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◮ a set of clients C ⊆ V

◮ facilities F ⊆ V , with
opening cost o : F → Q+

◮ a parameter M ≥ 1
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Goal:

◮ open facilities F ′ ⊆ F

◮ find Steiner tree T spanning opened facilities

minimizing

∑

f∈F ′

o(f)

︸ ︷︷ ︸

opening cost

+
∑

j∈C

c(j, F ′)
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connection cost

+ M
∑

e∈T
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︸ ︷︷ ︸

Steiner cost
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◮ 10.66-apx based on LP-rounding [Gupta et al ’01].

◮ 8.55-apx primal-dual algorithm
[Swamy, Kumar ’02].

◮ 3.92-apx based on random-sampling
[Eisenbrand, Grandoni, R., Schäfer ’08]

Our result

Simple 3.19-approximation algorithm.

Use existing algorithms for subproblems:

◮ Facility Location: 1.5-apx [Byrka ’07]

◮ Steiner Tree: 1.39-apx [Byrka,Grandoni,R.,Sanità 10]
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Theorem

E[apx Facility Location cost] ≤ 1.5 · (O∗ + 2C∗ + 0.81S∗)

◮ There is a good sol: F := facilities in OPT serving C ′ ∪ {r}

◮ E

[
opening cost
+ penalties

]

≤ O∗

︸︷︷︸

orig. cost

+
1

M
·M · C∗

︸ ︷︷ ︸

expected penalty

◮ E[connection cost] ≤ C∗ +
0.81

1/M
·
S∗

M
︸︷︷︸

tree

Use Core Detouring Theorem with T = S∗ and p := 1
M .

r
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Finishing the analysis for CFL

Conclusion:

E[APX] ≤ 1.39 · (S∗ + C∗) + 1.5 · (O∗ + 2C∗ + 0.81S∗)

≤ 1.5 · O∗ + 2.7 · S∗ + 4.39 · C∗

Improvement to 3.19:

◮ Adapting the sampling probability

◮ Using a bi-factor Facility Location algorithm
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Our result

Our result

Simple 16.2-approximation algorithm for Multi-Commodity

Connected Facility Location.

Ingredients:

◮ Random-sampling

◮ Use algorithms for
◮ Price-Collecting Facility Location

◮ Steiner Forest
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Buy-at-Bulk

1.01

Virtual Private

Network

1.01

generalizes

1.2
8

1.2
8

1.2
8

o(f) = 0
∀f ∈ V
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The reduction (1)

◮ Reduce Set Cover to SROB

c(e) ∈ {1, 2}

M =
0.27n

OPTSC

r

1 2

clients/elements

facilities/sets

remove!

buy!

(1) WHILE not all elements covered DO

(2) Compute 1.27-apx SROB sol
(3) Buy facilities/sets in sol. & remove covered elements
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The reduction (2)

◮ Use idea from [Guha & Khuller ’99]

1 · OPTSC 2 · OPTSC

n

# clients at dist 1

# facilities in apx. sol

0.27 # fac
OPTSC

n+ 0.3667n

b
apx SROB sol.

# needed sets ≤ [. . . some calc . . .] ≤ 0.999 ln(n) · OPTSC

◮ Contradiction!

Theorem (Feige ’98)

Unless NP ⊆ DTIME(nO(log logn)), there is no

(1− ε) · ln(n)-apx for Set Cover.



The end

Thanks for your attention


