Approximation Algorithms for Single and Multi-Commodity Connected Facility Location

Fabrizio Grandoni \& Thomas Rothvoß

Department of Mathematics, M.I.T.

IPCO 2011

Massachusetts Institute of Technology

Outline

Outline

1.

Better approximation algorithm for Connected Facility Location

First $O(1)$-apx for Multi-Commodity Connected Facility Location

Outline

1.

Better approximation algorithm for Connected Facility Location

First $O(1)$-apx for Multi-Commodity Connected Facility Location

Improved hardness results for several problems

Part 1: Connected Facility Location

Given:

- graph $G=(V, E)$, with metric distances $c: E \rightarrow \mathbb{Q}^{+}$

O

Part 1: Connected Facility Location

Given:

- graph $G=(V, E)$, with metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- a set of clients $C \subseteq V$

clients
\square
○ \square $\circ \square$

Part 1: Connected Facility Location

Given:

- graph $G=(V, E)$, with metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- a set of clients $C \subseteq V$

clients
- facilities $F \subseteq V$, with \square opening cost $o: F \rightarrow \mathbb{Q}_{+}$

Part 1: Connected Facility Location

Given:

- graph $G=(V, E)$, with metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- a set of clients $C \subseteq V$

clients
- facilities $F \subseteq V$, with
 opening cost $o: F \rightarrow \mathbb{Q}_{+}$
- a parameter $M \geq 1$

Part 1: Connected Facility Location

Given:

- graph $G=(V, E)$, with metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- a set of clients $C \subseteq V$
- facilities $F \subseteq V$, with opening cost $o: F \rightarrow \mathbb{Q}_{+}$
- a parameter $M \geq 1$

Goal:

- open facilities $F^{\prime} \subseteq F$
minimizing

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{\sum_{j \in C} c\left(j, F^{\prime}\right)}_{\text {connection cost }}
$$

Part 1: Connected Facility Location

Given:

- graph $G=(V, E)$, with metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- a set of clients $C \subseteq V$
- facilities $F \subseteq V$, with opening cost $o: F \rightarrow \mathbb{Q}_{+}$
- a parameter $M \geq 1$

Goal:

- open facilities $F^{\prime} \subseteq F$
- find Steiner tree T spanning opened facilities minimizing

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{\sum_{j \in C} c\left(j, F^{\prime}\right)}_{\text {connection cost }}+\underbrace{M \sum_{e \in T} c(e)}_{\text {Steiner cost }}
$$

Previous Results for Connected Facility Location

- APX-hard (reduction from Steiner Tree)
- 10.66-apx based on LP-rounding [Gupta et al '01].
- 8.55-apx primal-dual algorithm [Swamy, Kumar '02].
- 3.92-apx based on random-sampling
[Eisenbrand, Grandoni, R., Schäfer '08]

Previous Results for Connected Facility Location

- APX-hard (reduction from Steiner Tree)
- 10.66-apx based on LP-rounding [Gupta et al '01].
- 8.55-apx primal-dual algorithm [Swamy, Kumar '02].
- 3.92-apx based on random-sampling [Eisenbrand, Grandoni, R., Schäfer '08]

Our result

Simple 3.19-approximation algorithm.

Previous Results for Connected Facility Location

- APX-hard (reduction from Steiner Tree)
- 10.66-apx based on LP-rounding [Gupta et al '01].
- 8.55-apx primal-dual algorithm [Swamy, Kumar '02].
- 3.92-apx based on random-sampling [Eisenbrand, Grandoni, R., Schäfer '08]

Our result

Simple 3.19-approximation algorithm.
Use existing algorithms for subproblems:

- Facility Location: 1.5-apx [Byrka '07]
- Steiner Tree: 1.39-apx [Byrka,Grandoni,R.,Sanità 10]

Where is the difficulty?

Algorithm:
opening cost 0\square
$\bigcirc \square$
O
○

Where is the difficulty?

Algorithm:
(1) Just solve Facility Location

Where is the difficulty?

