Approximation Algorithms for Single and Multi-Commodity Connected Facility Location

Fabrizio Grandoni & Thomas Rothvoß

Department of Mathematics, M.I.T.

IPCO 2011

Stiftung/Foundation

Outline

1.

Better approximation algorithm for CONNECTED FACILITY LOCATION

Outline

1

2

Better approximation algorithm

for Connected Facility Location

First O(1)-apx for Multi-Commodity Connected Facility Location

Outline

[]]

 \cap

Ο

 \cap

Given:

• graph G = (V, E), with metric distances $c : E \to \mathbb{Q}^+$

Given:

Given:

- graph G = (V, E), with metric distances $c : E \to \mathbb{Q}^+$
- a set of **clients** $C \subseteq V$
- ▶ facilities $F \subseteq V$, with opening cost $o: F \to \mathbb{Q}_+$

Given:

- graph G = (V, E), with metric distances $c : E \to \mathbb{Q}^+$
- a set of **clients** $C \subseteq V$
- ▶ facilities $F \subseteq V$, with opening cost $o: F \to \mathbb{Q}_+$
- a parameter $M \ge 1$

Given:

- graph G = (V, E), with metric distances $c : E \to \mathbb{Q}^+$
- a set of **clients** $C \subseteq V$
- ▶ facilities $F \subseteq V$, with opening cost $o: F \to \mathbb{Q}_+$
- a parameter $M \ge 1$

Goal:

▶ open facilities $F' \subseteq F$

minimizing

 $\sum o(f) + \sum c(j, F')$ $f \in F'$ connection cost opening cost

Given:

- graph G = (V, E), with metric distances $c : E \to \mathbb{Q}^+$
- a set of **clients** $C \subseteq V$
- ▶ facilities $F \subseteq V$, with opening cost $o: F \to \mathbb{Q}_+$
- a parameter $M \ge 1$

Goal:

▶ open facilities $F' \subseteq F$

 \blacktriangleright find Steiner tree T spanning opened facilities minimizing

Previous Results for CONNECTED FACILITY LOCATION

- ► **APX**-hard (reduction from STEINER TREE)
- ▶ 10.66-apx based on LP-rounding [Gupta et al '01].
- 8.55-apx primal-dual algorithm [Swamy, Kumar '02].
- 3.92-apx based on random-sampling
 [Eisenbrand, Grandoni, R., Schäfer '08]

Previous Results for CONNECTED FACILITY LOCATION

- ► **APX**-hard (reduction from STEINER TREE)
- ▶ 10.66-apx based on LP-rounding [Gupta et al '01].
- 8.55-apx primal-dual algorithm [Swamy, Kumar '02].
- 3.92-apx based on random-sampling [Eisenbrand, Grandoni, R., Schäfer '08]

Our result

Simple 3.19-approximation algorithm.

Previous Results for CONNECTED FACILITY LOCATION

- ► **APX**-hard (reduction from STEINER TREE)
- ▶ 10.66-apx based on LP-rounding [Gupta et al '01].
- 8.55-apx primal-dual algorithm [Swamy, Kumar '02].
- 3.92-apx based on random-sampling [Eisenbrand, Grandoni, R., Schäfer '08]

Our result

Simple 3.19-approximation algorithm.

Use existing algorithms for subproblems:

- ► FACILITY LOCATION: 1.5-apx [Byrka '07]
- ▶ STEINER TREE: 1.39-apx [Byrka,Grandoni,R.,Sanità 10]

Algorithm:

opening cost 0

()

0 0 0

 \Box

 \bigcirc

Algorithm:

(1) Just solve Facility Location

opening cost 0

Algorithm:

- (1) Just solve Facility Location
- (2) Run Steiner Tree algorithm

Algorithm:

(1) Guess facility r from OPT.

- (1) Guess facility r from OPT.
- (2) Sample each client with prob $\frac{1}{M} \to C'$

- (1) Guess facility r from OPT.
- (2) Sample each client with prob $\frac{1}{M} \to C'$
- (3) Compute 1.5-apx F' for FACILITY LOCATION instance

 $o'(f) := o(f) + M \cdot c(f, \text{nearest node in } C' \cup \{r\})$

- (1) Guess facility r from OPT.
- (2) Sample each client with prob $\frac{1}{M} \to C'$
- (3) Compute 1.5-apx F' for FACILITY LOCATION instance

 $o'(f) := o(f) + M \cdot c(f, \text{nearest node in } C' \cup \{r\})$

- (1) Guess facility r from OPT.
- (2) Sample each client with prob $\frac{1}{M} \to C'$
- (3) Compute 1.5-apx F' for FACILITY LOCATION instance
 - $o'(f) := o(f) + M \cdot c(f, \text{nearest node in } C' \cup \{r\})$
- (4) Compute 1.39-apx STEINER TREE T' on $F' \cup \{r\}$

