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max ¢!z
Ar < b
r € 7"

» Fundamental tool in Operations Research
» Powerful heuristics to solve in practice — Branch &
Bound
» Solving IPs is NP-hard
Theoretical IP: What special cases can be solved efficiently?
Examples:

» A is totally unimodular — IP solvable in polytime!
» All subdeterminants of A bounded by O(1) — !
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n-fold IP
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0O 0 O Y1 by
g 0 0 g : x,yl,...,yneZgo
) 0 0 0 Yn b
le—>
Paran’lfeters: k = block size; A := |||:|||Oo
Results:
» General n-fold IP can be solved in time n/*4) [HKW’13]
> Does f(k, A) - n°W suffices?

» Solve 2-stage stochastic [P without objective in time
f(k,A) - nPW [Csovjecsek et at SODA24]

» Solve 2SSIP with objective in time f(k, A)-n°M [here]
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Cutting planes

» For a polytope P, P; := conv(P NZ") is the integer hull.
» If 'z < § is feasible for P with ¢ € Z", then ¢’z < |§] is
feasible for P; — Chvatal Gomory cutting plane
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Cutting planes (2)

» Adding all possible Chvéatal Gomory cutting planes
simultaneously gives the elementary closure

P = m (c"z < [6]).
(cTx<8)DP
ceL™

» Iterating P := ((P')’)... gives ith closure
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Cutting planes (3)

» Smallest ¢ with P®) = P; is Chvatal rank of P.
» Let P = {z € R"| Az < b} with integer A, b.
Then Chvétal rank < (n|A[ . )°")
[Cook, Gerards, Schrijver, Tardos ’86|
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Linearity of P’

» Consider P(b) := {z € R" | Az < b}.

Want to determine from of P(b)" dependent on b!
» Consider a Chvatal-Gomory cutting plane

(ATA)x < |ATh] with A > 0 and \TA € Z™.
» Can infer:

(i) xefo,n)™

(i) [supp(A)| < n

(iii) X € %, D multiple of all subdeterminants of A
» Assume b=p r
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Linearity of P’

» Consider P(b) := {z € R" | Az < b}.

Want to determine from of P(b)" dependent on b!
» Consider a Chvatal-Gomory cutting plane

(ATA)x < |ATh] with A > 0 and \TA € Z™.
» Can infer:

(i) xelo,)™

(i) [supp(A)| <n

(iii) A e %, D multiple of all subdeterminants of A
» Assume b=p r

EDO

—
(ATA)z < [ATb) = [Nr+ AT (b—7r)] = ((ANTr]=ATr)+ AT
—— i ~ ,
EZ mear 1n

» Right hand side of CG cut is affine linear in b!!!
» Coefficients bounded by |[ATA|» < nl|Alls
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Linearity of P(b);
» Iterating this f(n, A) times gives same for P(b);:

Theorem (Eisenbrand, R. 2024)

Let P(b) :== {x € R* | Az < b} where A € Z™*" and
|Allsc < A. Then there exist D € N, B € Z™'*" C € Z™*™
so that for all 7 € {0,..., D — 1} there is an f, € Z™ with

P(b)I:{xER”BxSfT—I—Cb} VbeZ™ withb=pr

n(nA)O<"2)
Moreover one can choose D < n .
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Back to 2-SSIP

Solving 2-stage stochastic IPs:

max ¢’ x + Z d}y;
=1
Y; c (.Pz(bl — AZZE))[ Vi € [n]
fixed =p
r € ZF
Yiy- oy Yn € Rk
r =p T

» Guess remainder r := (x mod D) in optimum solution

» Solve remaining system with O(k) integer z-variables
(+poly many fractional y-variables)
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Thanks for your attention!



