Optimal Online Discrepancy Minimization

Thomas Rothvoss

Joint work with Janardhan Kulkarni and Victor Reis

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

- ▶ Input: Given vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ revealed one at a time
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ short for all $t \in [T]$

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

▶ Pick v_t orthogonal to $w_{t-1} := \sum_{i=1}^{t-1} x_i v_i$ with $||v_t||_2 = 1$

0

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

- ▶ Pick v_t orthogonal to $w_{t-1} := \sum_{i=1}^{t-1} x_i v_i$ with $||v_t||_2 = 1$
- ► Easy: $||w_t||_2^2 = ||w_{t-1}||_2^2 + 2x_t \langle w_{t-1}, v_t \rangle + ||v_t||_2^2 = t$

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

- ▶ Pick v_t orthogonal to $w_{t-1} := \sum_{i=1}^{t-1} x_i v_i$ with $||v_t||_2 = 1$
- ► Easy: $||w_t||_2^2 = ||w_{t-1}||_2^2 + 2x_t \langle w_{t-1}, v_t \rangle + ||v_t||_2^2 = t$

Observations:

▶ Player also has strategy to keep $\|\sum_{i=1}^{T} x_i v_i\|_2 \leq \sqrt{T}$

Theorem (Folklore)

An adaptive adversary has a strategy so that for any player $\|\sum_{i=1}^{T} x_i v_i\|_2 \ge \sqrt{T}$.

Proof.

- ▶ Pick v_t orthogonal to $w_{t-1} := \sum_{i=1}^{t-1} x_i v_i$ with $||v_t||_2 = 1$
- ► Easy: $||w_t||_2^2 = ||w_{t-1}||_2^2 + 2x_t \langle w_{t-1}, v_t \rangle + ||v_t||_2^2 = t$

Observations:

- ▶ Player also has strategy to keep $\|\sum_{i=1}^{T} x_i v_i\|_2 \leq \sqrt{T}$
- ▶ Randomization does not help player

Oblivious adversary

- ▶ Input: Adversary fixes vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ in advance. Then reveals vectors one at a time.
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^t x_i v_i$ approximately balanced for all $t \in [T]$

Oblivious adversary

- ▶ Input: Adversary fixes vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ in advance. Then reveals vectors one at a time.
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^t x_i v_i$ approximately balanced for all $t \in [T]$

Thoughts: How is this easier for us? Maybe arriving vector v_t still orthogonal to current position. Also would not make a difference for existing potential function arguments!

Oblivious adversary

- ▶ Input: Adversary fixes vectors $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \le 1$ in advance. Then reveals vectors one at a time.
- ▶ Goal: Find signs $x_1, ..., x_T \in \{-1, 1\}$ online so that $\sum_{i=1}^{t} x_i v_i$ approximately balanced for all $t \in [T]$

Thoughts: How is this easier for us? Maybe arriving vector v_t still orthogonal to current position. Also would not make a difference for existing potential function arguments! But now **randomization** can help!

- (1) Set $w_0 := \mathbf{0}$ and $s := \Theta(\sqrt{\log(nT)})$
- (2) FOR t = 1 TO T(3) With probability $\frac{1}{2} - \frac{\langle w_{t-1}, v_t \rangle}{2s}$ set $x_t := 1$, otherwise $x_t := -1$
 - $(4) Update <math>w_t := w_{t-1} + x_t v_t$

- (1) Set $w_0 := \mathbf{0}$ and $s := \Theta(\sqrt{\log(nT)})$
- (2) FOR t = 1 TO T(3) With probability $\frac{1}{2} - \frac{\langle w_{t-1}, v_t \rangle}{2s}$ set $x_t := 1$, otherwise $x_t := -1$
 - $(4) Update <math>w_t := w_{t-1} + x_t v_t$

$$\mathbf{0}_{\bullet} \qquad \qquad w_{t-1}_{\bullet}$$

- (1) Set $w_0 := \mathbf{0}$ and $s := \Theta(\sqrt{\log(nT)})$
- (2) FOR t=1 TO T(3) With probability $\frac{1}{2} - \frac{\langle w_{t-1}, v_t \rangle}{2s}$ set $x_t := 1$, otherwise $x_t := -1$
 - $(4) Update <math>w_t := w_{t-1} + x_t v_t$

- (1) Set $w_0 := \mathbf{0}$ and $s := \Theta(\sqrt{\log(nT)})$
- (2) FOR t=1 TO T(3) With probability $\frac{1}{2} - \frac{\langle w_{t-1}, v_t \rangle}{2s}$ set $x_t := 1$, otherwise $x_t := -1$
 - $(4) Update <math>w_t := w_{t-1} + x_t v_t$

