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Theorem (Folklore)

An adaptive adversary has a strategy so that for any player
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i=1 xivi‖2 ≥
√
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Proof.

◮ Pick vt orthogonal to wt−1 :=
∑t−1

i=1 xivi with ‖vt‖2 = 1

◮ Easy: ‖wt‖22 = ‖wt−1‖22 + 2xt 〈wt−1, vt〉+ ‖vt‖22 = t

Observations:

◮ Player also has strategy to keep ‖∑T
i=1 xivi‖2 ≤

√
T

◮ Randomization does not help player
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Thoughts: How is this easier for us? Maybe arriving vector vt
still orthogonal to current position. Also would not make a
difference for existing potential function arguments!
But now randomization can help!
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The Self-balancing Walk (Alweiss et al)

(1) Set w0 := 0 and s := Θ(
√

log(nT ))
(2) FOR t = 1 TO T

(3) With probability 1
2 − 〈wt−1,vt〉

2s set xt := 1, otherwise
xt := −1

(4) Update wt := wt−1 + xtvt

0 wt−1

+vt

−vt
E[wt]

Theorem (Alweiss, Liu, Sawhney STOC 2021)

For any t, wt is Θ(
√

log(nT ))-subgaussian in every direction.

Example:
◮ E[‖wT‖2] ≤ O(

√

n log(nT ))
◮ E[maxt ‖wt‖∞] ≤ O(log(nT ))
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Theorem (Kulkarni, Reis, R.’23)

There is an online coloring strategy that for any sequence
v1, . . . , vT ∈ R

n with ‖vi‖2 ≤ 1, fixed in advance, revealed one
at a time, finds random signs x1, . . . , xT ∈ {−1, 1} so that:
for each t,

∑t
i=1 xivi is O(1)-subgaussian.

◮ Improves over the Θ(
√

log(nT ))-subgaussian bound by
[ALS’21] ...

◮ ...but not quite constructive (best running time we can

prove is 22
poly(nT )

).
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Subgaussianity (2)

Definition
The subgaussian norm of a random variable is

‖X‖ψ2 := inf
{
t > 0 : E[exp(X

2/t2)] ≤ 2
}
.

Examples:
◮ If X ∼ N(0, σ2), then ‖X‖ψ2 ≍ σ
◮ If X ∼ {−σ, σ} uniformly, then ‖X‖ψ2 ≍ σ

Fact:
◮ ‖ · ‖ψ2 is in fact a norm, i.e. ‖X + Y ‖ψ2 ≤ ‖X‖ψ2 + ‖Y ‖ψ2

even for non-independent random variables.

Definition
For a random vector X ∈ R

n, set

‖X‖ψ2,∞ := sup
w∈Sn−1

‖〈X,w〉‖ψ2 .
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Reduction

Claim. Online algorithm reduces to the following:

Theorem
Given any rooted tree T = (V,E), edges labeled with
ve ∈ Bn

2 . There is a distribution D over signs x ∈ {−1, 1}E so
that

∑

e∈Pi
xeve is O(1)-subgaussian for each root-leaf path

Pi.

−1

+1

+1

Pi
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Theorem (Banaszczyk 1998)

For any convex body K ⊆ R
n with γn(K) ≥ 1

2
and vector

u ∈ R
n with ‖u‖2 ≤ 1

5
, there is a convex body

(K ∗ u) ⊆ (K + u) ∪ (K − u) with γn(K ∗ u) ≥ γn(K).

+u−u

K + uK − u

K ∗ u

0

Theorem (Banaszczyk 1998)

For any convex body K ⊆ R
n with γn(K) ≥ 1

2
and vectors

v1, . . . , vm with ‖vi‖2 ≤ 1
5
, there are signs x ∈ {−1, 1}m so that

∑m
i=1 xivi ∈ K.
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Signs for a labelled tree

Theorem
Let T = (V,E) be a rooted tree where each edge e ∈ E is
assigned a vector ve ∈ R

n with ‖ve‖2 ≤ 1. Let K ⊆ R
n be a

convex body with γn(K) ≥ 1− 1
2|E|

. Then there are signs

x ∈ {−1, 1}E so that
∑

e∈Pi
xeve ∈ 5K ∀i ∈ V, where Pi ⊆ E

are the edges on the path from the root to i.

Not yet what we need:

◮ This only finds one sign vector, not a distribution!

◮ K needs to be huge!!

