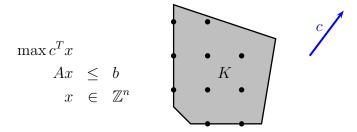
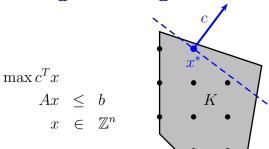
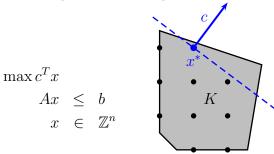
A parameterized linear formulation of the integer hull

Thomas Rothvoss

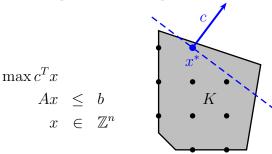
Joint work with Fritz Eisenbrand





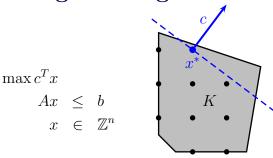


- ► Fundamental tool in Operations Research
- ▶ Powerful heuristics to solve in practice \rightarrow **Branch &** Bound
- ► Solving IPs is **NP**-hard



- ► Fundamental tool in Operations Research
- ▶ Powerful heuristics to solve in practice \rightarrow **Branch &** Bound
- ▶ Solving IPs is **NP**-hard

Theoretical IP: What special cases can be solved efficiently?

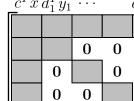


- ► Fundamental tool in **Operations Research**
- ▶ Powerful heuristics to solve in practice \rightarrow **Branch &** Bound
- ► Solving IPs is **NP**-hard

Theoretical IP: What special cases can be solved efficiently? Examples:

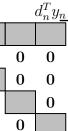
- ightharpoonup A is totally unimodular \rightarrow IP solvable in polytime!
- ▶ All subdeterminants of A bounded by $O(1) \rightarrow \text{open!}$

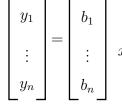
n-fold IP $\max \quad c^T x \, d_1^T y_1 \, \cdots$



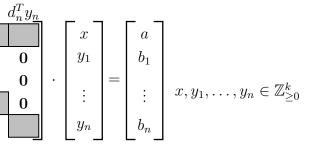
0

0





n-fold IP

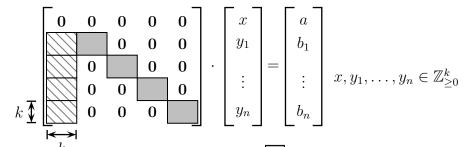


Parameters: $k = \text{block size}; \Delta := \|\square\|_{\infty}$

Results:

- ▶ General *n*-fold IP can be solved in time $n^{f(k,\Delta)}$ [HKW'13]
- ▶ Open: Does $f(k, \Delta) \cdot n^{O(1)}$ suffices?

n-fold IP



Parameters: $k = \text{block size}; \Delta := \|\square\|_{\infty}$

Results:

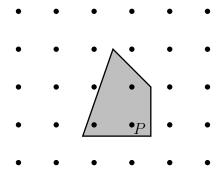
- ▶ General *n*-fold IP can be solved in time $n^{f(k,\Delta)}$ [HKW'13]
- ▶ Open: Does $f(k, \Delta) \cdot n^{O(1)}$ suffices?
- ▶ Solve 2-stage stochastic IP without objective in time $f(k, \Delta) \cdot n^{O(1)}$ [Csovjecsek et at SODA'24]

n-fold IP

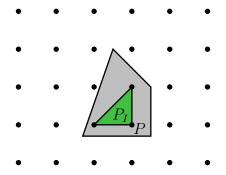
 $\max \ \underline{c}^T x \, d_1^T y_1 \, \cdots$

Parameters: $k = \text{block size}; \Delta := \|\square\|_{\infty}$ Results:

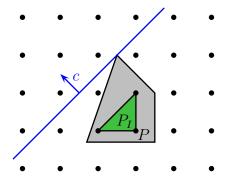
- General *n*-fold IP can be solved in time $n^{f(k,\Delta)}$ [HKW'13]
- ▶ Open: Does $f(k, \Delta) \cdot n^{O(1)}$ suffices?
- ► Solve 2-stage stochastic IP without objective in time $f(k,\Delta) \cdot n^{O(1)}$ [Csovjecsek et at SODA'24]
- ▶ Solve 2SSIP with objective in time $f(k, \Delta) \cdot n^{O(1)}$ [here]



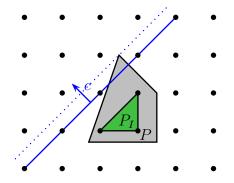
ightharpoonup For a polytope P



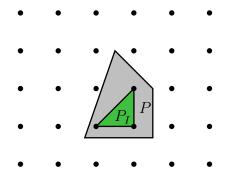
▶ For a polytope P, $P_I := \text{conv}(P \cap \mathbb{Z}^n)$ is the **integer hull**.



