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Theorem (Reis, R.’23)

For convex body K ⊆ R
n one can find a point in K ∩ Z

n in
time (logn)O(n).

Previously best known:
◮ 2O(n2) [Lenstra ’83]
◮ nO(n) [Kannan ’87]
◮ 2O(n)nn [Dadush ’12], [Dadush, Eisenbrand, R. ’22]
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Theorem (Reis, R.’23)

For convex body K ⊆ R
n one can find a point in K ∩ Z

n in
time (logn)O(n).

Theorem (Reis, R.’23)

One can solve an integer program max{cTx | Ax ≤ b, x ∈ Z
n}

in time (log n)O(n).



Lattices

◮ A lattice is a set Λ = {Bx : x ∈ Z
k} where B ∈ R

n×k has
linearly independent columns.

◮ B = (b1, . . . , bk) is called basis of the lattice.
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Lattices

◮ A lattice is a set Λ = {Bx : x ∈ Z
k} where B ∈ R

n×k has
linearly independent columns.

◮ B = (b1, . . . , bk) is called basis of the lattice.
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◮ The rank of Λ is dim(span(Λ))

◮ A lattice has full rank, if n = rank(Λ).



Determinants

◮ The fundamental parallelepiped of Λ is the polytope

P(B) :=
{ k∑

i=1

λibi | 0 ≤ λi < 1 ∀i ∈ [k]
}
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Determinants

◮ The fundamental parallelepiped of Λ is the polytope

P(B) :=
{ k∑

i=1

λibi | 0 ≤ λi < 1 ∀i ∈ [k]
}

◮ The determinant of lattice is det(Λ) := Volk(P(B))
In full rank case, det(Λ) = | det(B)|
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Shortest vectors

◮ Length of the shortest vector is

λ1(Λ) := min{‖x‖2 | x ∈ Λ \ {0}}
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◮ Finding shortest vector is NP-hard (under randomized reductions)

◮ Can be approximated within 2n-factor [LLL’82]

◮ Can be computed in time 2O(n) (even w.r.t. arbitrary
norms ‖ · ‖K) [Ajtai, Kumar, Sivakumar ’01]



Shortest vectors

◮ Length of the shortest vector is

λ1(Λ) := min{‖x‖2 | x ∈ Λ \ {0}}
b b b
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0
λ1(Λ)

◮ Finding shortest vector is NP-hard (under randomized reductions)

◮ Can be approximated within 2n-factor [LLL’82]

◮ Can be computed in time 2O(n) (even w.r.t. arbitrary
norms ‖ · ‖K) [Ajtai, Kumar, Sivakumar ’01]

Theorem (Minkowski’s Theorem 1889)

Any full rank lattice Λ ⊆ R
n one has λ1(Λ) ≤

√
n · det(Λ)1/n.



Closest Vector

Closest Vector Problem (CVP): Given lattice Λ and target
vector t ∈ R

n. Find vector attaining min{‖x− t‖2 : x ∈ Λ}.
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Closest Vector

Closest Vector Problem (CVP): Given lattice Λ and target
vector t ∈ R

n. Find vector attaining min{‖x− t‖2 : x ∈ Λ}.
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Theorem (Micciancio, Voulgaris ’10)

CVP can be solved (deterministically) in time 2O(n).

◮ Only works for ‖ · ‖2



The Voronoi cell

Let Λ ⊆ R
n be full rank lattice. The Voronoi cell is

V = {x ∈ R
n : ‖x‖2 ≤ ‖x− v‖2 ∀v ∈ Λ \ {0}}
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The Voronoi cell

Let Λ ⊆ R
n be full rank lattice. The Voronoi cell is

V = {x ∈ R
n : ‖x‖2 ≤ ‖x− v‖2 ∀v ∈ Λ \ {0}}
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◮ V is a symmetric, convex, compact set

◮ t ∈ V ⇔ min{‖x− t‖2 : x ∈ Λ} attained by 0



The Voronoi relevant vectors

◮ v ∈ Λ is called Voronoi relevant if Hv is a facet of V.
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The Voronoi relevant vectors

◮ v ∈ Λ is called Voronoi relevant if Hv is a facet of V.
◮ Obs 1: V =

⋂

v Voronoi rel Hv
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The Voronoi relevant vectors

◮ v ∈ Λ is called Voronoi relevant if Hv is a facet of V.
◮ Obs 1: V =

⋂

v Voronoi rel Hv

◮ Obs 2: If v Voronoi relevant, then unique closest lattice
points to v

2
are 0 and v.
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The Voronoi relevant vectors (2)

Lemma
The number of Voronoi relevant vectors is |R| ≤ 2n+1.
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The Voronoi relevant vectors (2)

Lemma
The number of Voronoi relevant vectors is |R| ≤ 2n+1.

