Directed Steiner Tree and the Lasserre Hierarchy

Thomas Rothvoß

Department of Mathematics, M.I.T.

Alexander von Humboldt Stiftung/Foundation

Input:

• directed weighted graph G = (V, E, c)

Input:

- directed weighted graph G = (V, E, c)
- ▶ root $r \in V$

Input:

- directed weighted graph G = (V, E, c)
- root $r \in V$, terminals X

Input:

- directed weighted graph G = (V, E, c)
- root $r \in V$, terminals X

Find: Tree T connecting r and X, minimizing c(T)

Input:

- directed weighted graph G = (V, E, c)
- root $r \in V$, terminals X

Find: Tree T connecting r and X, minimizing c(T)

▶ W.l.o.g. *G* is **acyclic**

Input:

- directed weighted graph G = (V, E, c)
- root $r \in V$, terminals X

Find: Tree T connecting r and X, minimizing c(T)

- ▶ W.l.o.g. G is acyclic
- ► Modulo $O(\log |X|)$ factor, may assume $\ell = \log |X|$ levels $(\exists \ell$ -level tree of cost $\ell \cdot |X|^{1/\ell} \cdot OPT$ [Zelikovsky '97])

Generalizes:

- ► Set Cover
- ► (Non-metric / Multi-level) Facility Location
- ► GROUP STEINER TREE

Generalizes:

- ► Set Cover
- ► (Non-metric / Multi-level) Facility Location
- ► GROUP STEINER TREE

Known results:

▶ $\Omega(\log^{2-\varepsilon} n)$ -hard [Halperin, Krauthgamer '03]

Generalizes:

- ► Set Cover
- ► (Non-metric / Multi-level) Facility Location
- ► GROUP STEINER TREE

Known results:

- ▶ $\Omega(\log^{2-\varepsilon} n)$ -hard [Halperin, Krauthgamer '03]
- |X|^ε-apx in polytime (for any ε > 0)
 → sophisticated greedy algo [Zelikovsky '97]

Generalizes:

- ► Set Cover
- ► (Non-metric / Multi-level) Facility Location
- ► GROUP STEINER TREE

Known results:

- ▶ $\Omega(\log^{2-\varepsilon} n)$ -hard [Halperin, Krauthgamer '03]
- |X|^ε-apx in polytime (for any ε > 0)
 → sophisticated greedy algo [Zelikovsky '97]
- ▶ $O(\log^3 |X|)$ -apx in $n^{O(\log |X|)}$ time → (more) sophisticated greedy algo [Charikar, Chekuri, Cheung, Goel, Guha and Li '99]

Generalizes:

- ► Set Cover
- ► (Non-metric / Multi-level) Facility Location
- ► GROUP STEINER TREE

Known results:

- ▶ $\Omega(\log^{2-\varepsilon} n)$ -hard [Halperin, Krauthgamer '03]
- |X|^ε-apx in polytime (for any ε > 0)
 → sophisticated greedy algo [Zelikovsky '97]
- > O(log³ |X|)-apx in n^{O(log |X|)} time
 → (more) sophisticated greedy algo
 [Charikar, Chekuri, Cheung, Goel, Guha and Li '99]

What about LPs?

Variables:

- \blacktriangleright $y_e =$ "use edge e?"
- $f_{s,e} = "r-s$ flow uses e?"

Constraints:

Variables:

- ▶ $y_e =$ "use edge e?"
- $f_{s,e} = "r-s$ flow uses e?"

Constraints:

1/2

Variables:

- ▶ $y_e =$ "use edge e?"
- $f_{s,e} = "r-s$ flow uses e?"

Constraints:

Variables:

- ▶ $y_e =$ "use edge e?"
- $f_{s,e} = "r-s$ flow uses e?"

Constraints:

1/2

Variables:

- ▶ $y_e =$ "use edge e?"
- $f_{s,e} = "r-s$ flow uses e?"

Constraints:

Round-t Lasserre relaxation

• Given: $K = \{x \in \mathbb{R}^n \mid Ax \ge b\}.$

Round-t Lasserre relaxation

- Given: $K = \{x \in \mathbb{R}^n \mid Ax \ge b\}.$
- Introduce variables $y_I \equiv \bigwedge_{i \in I} (x_i = 1)$ for $I \subseteq \{1, \dots, n\}$ with $|I| \le 2t + 2$

Round-t Lasserre relaxation

• Given:
$$K = \{x \in \mathbb{R}^n \mid Ax \ge b\}.$$

► Introduce variables $y_I \equiv \bigwedge_{i \in I} (x_i = 1)$ for $I \subseteq \{1, ..., n\}$ with $|I| \le 2t + 2$