- (1) Guess facility r from OPT.
- (2) Sample each client with prob $\frac{1}{M} \to C'$
- (3) Compute 1.5-apx F' for FACILITY LOCATION instance
 - $o'(f) := o(f) + M \cdot c(f, \text{nearest node in } C' \cup \{r\})$
- (4) Compute 1.39-apx STEINER TREE T' on $F' \cup \{r\}$

► Observe:

 $E[APX] \le E \begin{bmatrix} \text{cost of apx} \\ \text{FACILITY LOCATION sol.} \\ +\text{penalties} \end{bmatrix} + E \begin{bmatrix} \text{cost of apx} \\ \text{STEINER TREE} \end{bmatrix}$

- (1) Guess facility r from OPT.
- (2) Sample each client with prob $\frac{1}{M} \to C'$
- (3) Compute 1.5-apx F' for FACILITY LOCATION instance

 $o'(f) := o(f) + M \cdot \left[c(f, \text{nearest node in } C' \cup \{r\}) \right]$

(4) Compute 1.39-apx STEINER TREE T' on $F' \cup \{r\}$

► Observe:

 $E[APX] \le E \begin{bmatrix} \text{cost of apx} \\ \text{FACILITY LOCATION sol.} \\ +\text{penalties} \end{bmatrix} + E \begin{bmatrix} \text{cost of apx} \\ \text{STEINER TREE} \\ \text{on } C' \cup \{r\} \end{bmatrix}$

Core detouring theorem

Core Detouring Theorem [EGSR '08]

Given a spanning tree T with root $r \in T$ and distinguished terminals $D \subseteq V$. Sample any terminal in D with prob. $p \in]0, 1]$

$$E\left[\sum_{v \in D} \operatorname{dist}(v, \operatorname{sampled node} \cup \{r\})\right] \le \frac{0.81}{p} \cdot c(T)$$

Core detouring theorem

Core Detouring Theorem [EGSR '08]

Given a spanning tree T with root $r \in T$ and distinguished terminals $D \subseteq V$. Sample any terminal in D with prob. $p \in]0, 1]$

$$E\left[\sum_{v \in D} \operatorname{dist}(v, \operatorname{sampled node} \cup \{r\})\right] \le \frac{0.81}{p} \cdot c(T)$$

Core detouring theorem

Core Detouring Theorem [EGSR '08]

Given a spanning tree T with root $r \in T$ and distinguished terminals $D \subseteq V$. Sample any terminal in D with prob. $p \in]0, 1]$

$$E\left[\sum_{v \in D} \operatorname{dist}(v, \operatorname{sampled node} \cup \{r\})\right] \le \frac{0.81}{p} \cdot c(T)$$

Analysis: Facility Location cost

Theorem

 $E[apx \text{ Facility Location } cost] \leq 1.5 \cdot (O^* + 2C^* + 0.81S^*)$

Analysis: Facility Location cost

Theorem

 $E[apx \text{ Facility Location } cost] \leq 1.5 \cdot (O^* + 2C^* + 0.81S^*)$

• There is a good sol: F := facilities in OPT serving $C' \cup \{r\}$

Analysis: Facility Location cost

Theorem

 $E[apx \text{ Facility Location } cost] \leq 1.5 \cdot (O^* + 2C^* + 0.81S^*)$

There is a good sol: F := facilities in OPT serving C' ∪ {r}
E [opening cost + penalties] ≤ O^{*}_{orig. cost} + <u>1</u>/<u>M</u> · M · C^{*}_{expected penalty}

Analysis: Facility Location cost

Theorem

 $E[apx \text{ Facility Location } cost] \leq 1.5 \cdot (O^* + 2C^* + 0.81S^*)$

There is a good sol: F := facilities in OPT serving C' ∪ {r}
E [opening cost + penalties] ≤ O^{*}_{orig. cost} + <u>M</u>· C*_{expected penalty}

• $E[\text{connection cost}] \le C^* +$

Analysis: Facility Location cost

Theorem

 $E[apx \text{ Facility Location } cost] \leq 1.5 \cdot (O^* + 2C^* + 0.81S^*)$

There is a good sol: F := facilities in OPT serving C' ∪ {r}
E [opening cost + penalties] ≤ O^{*}_{orig. cost} + M · C^{*}_{expected penalty}
E[connection cost] ≤ C^{*} + 0.81/1/M · S^{*}_M/M_{tree}

Use Core Detouring Theorem with $T = S^*$ and $p := \frac{1}{M}$.