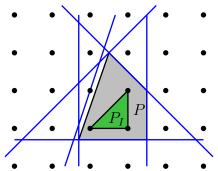
- ▶ For a polytope P, $P_I := \text{conv}(P \cap \mathbb{Z}^n)$ is the **integer hull**.
- ▶ If $c^T x \leq \delta$ is feasible for P with $c \in \mathbb{Z}^n$



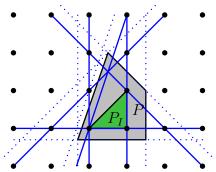
- ▶ For a polytope P, $P_I := \operatorname{conv}(P \cap \mathbb{Z}^n)$ is the **integer hull**.
- ▶ If $c^T x \leq \delta$ is feasible for P with $c \in \mathbb{Z}^n$, then $c^T x \leq \lfloor \delta \rfloor$ is feasible for $P_I \to \mathbf{Chv\acute{a}tal}$ Gomory cutting plane



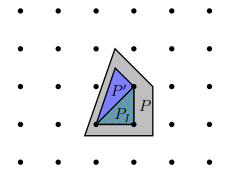
$$P' = \bigcap_{\substack{(c^T x \le \delta) \supseteq P \\ c \in \mathbb{Z}^n}} (c^T x \le \lfloor \delta \rfloor).$$



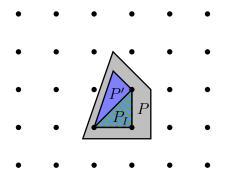
$$P' = \bigcap_{\substack{(c^T x \le \delta) \supseteq P \\ -T = T}} (c^T x \le \lfloor \delta \rfloor).$$



$$P' = \bigcap_{\substack{(c^T x \le \delta) \supseteq P \\ c^T x}} (c^T x \le \lfloor \delta \rfloor).$$



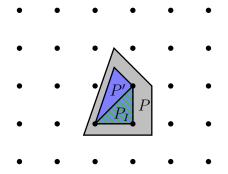
$$P' = \bigcap_{\substack{(c^T x \le \delta) \supseteq P \\ c \in \mathbb{Z}^n}} (c^T x \le \lfloor \delta \rfloor).$$



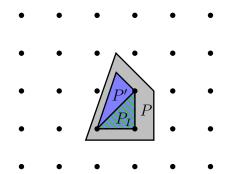
► Adding all possible Chvátal Gomory cutting planes simultaneously gives the elementary closure

$$P' = \bigcap_{(c^T x \le \delta) \supseteq P} (c^T x \le \lfloor \delta \rfloor).$$

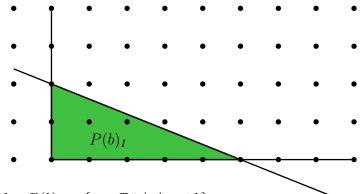
▶ Iterating $P^{(i)} := ((P')') \dots'$ gives *i*th closure



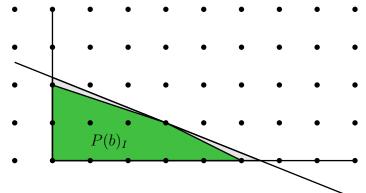
▶ Smallest *i* with $P^{(i)} = P_I$ is **Chvátal rank** of *P*.



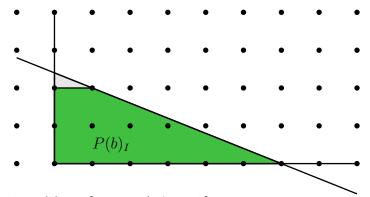
- ▶ Smallest *i* with $P^{(i)} = P_I$ is **Chvátal rank** of *P*.
- ▶ Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ with integer A, b. Then Chvátal rank $\leq (n||A||_{\infty})^{O(n^2)}$ [Cook, Gerards, Schrijver, Tardos '86]



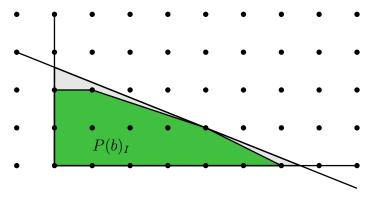
- $\qquad \qquad \textbf{Consider } P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}.$
- ▶ In general $P(b)_I$ not changing linear in b!