- (1) Set $w_0 := \mathbf{0}$ and $s := \Theta(\sqrt{\log(nT)})$
- (2) FOR t = 1 TO T
 - (3) With probability $\frac{1}{2} \frac{\langle w_{t-1}, v_t \rangle}{2s}$ set $x_t := 1$, otherwise $x_t := -1$
 - $(4) Update <math>w_t := w_{t-1} + x_t v_t$

Theorem (Alweiss, Liu, Sawhney STOC 2021)

For any t, w_t is $\Theta(\sqrt{\log(nT)})$ -subgaussian in every direction.

- (1) Set $w_0 := \mathbf{0}$ and $s := \Theta(\sqrt{\log(nT)})$ (2) FOR t = 1 TO T
 - (3) With probability $\frac{1}{2} \frac{\langle w_{t-1}, v_t \rangle}{2s}$ set $x_t := 1$, otherwise $x_t := -1$
 - (4) Update $w_t := w_{t-1} + x_t v_t$

Theorem (Alweiss, Liu, Sawhney STOC 2021)

For any t, w_t is $\Theta(\sqrt{\log(nT)})$ -subgaussian in every direction.

Example:

- $\triangleright \mathbb{E}[\|w_T\|_2] \leq O(\sqrt{n\log(nT)})$
- $\mathbb{E}[\max_{t} ||w_{t}||_{\infty}] \leq O(\log(nT))$

Main contribution

Theorem (Kulkarni, Reis, R.'23)

There is an **online coloring strategy** that for any sequence $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$, fixed **in advance**, revealed one at a time, finds **random signs** $x_1, \ldots, x_T \in \{-1, 1\}$ so that: for each $t, \sum_{i=1}^t x_i v_i$ is O(1)-subgaussian.

Main contribution

Theorem (Kulkarni, Reis, R.'23)

There is an **online coloring strategy** that for any sequence $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$, fixed **in advance**, revealed one at a time, finds **random signs** $x_1, \ldots, x_T \in \{-1, 1\}$ so that: for each $t, \sum_{i=1}^t x_i v_i$ is O(1)-subgaussian.

▶ Improves over the $\Theta(\sqrt{\log(nT)})$ -subgaussian bound by [ALS'21] ...

Main contribution

Theorem (Kulkarni, Reis, R.'23)

There is an **online coloring strategy** that for any sequence $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_2 \leq 1$, fixed **in advance**, revealed one at a time, finds **random signs** $x_1, \ldots, x_T \in \{-1, 1\}$ so that: for each $t, \sum_{i=1}^t x_i v_i$ is O(1)-subgaussian.

- ▶ Improves over the $\Theta(\sqrt{\log(nT)})$ -subgaussian bound by [ALS'21] ...
- ▶ ...but not quite constructive (best running time we can prove is $2^{2^{\text{poly}(nT)}}$).

Subgaussianity

Lemma (Subgaussianity)

For a random variable X the following is equivalent (up to constant factors)

(i) $\Pr[|X| \ge t] \le 2 \exp(-t^2/\sigma^2)$ for all $t \ge 0$.

Subgaussianity

Lemma (Subgaussianity)

For a random variable X the following is equivalent (up to constant factors)

- (i) $\Pr[|X| \ge t] \le 2 \exp(-t^2/\sigma^2)$ for all $t \ge 0$.
- (ii) $\mathbb{E}[\exp(\frac{X^2}{\sigma^2})] \le 2$

Subgaussianity

Lemma (Subgaussianity)

For a random variable X the following is equivalent (up to constant factors)

- (i) $\Pr[|X| \ge t] \le 2 \exp(-t^2/\sigma^2)$ for all $t \ge 0$.
- (ii) $\mathbb{E}[\exp(\frac{X^2}{\sigma^2})] \le 2$

If $\mathbb{E}[X=0]$ then also equivalent to

(iii) $\mathbb{E}[\exp(\lambda X)] \le \exp(\lambda^2 \sigma^2)$ for all $\lambda \ge 0$.

Subgaussianity

Lemma (Subgaussianity)

For a random variable X the following is equivalent (up to constant factors)

- (i) $\Pr[|X| \ge t] \le 2 \exp(-t^2/\sigma^2)$ for all $t \ge 0$.
- (ii) $\mathbb{E}[\exp(\frac{X^2}{\sigma^2})] \leq 2 \leftarrow$

If $\mathbb{E}[X=0]$ then also equivalent to

(iii) $\mathbb{E}[\exp(\lambda X)] \le \exp(\lambda^2 \sigma^2)$ for all $\lambda \ge 0$.