Algorithm:
(1) Just solve Facility Location
(2) Run Steiner Tree algorithm
opening cost 0

Where is the difficulty?

Algorithm:

The CFL algorithm

$$
\begin{array}{lllllll}
& \bigcirc & \square & O & \square & O & \square \\
\square & & \square & \bullet & & & \\
& & & & & & \\
& & & & & & \square
\end{array}
$$

The CFL algorithm

(1) Guess facility r from $O P T$.

$$
\begin{array}{lllllll}
& \bigcirc & \checkmark & O & \square & O & \square \\
\square & & \square & \bullet & & & \\
& & & & & & \\
& & & & \square & 0 & \square
\end{array}
$$

The CFL algorithm

(1) Guess facility r from $O P T$.
(2) Sample each client with prob $\frac{1}{M} \rightarrow C^{\prime}$

The CFL algorithm

(1) Guess facility r from $O P T$.
(2) Sample each client with prob $\frac{1}{M} \rightarrow C^{\prime}$
(3) Compute 1.5-apx F^{\prime} for Facility Location instance $o^{\prime}(f):=o(f)+M \cdot c\left(f\right.$, nearest node in $\left.C^{\prime} \cup\{r\}\right)$

The CFL algorithm

(1) Guess facility r from $O P T$.
(2) Sample each client with prob $\frac{1}{M} \rightarrow C^{\prime}$
(3) Compute 1.5-apx F^{\prime} for Facility Location instance $o^{\prime}(f):=o(f)+M \cdot c\left(f\right.$, nearest node in $\left.C^{\prime} \cup\{r\}\right)$

The CFL algorithm

(1) Guess facility r from $O P T$.
(2) Sample each client with prob $\frac{1}{M} \rightarrow C^{\prime}$
(3) Compute 1.5-apx F^{\prime} for Facility Location instance $o^{\prime}(f):=o(f)+M \cdot c\left(f\right.$, nearest node in $\left.C^{\prime} \cup\{r\}\right)$
(4) Compute 1.39-apx Steiner Tree T^{\prime} on $F^{\prime} \cup\{r\}$

The CFL algorithm

(1) Guess facility r from $O P T$.
(2) Sample each client with prob $\frac{1}{M} \rightarrow C^{\prime}$
(3) Compute 1.5-apx F^{\prime} for Facility Location instance $o^{\prime}(f):=o(f)+M \cdot c\left(f\right.$, nearest node in $\left.C^{\prime} \cup\{r\}\right)$
(4) Compute 1.39-apx Steiner Tree T^{\prime} on $F^{\prime} \cup\{r\}$

- Observe:
$E[A P X] \leq E\left[\begin{array}{c}\text { cost of apx } \\ \text { Facility Location sol. } \\ \text { + penalties }\end{array}\right]+E\left[\begin{array}{c}\text { cost of apx } \\ \text { STEINER Tree }\end{array}\right]$

The CFL algorithm

(1) Guess facility r from $O P T$.
(2) Sample each client with prob $\frac{1}{M} \rightarrow C^{\prime}$
(3) Compute 1.5-apx F^{\prime} for Facility Location instance $o^{\prime}(f):=o(f)+M \cdot c\left(f\right.$, nearest node in $\left.C^{\prime} \cup\{r\}\right)$
(4) Compute 1.39-apx Steiner Tree T^{\prime} on $F^{\prime} \cup\{r\}$

- Observe:
$E[A P X] \leq E\left[\begin{array}{c}\text { cost of apx } \\ \text { FACILITY Location sol. } \\ \text { + penalties }\end{array}\right]+E\left[\begin{array}{c}\text { cost of apx } \\ \text { STEINER Tree } \\ \text { on } C^{\prime} \cup\{r\}\end{array}\right]$

Analysis: Steiner Cost

Notation:

$$
O P T=\underbrace{O^{*}}_{\text {opening cost }}+\underbrace{S^{*}}_{\text {Steiner tree cost }}+\underbrace{C^{*}}_{\text {connection cost }}
$$