Claim. For v ∈ Λ, consider coset Λ′ := v + 2Λ. Apart from
v∗ := argmin{‖x‖2 : x ∈ Λ′} and −v∗, there is no other
Voronoi relevant vector in Λ′.
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The Voronoi relevant vectors (3)

Proof.
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The Voronoi relevant vectors (3)

Proof.

◮ Suppose that w ∈ Λ′ is Voronoi-relevant where
w 6∈ {v∗,−v∗}
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The Voronoi relevant vectors (3)

Proof.

◮ Suppose that w ∈ Λ′ is Voronoi-relevant where
w 6∈ {v∗,−v∗}

◮ Consider u := 1
2
(v∗ + w) ∈ Λ
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The Voronoi relevant vectors (3)

Proof.

◮ Suppose that w ∈ Λ′ is Voronoi-relevant where
w 6∈ {v∗,−v∗}

◮ Consider u := 1
2
(v∗ + w) ∈ Λ

◮ Then

∥
∥
∥
w

2
− u

∥
∥
∥
2
=

∥
∥
∥
w

2
− 1

2
(v∗ + w)

∥
∥
∥
2
=

1

2
‖v∗‖2 ≤

1

2
‖w‖2

which is a contradiction.
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The Voronoi relevant vectors (4)

Observation: We can find all Voronoi-relevant vectors by
solving 2n many CVPs in the same lattice, because

min{‖x‖2 : x ∈ v + 2Λ} = min{‖x− v‖2 : x ∈ 2Λ}



The Voronoi relevant vectors (4)

Observation: We can find all Voronoi-relevant vectors by
solving 2n many CVPs in the same lattice, because

min{‖x‖2 : x ∈ v + 2Λ} = min{‖x− v‖2 : x ∈ 2Λ}

Now assume:

◮ We know the Voronoi-relevant vectors R

◮ We have a target vector t ∈ 2V (scaling handles the
general case)



The Voronoi cell algorithm

Algorithm:
(1) Set s := t
(2) WHILE s /∈ V DO

(3) Set δ := ‖s‖V
(4) Find v ∈ R so that s lies on the boundary of δHv

(5) Update s := s− v

(6) Return t− s
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The Voronoi cell algorithm

Algorithm:
(1) Set s := t
(2) WHILE s /∈ V DO

(3) Set δ := ‖s‖V
(4) Find v ∈ R so that s lies on the boundary of δHv

(5) Update s := s− v

(6) Return t− s
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The Voronoi cell algorithm (2)

Claim. In each iteration ‖s− v‖V ≤ ‖s‖V and ‖s− v‖2 < ‖s‖2.
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The Voronoi cell algorithm (2)

Claim. In each iteration ‖s− v‖V ≤ ‖s‖V and ‖s− v‖2 < ‖s‖2.
Proof.

◮ By assumption s
δ
∈ v + V and so by triangle inequality

‖s− v‖V ≤
∥
∥
∥
s

δ
− v

∥
∥
∥
V

︸ ︷︷ ︸

≤1

+
(

1− 1

δ

)

‖s‖V
︸︷︷︸

≤δ

≤ δ

◮ Bound on ‖ · ‖2 clear.
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The Voronoi cell algorithm (3)

Lemma

For any t ∈ R
n, |(t− Λ) ∩ 2V| ≤ 2O(n).
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Lemma

For any t ∈ R
n, |(t− Λ) ∩ 2V| ≤ 2O(n).
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◮ Suffices to prove |Λ ∩ 4V| ≤ 4n.
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The Voronoi cell algorithm (3)

Lemma

For any t ∈ R
n, |(t− Λ) ∩ 2V| ≤ 2O(n).

Proof.

◮ Suffices to prove |Λ ∩ 4V| ≤ 4n. Suppose otherwise.
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The Voronoi cell algorithm (3)

Lemma

For any t ∈ R
n, |(t− Λ) ∩ 2V| ≤ 2O(n).

Proof.

◮ Suffices to prove |Λ ∩ 4V| ≤ 4n. Suppose otherwise.

◮ By pigeonhole principle, there are distinct x, y ∈ Λ ∩ 4V
with x− y ∈ 4Λ.
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The Voronoi cell algorithm (3)

Lemma

For any t ∈ R
n, |(t− Λ) ∩ 2V| ≤ 2O(n).

Proof.

◮ Suffices to prove |Λ ∩ 4V| ≤ 4n. Suppose otherwise.

◮ By pigeonhole principle, there are distinct x, y ∈ Λ ∩ 4V
with x− y ∈ 4Λ.

◮ Then ‖x−y
4
‖V ≤ 1 — contradiction as Λ ∩ V = {0}.
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The Voronoi cell algorithm (3)

Lemma

For any t ∈ R
n, |(t− Λ) ∩ 2V| ≤ 2O(n).

Proof.