Proof similar to:

◮ [Banaszczyk 2012] T is path

◮ [Bansal, Jiang, Meka, Singla, Sinha 2022] vertices are
labelled rather than edges
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⋂
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Signs for a labelled tree

Proof.
◮ Recursively define Ki ⊆ R

n: for leaf i ∈ V , define
Ki := K, for non-leaf Ki :=

⋂

j∈children(i)(Kj ∗ 1
5
v{i,j}) ∩K

Claim. γn(Ki) ≥ 1− |descendents of i|
2|E|

.
Proof.

γn(Ki)

union
bound≥ 1−

∑

j desc. of i

γn

(

R
n \

(

Kj ∗
v{i,j}
5

))

︸ ︷︷ ︸

≤
|desc. of j|

2|E|
by ind.

− γn(R
n \K)

︸ ︷︷ ︸

≤ 1
2|E|

≥ 1− |desc. of i|
2|E|

Ki
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Claim. ∃x ∈ {−1, 1}E: ∑e∈Pi
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Signs for a labelled tree (2)

Claim. ∃x ∈ {−1, 1}E: ∑e∈Pi
xeve ∈ 5Ki for all i ∈ V .

Proof.

◮ Let {i, j} ∈ E. Suppose by induction, we have already
signs so that

∑

e∈Pi
xeve ∈ 5Ki.

◮ Then
∑

e∈Pi

xeve ∈ 5Ki ⊆ 5(Kj ∗
1

5
vij) ⊆ 5((Kj + vij) ∪ (Kj − vij))

◮ So ∃xij ∈ {−1, 1} so that
∑

e∈Pj
xeve ∈ 5Kj

i

j

+1

−1

xi,j
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that
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e∈Pi
xeve is O(1)-subgaussian for each root-leaf path
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Theorem
Given any rooted tree T = (V,E), edges labeled with
ve ∈ Bn

2 . There is a distribution D over signs x ∈ {−1, 1}E so
that

∑

e∈Pi
xeve is O(1)-subgaussian for each root-leaf path
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N blocks

N parts

◮ Subdivide each edge into N edges. Replace ve ∈ R
n by N

copies in dim nN . Define the convex body

K :=
{
y ∈ R

Nn | ‖Y ‖ψ2,∞ ≤ O(1) where Y ∼ {y(1), . . . , y(N)}
}

◮ Suffices to prove γNn(K) ≥ 1− 1
poly(n,N)



Sign distribution for a tree (2)

◮ By union bound over 2O(n) directions with N := 2ΘC(n), it
suffices to show:

Claim. For C and N large enough,
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N100
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◮ By union bound over 2O(n) directions with N := 2ΘC(n), it
suffices to show:

Claim. For C and N large enough,

Pr
g1,...,gN∼N(0,1)

[ ∑

ℓ∈[N ]

exp
( g2ℓ
C2

)

≤ O(N)
]

≥ 1− 1

N100

◮ Problem: For g ∼ N(0, 1), the random variables of the

form X := exp( g
2

C2 ), have heavy tails, i.e. E[eλX ] = ∞ for
all λ > 0. Chernov/Bernstein does not apply!

◮ But polynomial moments are bounded:

E[Xp] = exp( p
C2 · g2) < ∞ if p < C2/2



Sign distribution for a tree (3)

Lemma (Variant of Rosenthal’s Inequality)

Let p ≥ 2, c > 0 and let X1, . . . , XN independent centered RVs
with E[|Xi|p] ≤ Op(1). Then

Pr
[∣
∣
∣

N∑

ℓ=1

Xℓ

∣
∣
∣ ≥ cN

]

≤ Oc,p(1)

Np/2

◮ Note: Gives polynomial concentration, not exponential!

◮ Concludes the proof.
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Polynomial time algorithm
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v1, . . . , vT ∈ R

n with ‖vt‖2 ≤ 1 one-by-one by an oblivious
adversary keeps all signed prefix sums O(1)-subgaussian?

◮ We know O(
√

log(nT )) [Alweiss, Liu, Sawhney 2021]
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◮ We know O(
√

log(nT )) [Alweiss, Liu, Sawhney 2021]

Oblivious Spencer

Given v1, . . . , vn ∈ [−1, 1]n one-by-one (obliviously), can we
find online signs x1, . . . , xn ∈ {±1} so that
‖
∑n

i=1 xivi‖∞ ≤ O(
√
n) w.h.p.?

◮ True for offline version [Spencer 85]

◮ True, if vi ∼ {−1, 1}n at random [Bansal, Spencer ’20]
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Thanks for your attention