Round-t Lasserre relaxation

$$(y_{I\cup J})_{|I|,|J| \le t+1} \succeq 0$$

$$\left(\sum_{i \in [n]} A_{\ell i} y_{I\cup J\cup \{i\}} - b_{\ell} y_{I\cup J}\right)_{|I|,|J| \le t} \succeq 0 \quad \forall \ell \in [m]$$

$$y_{\emptyset} = 1$$

Theorem

 $Let \ K = \{ x \in \mathbb{R}^n \mid Ax \ge b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \le t$

Theorem

 $Let \ K = \{ x \in \mathbb{R}^n \mid Ax \geq b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \leq t$

Theorem

$$Let \; K = \{ x \in \mathbb{R}^n \mid Ax \geq b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \leq t$$

(a) Local consistency:

 $y \in conv\{z \in \operatorname{Las}_{t-|I|}(K) \mid z_{\{i\}} \in \{0,1\} \; \forall i \in I\}$

Theorem

$$Let \ K = \{ x \in \mathbb{R}^n \mid Ax \ge b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \le t$$

(a) Local consistency: y ∈ conv{z ∈ LAS_{t-|I|}(K) | z_{i} ∈ {0,1} ∀i ∈ I}
(b) Decomposition: [Karlin-Mathieu-Nguyen '11] Let S ⊆ [n]; k := max{|I| : I ⊆ S; x ∈ K; x_i = 1 ∀i ∈ I} ≤ t.

Then $y \in conv\{z \in LAS_{t-k}(K) \mid z_{\{i\}} \in \{0,1\} \forall i \in S\}.$

Theorem

$$Let \ K = \{ x \in \mathbb{R}^n \mid Ax \geq b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \leq t$$

(a) Local consistency: y ∈ conv{z ∈ LAS_{t-|I|}(K) | z_{i} ∈ {0,1} ∀i ∈ I}
(b) Decomposition: [Karlin-Mathieu-Nguyen '11] Let S ⊆ [n]; k := max{|I| : I ⊆ S; x ∈ K; x_i = 1 ∀i ∈ I} ≤ t. Then y ∈ conv{z ∈ LAS_{t-k}(K) | z_{{i}} ∈ {0,1} ∀i ∈ S}.

• **Example:** For KNAPSACK take $S := \{ \text{large items} \}$

Theorem

$$Let \ K = \{ x \in \mathbb{R}^n \mid Ax \geq b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \leq t$$

- (a) Local consistency: y ∈ conv{z ∈ LAS_{t-|I|}(K) | z_{i} ∈ {0,1} ∀i ∈ I}
 (b) Decomposition: [Karlin-Mathieu-Nguyen '11] Let S ⊆ [n]; k := max{|I| : I ⊆ S; x ∈ K; x_i = 1 ∀i ∈ I} ≤ t. Then y ∈ conv{z ∈ LAS_{t-k}(K) | z_{{i}} ∈ {0,1} ∀i ∈ S}.
 - **Example:** For KNAPSACK take $S := \{ \text{large items} \}$
 - Decomposition not true for Sherali-Adams or Lovász-Schrijver hierarchies

Theorem

$$Let \ K = \{ x \in \mathbb{R}^n \mid Ax \geq b \}; \quad y \in \mathrm{Las}_t(K); \quad |I|, |J| \leq t$$

(a) Local consistency: $y \in conv\{z \in LAS_{t-|I|}(K) \mid z_{\{i\}} \in \{0, 1\} \ \forall i \in I\}$ (b) **Decomposition:** [Karlin-Mathieu-Nguyen '11] Let $S \subseteq [n]$; $k := \max\{|I| : I \subseteq S; x \in K; x_i = 1 \forall i \in I\} < t$. Then $y \in conv\{z \in LAS_{t-k}(K) \mid z_{\{i\}} \in \{0,1\} \forall i \in S\}.$ (c) Convergence: $conv(K \cap \{0,1\}^n) = LAS_n^{proj}(K)$ (d) Monotonicity: $I \supseteq J \implies 0 \le y_I \le y_J \le 1$ (e) $y_I = 1 \iff \bigwedge_{i \in I} (y_{\{i\}} = 1).$ (f) $(\forall i \in I : y_{\{i\}} \in \{0, 1\}) \implies y_I = \prod_{i \in I} y_{\{i\}}.$ (g) $y_I = 1 \implies y_{I \sqcup I} = y_I$.

Theorem

The integrality gap of an $O(\ell)$ -round Lasserre solution for an ℓ -level DIRECTED STEINER TREE instance is $O(\ell \log |X|)$.

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])

Theorem

The integrality gap of an $O(\ell)$ -round Lasserre solution for an ℓ -level DIRECTED STEINER TREE instance is $O(\ell \log |X|)$.