◮ Suffices to prove |Λ ∩ 4V| ≤ 4n. Suppose otherwise.

◮ By pigeonhole principle, there are distinct x, y ∈ Λ ∩ 4V
with x− y ∈ 4Λ.

◮ Then ‖x−y
4
‖V ≤ 1 — contradiction as Λ ∩ V = {0}.

More generally: given t ∈ 2kV, after 2O(n) iteration we are in
2k−1V using update steps 2k−1v with v ∈ Λ.



Putting things together

◮ Define

TVoronoi(n) = time to compute Voronoi cell for Λ ⊆ R
n

TCVP(n, k) = time to solve k many CVPs in the

same n-dim. lattice
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Putting things together

◮ We obtain

TVoronoi(n)
(∗)
≤ TCVP(n, 2

O(n))
(∗∗∗)
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Putting things together

◮ We obtain

TVoronoi(n)
(∗)
≤ TCVP(n, 2

O(n))
(∗∗∗)
≤ TCVP(n− 1, 2O(n) · 2O(n))
(∗∗)
≤ TVoronoi(n− 1) + 2O(n) · 2O(n) · 2O(n).

◮ (∗) char. of Voronoi relevant Vectors
◮ (∗∗) main algorithm

◮ (∗ ∗ ∗) By LLL algorithm: Can reduce CVP in dim n to
2O(n) instances of CVP in same n− 1 dim. lattice.

◮ Resolve recursion to TVoronoi(n), TCVP(n, 2
O(n)) ≤ 2O(n)



Enumeration of points

Theorem
For any ellipsoid E , one can enumerate points S := Λ ∩ (E + t)
in time 2O(n) · (|S|+ 1).
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Enumeration of points

Theorem
For any ellipsoid E , one can enumerate points S := Λ ∩ (E + t)
in time 2O(n) · (|S|+ 1).

◮ After applying linear transformation, assume E = Bn
2 .
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Enumeration of points (2)
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Enumeration of points (2)

◮ Define graph G = (Λ, E) with
E = {{x, y} | x, y ∈ Λ, x− y ∈ R}. G has degree |R|.
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Enumeration of points (2)

◮ Define graph G = (Λ, E) with
E = {{x, y} | x, y ∈ Λ, x− y ∈ R}. G has degree |R|.

Claim. G[S] with S := Λ ∩ (Bn
2 + t) is connected.
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Enumeration of points (2)

◮ Define graph G = (Λ, E) with
E = {{x, y} | x, y ∈ Λ, x− y ∈ R}. G has degree |R|.

Claim. G[S] with S := Λ ∩ (Bn
2 + t) is connected.

Proof. [MV’10] shows ∃ path x0, x1, x2, . . . ∈ S with
‖x0 − t‖2 > ‖x1 − t‖2 > . . .
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Enumeration of points (2)

◮ Define graph G = (Λ, E) with
E = {{x, y} | x, y ∈ Λ, x− y ∈ R}. G has degree |R|.

Claim. G[S] with S := Λ ∩ (Bn
2 + t) is connected.

Proof. [MV’10] shows ∃ path x0, x1, x2, . . . ∈ S with
‖x0 − t‖2 > ‖x1 − t‖2 > . . .
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◮ Then explore G[S] from point attaining CVP(Λ, t)
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◮ For convex bodies, A,B ⊆ R
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minimum number of translates of B to cover A.
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Moreover one can compute the points x1, . . . , xN with
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i=1(xi + E) and N ≤ 2O(n) as well.
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M-ellipsoids

◮ For convex bodies, A,B ⊆ R
n, let N(A,B) be the

minimum number of translates of B to cover A.

Theorem (Dadush, Vempala ’12)

For any convex body K ⊆ R
n, one can compute an ellipsoid E

so that N(K, E), N(E , K) ≤ 2O(n) in deterministic time 2O(n).
Moreover one can compute the points x1, . . . , xN with
K ⊆ ⋃N

i=1(xi + E) and N ≤ 2O(n) as well.

KE

◮ In convex geometry these are called M-ellipsoids



Application to arbitrary convex K

Idea: Cover K by 2O(n) many M-ellipsoids, then
find/enumerate points in ellipsoids.
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Application to arbitrary convex K

Idea: Cover K by 2O(n) many M-ellipsoids, then
find/enumerate points in ellipsoids.
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◮ But the method does actually work if the covering
radius is lower bounded..



Covering radius

◮ For K convex, the covering radius is
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Dadush’s lattice point upper bound

Theorem (Dadush 2012)

For full rank lattice Λ ⊆ R
n and convex body K ⊆ R

n one has

|K ∩ Λ| ≤ N := 2n max{µ(Λ, K)n, 1} · Voln(K)

det(Λ)
.

