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A lower bound

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player

IS2F 2]l > VT

Proof.
> Pick v, orthogonal to w,_y := 121 2,0; with [Juy]s = 1
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A lower bound

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player

ISz, > VT
Proof.

» Pick v; orthogonal to wy_; := Zf;} z;v; with ||vg]l2 =1

> Basy: [Jwil|3 = [Jwe-1]l3 + 22¢ (we—r, ve) + ||vel|3 = ¢
Observations:
» Player also has strategy to keep || ZiT:1 zvills < VT

» Randomization does not help player



Oblivious adversary

» Input: Adversary fixes vectors vy, ...,vyr € R" with
|vi]l2 < 1 in advance. Then reveals vectors one at a time.
» Goal: Find signs xy,...,zr € {—1,1} online so that
S, ;v; approximately balanced for all ¢ € [T]



Oblivious adversary

» Input: Adversary fixes vectors vy, ...,vyr € R" with
|vi]l2 < 1 in advance. Then reveals vectors one at a time.

» Goal: Find signs xy,...,zr € {—1,1} online so that
Z§=1 x;v; approximately balanced for all t € [T]]

Thoughts: How is this easier for us? Maybe arriving vector v,
still orthogonal to current position. Also would not make a
difference for existing potential function arguments!



Oblivious adversary

» Input: Adversary fixes vectors vy, ...,vyr € R" with
|vi]l2 < 1 in advance. Then reveals vectors one at a time.

» Goal: Find signs xy,...,zr € {—1,1} online so that
Z§=1 x;v; approximately balanced for all t € [T]]

Thoughts: How is this easier for us? Maybe arriving vector v,
still orthogonal to current position. Also would not make a
difference for existing potential function arguments!

But now randomization can help!
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The Self-balancing Walk (Alweiss et al)

(1) Set wp := 0 and s := O(y/log(nT))
(2) FORt=1TOT
(3) With probability 3 — w set x4 := 1, otherwise
Ty = -1

(4) Update wy := wy—1 + 240y

0 W1
°

E[w]
Theorem (Alweiss, Liu, Sawhney STOC 2021)

For any t, w; is ©(y/log(nT))-subgaussian in every direction.

Example:
> E[[|wrll2] < O(y/nlog(nT))
» E[max; [|w]|e] < O(log(nT))
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Main contribution

Theorem (Kulkarni, Reis, R.’23)

There is an online coloring strategy that for any sequence
v, ..., vp € R" with ||v;]]2 < 1, fixed in advance, revealed one
at a time, finds random signs x1,...,zr € {—1,1} so that:
for each ¢, 3'_, z;v; is O(1)-subgaussian.

» Improves over the O(y/log(nT"))-subgaussian bound by
[ALS’21] ...

» ...but not quite constructive (best running time we can
prove is 22",
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Subgaussianity (2)

Definition
The subgaussian norm of a random variable is

| X |y, := inf {¢ > 0 : E[exp(X?/t*)] < 2}.

Examples:
» If X ~ N(0,0%), then || X||y, <o
» If X ~ {—0,0} uniformly, then ||X||4, <o
Fact:
>[I+ lly, is in fact a norm, ie. X +Yly, < (| X[y, + [Vl
even for non-independent random variables.

Definition
For a random vector X € R"”, set

1X 200 := sup [[{X, w) 4

wES™—
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Banaszczyk Theorem

Theorem (Banaszczyk 1998)

For any convex body K C R™ with ~,(K) > 5 and vector
u € R™ with |Jul|z < &, there is a convex body
(K xu) C (K +u)U (K — u) with v, (K % u) > 7, (K).

K—u K+u

K *xu

Theorem (Banaszczyk 1998)

For any convex body K C R™ with ~v,(K) > 5 and vectors

U1, .., U with |[vgl|s < 1, there are signs x € {—1,1}™ so that
Zi:l zv; € K.
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Theorem

Let T = (V, E) be a rooted tree where each edge e € E is

assigned a vector v, € R™ with ||vells < 1. Let K CR™ be a

convex body with 7v,(K) > 1 — ﬁ Then there are signs

x € {=1,1}7 so that Y cp Teve € 5K Vi € V, where P, C E
are the edges on the path from the root to 1.
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Signs for a labelled tree

Theorem

Let T = (V, E) be a rooted tree where each edge e € E is
assigned a vector v, € R™ with ||vells < 1. Let K CR™ be a
convex body with 7v,(K) > 1 — ﬁ Then there are signs

x € {=1,1}7 so that Y cp Teve € 5K Vi € V, where P, C E
are the edges on the path from the root to 1.

Not yet what we need:
» This only finds one sign vector, not a distribution!
» K needs to be huge!!