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Theorem

The integrality gap of an $O(\ell)$ -round Lasserre solution for an ℓ -level DIRECTED STEINER TREE instance is $O(\ell \log |X|)$.

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Input: GROUP STEINER TREE instance

Theorem

The integrality gap of an $O(\ell)$ -round Lasserre solution for an ℓ -level DIRECTED STEINER TREE instance is $O(\ell \log |X|)$.

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Theorem

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Theorem

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Theorem

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Theorem

- ► Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell = 4$) without strengthening.
- ► This gives an O(log³ |X|)-apx in n^{O(log |X|)} time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $\Pr[\text{add } \{e\}] = y_{\{e\}}$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $\Pr[\text{add } \{e\}] = y_{\{e\}}$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } \{e\}] = y_{\{e\}}$$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $\Pr[\text{add } \{e\}] = y_{\{e\}}$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $\Pr[\text{add } \{e\}] = y_{\{e\}}$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

$$\Pr[\text{add } P \cup \{e\}] = \frac{y_{P \cup \{e\}}}{y_P}$$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $T = \{\text{sampled paths}\}$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $T = {\text{sampled paths}}$

Road map:

▶ Show
$$\Pr[e \in T] = y_{\{e\}}$$

▶ Let $Y \in Las_{O(\ell)}(LP)$ (y_P value for $\{y_e \mid e \in P\}$ -variables)

(1)
$$T := \{\emptyset\}$$

(2) FOR all $P \in T$ and incident $e \in E$ DO
(3) $\Pr[\text{add } P \cup \{e\} \text{ to } T] = \frac{y_{P \cup \{e\}}}{y_P}$

 $T = {\text{sampled paths}}$

Road map:

▶ Show
$$\Pr[e \in T] = y_{\{e\}}$$

• $\Pr[s \text{ connected}] \ge \Omega(\frac{1}{\# \text{levels}})$ for each terminal s

Probability to sample a particular path

Lemma

For any root-path P: $\Pr[P \in T] = y_P$.

$$\Pr[P \in T] = y_{\{e_1\}} \cdot \frac{y_{\{e_1, e_2\}}}{y_{\{e_1\}}} \cdot \frac{y_{\{e_1, e_2, e_3\}}}{y_{\{e_1, e_2\}}} \cdot \dots \cdot \frac{y_P}{y_{P \setminus \{e_j\}}} = y_P.$$

$$\sum_{P \text{ ending in } e} y_P \leq y_{\{e\}}$$

Lemma $\sum_{P \text{ ending in } e} y_P \le y_{\{e\}}$

▶ It suffices to consider case $y_{\{e\}} \in \{0, 1\}$ (costs 1 level).

Lemma $\sum_{P \text{ ending in } e} y_P \le y_{\{e\}}$

▶ It suffices to consider case $y_{\{e\}} \in \{0, 1\}$ (costs 1 level).

$$y_{\{e\}} = 1$$

Lemma $\sum_{P \text{ ending in } e} y_P \leq y_{\{e\}}$

▶ It suffices to consider case $y_{\{e\}} \in \{0, 1\}$ (costs 1 level).

$$\sum_{P \ ending \ in \ e} y_P \leq y_{\{e}$$

- ▶ It suffices to consider case $y_{\{e\}} \in \{0, 1\}$ (costs 1 level).
- ▶ By induction $\sum_{P \text{ ending in } e'} y_P \leq y_{\{e'\}}$

$$\sum_{P \text{ ending in } e} y_P \le y_{\{e\}}$$

- ▶ It suffices to consider case $y_{\{e\}} \in \{0,1\}$ (costs 1 level).
- By induction $\sum_{P \text{ ending in } e'} y_P \le y_{\{e'\}}$
- ► Since $y_{\{e\}} = 1 \implies y_{P \cup \{e\}} = y_P$, $\sum_{P \text{ ending in } e} y_P = \sum_{e' \in \delta^-(v)} \sum_{P \text{ ending in } e'} y_P \le 1 \quad \Box$

$$\sum_{P \text{ ending in } e} y_P \le y_{\{e\}}$$

- ▶ It suffices to consider case $y_{\{e\}} \in \{0,1\}$ (costs 1 level).
- By induction $\sum_{P \text{ ending in } e'} y_P \leq y_{\{e'\}}$
- Since $y_{\{e\}} = 1 \implies y_{P \cup \{e\}} = y_P$, $\sum y_P = \sum \sum y_P \le 1 \square$ P ending in e $e' \in \delta^-(v) P$ ending in e' $I \oplus \leq$ $e' \in \delta^-(u)$ $y_{\{e\}} = 1$