Moreover, can compute points in same time.
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Theorem (Dadush 2012)

For full rank lattice Λ ⊆ R
n and convex body K ⊆ R

n one has

|K ∩ Λ| ≤ N := 2n max{µ(Λ, K)n, 1} · Voln(K)

det(Λ)
.

Moreover, can compute points in same time.

Proof of moreover part:

◮ Bound holds for any translate of K

◮ Any shifted M-ellipsoid E also has |E ∩ Λ| ≤ 2O(n)N
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Dadush’s lattice point upper bound

Theorem (Dadush 2012)

For full rank lattice Λ ⊆ R
n and convex body K ⊆ R

n one has

|K ∩ Λ| ≤ N := 2n max{µ(Λ, K)n, 1} · Voln(K)

det(Λ)
.

Moreover, can compute points in same time.

Proof of moreover part:

◮ Bound holds for any translate of K

◮ Any shifted M-ellipsoid E also has |E ∩ Λ| ≤ 2O(n)N

◮ Hence can enumerate all points in K in time 2O(n)N .
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Dadush’s lattice point upper bound

Claim. For any convex body K ⊆ R
n with µ(Zn, K) ≤ 1 and

any x ∈ R
n one has |K ∩ (x+ Z

n)| ≤ 2nVoln(K).
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Claim. For any convex body K ⊆ R
n with µ(Zn, K) ≤ 1 and

any x ∈ R
n one has |K ∩ (x+ Z

n)| ≤ 2nVoln(K).
Proof of Claim.

◮ Assume 0 ∈ K
◮ Define equivalence relation with x ≡ y ⇔ x− y ∈ Z

n.
◮ Let V =
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◮ Picking one per class ⇒ Voln(V ) ≤ 1
◮ For all x ∈ R

n one has (x+ Z
n) ∩K 6= ∅ ⇒ Voln(V ) = 1

◮ Translates x+ V disjoint for x ∈ Z
n. Hence

|K∩Zn| =
∑

x∈K∩Zn

Voln(x+ V )
︸ ︷︷ ︸

=1

disj.
= Voln

( ⋃

x∈K∩Zn

(x+V )
)

≤ Voln(2K),



End of part 1

Open problem 1

Can one even solve Closest Vector problem (or shortest vector)
in ‖ · ‖2 in time 2O(n) and polynomial space?

◮ In poly space so far only nO(n)-time known [Kannan ’87]
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Can one even solve Closest Vector problem (or shortest vector)
in ‖ · ‖2 in time 2O(n) and polynomial space?

◮ In poly space so far only nO(n)-time known [Kannan ’87]

Thanks for your attention!



Part 2:
The Reverse Minkowski Theorem

Thomas Rothvoss

Based the work
[Regev, Stephens-Davidowitz 2016]
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Theorem (Minkowski’s Theorem 1889)

Any full rank lattice Λ ⊆ R
n with det(Λ) = 1 one has

λ1(Λ) ≤
√
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Any full rank lattice Λ ⊆ R
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λ1(Λ) ≤
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◮ Can also give a lower bound on the number of short
vectors. How about an upper bound?
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◮ What if det(Λ′) ≥ 1 for all sublattices Λ′ ⊆ Λ?



Warmup

Lemma
Let Λ ⊆ R

n be lattice with det(Λ′) ≥ 1 ∀Λ′ ⊆ Λ. For all r ≥ 1
one has N := |Λ ∩ rBn

2 | ≤ (3r)n

Proof.
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n be lattice with det(Λ′) ≥ 1 ∀Λ′ ⊆ Λ. For all r ≥ 1
one has N := |Λ ∩ rBn

2 | ≤ (3r)n

Proof.
◮ Clearly λ1(Λ) ≥ 1.
◮ Can pack N disjoint balls of radius 1

2
into (r + 1

2
)Bn

2 .
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Lemma
Let Λ ⊆ R

n be lattice with det(Λ′) ≥ 1 ∀Λ′ ⊆ Λ. For all r ≥ 1
one has N := |Λ ∩ rBn

2 | ≤ (3r)n

Proof.
◮ Clearly λ1(Λ) ≥ 1.
◮ Can pack N disjoint balls of radius 1

2
into (r + 1

2
)Bn

2 . So
N · Voln(12Bn

2 ) ≤ Voln((r +
1
2
)Bn

2 ). Then N ≤ (3r)n.
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The Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let Λ ⊆ R
n be a lattice that satisfies det(Λ′) ≥ 1 for all

sublattices Λ′ ⊆ Λ. Then for s = Θ(logn),

ρ1/s(Λ) =
∑

x∈Λ
exp(−πs2‖x‖22) ≤

3

2

◮ Means for all r ≥ 1, |Λ ∩ rBn
2 | ≤ nΘ(log(n))·r2 (i.e. # of

points grows quasi-polynomial in r)



The Reverse Minkowski Theorem

Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let Λ ⊆ R
n be a lattice that satisfies det(Λ′) ≥ 1 for all

sublattices Λ′ ⊆ Λ. Then for s = Θ(logn),

ρ1/s(Λ) =
∑

x∈Λ
exp(−πs2‖x‖22) ≤

3

2

◮ Means for all r ≥ 1, |Λ ∩ rBn
2 | ≤ nΘ(log(n))·r2 (i.e. # of

points grows quasi-polynomial in r)

◮ First conjectured by [Dadush, Regev 2016].