Definition

The **subgaussian norm** of a random variable is

$$||X||_{\psi_2} := \inf \{ t > 0 : \mathbb{E}[\exp(X^2/t^2)] \le 2 \}.$$

Subgaussianity (2)

Definition

The **subgaussian norm** of a random variable is

$$||X||_{\psi_2} := \inf \{t > 0 : \mathbb{E}[\exp(X^2/t^2)] \le 2\}.$$

Examples:

- If $X \sim N(0, \sigma^2)$, then $||X||_{\psi_2} \asymp \sigma$
- ▶ If $X \sim \{-\sigma, \sigma\}$ uniformly, then $||X||_{\psi_2} \asymp \sigma$

Subgaussianity (2)

Definition

The **subgaussian norm** of a random variable is

$$||X||_{\psi_2} := \inf \{ t > 0 : \mathbb{E}[\exp(X^2/t^2)] \le 2 \}.$$

Examples:

- If $X \sim N(0, \sigma^2)$, then $||X||_{\psi_2} \simeq \sigma$
- ▶ If $X \sim \{-\sigma, \sigma\}$ uniformly, then $||X||_{\psi_2} \asymp \sigma$

Fact:

▶ $\|\cdot\|_{\psi_2}$ is in fact a **norm**, i.e. $\|X+Y\|_{\psi_2} \leq \|X\|_{\psi_2} + \|Y\|_{\psi_2}$ even for non-independent random variables.

Subgaussianity (2)

Definition

The **subgaussian norm** of a random variable is

$$||X||_{\psi_2} := \inf \{ t > 0 : \mathbb{E}[\exp(X^2/t^2)] \le 2 \}.$$

Examples:

- If $X \sim N(0, \sigma^2)$, then $||X||_{\psi_2} \simeq \sigma$
- If $X \sim \{-\sigma, \sigma\}$ uniformly, then $||X||_{\psi_2} \asymp \sigma$

Fact:

▶ $\|\cdot\|_{\psi_2}$ is in fact a **norm**, i.e. $\|X+Y\|_{\psi_2} \leq \|X\|_{\psi_2} + \|Y\|_{\psi_2}$ even for non-independent random variables.

Definition

For a random vector $X \in \mathbb{R}^n$, set

$$||X||_{\psi_2,\infty} := \sup_{\alpha=1} ||\langle X, w \rangle||_{\psi_2}.$$

Claim. Online algorithm reduces to the following:

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$,

Claim. Online algorithm reduces to the following:

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$.

Claim. Online algorithm reduces to the following:

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$

Claim. Online algorithm reduces to the following:

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each root-leaf path P_i .

Reduction:

▶ Construction of \mathcal{T} : Tree has depth T

Reduction:

• Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$.

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$. Then adversary reveals root-leaf path edge-by-edge. We reveal corresponding sign x_e .

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$. Then adversary reveals root-leaf path edge-by-edge. We reveal corresponding sign x_e .

- ▶ Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$. Then adversary reveals root-leaf path edge-by-edge. We reveal corresponding sign x_e .

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$. Then adversary reveals root-leaf path edge-by-edge. We reveal corresponding sign x_e .

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$. Then adversary reveals root-leaf path edge-by-edge. We reveal corresponding sign x_e .

- ► Construction of \mathcal{T} : Tree has depth T, each interior nodes has outgoing edge for every vector in a fine ε -net of B_2^n
- ▶ Fix distribution \mathcal{D} over $\{-1,1\}^E$ giving O(1)-subgaussian root-leaf sums
- ▶ Our strategy: We draw $x \sim \mathcal{D}$. Then adversary reveals root-leaf path edge-by-edge. We reveal corresponding sign x_{ϵ} .

Theorem (Banaszczyk 1998)

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and vector $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

Theorem (Banaszczyk 1998)

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and vector $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

Theorem (Banaszczyk 1998)

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and vector $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

Theorem (Banaszczyk 1998)

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and vector $u \in \mathbb{R}^n$ with $||u||_2 \le \frac{1}{5}$, there is a convex body $(K * u) \subseteq (K + u) \cup (K - u)$ with $\gamma_n(K * u) \ge \gamma_n(K)$.