Analysis: Steiner Cost

Notation:

$$
O P T=\underbrace{O^{*}}_{\text {opening cost }}+\underbrace{S^{*}}_{\text {Steiner tree cost }}+\underbrace{C^{*}}_{\text {connection cost }}
$$

Lemma

$E\left[M \cdot a p x\right.$ Steiner Tree on $\left.C^{\prime} \cup\{r\}\right] \leq 1.39 \cdot\left(S^{*}+C^{*}\right)$

Analysis: Steiner Cost

Notation:

$$
O P T=\underbrace{O^{*}}_{\text {opening cost }}+\underbrace{S^{*}}_{\text {Steiner tree cost }}+\underbrace{C^{*}}_{\text {connection cost }}
$$

Lemma

$E\left[M \cdot a p x\right.$ Steiner Tree on $\left.C^{\prime} \cup\{r\}\right] \leq 1.39 \cdot\left(S^{*}+C^{*}\right)$

$$
\underbrace{S^{*}}_{\begin{array}{c}
\text { Steiner tree } \\
\text { in } O P T
\end{array}}
$$

Analysis: Steiner Cost

Notation:

$$
O P T=\underbrace{O^{*}}_{\text {opening cost }}+\underbrace{S^{*}}_{\text {Steiner tree cost }}+\underbrace{C^{*}}_{\text {connection cost }}
$$

Lemma

$E\left[M \cdot a p x\right.$ Steiner Tree on $\left.C^{\prime} \cup\{r\}\right] \leq 1.39 \cdot\left(S^{*}+C^{*}\right)$

Analysis: Steiner Cost

Notation:

$$
O P T=\underbrace{O^{*}}_{\text {opening cost }}+\underbrace{S^{*}}_{\text {Steiner tree cost }}+\underbrace{C^{*}}_{\text {connection cost }}
$$

Lemma

$E\left[M \cdot a p x\right.$ Steiner Tree on $\left.C^{\prime} \cup\{r\}\right] \leq 1.39 \cdot\left(S^{*}+C^{*}\right)$

Core detouring theorem

Core Detouring Theorem [EGSR '08]

Given a spanning tree T with root $r \in T$ and distinguished terminals $D \subseteq V$. Sample any terminal in D with prob. $p \in] 0,1]$

$$
E\left[\sum_{v \in D} \operatorname{dist}(v, \text { sampled node } \cup\{r\})\right] \leq \frac{0.81}{p} \cdot c(T)
$$

Core detouring theorem

Core Detouring Theorem [EGSR '08]

Given a spanning tree T with root $r \in T$ and distinguished terminals $D \subseteq V$. Sample any terminal in D with prob. $p \in] 0,1]$

$$
E\left[\sum_{v \in D} \operatorname{dist}(v, \text { sampled node } \cup\{r\})\right] \leq \frac{0.81}{p} \cdot c(T)
$$

Core detouring theorem

Core Detouring Theorem [EGSR '08]

Given a spanning tree T with root $r \in T$ and distinguished terminals $D \subseteq V$. Sample any terminal in D with prob. $p \in] 0,1]$

$$
E\left[\sum_{v \in D} \operatorname{dist}(v, \text { sampled node } \cup\{r\})\right] \leq \frac{0.81}{p} \cdot c(T)
$$

Analysis: Facility Location cost

Theorem

$E[a p x$ Facility Location cost $] \leq 1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right)$

Analysis: Facility Location cost

Theorem
 $E[a p x$ Facility Location cost $] \leq 1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right)$

- There is a good sol: $F:=$ facilities in $O P T$ serving $C^{\prime} \cup\{r\}$

Analysis: Facility Location cost

Theorem
 $E[a p x$ Facility Location cost $] \leq 1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right)$

- There is a good sol: $F:=$ facilities in $O P T$ serving $C^{\prime} \cup\{r\}$
- $E\left[\begin{array}{c}\text { opening cost } \\ \text { + penalties }\end{array}\right] \leq \underbrace{O^{*}}_{\text {orig. cost }}+\underbrace{\frac{1}{M} \cdot M \cdot C^{*}}_{\text {expected penalty }}$