◮ Conjectured that s = Θ(
√

log(n)) is enough which would

give |Λ ∩ rBn
2 | ≤ nO(r2) for r ≥ 1.



Stable lattice

Definition
A lattice Λ is called stable if det(Λ) = 1 and det(Λ′) ≥ 1 for
all sublattices Λ′ ⊆ Λ.

Example: Z
n is stable.
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Stable lattice

Definition
A lattice Λ is called stable if det(Λ) = 1 and det(Λ′) ≥ 1 for
all sublattices Λ′ ⊆ Λ.

Example: Z
n is stable.
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◮ It suffices to prove Reverse Minkowski for stable lattices
(later more on that..).



The Voronoi cell

◮ Recap: Let Λ ⊆ R
n be lattice. The Voronoi cell is

V(Λ) = {x ∈ R
n : ‖x‖2 ≤ ‖x− v‖2 ∀v ∈ Λ \ {0}}
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Volume of the Voronoi cell

Lemma
A full rank stable lattice Λ has Voln(V(Λ)) = 1.



Volume of the Voronoi cell

Lemma
A full rank stable lattice Λ has Voln(V(Λ)) = 1.

Proof.

◮ Translates v + V(Λ) tile R
n and density is 1

det(Λ)
= 1.
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Some notation

◮ Gaussian density ρs(x) = exp(−π‖x/s‖22)
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Some notation

◮ Gaussian density ρs(x) = exp(−π‖x/s‖22)

x

ρ1/2(x)

x

ρ1(x)

x

ρ2(x)

◮ Gaussian measure

γn,s(K) =
1

ρs(Rn)

∫

K

ρs(x)dx

◮ Standard gaussian measure

γn(K) =
1

(2π)n/2

∫

K

exp
(

− ‖x‖22
2

)

dx = γn,
√
2π(K)



Voronoi cell large ⇒ ρ(Λ) small

Lemma
For any lattice Λ ⊆ R

n and s > 0, ρs(Λ) · γn,s(V(Λ)) ≤ 1.
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Voronoi cell large ⇒ ρ(Λ) small

Lemma
For any lattice Λ ⊆ R

n, ρ1(Λ) · γn,1(V(Λ)) ≤ 1.
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Lemma
For any lattice Λ ⊆ R
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◮ For v ∈ Λ one has γn,1(v + V) ≥ e−π‖v‖22γn,1(V).



Voronoi cell large ⇒ ρ(Λ) small

Lemma
For any lattice Λ ⊆ R

n, ρ1(Λ) · γn,1(V(Λ)) ≤ 1.

b

bb

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

0

v

◮ For v ∈ Λ one has γn,1(v + V) ≥ e−π‖v‖22γn,1(V).
◮ Summing gives 1 =

∑

v∈Λ γn,1(v + V) ≥ ρ1(Λ) · γn,1(V)



Convex geometry

◮ Is it true that a symmetric convex body K with
Voln(K) = 1 has large Gaussian measure (after scaling
with Θ(logn)?

◮ Maybe, maybe not..
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Convex geometry

◮ Is it true that a symmetric convex body K with
Voln(K) = 1 has large Gaussian measure (after scaling
with Θ(logn)?

◮ Maybe, maybe not..

0
K

0

A(K)

Theorem
For any symmetric convex body K ⊆ R

n with Voln(K) = 1
there is a matrix A ∈ R

n×n with | det(A)| = 1 so that
γn(Θ(logn) ·A(K)) ≥ 2

3
.



Isotropic position

Definition
A symmetric convex body K ⊆ R

n is in isotropic
s-Gaussian position if

∫

K

ρs(x) · xxTdx = αIn

for some α > 0.

◮ Means Gaussian mass is equally spread in all directions.
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Isotropic position (2)

◮ If K is in isotropic position, then K maximizes Gaussian
measure under volume-preserving rescaling:

Theorem (Bobkov 2011)

Let K ⊆ R
n be a symmetric convex body and let s > 0. If K is

in isotropic s-Gaussian position then γn,s(K) ≥ γn,s(A(K)) for
all A ∈ R

n×n with | det(A)| = 1.
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Theorem (Bobkov 2011)

Let K ⊆ R
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in isotropic s-Gaussian position then γn,s(K) ≥ γn,s(A(K)) for
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The main technical theorem

Theorem
For stable lattice Λ one has γn(Θ(log n) · V(Λ)) ≥ 2

3
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◮ Consider

X := {B ∈ R
n×n | | det(B)| = 1}

Xstable := {B ∈ R
n×n | Λ(B) is stable and ‖B‖F ≤ 3n2.5}
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The main technical theorem
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Recall:

X := {B ∈ R
n×n | | det(B)| = 1}

Xstable := {B ∈ R
n×n | Λ(B) is stable and ‖B‖F ≤ 3n2.5}

Case (I). B is on the boundary on Xstable.

