
Approximation Algorithms for

Single and Multi-Commodity

Connected Facility Location

Fabrizio Grandoni & Thomas Rothvoß

Department of Mathematics, M.I.T.

IPCO 2011

Outline

1.
Better approximation algorithm
for Connected Facility Location

Outline

1.
Better approximation algorithm
for Connected Facility Location

2.
First O(1)-apx for Multi-Commodity

Connected Facility Location

Outline

1.
Better approximation algorithm
for Connected Facility Location

2.
First O(1)-apx for Multi-Commodity

Connected Facility Location

3. Improved hardness results for several problems

Part 1: Connected Facility Location

Given:

◮ graph G = (V,E), with
metric distances c : E → Q+

Part 1: Connected Facility Location

Given:

◮ graph G = (V,E), with
metric distances c : E → Q+

◮ a set of clients C ⊆ V

clients

Part 1: Connected Facility Location

Given:

◮ graph G = (V,E), with
metric distances c : E → Q+

◮ a set of clients C ⊆ V

◮ facilities F ⊆ V , with
opening cost o : F → Q+

facility clients

Part 1: Connected Facility Location

Given:

◮ graph G = (V,E), with
metric distances c : E → Q+

◮ a set of clients C ⊆ V

◮ facilities F ⊆ V , with
opening cost o : F → Q+

◮ a parameter M ≥ 1

facility clients

Part 1: Connected Facility Location

Given:

◮ graph G = (V,E), with
metric distances c : E → Q+

◮ a set of clients C ⊆ V

◮ facilities F ⊆ V , with
opening cost o : F → Q+

◮ a parameter M ≥ 1

facility clients

Goal:

◮ open facilities F ′ ⊆ F

minimizing

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+
∑

j∈C

c(j, F ′)

︸ ︷︷ ︸

connection cost

Part 1: Connected Facility Location

Given:

◮ graph G = (V,E), with
metric distances c : E → Q+

◮ a set of clients C ⊆ V

◮ facilities F ⊆ V , with
opening cost o : F → Q+

◮ a parameter M ≥ 1

facility clients

Goal:

◮ open facilities F ′ ⊆ F

◮ find Steiner tree T spanning opened facilities

minimizing

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+
∑

j∈C

c(j, F ′)

︸ ︷︷ ︸

connection cost

+ M
∑

e∈T

c(e)

︸ ︷︷ ︸

Steiner cost

Previous Results for Connected Facility

Location

◮ APX-hard (reduction from Steiner Tree)

◮ 10.66-apx based on LP-rounding [Gupta et al ’01].

◮ 8.55-apx primal-dual algorithm
[Swamy, Kumar ’02].

◮ 3.92-apx based on random-sampling
[Eisenbrand, Grandoni, R., Schäfer ’08]

Previous Results for Connected Facility

Location

◮ APX-hard (reduction from Steiner Tree)

◮ 10.66-apx based on LP-rounding [Gupta et al ’01].

◮ 8.55-apx primal-dual algorithm
[Swamy, Kumar ’02].

◮ 3.92-apx based on random-sampling
[Eisenbrand, Grandoni, R., Schäfer ’08]

Our result

Simple 3.19-approximation algorithm.

Previous Results for Connected Facility

Location

◮ APX-hard (reduction from Steiner Tree)

◮ 10.66-apx based on LP-rounding [Gupta et al ’01].

◮ 8.55-apx primal-dual algorithm
[Swamy, Kumar ’02].

◮ 3.92-apx based on random-sampling
[Eisenbrand, Grandoni, R., Schäfer ’08]

Our result

Simple 3.19-approximation algorithm.

Use existing algorithms for subproblems:

◮ Facility Location: 1.5-apx [Byrka ’07]

◮ Steiner Tree: 1.39-apx [Byrka,Grandoni,R.,Sanità 10]

Where is the difficulty?

Algorithm:

opening cost 0

Where is the difficulty?

Algorithm:

(1) Just solve Facility Location

opening cost 0

Where is the difficulty?

Algorithm:

(1) Just solve Facility Location

(2) Run Steiner Tree algorithm

opening cost 0

pay tree M times!

Where is the difficulty?

Algorithm:

(1) Just solve Facility Location

(2) Run Steiner Tree algorithm

opening cost 0

pay tree M times!

Do
es
n’
t w

or
k!