Analysis: Facility Location cost

Theorem
 $E[a p x$ Facility Location cost $] \leq 1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right)$

- There is a good sol: $F:=$ facilities in $O P T$ serving $C^{\prime} \cup\{r\}$
- $E\left[\begin{array}{c}\text { opening cost } \\ + \text { penalties }\end{array}\right] \leq \underbrace{O^{*}}_{\text {orig. cost }}+\underbrace{\frac{1}{M} \cdot M \cdot C^{*}}_{\text {expected penalty }}$
- $E[$ connection cost $] \leq C^{*}+$

Analysis: Facility Location cost

Theorem

$E[a p x$ Facility Location cost $] \leq 1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right)$

- There is a good sol: $F:=$ facilities in $O P T$ serving $C^{\prime} \cup\{r\}$
- $E\left[\begin{array}{c}\text { opening cost } \\ \text { + penalties }\end{array}\right] \leq \underbrace{O^{*}}_{\text {orig. cost }}+\underbrace{\frac{1}{M} \cdot M \cdot C^{*}}_{\text {expected penalty }}$
- $E[$ connection cost $] \leq C^{*}+\frac{0.81}{1 / M} \cdot \underbrace{\frac{S^{*}}{M}}_{\text {tree }}$

Use Core Detouring Theorem with $T=S^{*}$ and $p:=\frac{1}{M}$.

Finishing the analysis for CFL
Conclusion:

$$
E[A P X] \leq 1.39 \cdot\left(S^{*}+C^{*}\right)+1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right)
$$

Finishing the analysis for CFL

Conclusion:

$$
\begin{aligned}
E[A P X] & \leq 1.39 \cdot\left(S^{*}+C^{*}\right)+1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right) \\
& \leq 1.5 \cdot O^{*}+2.7 \cdot S^{*}+4.39 \cdot C^{*}
\end{aligned}
$$

Finishing the analysis for CFL

Conclusion:

$$
\begin{aligned}
E[A P X] & \leq 1.39 \cdot\left(S^{*}+C^{*}\right)+1.5 \cdot\left(O^{*}+2 C^{*}+0.81 S^{*}\right) \\
& \leq 1.5 \cdot O^{*}+2.7 \cdot S^{*}+4.39 \cdot C^{*}
\end{aligned}
$$

Improvement to 3.19:

- Adapting the sampling probability
- Using a bi-factor Facility Location algorithm

Part 2: Multi-Commodity Connected Facility

 Location
Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs
$\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$

${ }_{5}^{56} \quad{ }_{8}^{5}$

${ }_{8}^{5}$

Part 2: Multi-Commodity Connected Facility

 Location
Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs $\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$

$\begin{array}{ll}s_{6} & S_{5} \\ 0\end{array}$

${ }_{8}^{5}$

$\begin{array}{llll}0 & s_{4} & r_{4} & \square\end{array}$

- parameter $M \geq 1$

Goal: Find

- Facilities $F^{\prime} \subseteq F$

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}
$$

Part 2: Multi-Commodity Connected Facility

 Location
Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs $\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
${ }_{5}^{56}{ }_{8}^{5}$

$\begin{array}{llll}0 & s_{4} & r_{4} & \square \\ r_{5} & \bigcirc & \bigcirc & \square\end{array}$
- parameter $M \geq 1$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}
$$

Part 2: Multi-Commodity Connected Facility

 Location
Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs
$\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
${ }_{5}^{56}{ }_{8}^{5}$

$r_{5} \bigcirc_{0}^{s_{4}} \quad \overbrace{0}^{r_{4}}$
- parameter $M \geq 1$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}+\sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F^{\prime}, T}\left(s_{i}, r_{i}\right)}_{\begin{array}{c}
0 \text { distance between } \\
\text { opened \& connected } \\
\text { facilities }
\end{array}}
$$

Part 2: Multi-Commodity Connected Facility

 Location
Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs
$\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
${ }_{5}^{56}{ }_{8}^{5}$