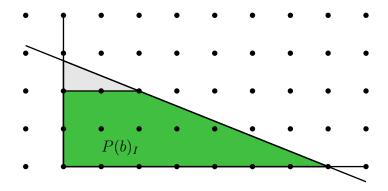
- ▶ In general $P(b)_I$ not changing linear in b!



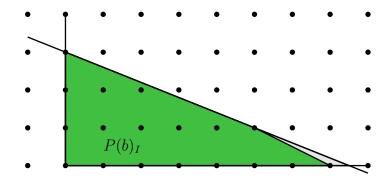
- ▶ In general $P(b)_I$ not changing linear in b!



- $Consider P(b) := \{ x \in \mathbb{R}^n \mid Ax \le b \}.$
- ▶ In general $P(b)_I$ not changing linear in b!



- ▶ In general $P(b)_I$ not changing linear in b!



- ▶ In general $P(b)_I$ not changing linear in b!

► Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \le n$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \leq n$
 - (iii) $\lambda \in \frac{\mathbb{Z}^m}{D}$, D multiple of all subdeterminants of A

$$(\lambda^T A)x \leq \lfloor \lambda^T b \rfloor$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \le n$
 - (iii) $\lambda \in \frac{\mathbb{Z}^m}{D}$, D multiple of all subdeterminants of A
- ▶ Assume $b \equiv_D r$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x < |\lambda^T b|$ with $\lambda > 0$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \le n$
 - (iii) $\lambda \in \frac{\mathbb{Z}^n}{D}$, D multiple of all subdeterminants of A
- ▶ Assume $b \equiv_D r$

$$(\lambda^T A)x < |\lambda^T b| = |\lambda^T r + \lambda^T (b - r)|$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \le n$
 - (iii) $\lambda \in \mathbb{Z}^{m}$, D multiple of all subdeterminants of A
- ▶ Assume $b \equiv_D r$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor = \lfloor \lambda^T r + \underbrace{\lambda^T (b-r)}_{\in \mathbb{Z}} \rfloor$$

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \leq n$
 - (iii) $\lambda \in \frac{\mathbb{Z}^m}{D}$, D multiple of all subdeterminants of A
- ▶ Assume $b \equiv_D r$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor = \lfloor \lambda^T r + \underbrace{\lambda^T (b-r)}_{c^T} \rfloor = (\lfloor \lambda^T r \rfloor - \lambda^T r) + \lambda^T b$$

Linearity of P'

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq \mathbf{0}$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \le n$
 - (iii) $\lambda \in \frac{\mathbb{Z}^m}{D}$, D multiple of all subdeterminants of A
- Assume $b \equiv_D r$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor = \lfloor \lambda^T r + \underbrace{\lambda^T (b-r)}_{\in \mathbb{Z}} \rfloor = (\lfloor \lambda^T r \rfloor - \lambda^T r) + \underbrace{\lambda^T b}_{\text{linear in } b}$$

▶ Right hand side of CG cut is **affine linear** in b!!!

Linearity of P'

- Consider $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$. Want to determine from of P(b)' dependent on b!
- ► Consider a Chvátal-Gomory cutting plane $(\lambda^T A)x \leq |\lambda^T b|$ with $\lambda \geq 0$ and $\lambda^T A \in \mathbb{Z}^n$.
- ► Can infer:
 - (i) $\lambda \in [0,1)^m$
 - (ii) $|\operatorname{supp}(\lambda)| \le n$
 - (iii) $\lambda \in \frac{\mathbb{Z}^m}{D}$, D multiple of all subdeterminants of A
- ▶ Assume $b \equiv_D r$

$$(\lambda^T A)x \le \lfloor \lambda^T b \rfloor = \lfloor \lambda^T r + \underbrace{\lambda^T (b - r)}_{\in \mathbb{Z}} \rfloor = (\lfloor \lambda^T r \rfloor - \lambda^T r) + \underbrace{\lambda^T b}_{\text{linear in } b}$$

- ▶ Right hand side of CG cut is **affine linear** in b!!!
- ▶ Coefficients bounded by $\|\lambda^T A\|_{\infty} \leq n \|A\|_{\infty}$

Linearity of $P(b)_I$

▶ Iterating this $f(n, \Delta)$ times gives same for $P(b)_I$:

Linearity of $P(b)_I$

▶ Iterating this $f(n, \Delta)$ times gives same for $P(b)_I$:

Theorem (Eisenbrand, R. 2024)