Theorem (Banaszczyk 1998)

For any convex body $K \subseteq \mathbb{R}^n$ with $\gamma_n(K) \ge \frac{1}{2}$ and vectors v_1, \ldots, v_m with $||v_i||_2 \le \frac{1}{5}$, there are signs $x \in \{-1, 1\}^m$ so that $\sum_{i=1}^m x_i v_i \in K$.

Theorem

Let $\mathcal{T} = (V, E)$ be a **rooted tree** where each edge $e \in E$ is assigned a vector $v_e \in \mathbb{R}^n$ with $||v_e||_2 \le 1$. Let $K \subseteq \mathbb{R}^n$ be a **convex body** with $\gamma_n(K) \ge 1 - \frac{1}{2|E|}$. Then there are signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e \in 5K \ \forall i \in V$, where $P_i \subseteq E$ are the edges on the path from the root to i.

Theorem

Let $\mathcal{T} = (V, E)$ be a **rooted tree** where each edge $e \in E$ is assigned a vector $v_e \in \mathbb{R}^n$ with $||v_e||_2 \le 1$. Let $K \subseteq \mathbb{R}^n$ be a **convex body** with $\gamma_n(K) \ge 1 - \frac{1}{2|E|}$. Then there are signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e \in 5K \ \forall i \in V$, where $P_i \subseteq E$ are the edges on the path from the root to i.

Not yet what we need:

- ▶ This only finds one sign vector, not a distribution!
- \blacktriangleright K needs to be huge!!

Proof similar to:

- ▶ [Banaszczyk 2012] \mathcal{T} is path
- ▶ [Bansal, Jiang, Meka, Singla, Sinha 2022] vertices are labelled rather than edges

Proof.

Proof.

Proof.

Proof.

Proof.

Proof.

▶ Recursively define $K_i \subseteq \mathbb{R}^n$: for leaf $i \in V$, define $K_i := K$, for non-leaf $K_i := \bigcap_{j \in \text{children}(i)} (K_j * \frac{1}{5} v_{\{i,j\}}) \cap K$ Claim. $\gamma_n(K_i) \geq 1 - \frac{|\text{descendents of } i|}{2|E|}$.

Proof.

▶ Recursively define $K_i \subseteq \mathbb{R}^n$: for leaf $i \in V$, define $K_i := K$, for non-leaf $K_i := \bigcap_{j \in \text{children}(i)} (K_j * \frac{1}{5} v_{\{i,j\}}) \cap K$

Claim. $\gamma_n(K_i) \geq 1 - \frac{|\text{descendents of } i|}{2|E|}$.

Proof.

Proof.

union bound

$$\gamma_n(K_i) \stackrel{\text{union bound}}{\geq} 1 - \sum_{j \text{ desc. of } i} \underbrace{\gamma_n\left(\mathbb{R}^n \setminus \left(K_j * \frac{v_{\{i,j\}}}{5}\right)\right)}_{\leq \frac{|\text{desc. of } j|}{2|E|} \text{ by ind.}} - \underbrace{\gamma_n(\mathbb{R}^n \setminus K)}_{\leq \frac{1}{2|E|}}$$

Claim. $\exists x \in \{-1, 1\}^E$: $\sum_{e \in P_i} x_e v_e \in 5K_i$ for all $i \in V$.

Claim. $\exists x \in \{-1,1\}^E$: $\sum_{e \in P_i} x_e v_e \in 5K_i$ for all $i \in V$. **Proof.**

▶ Let $\{i, j\} \in E$.

Claim. $\exists x \in \{-1,1\}^E$: $\sum_{e \in P_i} x_e v_e \in 5K_i$ for all $i \in V$. **Proof.**

▶ Let $\{i, j\} \in E$. Suppose by induction, we have already signs so that $\sum_{e \in P_i} x_e v_e \in 5K_i$.

Signs for a labelled tree (2)

Claim. $\exists x \in \{-1,1\}^E$: $\sum_{e \in P_i} x_e v_e \in 5K_i$ for all $i \in V$. **Proof.**

- ▶ Let $\{i, j\} \in E$. Suppose by induction, we have already signs so that $\sum_{e \in P_i} x_e v_e \in 5K_i$.
- ► Then

$$\sum_{e \in P_i} x_e v_e \in 5K_i \subseteq 5(K_j * \frac{1}{5}v_{ij}) \subseteq 5((K_j + v_{ij}) \cup (K_j - v_{ij}))$$

Signs for a labelled tree (2)

Claim. $\exists x \in \{-1, 1\}^E$: $\sum_{e \in P_i} x_e v_e \in 5K_i$ for all $i \in V$. **Proof.**