Proof similar to:
» [Banaszczyk 2012] T is path

» [Bansal, Jiang, Meka, Singla, Sinha 2022] vertices are
labelled rather than edges
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Signs for a labelled tree

Proof.
» Recursively define K; C R"™: for leaf i € V, define
K; := K, for non-leaf K; := (;ccpidren(s) (5 * v ) NK

i descendents of
Claim. 7, (K;) > 1 — lescencenis ofi]



Signs for a labelled tree

Proof.
» Recursively define K; C R™: for leaf i € V, deﬁne

K := K for non-leaf K; = mjechlldren(z) (K * U{l J}) nK

Claim. 'Yn(K) >1— \descer;(?gl‘ts of i
Proof.
1[1)13111(1)11(11 n U{i,j} n
j desc. of i < 1
gi‘descl ‘T”‘ by ind. =2l
|desc. of i
> S D
- 2|E]
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Signs for a labelled tree (2)

Claim. 3z € {—1,1}: > eep, Tele € HK for all i € V.
Proof.
» Let {i,5} € E. Suppose by induction, we have already
signs so that > _, z.v. € 5K;.
» Then

ecP;

1
Z Tele € 5KZ g 5(KJ * gvij) Q 5((KJ + Uij) U (KJ — Uij))

ech;

> So Juy; € {—1,1} so that 3, p @eve € 5K;
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Sign distribution for a tree

Theorem

Given any rooted tree T = (V, E), edges labeled with
ve € BY. There is a distribution D over signs x € {—1,1}F so
that ) cp Ve is O(1)-subgaussian for each root-leaf path

P;.
N}ﬁs/

» Subdivide each edge into N edges. Replace v, € R™ by N
copies in dim n/N. Define the convex body
K = {y E RN | |V |lpp.co < O(1) where Y ~ {y®, ... ,y(N)}}

» Suffices to prove ”YNn(K) >1- poly(ln N)




Sign distribution for a tree (2)

» By union bound over 29 directions with N := 29 it
suffices to show:
Claim. For C' and N large enough,

&) <on]=1- 5
91 ngN(o,l)LNItE [eXp<CQ 0] =1 N100

.....
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Sign distribution for a tree (2)

» By union bound over 29 directions with N := 29 it
suffices to show:

Claim. For C' and N large enough,

2
9y 1
P [ <—> < O(N ] >1—
91y gNEN(OJ) e%} P c?/) ~ OW)| z N 100

» Problem: For g ~ N(0,1), the random variables of the
form X := exp(é—i), have heavy tails, i.e. E[e**] = oo for
all A > 0. Chernov/Bernstein does not apply!

» But polynomial moments are bounded:
E[X?] = exp(& - ¢*) < o0 if p < C?/2



Sign distribution for a tree (3)

Lemma (Variant of Rosenthal’s Inequality)

Letp>2,¢c>0 and let Xq,..., Xy independent centered RVs
with E[| X;[P] < O,(1). Then

» Note: Gives polynomial concentration, not exponentiall

» Concludes the proof. O
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Is there a polynomial time online algorithm that given
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Oblivious Spencer
Given vy, ...,v, € [—1,1]" one-by-one (obliviously), can we

find online signs 1, ..., x, € {£1} so that
| 300 zivilleo < O(v/n) whop.?




Open problems

Polynomial time algorithm

Is there a polynomial time online algorithm that given

V1, ..., € R" with ||vg]|2 < 1 one-by-one by an oblivious

adversary keeps all signed prefix sums O(1)-subgaussian?

» We know O(y/log(nT)) [Alweiss, Liu, Sawhney 2021]

Oblivious Spencer
Given vy, ...,v, € [—1,1]" one-by-one (obliviously), can we

find online signs 1, ..., x, € {£1} so that
| 300 zivilleo < O(v/n) whop.?

» True for offline version [Spencer 85]

» True, if v; ~ {—1,1}" at random [Bansal, Spencer 20|
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Note: Prefix-discrepancy possibly easier than (oblivious)
online

Prefix Beck-Fiala
Given vy, ...,vr € R™ with ||v;]|; < 1, are there signs
r € {—1,1}7 so that
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» Known is O(y/log(nT"))-bound [Banaszczyk 2012]
» True, if only for total sum (¢t = T') [Beck-Fiala 81]
» False, if online oblivious (even for n = 2, online

oblivious needs E[maxeir || i, 2ivilloo] 2 /10g(T).



Open problem (2)

Note: Prefix-discrepancy possibly easier than (oblivious)
online

Prefix Beck-Fiala
Given vy, ...,vr € R™ with ||v;]|; < 1, are there signs
r € {—1,1}7 so that

t
H Z T4
i=1

<O0(1) VtelI]

» Known is O(y/log(nT"))-bound [Banaszczyk 2012]
» True, if only for total sum (¢t = T') [Beck-Fiala 81]
» False, if online oblivious (even for n = 2, online

oblivious needs E[maxeir || i, 2ivilloo] 2 /10g(T).
Thanks for your attention