Let $P(b) := \{x \in \mathbb{R}^n \mid Ax \leq b\}$ where $A \in \mathbb{Z}^{m \times n}$ and $||A||_{\infty} \leq \Delta$. Then there exist $D \in \mathbb{N}$, $B \in \mathbb{Z}^{m' \times n}$, $C \in \mathbb{Z}^{m' \times m}$

so that for all $r \in \{0, ..., D-1\}^m$ there is an $f_r \in \mathbb{Z}^{m'}$ with

$$P(b)_I = \left\{ x \in \mathbb{R}^n \mid Bx \le f_r + Cb \right\} \quad \forall b \in \mathbb{Z}^m \text{ with } b \equiv_D r$$

Moreover one can choose $D \leq n^{n^{(n\Delta)^{O(n^2)}}}$.

$$\max c^{T} x + \sum_{i=1}^{n} d_{i}^{T} y_{i}$$

$$A_{i} x + B_{i} y_{i} \leq b_{i} \quad \forall i \in [n]$$

$$x \in \mathbb{Z}^{k}$$

$$y_{1}, \dots, y_{n} \in \mathbb{Z}^{k}$$

$$\max c^T x + \sum_{i=1}^n d_i^T y_i$$

$$y_i \in P_i(b_i - A_i x) \quad \forall i \in [n]$$

$$x \in \mathbb{Z}^k$$

$$y_1, \dots, y_n \in \mathbb{Z}^k$$

$$\max c^T x + \sum_{i=1}^n d_i^T y_i$$

$$y_i \in (P_i(b_i - A_i x))_I \quad \forall i \in [n]$$

$$x \in \mathbb{Z}^k$$

$$y_1, \dots, y_n \in \mathbb{Z}^k$$

$$\max c^{T} x + \sum_{i=1}^{n} d_{i}^{T} y_{i}$$

$$y_{i} \in (P_{i}(\underline{b_{i} - A_{i}x}))_{I} \quad \forall i \in [n]$$

$$x \in \mathbb{Z}^{k}$$

$$y_{1}, \dots, y_{n} \in \mathbb{Z}^{k}$$

$$x \equiv_{D} r$$

- Guess remainder $r := (x \mod D)$ in optimum solution

$$\max c^{T} x + \sum_{i=1}^{n} d_{i}^{T} y_{i}$$

$$y_{i} \in (P_{i}(\underline{b_{i} - A_{i}x}))_{I} \quad \forall i \in [n]$$

$$x \in \mathbb{Z}^{k}$$

$$y_{1}, \dots, y_{n} \in \mathbb{R}^{k}$$

$$x \equiv_{D} r$$

- Guess remainder $r := (x \mod D)$ in optimum solution

$$\max c^{T}x + \sum_{i=1}^{n} d_{i}^{T}y_{i}$$

$$y_{i} \in (P_{i}(\underline{b_{i} - A_{i}x}))_{I} \quad \forall i \in [n]$$

$$x \in \mathbb{Z}^{k}$$

$$y_{1}, \dots, y_{n} \in \mathbb{R}^{k}$$

$$x \equiv_{D} r$$

- Guess remainder $r := (x \mod D)$ in optimum solution
- Solve remaining system with O(k) integer x-variables (+poly many fractional y-variables)

▶ Our bound gives $D \le 2^{2^{\Delta^{\text{poly}(n)}}}$ (triple-exponential).

Open problem 1

Is $D \leq 2^{\Delta^{\text{poly}(n)}}$ (double-exponential) sufficient?

▶ Our bound gives $D \le 2^{2^{\Delta^{\text{poly}(n)}}}$ (triple-exponential).

Open problem 1

Is $D \leq 2^{\Delta^{\text{poly}(n)}}$ (double-exponential) sufficient?

Open problem 2

Can one solve general *n*-fold IP in time $f(k, \Delta) \cdot n^{O(1)}$?

▶ Our bound gives $D \le 2^{2^{\Delta^{\text{poly}(n)}}}$ (triple-exponential).

Open problem 1

Is $D \leq 2^{\Delta^{\text{poly}(n)}}$ (double-exponential) sufficient?

Open problem 2

Can one solve general *n*-fold IP in time $f(k, \Delta) \cdot n^{O(1)}$?

Open problem 3

Can one solve every *n*-variable ILP in time $2^{O(n)}$?

▶ Best known is $(\log n)^{O(n)}$ [Reis, R. 2023].

▶ Our bound gives $D \le 2^{2^{\Delta^{\text{poly}(n)}}}$ (triple-exponential).

Open problem 1

Is $D \leq 2^{\Delta^{\text{poly}(n)}}$ (double-exponential) sufficient?

Open problem 2

Can one solve general *n*-fold IP in time $f(k, \Delta) \cdot n^{O(1)}$?

Open problem 3

Can one solve every *n*-variable ILP in time $2^{O(n)}$?

▶ Best known is $(\log n)^{O(n)}$ [Reis, R. 2023].

Thanks for your attention!