Finishing the analysis for CFL

Conclusion:

 $E[APX] \leq 1.39 \cdot (S^* + C^*) + 1.5 \cdot (O^* + 2C^* + 0.81S^*)$

Finishing the analysis for CFL

Conclusion:

$$\begin{split} E[APX] &\leq 1.39 \cdot (S^* + C^*) + 1.5 \cdot (O^* + 2C^* + 0.81S^*) \\ &\leq 1.5 \cdot O^* + 2.7 \cdot S^* + 4.39 \cdot C^* \end{split}$$

Finishing the analysis for CFL

Conclusion:

$$E[APX] \leq 1.39 \cdot (S^* + C^*) + 1.5 \cdot (O^* + 2C^* + 0.81S^*)$$

$$\leq 1.5 \cdot O^* + 2.7 \cdot S^* + 4.39 \cdot C^*$$

Improvement to 3.19:

- Adapting the sampling probability
- ▶ Using a bi-factor FACILITY LOCATION algorithm

 S_6

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$
- parameter $M \ge 1$

 S_6

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$
- ▶ parameter $M \ge 1$
- Goal: Find
 - Facilities $F' \subseteq F$

 S_6

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$
- ▶ parameter $M \ge 1$
- Goal: Find
 - Facilities $F' \subseteq F$
 - \blacktriangleright Forest T

 S_6

 $\overset{S_5}{\cap}$

П

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$
- ▶ parameter $M \ge 1$
- Goal: Find
 - Facilities $F' \subseteq F$
 - \blacktriangleright Forest T

forest cost

Input:

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$

opening cost

- ▶ parameter $M \ge 1$
- Goal: Find
 - Facilities $F' \subseteq F$
 - \blacktriangleright Forest T

0 distance between opened & connected facilities

 $\sum o(f) + \underbrace{M \cdot c(T)}_{} + \sum \operatorname{dist}_{F',T}(s_i, r_i)$

forest cost

Input:

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$

opening cost

- ▶ parameter $M \ge 1$
- Goal: Find
 - Facilities $F' \subseteq F$
 - \blacktriangleright Forest T

0 distance between opened & connected

facilities

Input:

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$
- ▶ parameter $M \ge 1$
- Goal: Find
 - Facilities $F' \subseteq F$
 - \blacktriangleright Forest T

 $\underbrace{\sum_{f \in F'} o(f)}_{\text{opening cost}} + \underbrace{M \cdot c(T)}_{\text{forest cost}} + \sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F',T}(s_i, r_i)}_{\substack{0 \text{ distance between opened & connected facilities}}$

 s_6

 $\sum o(f) + \underbrace{M \cdot c(T)}_{} + \sum \operatorname{dist}_{F',T}(s_i, r_i)$

forest cost

Input:

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$

opening cost

▶ parameter $M \ge 1$

Goal: Find

- Facilities $F' \subseteq F$
- \blacktriangleright Forest T

0 distance between opened & connected

facilities

Input:

- Undirected graph G = (V, E), metric distances $c : E \to \mathbb{Q}^+$
- source-sink pairs $(s_1, r_1), \ldots, (s_k, r_k)$
- ▶ a set of facilities $F \subseteq V$ with opening costs $o: F \to \mathbb{Q}^+$
- ▶ parameter $M \ge 1$

Goal: Find

- Facilities $F' \subseteq F$
- \blacktriangleright Forest T

 $\underbrace{\sum_{\substack{f \in F' \\ \text{opening cost}}} o(f)}_{\text{opening cost}} + \underbrace{M \cdot c(T)}_{\text{forest cost}} + \sum_{i=1}^{k} \underbrace{\operatorname{dist}_{F',T}(s_i, r_i)}_{\substack{0 \text{ distance between opened & connected facilities}}}$

Our result

Our result

Simple 16.2-approximation algorithm for MULTI-COMMODITY CONNECTED FACILITY LOCATION.

Ingredients:

- Random-sampling
- ▶ Use algorithms for
 - ► PRICE-COLLECTING FACILITY LOCATION
 - Steiner Forest

▶ Reduce SET COVER to SROB

elements OOOOOOO

▶ Reduce SET COVER to SROB

clients/elements

facilities/sets

$$c(e) \in \{1, 2\}$$
$$M = \frac{0.27n}{OPT_{SC}}$$

▶ Reduce SET COVER to SROB

clients/elements

facilities/sets

$$c(e) \in \{1, 2\}$$
$$M = \frac{0.27n}{OPT_{SC}}$$

▶ Reduce SET COVER to SROB

(1) WHILE not all elements covered DO

- (2) Compute 1.27-apx SROB sol
- (3) Buy facilities/sets in sol. & remove covered elements

▶ Use idea from [Guha & Khuller '99]

▶ Use idea from [Guha & Khuller '99]

▶ Use idea from [Guha & Khuller '99]

needed sets $\leq [\dots \text{ some calc} \dots] \leq 0.999 \ln(n) \cdot OPT_{SC}$

▶ Use idea from [Guha & Khuller '99]

needed sets \leq [...some calc...] \leq 0.999 ln(n) \cdot OPT_{SC}

► Contradiction!

Theorem (Feige '98)

Unless $\mathbf{NP} \subseteq \mathbf{DTIME}(n^{O(\log \log n)})$, there is no $(1 - \varepsilon) \cdot \ln(n)$ -apx for SET COVER.

The end

Thanks for your attention