◮ Then ∃ sublattice Λ′ ⊆ Λ with det(Λ′) = 1.

◮ Λ′ also stable. Case incomplete for now... but we made
progress..
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◮ V(Λ) is in Gaussian isotropic position!

◮ By Bobkov: γn(Θ(logn) · V(Λ)) ≥ γn(Θ(logn) · A(V(Λ)))
for any A with det(A) = 1

◮ Pick A so that γn(Θ(logn) ·A(V(Λ))) ≥ 2
3
.

◮ Then γn(Θ(logn) · V(Λ)) ≥ γn(Θ(log n) · A(V(Λ))) ≥ 2
3
.

Done!



Quotient lattices

Definition
Consider a lattice Λ ⊆ R

n with a primitive sublattice Λ′ ⊆ Λ.
The quotient lattice is Λ/Λ′ = Πspan(Λ′)⊥(Λ).
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◮ Intuition: We can factor Λ into Λ′ and Λ/Λ′



Quotient lattices (2)

Lemma
For lattice Λ and a primitive sublattice Λ′ ⊆ Λ:

(i) det(Λ) = det(Λ′) · det(Λ/Λ′)

(ii) For any s > 0, ρs(Λ) ≤ ρs(Λ
′) · ρs(Λ/Λ′)

(iii) γn(V(Λ)) ≥ γn(V(Λ′)) · γn(V(Λ/Λ′))
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Proof for non-stable lattices

Corollary

For stable lattice Λ ⊆ R
n, ρ1/Θ(log n)(Λ) ≤ 3

2
.

◮ But what if Λ is not stable (only det(Λ′) ≥ 1 ∀Λ′ ⊆ Λ)?
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◮ For lattice Λ ⊆ R
n, consider canonical plot

Q :=
{(

rank(Λ′), ln(det(Λ′))
)
| sublattice Λ′ ⊆ Λ

}

◮ Lower envelope of conv(Q) is called canonical polygon
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The canonical filtration (2)

rank(Λ′)
b

b
b

b

b

b
ln(det(Λ′))

Λ0 = {0}

Λ1
Λ2

Λ3

Λk = Λ

Theorem (Canonical filtration)

(a) The vertices of the canonical plot form a chain

{0} = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk = Λ.

(b) ri := det(Λi/Λi−1)
1/rank(Λi/Λi−1) satisfy r1 < . . . < rk

(c) Each 1
ri
(Λi/Λi−1) is stable.
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Reverse Minkowski Theorem (Regev, Stephens-Da.)

Let Λ ⊆ R
n be a lattice that satisfies det(Λ′) ≥ 1 for all
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2
.

Proof.
◮ Consider canonical filtration

{0} = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk = Λ

◮ We know rk > . . . > r1 = det(Λ0) ≥ 1
◮ Then

ρ1/t(Λ) ≤
k∏

i=1

ρ1/t(Λi/Λi−1)
ri≥1

≤
k∏

i=1

ρ1/t

(

stable lattice
︷ ︸︸ ︷

1

ri
Λi/Λi−1

)

≤
k∏

i=1

exp
(rank(Λi/Λi−1)

3n

)

≤ 3

2



End of part 2

Open problem 1

Is it true that already for t = Θ(
√
logn) and any stable lattice

Λ one has ρ1/t(Λ) ≤ 3
2
.

◮ Known proof works for t = Θ(logn).
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Open problem 1

Is it true that already for t = Θ(
√
logn) and any stable lattice

Λ one has ρ1/t(Λ) ≤ 3
2
.

◮ Known proof works for t = Θ(logn).

Open problem 2
Is it true that for any symmetric convex body K ⊆ R

n with
Voln(K) = 1, there is a volume-preserving linear map A so
that γn(Θ(

√

log(n)) · A(K)) ≥ 2
3

0
K

0

A(K)

◮ Problem 2 ⇒ Problem 1
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Is it true that already for t = Θ(
√
logn) and any stable lattice

Λ one has ρ1/t(Λ) ≤ 3
2
.

◮ Known proof works for t = Θ(logn).