- ▶ Let $\{i, j\} \in E$. Suppose by induction, we have already signs so that $\sum_{e \in P_i} x_e v_e \in 5K_i$.
- ▶ Then

$$\sum_{e \in P_i} x_e v_e \in 5K_i \subseteq 5(K_j * \frac{1}{5}v_{ij}) \subseteq 5((K_j + v_{ij}) \cup (K_j - v_{ij}))$$

▶ So $\exists x_{ij} \in \{-1, 1\}$ so that $\sum_{e \in P_j} x_e v_e \in 5K_j$

Theorem

Given any **rooted tree** $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each **root-leaf path** P_i .

Theorem

Given any **rooted tree** $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each **root-leaf path** P_i .

Theorem

Given any **rooted tree** $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each **root-leaf path** P_i .

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each root-leaf path P_i .

▶ Subdivide each edge into N edges. Replace $v_e \in \mathbb{R}^n$ by N copies in dim nN.

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each root-leaf path P_i .

▶ Subdivide each edge into N edges. Replace $v_e \in \mathbb{R}^n$ by N copies in dim nN. Define the convex body

$$K := \{ y \in \mathbb{R}^{Nn} \mid ||Y||_{\psi_2,\infty} \le O(1) \text{ where } Y \sim \{y^{(1)}, \dots, y^{(N)}\} \}$$

Theorem

Given any rooted tree $\mathcal{T} = (V, E)$, edges labeled with $v_e \in B_2^n$. There is a distribution \mathcal{D} over signs $x \in \{-1, 1\}^E$ so that $\sum_{e \in P_i} x_e v_e$ is O(1)-subgaussian for each root-leaf path P_i .

▶ Subdivide each edge into N edges. Replace $v_e \in \mathbb{R}^n$ by N copies in dim nN. Define the convex body

$$K := \{ y \in \mathbb{R}^{Nn} \mid ||Y||_{\psi_2, \infty} \le O(1) \text{ where } Y \sim \{y^{(1)}, \dots, y^{(N)}\} \}$$

Suffices to prove $\gamma_{Nn}(K) \geq 1 - \frac{1}{poly(n,N)}$

▶ By union bound over $2^{O(n)}$ directions with $N := 2^{\Theta_C(n)}$, it suffices to show:

Claim. For C and N large enough,

$$\Pr_{g_1,\dots,g_N \sim N(0,1)} \left[\underset{\ell \sim [N]}{\mathbb{E}} \left[\exp\left(\frac{g_\ell^2}{C^2}\right) \right] \le O(1) \right] \ge 1 - \frac{1}{N^{100}}$$

▶ By union bound over $2^{O(n)}$ directions with $N := 2^{\Theta_C(n)}$, it suffices to show:

Claim. For C and N large enough,

$$\Pr_{g_1,\dots,g_N \sim N(0,1)} \left[\sum_{\ell \in [N]} \exp\left(\frac{g_\ell^2}{C^2}\right) \le O(N) \right] \ge 1 - \frac{1}{N^{100}}$$

▶ By union bound over $2^{O(n)}$ directions with $N := 2^{\Theta_C(n)}$, it suffices to show:

Claim. For C and N large enough,

$$\Pr_{g_1,\dots,g_N \sim N(0,1)} \left[\sum_{\ell \in [N]} \exp\left(\frac{g_\ell^2}{C^2}\right) \leq O(N) \right] \geq 1 - \frac{1}{N^{100}}$$

▶ **Problem:** For $g \sim N(0,1)$, the random variables of the form $X := \exp(\frac{g^2}{C^2})$, have **heavy tails**, i.e. $\mathbb{E}[e^{\lambda X}] = \infty$ for all $\lambda > 0$. Chernov/Bernstein does not apply!

▶ By union bound over $2^{O(n)}$ directions with $N := 2^{\Theta_C(n)}$, it suffices to show:

Claim. For C and N large enough,

$$\Pr_{g_1,\dots,g_N \sim N(0,1)} \left[\sum_{\ell \in [N]} \exp\left(\frac{g_\ell^2}{C^2}\right) \le O(N) \right] \ge 1 - \frac{1}{N^{100}}$$

- ▶ **Problem:** For $g \sim N(0,1)$, the random variables of the form $X := \exp(\frac{g^2}{C^2})$, have **heavy tails**, i.e. $\mathbb{E}[e^{\lambda X}] = \infty$ for all $\lambda > 0$. Chernov/Bernstein does not apply!
- ▶ But polynomial moments are bounded: $\mathbb{E}[X^p] = \exp(\frac{p}{C^2} \cdot g^2) < \infty$ if $p < C^2/2$