The CFL algorithm

The CFL algorithm

(1) Guess facility r from OPT .

r

The CFL algorithm

(1) Guess facility r from OPT .

(2) Sample each client with prob 1
M → C ′

r

The CFL algorithm

(1) Guess facility r from OPT .

(2) Sample each client with prob 1
M → C ′

(3) Compute 1.5-apx F ′ for Facility Location instance

o′(f) := o(f) +M · c(f,nearest node in C ′ ∪ {r})

r o(f)+ penalty

The CFL algorithm

(1) Guess facility r from OPT .

(2) Sample each client with prob 1
M → C ′

(3) Compute 1.5-apx F ′ for Facility Location instance

o′(f) := o(f) +M · c(f,nearest node in C ′ ∪ {r})

r

The CFL algorithm

(1) Guess facility r from OPT .

(2) Sample each client with prob 1
M → C ′

(3) Compute 1.5-apx F ′ for Facility Location instance

o′(f) := o(f) +M · c(f,nearest node in C ′ ∪ {r})

(4) Compute 1.39-apx Steiner Tree T ′ on F ′ ∪ {r}

r

The CFL algorithm

(1) Guess facility r from OPT .

(2) Sample each client with prob 1
M → C ′

(3) Compute 1.5-apx F ′ for Facility Location instance

o′(f) := o(f) +M · c(f,nearest node in C ′ ∪ {r})

(4) Compute 1.39-apx Steiner Tree T ′ on F ′ ∪ {r}

r

◮ Observe:

E[APX] ≤ E

cost of apx
Facility Location sol.

+penalties

+E

cost of apx
Steiner Tree

The CFL algorithm

(1) Guess facility r from OPT .

(2) Sample each client with prob 1
M → C ′

(3) Compute 1.5-apx F ′ for Facility Location instance

o′(f) := o(f) +M · c(f,nearest node in C ′ ∪ {r})

(4) Compute 1.39-apx Steiner Tree T ′ on F ′ ∪ {r}

r

◮ Observe:

E[APX] ≤ E

cost of apx
Facility Location sol.

+penalties

+E

cost of apx
Steiner Tree

on C ′ ∪ {r}

Analysis: Steiner Cost

Notation:

OPT = O∗

︸︷︷︸

opening cost

+ S∗

︸︷︷︸

Steiner tree cost

+ C∗

︸︷︷︸

connection cost

Analysis: Steiner Cost

Notation:

OPT = O∗

︸︷︷︸

opening cost

+ S∗

︸︷︷︸

Steiner tree cost

+ C∗

︸︷︷︸

connection cost

Lemma

E[M · apx Steiner Tree on C ′ ∪ {r}] ≤ 1.39 · (S∗ + C∗)

r

Analysis: Steiner Cost

Notation:

OPT = O∗

︸︷︷︸

opening cost

+ S∗

︸︷︷︸

Steiner tree cost

+ C∗

︸︷︷︸

connection cost

Lemma

E[M · apx Steiner Tree on C ′ ∪ {r}] ≤ 1.39 · (S∗ + C∗)

r

S∗

︸︷︷︸

Steiner tree
in OPT

Analysis: Steiner Cost

Notation:

OPT = O∗

︸︷︷︸

opening cost

+ S∗

︸︷︷︸

Steiner tree cost

+ C∗

︸︷︷︸

connection cost

Lemma

E[M · apx Steiner Tree on C ′ ∪ {r}] ≤ 1.39 · (S∗ + C∗)

r

S∗

︸︷︷︸

Steiner tree
in OPT

+
1

M
·M · C∗

︸ ︷︷ ︸

need path in C∗

with prob. 1/M

Analysis: Steiner Cost

Notation:

OPT = O∗

︸︷︷︸

opening cost

+ S∗

︸︷︷︸

Steiner tree cost

+ C∗

︸︷︷︸

connection cost

Lemma

E[M · apx Steiner Tree on C ′ ∪ {r}] ≤ 1.39 · (S∗ + C∗)

r

1.39 ·
(

S∗

︸︷︷︸

Steiner tree
in OPT

+
1

M
·M · C∗

︸ ︷︷ ︸

need path in C∗

with prob. 1/M

)

Core detouring theorem

Core Detouring Theorem [EGSR ’08]

Given a spanning tree T with root r ∈ T and distinguished
terminals D ⊆ V . Sample any terminal in D with prob. p ∈]0, 1]