Open problem 2
Is it true that for any symmetric convex body K ⊆ R

n with
Voln(K) = 1, there is a volume-preserving linear map A so
that γn(Θ(

√

log(n)) · A(K)) ≥ 2
3

0
K

0

A(K)

◮ Problem 2 ⇒ Problem 1

Thanks for your attention!
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◮ Simple lower bound: µ(Λ, K) ≥ ( det(Λ)
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◮ For all r > 0,

E
x∼RBn

2

[#y ∈ Λ : x ∈ y + rK]
R→∞≈ Voln(rK)

det(Λ)
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◮ For any subspace µ(Λ, K) ≥ µ(ΠW (Λ),ΠW (K))
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◮ Consider the best volume-based lower bound

µKL(Λ, K) = max
W⊆span(Λ) subspace

d:=dim(W )

( det(ΠW (Λ))

Vold(ΠW (K))

)1/d

Theorem (Kannan, Lovász (1988))

For any full rank lattice Λ, convex body K ⊆ R
n

µKL(Λ, K) ≤ µ(Λ, K) ≤ n · µKL(Λ, K)

Subspace Flatness Conjecture (Dadush 2012)

For full rank lattice Λ ⊆ R
n and convex body K ⊆ R

n one has

µ(Λ, K) ≤ O(log(n)) · µKL(Λ, K)

◮ Dadush shows consequences for solving IPs.
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Main results

Theorem (Reis, R.’23)

For full rank lattice Λ ⊆ R
n and convex body K ⊆ R

n one has

µ(Λ, K) ≤ O(log3(n)) · µKL(Λ, K)

Theorem (Reis, R.’23)

For convex body K ⊆ R
n one can find a point in K ∩ Z

n in
time (logn)O(n).

Previously best known:

◮ 2O(n2) [Lenstra ’83]

◮ nO(n) [Kannan ’87]

◮ 2O(n)nn [Dadush ’12], [Dadush, Eisenbrand, R. ’22]
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Input: K ⊆ R
n, lattice Λ

Output: Point in K ∩ Λ

(1) Shrink K so that µ(Λ, K) ≥ 1

(2) Find subspace W attaining µKL(Λ, K) approx.

(3) Compute X := ΠW (K) ∩ ΠW (Λ)

(4) Recurse on fibers K ∩Π−1
W (x) for all x ∈ X
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ΠW (K)

Analysis:
◮ Can find W in time 2O(n) [Dadush ’19]
◮ One has |ΠW (K) ∩ΠW (Λ)| ≤ O(log4 n)d w. d := dim(W )
◮ Can enumerate those points in time O(log4 n)d

◮ Recursion

T (n) = 2O(n)+polylog(n)d·T (n−d) ⇒ T (n) ≤ polylog(n)n
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Theorem (Dadush)
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|P ∩ Λ| ≤ 2dmax{µ(Λ, P )d, 1} · Vold(P )

det(Λ)
(∗).

Can compute points in same time.
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Theorem (Dadush)

For full rank lattice Λ ⊆ R
d and convex body P ⊆ R

d one has

|P ∩ Λ| ≤ 2dmax{µ(Λ, P )d, 1} · Vold(P )

det(Λ)
(∗).

Can compute points in same time.

◮ Then (Vold(ΠW (K))
det(ΠW (Λ))

)1/d ≤ O(log4(n))
µ(Λ,K)

◮ In any case (∗) ≤ O(logn)4d



Sketch of Main proof

µ(Λ, K) ≤ O(log3 n) · µKL(Λ, K)



Recap: Stable lattices

Definition
A lattice Λ is called stable if det(Λ) = 1 and det(Λ′) ≥ 1 for
all sublattices Λ′ ⊆ Λ.
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Example: Z
n is stable



ℓ-position

◮ For a symmetric convex body K ⊆ R
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ℓK = E
x∼N(0,In)

[‖x‖2K ]1/2

◮ Intuitively: ℓK = “average thinness” of K
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ℓK = E
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[‖x‖2K ]1/2

◮ Intuitively: ℓK = “average thinness” of K

◮ Polar is K◦ = {x ∈ R
n | 〈x, y〉 ≤ 1 ∀y ∈ K}

◮ Possible that ℓK and ℓK◦ arbitrarily large
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Theorem (Figiel, Tomczak-Jaegerman, Pisier)

For any symmetric convex body K ⊆ R
n, there is an invertible

linear map T : Rn → R
n so that ℓT (K) · ℓ(T (K))◦ ≤ O(n logn).

T (K)0

T (K)◦

0

◮ Also called ℓ-position
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Urysohn Inequality

◮ The mean width of a convex body K is

w(K):= E
θ∼Sn−1

[max{〈θ, x− y〉 : x, y ∈ K}]
K

θ

width in
direction θ

Theorem (Urysohn Inequality)

Among convex bodies of the same volume, the Euclidean ball
minimizes the mean width.

Consequences:

◮ For any convex body K ⊆ R
n, w(K) ≥ 2 ·

(
Voln(K)
Voln(Bn

2 )

)1/n

.