Lemma (Variant of Rosenthal's Inequality)

Let $p \geq 2$, c > 0 and let X_1, \ldots, X_N independent centered RVs with $\mathbb{E}[|X_i|^p] \leq O_p(1)$. Then

$$\Pr\left[\left|\sum_{\ell=1}^{N} X_{\ell}\right| \ge cN\right] \le \frac{O_{c,p}(1)}{N^{p/2}}$$

- ▶ **Note:** Gives **polynomial** concentration, not exponential!
- ► Concludes the proof.

Open problems

Polynomial time algorithm

Is there a polynomial time online algorithm that given $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_t||_2 \leq 1$ one-by-one by an oblivious adversary keeps all signed prefix sums O(1)-subgaussian?

▶ We know $O(\sqrt{\log(nT)})$ [Alweiss, Liu, Sawhney 2021]

Open problems

Polynomial time algorithm

Is there a polynomial time online algorithm that given $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_t||_2 \leq 1$ one-by-one by an oblivious adversary keeps all signed prefix sums O(1)-subgaussian?

• We know $O(\sqrt{\log(nT)})$ [Alweiss, Liu, Sawhney 2021]

Oblivious Spencer

Given $v_1, \ldots, v_n \in [-1, 1]^n$ one-by-one (**obliviously**), can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that

$$\|\sum_{i=1}^n x_i v_i\|_{\infty} \le O(\sqrt{n})$$
 w.h.p.?

Open problems

Polynomial time algorithm

Is there a polynomial time online algorithm that given $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_t||_2 \leq 1$ one-by-one by an oblivious adversary keeps all signed prefix sums O(1)-subgaussian?

• We know $O(\sqrt{\log(nT)})$ [Alweiss, Liu, Sawhney 2021]

Oblivious Spencer

Given $v_1, \ldots, v_n \in [-1, 1]^n$ one-by-one (**obliviously**), can we find online signs $x_1, \ldots, x_n \in \{\pm 1\}$ so that $\|\sum_{i=1}^n x_i v_i\|_{\infty} \leq O(\sqrt{n})$ w.h.p.?

- ► True for offline version [Spencer 85]
- ▶ True, if $v_i \sim \{-1, 1\}^n$ at random [Bansal, Spencer '20]

Open problem (2)

Note: Prefix-discrepancy possibly easier than (oblivious) online

Prefix Beck-Fiala

Given $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_1 \leq 1$, are there signs $x \in \{-1, 1\}^T$ so that

$$\left\| \sum_{i=1}^{t} x_i v_i \right\|_{\infty} \le O(1) \quad \forall t \in [T]$$

Open problem (2)

Note: Prefix-discrepancy possibly easier than (oblivious) online

Prefix Beck-Fiala

Given $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_1 \leq 1$, are there signs $x \in \{-1, 1\}^T$ so that

$$\left\| \sum_{i=1}^{t} x_i v_i \right\|_{\infty} \le O(1) \quad \forall t \in [T]$$

- ► Known is $O(\sqrt{\log(nT)})$ -bound [Banaszczyk 2012]
- ▶ True, if only for **total sum** (t = T) [Beck-Fiala 81]
- ▶ False, if online oblivious (even for n = 2, online oblivious needs $\mathbb{E}[\max_{t \in [T]} \| \sum_{i=1}^t x_i v_i \|_{\infty}] \gtrsim \sqrt{\log(T)}$.

Open problem (2)

Note: Prefix-discrepancy possibly easier than (oblivious) online

Prefix Beck-Fiala

Given $v_1, \ldots, v_T \in \mathbb{R}^n$ with $||v_i||_1 \leq 1$, are there signs $x \in \{-1, 1\}^T$ so that

$$\left\| \sum_{i=1}^{t} x_i v_i \right\|_{\infty} \le O(1) \quad \forall t \in [T]$$

- ► Known is $O(\sqrt{\log(nT)})$ -bound [Banaszczyk 2012]
- ▶ True, if only for **total sum** (t = T) [Beck-Fiala 81]
- ▶ False, if online oblivious (even for n = 2, online oblivious needs $\mathbb{E}[\max_{t \in [T]} \| \sum_{i=1}^t x_i v_i \|_{\infty}] \gtrsim \sqrt{\log(T)}$.

Thanks for your attention