-dimensional subspace. Then

$$\operatorname{Vol}_d(\Pi_F(K))^{1/d} \lesssim \left(\frac{n}{d}\right)^6 \cdot \operatorname{Vol}_d(\Pi_F(K \cap -K))^{1/d}$$

- Use $\mu(\Lambda \cap U, K \cap U) \le \mu(\Lambda \cap U, K_{\text{sym}} \cap U)$.
- ▶ Need that

$$\operatorname{Vol}_d(\Pi_W(K))^{1/d} \lesssim \operatorname{Vol}_d(\Pi_W(K_{\operatorname{sym}}))^{1/d}$$

• Works for us since we have $d \ge \frac{n}{2}!$

Proposition (Vritsiou '23)

Let $K \subseteq \mathbb{R}^n$ be a convex body with barycenter at **0**. Let $F \subseteq \mathbb{R}^n$ be a *d*-dimensional subspace. Then

$$\operatorname{Vol}_d(\Pi_F(K))^{1/d} \lesssim \left(\frac{n}{d}\right)^6 \cdot \operatorname{Vol}_d(\Pi_F(K \cap -K))^{1/d}$$

End of part 3

Open problem 1

Can one solve every *n*-variable integer program in time $2^{O(n)}$?

▶ Right now, no candidate pathway known!

End of part 3

Open problem 1

Can one solve every *n*-variable integer program in time $2^{O(n)}$?

▶ Right now, no candidate pathway known!

Open problem 2

Is there a **certificate** for $K \cap \mathbb{Z}^n = \emptyset$ that can be verified in time $2^{O(n)}$?

End of part 3

Open problem 1

Can one solve every *n*-variable integer program in time $2^{O(n)}$?

▶ Right now, no candidate pathway known!

Open problem 2

Is there a **certificate** for $K \cap \mathbb{Z}^n = \emptyset$ that can be verified in time $2^{O(n)}$?

Thanks for your attention!