◮ For symmetric convex body K, ℓK◦ ≍ √
n · w(K) and so

Voln(K)1/n . ℓK◦

n



Main theorem for stable + ℓ-position

Proposition
Let K be a symmetric convex body and let Λ be stable
lattice.

(a) If K in ℓ-position then µ(Λ, K) ≤ O(log2 n) · µKL(Λ, K).

(b) One has µ(Λ, K) ≤ O(logn) · ℓK .
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Proposition
Let K be a symmetric convex body and let Λ be stable
lattice.

(a) If K in ℓ-position then µ(Λ, K) ≤ O(log2 n) · µKL(Λ, K).

(b) One has µ(Λ, K) ≤ O(logn) · ℓK .

◮ First (b). Set t := Θ(log n). After scaling ℓK ≤ o(1).
◮ Suppose for contradiction that (u+ Λ) ∩ tK = ∅.
◮ Then ρt((u+ Λ) \ t ·K) ≤ o(1) · ρt(Λ) [Banaszczyk 1996]
◮ Λ∗ also stable.
◮ ρ1/t(Λ

∗ \ {0}) ≤ o(1) [Reverse Minkowski Theorem, RS]

Lemma (Variant of Poisson Summ. Formula)

For full rank lattice Λ ⊆ R
n, u ∈ R

n and t > 0 one has
∣
∣
∣
ρt(Λ + u)

tn det(Λ∗)
− 1

∣
∣
∣ ≤ ρ1/t(Λ

∗ \ {0}).
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&
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◮ Use det(Λ) = 1 and Urysohn inequality.
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Definition
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◮ Intuition: We can factor Λ into Λ′ and Λ/Λ′

◮ For example det(Λ) = det(Λ′) · det(Λ/Λ′).



Recap: The canonical filtration

rank(Λ′)
b

b
b

b

b

b
ln(det(Λ′))

Λ0 = {0}

Λ1
Λ2

Λ3

Λk = Λ

conv(Q)

Theorem (Canonical filtration)

(a) The vertices of the canonical plot form a chain

{0} = Λ0 ⊂ Λ1 ⊂ . . . ⊂ Λk = Λ.

(b) ri := det(Λi/Λi−1)
1/rank(Λi/Λi−1) satisfy r1 < . . . < rk

(c) Each 1
ri
(Λi/Λi−1) is stable.
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Proof of Claim I. We bound
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triangle ineq.

≤
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i=1

µ
(
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ri·stable lattice

, Ki
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i∗∑

i=1
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. log(n) · ri∗ · ℓK

◮ Ki := Πspan(Λi−1)⊥(K ∩ span(Λi))

◮ Recall: 1
ri
(Λi/Λi−1) stable

◮ Use monotonicity of ℓ-value: ℓK∩F ≤ ℓK for subspace F
(potentially huge loss!!)
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Claim I. µ(Λ ∩ U,K ∩ U) . log(n) · ri∗ · ℓK
Claim II. µKL(Λ, K) & ri∗

log(n)
· ℓK .

Putting everything together

µ(Λ, K) . log(n) · ri∗ · ℓK . log2(n) · µKL(Λ, K)



The asymmetric case

Proposition
Let K ⊆ R

n be symmetric and convex, let Λ ⊆ R
n. ∃ subspace

U : dim(U) ≥ n
2
and µ(Λ ∩ U,K ∩ U) ≤ O(log2 n) · µKL(Λ, K).



The asymmetric case

Proposition
Let K ⊆ R

n be symmetric and convex, let Λ ⊆ R
n. ∃ subspace

U : dim(U) ≥ n
2
and µ(Λ ∩ U,K ∩ U) ≤ O(log2 n) · µKL(Λ, K).



The asymmetric case

Proposition
Let K ⊆ R

n be symmetric and convex, let Λ ⊆ R
n. ∃ subspace

U : dim(U) ≥ n
2
and µ(Λ ∩ U,K ∩ U) ≤ O(log2 n) · µKL(Λ, K).

◮ Assume barycenter is at 0

0 K



The asymmetric case

Proposition
Let K ⊆ R

n be symmetric and convex, let Λ ⊆ R
n. ∃ subspace

U : dim(U) ≥ n
2
and µ(Λ ∩ U,K ∩ U) ≤ O(log2 n) · µKL(Λ, K).

◮ Assume barycenter is at 0

◮ Let Ksym := K ∩ −K (inner symmetrizer)

Ksym 0 K−K
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◮ Use µ(Λ ∩ U,K ∩ U) ≤ µ(Λ ∩ U,Ksym ∩ U).

◮ Need that

Vold(ΠW (K))1/d . Vold(ΠW (Ksym))
1/d

◮ Works for us since we have d ≥ n
2
!

Proposition (Vritsiou ’23)
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Open problem 2

Is there a certificate for K ∩ Z
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time 2O(n)?

Thanks for your attention!
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