E
[∑

v∈D

dist(v, sampled node ∪ {r})
]

≤
0.81

p
· c(T)

r

T

Core detouring theorem

Core Detouring Theorem [EGSR ’08]

Given a spanning tree T with root r ∈ T and distinguished
terminals D ⊆ V . Sample any terminal in D with prob. p ∈]0, 1]

E
[∑

v∈D

dist(v, sampled node ∪ {r})
]

≤
0.81

p
· c(T)

r

T

r

r r

Core detouring theorem

Core Detouring Theorem [EGSR ’08]

Given a spanning tree T with root r ∈ T and distinguished
terminals D ⊆ V . Sample any terminal in D with prob. p ∈]0, 1]

E
[∑

v∈D

dist(v, sampled node ∪ {r})
]

≤
0.81

p
· c(T)

r

T

r

r r

Analysis: Facility Location cost

Theorem

E[apx Facility Location cost] ≤ 1.5 · (O∗ + 2C∗ + 0.81S∗)

r

Analysis: Facility Location cost

Theorem

E[apx Facility Location cost] ≤ 1.5 · (O∗ + 2C∗ + 0.81S∗)

◮ There is a good sol: F := facilities in OPT serving C ′ ∪ {r}

r

Analysis: Facility Location cost

Theorem

E[apx Facility Location cost] ≤ 1.5 · (O∗ + 2C∗ + 0.81S∗)

◮ There is a good sol: F := facilities in OPT serving C ′ ∪ {r}

◮ E

[
opening cost
+ penalties

]

≤ O∗

︸︷︷︸

orig. cost

+
1

M
·M · C∗

︸ ︷︷ ︸

expected penalty

r

Analysis: Facility Location cost

Theorem

E[apx Facility Location cost] ≤ 1.5 · (O∗ + 2C∗ + 0.81S∗)

◮ There is a good sol: F := facilities in OPT serving C ′ ∪ {r}

◮ E

[
opening cost
+ penalties

]

≤ O∗

︸︷︷︸

orig. cost

+
1

M
·M · C∗

︸ ︷︷ ︸

expected penalty

◮ E[connection cost] ≤ C∗ +

r

Analysis: Facility Location cost

Theorem

E[apx Facility Location cost] ≤ 1.5 · (O∗ + 2C∗ + 0.81S∗)

◮ There is a good sol: F := facilities in OPT serving C ′ ∪ {r}

◮ E

[
opening cost
+ penalties

]

≤ O∗

︸︷︷︸

orig. cost

+
1

M
·M · C∗

︸ ︷︷ ︸

expected penalty

◮ E[connection cost] ≤ C∗ +
0.81

1/M
·
S∗

M
︸︷︷︸

tree

Use Core Detouring Theorem with T = S∗ and p := 1
M .

r

Finishing the analysis for CFL

Conclusion:

E[APX] ≤ 1.39 · (S∗ + C∗) + 1.5 · (O∗ + 2C∗ + 0.81S∗)

Finishing the analysis for CFL

Conclusion:

E[APX] ≤ 1.39 · (S∗ + C∗) + 1.5 · (O∗ + 2C∗ + 0.81S∗)

≤ 1.5 · O∗ + 2.7 · S∗ + 4.39 · C∗

Finishing the analysis for CFL

Conclusion:

E[APX] ≤ 1.39 · (S∗ + C∗) + 1.5 · (O∗ + 2C∗ + 0.81S∗)

≤ 1.5 · O∗ + 2.7 · S∗ + 4.39 · C∗

Improvement to 3.19:

◮ Adapting the sampling probability

◮ Using a bi-factor Facility Location algorithm

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

+

k∑

i=1

distF ′,T (si, ri)
︸ ︷︷ ︸

0 distance between
opened & connected

facilities

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

+

k∑

i=1

distF ′,T (si, ri)
︸ ︷︷ ︸

0 distance between
opened & connected

facilities

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

+

k∑

i=1

distF ′,T (si, ri)
︸ ︷︷ ︸

0 distance between
opened & connected

facilities

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

+

k∑

i=1

distF ′,T (si, ri)
︸ ︷︷ ︸

0 distance between
opened & connected

facilities

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

+

k∑

i=1

distF ′,T (si, ri)
︸ ︷︷ ︸

0 distance between
opened & connected

facilities

Part 2: Multi-Commodity Connected Facility

Location

Input:

◮ Undirected graph G = (V,E),
metric distances c : E → Q+

◮ source-sink pairs
(s1, r1), . . . , (sk, rk)

◮ a set of facilities F ⊆ V with
opening costs o : F → Q+

◮ parameter M ≥ 1

s1

r1

s2

r2

s3

r3

r4s4

s5

r5

s6

r6

Goal: Find
◮ Facilities F ′ ⊆ F
◮ Forest T

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+M · c(T)
︸ ︷︷ ︸

forest cost

+

k∑

i=1

distF ′,T (si, ri)
︸ ︷︷ ︸

0 distance between
opened & connected

facilities

Our result

Our result

Simple 16.2-approximation algorithm for Multi-Commodity

Connected Facility Location.

Ingredients:

◮ Random-sampling

◮ Use algorithms for
◮ Price-Collecting Facility Location

◮ Steiner Forest

Part 3: Improved hardness results

Steiner Tree Facility Location

Connected

Facility Location

Single-Sink

Rent-or-Buy

Single-Sink

Buy-at-Bulk

Virtual Private

Network

generalizes

Part 3: Improved hardness results

Steiner Tree

1.01
Facility Location

1.46

Connected

Facility Location

1.46

Single-Sink

Rent-or-Buy

1.01

Single-Sink

Buy-at-Bulk

1.01

Virtual Private

Network

1.01

generalizes

Part 3: Improved hardness results

Steiner Tree

1.01
Facility Location

1.46

Connected

Facility Location

1.46

Single-Sink

Rent-or-Buy

1.01

Single-Sink

Buy-at-Bulk

1.01

Virtual Private

Network

1.01

generalizes

1.2
8

1.2
8

1.2
8

Part 3: Improved hardness results

Steiner Tree

1.01
Facility Location

1.46

Connected

Facility Location

1.46

Single-Sink

Rent-or-Buy

1.01

Single-Sink

Buy-at-Bulk

1.01

Virtual Private

Network

1.01

generalizes

1.2
8

1.2
8

1.2
8

o(f) = 0
∀f ∈ V

The reduction (1)

◮ Reduce Set Cover to SROB

b

elements

sets

The reduction (1)

◮ Reduce Set Cover to SROB

c(e) ∈ {1, 2}

M =
0.27n

OPTSC

r

clients/elements

facilities/sets

The reduction (1)

◮ Reduce Set Cover to SROB

c(e) ∈ {1, 2}

M =
0.27n

OPTSC

r

1 2

clients/elements

facilities/sets

The reduction (1)

◮ Reduce Set Cover to SROB

c(e) ∈ {1, 2}

M =
0.27n

OPTSC

r

1 2

clients/elements

facilities/sets

remove!

buy!

(1) WHILE not all elements covered DO

(2) Compute 1.27-apx SROB sol
(3) Buy facilities/sets in sol. & remove covered elements

The reduction (2)

◮ Use idea from [Guha & Khuller ’99]

1 · OPTSC 2 · OPTSC

n

clients at dist 1

facilities in apx. sol

0.27 # fac
OPTSC

n+ 0.3667n

The reduction (2)

◮ Use idea from [Guha & Khuller ’99]

1 · OPTSC 2 · OPTSC

n

clients at dist 1

facilities in apx. sol

0.27 # fac
OPTSC

n+ 0.3667n

b
apx SROB sol.

The reduction (2)

◮ Use idea from [Guha & Khuller ’99]

1 · OPTSC 2 · OPTSC

n

clients at dist 1

facilities in apx. sol

0.27 # fac
OPTSC

n+ 0.3667n

b
apx SROB sol.

needed sets ≤ [. . . some calc . . .] ≤ 0.999 ln(n) · OPTSC

The reduction (2)

◮ Use idea from [Guha & Khuller ’99]

1 · OPTSC 2 · OPTSC

n

clients at dist 1

facilities in apx. sol

0.27 # fac
OPTSC

n+ 0.3667n

b
apx SROB sol.

needed sets ≤ [. . . some calc . . .] ≤ 0.999 ln(n) · OPTSC

◮ Contradiction!

Theorem (Feige ’98)

Unless NP ⊆ DTIME(nO(log logn)), there is no

(1− ε) · ln(n)-apx for Set Cover.

The end

Thanks for your attention