Each terminal connected once in expectation

For terminal s:

P

$$\sum_{ending in s} y_P = 1.$$

Lemma

For terminal s:

$$\sum_{P \text{ ending in } s} y_P = 1.$$

▶ No feasible frac. flow with $|\{e : f_{s,e} = 1\}| > \ell$

Lemma

$$\sum_{P \text{ ending in } s} y_P = 1.$$

- ▶ No feasible frac. flow with $|\{e : f_{s,e} = 1\}| > \ell$
- ▶ **Decomposition**: Write sol. as convex comb. of sol. that are integral on $f_{s,*}$ (costs ℓ levels)

Lemma

$$\sum_{P \text{ ending in } s} y_P = 1.$$

- ► No feasible frac. flow with $|\{e : f_{s,e} = 1\}| > \ell$
- ▶ **Decomposition**: Write sol. as convex comb. of sol. that are integral on $f_{s,*}$ (costs ℓ levels)
- Suffices to show claim if $f_{s,e} \in \{0,1\} \ \forall e \in E$

Lemma

$$\sum_{P \text{ ending in } s} y_P = 1.$$

- ▶ No feasible frac. flow with $|\{e : f_{s,e} = 1\}| > \ell$
- ▶ **Decomposition**: Write sol. as convex comb. of sol. that are integral on $f_{s,*}$ (costs ℓ levels)
- Suffices to show claim if $f_{s,e} \in \{0,1\} \ \forall e \in E$

Lemma

$$\sum_{P \text{ ending in } s} y_P = 1$$

- ▶ No feasible frac. flow with $|\{e : f_{s,e} = 1\}| > \ell$
- ▶ **Decomposition**: Write sol. as convex comb. of sol. that are integral on $f_{s,*}$ (costs ℓ levels)
- Suffices to show claim if $f_{s,e} \in \{0,1\} \ \forall e \in E$
- ▶ Use LP-constraint: "Incoming capacity ≤ 1 "

Lemma

$$\sum_{P \text{ ending in } s} y_P = 1$$

- ▶ No feasible frac. flow with $|\{e : f_{s,e} = 1\}| > \ell$
- ▶ **Decomposition**: Write sol. as convex comb. of sol. that are integral on $f_{s,*}$ (costs ℓ levels)
- Suffices to show claim if $f_{s,e} \in \{0,1\} \ \forall e \in E$
- Use LP-constraint: "Incoming capacity ≤ 1 "

Lemma

 $E[Z \mid Z \ge 1] \le \ell + 1.$

Lemma

 $E[Z \mid Z \geq 1] \leq \ell + 1.$

• $E[Z \mid Z \ge 1] \le E[Z \mid P \in T]$ for some P

Lemma

 $E[Z \mid Z \geq 1] \leq \ell + 1.$

• $E[Z \mid Z \ge 1] \le E[Z \mid P \in T]$ for some P

Lemma

 $E[Z \mid Z \geq 1] \leq \ell + 1.$

- $E[Z \mid Z \ge 1] \le E[Z \mid P \in T]$ for some P
- ▶ Suffices to prove $E[\#S : S \supseteq Q, s \in S | Q \in T] \le 1$.

Lemma

 $E[Z \mid Z \ge 1] \le \ell + 1.$

- $\blacktriangleright E[Z \mid Z \ge 1] \le E[Z \mid P \in T] \text{ for some } P$
- ▶ Suffices to prove $E[\#S : S \supseteq Q, s \in S | Q \in T] \le 1$.

Done...

• Recall: Z =#paths connecting a fixed terminal s

Lemma

$$\Pr[Z \ge 1] \ge \frac{1}{\ell+1}.$$

Done...

• Recall: Z =#paths connecting a fixed terminal s

Lemma $\Pr[Z \ge 1] \ge \frac{1}{\ell+1}.$

1 = E[Z]

Done...

• Recall: Z =#paths connecting a fixed terminal s

Lemma

$$\Pr[Z \ge 1] \ge \frac{1}{\ell+1}.$$

$$1 = E[Z] = \Pr[Z=0] \underbrace{E[Z \mid Z=0]}_{=0} + \Pr[Z \ge 1] \underbrace{E[Z \mid Z \ge 1]}_{\leq \ell+1} \quad \Box$$

Open problems

Open problem

Is there a convex relaxation for DIRECTED STEINER TREE that

- \blacktriangleright has $polylog(|\mathbf{X}|)$ integrality gap
- can be solved in **polytime**?

Open problems

Open problem

Is there a convex relaxation for DIRECTED STEINER TREE that

- \blacktriangleright has $polylog(|\mathbf{X}|)$ integrality gap
- can be solved in **polytime**?

Thanks for your attention