 $\begin{array}{llll}0 & s_{4} & r_{4} & \\ r_{5} & \bigcirc & \square\end{array}$
- parameter $M \geq 1$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}+\sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F^{\prime}, T}\left(s_{i}, r_{i}\right)}_{\begin{array}{c}
0 \text { distance between } \\
\text { opened \& connected } \\
\text { facilities }
\end{array}}
$$

Part 2: Multi-Commodity Connected Facility

Location

Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs
$\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
- parameter $M \geq 1$
${ }_{5}^{5}{ }_{8}^{5}$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}+\sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F^{\prime}, T}\left(s_{i}, r_{i}\right)}_{\begin{array}{c}
0 \text { distance between } \\
\text { opened \& connected } \\
\text { facilities }
\end{array}}
$$

Part 2: Multi-Commodity Connected Facility

Location

Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs
$\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
- parameter $M \geq 1$
${ }_{5}^{5}{ }_{8}^{5}$

$\overbrace{5} \stackrel{s_{4}}{O_{0}}=0^{r_{4}}$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}+\sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F^{\prime}, T}\left(s_{i}, r_{i}\right)}_{\begin{array}{c}
0 \text { distance between } \\
\text { opened \& connected } \\
\text { facilities }
\end{array}}
$$

Part 2: Multi-Commodity Connected Facility

 Location
Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs $\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
- parameter $M \geq 1$
${ }_{6}^{56}{ }_{8}^{5}$

${ }_{7}$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}+\sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F^{\prime}, T}\left(s_{i}, r_{i}\right)}_{\begin{array}{c}
0 \text { distance between } \\
\text { opened \& connected } \\
\text { facilities }
\end{array}}
$$

Part 2: Multi-Commodity Connected Facility

Location

Input:

- Undirected graph $G=(V, E)$, metric distances $c: E \rightarrow \mathbb{Q}^{+}$
- source-sink pairs $\left(s_{1}, r_{1}\right), \ldots,\left(s_{k}, r_{k}\right)$
- a set of facilities $F \subseteq V$ with opening costs $o: F \rightarrow \mathbb{Q}^{+}$
- parameter $M \geq 1$

Goal: Find

- Facilities $F^{\prime} \subseteq F$
- Forest T

$$
\underbrace{\sum_{f \in F^{\prime}} o(f)}_{\text {opening cost }}+\underbrace{M \cdot c(T)}_{\text {forest cost }}+\sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F^{\prime}, T}\left(s_{i}, r_{i}\right)}_{\begin{array}{c}
0 \text { distance between } \\
\text { opened \& connected } \\
\text { facilities }
\end{array}}
$$

Our result

Our result

Simple 16.2-approximation algorithm for Multi-Commodity Connected Facility Location.

Ingredients:

- Random-sampling
- Use algorithms for
- Price-Collecting Facility Location
- Steiner Forest

Part 3: Improved hardness results

The reduction (1)

- Reduce Set Cover to SROB

The reduction (1)

- Reduce Set Cover to SROB

The reduction (1)

- Reduce Set Cover to SROB

The reduction (1)

- Reduce Set Cover to SROB

(1) WHILE not all elements covered DO
(2) Compute 1.27-apx SROB sol
(3) Buy facilities/sets in sol. \& remove covered elements

The reduction (2)

- Use idea from [Guha \& Khuller '99]
\# clients at dist 1

The reduction (2)

- Use idea from [Guha \& Khuller '99]
\# clients at dist 1

The reduction (2)

- Use idea from [Guha \& Khuller '99]
\# clients at dist 1

\# needed sets $\leq[\ldots$ some calc $\ldots] \leq 0.999 \ln (n) \cdot O P T_{S C}$

The reduction (2)

- Use idea from [Guha \& Khuller '99]
\# clients at dist 1

\# needed sets $\leq[\ldots$ some calc $\ldots] \leq 0.999 \ln (n) \cdot O P T_{S C}$
- Contradiction!

Theorem (Feige '98)

Unless NP \subseteq DTIME $\left(n^{O(\log \log n)}\right)$, there is no $(1-\varepsilon) \cdot \ln (n)$-apx for SET Cover.

The end

Thanks for your attention

