Directed Steiner Tree and the Lasserre Hierarchy

Thomas Rothvoß

Department of Mathematics, M.I.T.

Directed Steiner Tree

Directed Steiner Tree

Input:

- directed weighted graph $G=(V, E, c)$

Directed Steiner Tree

Input:

- directed weighted graph $G=(V, E, c)$
- root $r \in V$

Directed Steiner Tree

Input:

- directed weighted graph $G=(V, E, c)$
- root $r \in V$, terminals X

Directed Steiner Tree

Input:

- directed weighted graph $G=(V, E, c)$
- root $r \in V$, terminals X

Find: Tree T connecting r and X, minimizing $c(T)$

Directed Steiner Tree

Input:

- directed weighted graph $G=(V, E, c)$
- root $r \in V$, terminals X

Find: Tree T connecting r and X, minimizing $c(T)$

- W.l.o.g. G is acyclic

Directed Steiner Tree

Input:

- directed weighted graph $G=(V, E, c)$
- root $r \in V$, terminals X

Find: Tree T connecting r and X, minimizing $c(T)$

- W.l.o.g. G is acyclic
- Modulo $O(\log |X|)$ factor, may assume $\ell=\log |X|$ levels ($\exists \ell$-level tree of cost $\ell \cdot|X|^{1 / \ell} \cdot O P T$ [Zelikovsky '97])

What's known?

Generalizes:

- Set Cover
- (Non-metric / Multi-level) Facility Location
- Group Steiner Tree

What's known?

Generalizes:

- Set Cover
- (Non-metric / Multi-Level) Facility Location
- Group Steiner Tree

Known results:

- $\Omega\left(\log ^{2-\varepsilon} n\right)$-hard [Halperin, Krauthgamer '03]

What's known?

Generalizes:

- Set Cover
- (Non-metric / Multi-Level) Facility Location
- Group Steiner Tree

Known results:

- $\Omega\left(\log ^{2-\varepsilon} n\right)$-hard [Halperin, Krauthgamer '03]
- $|X|^{\varepsilon}$-apx in polytime (for any $\varepsilon>0$) \rightarrow sophisticated greedy algo [Zelikovsky '97]

What's known?

Generalizes:

- Set Cover
- (Non-metric / Multi-Level) Facility Location
- Group Steiner Tree

Known results:

- $\Omega\left(\log ^{2-\varepsilon} n\right)$-hard [Halperin, Krauthgamer '03]
- $|X|^{\varepsilon}$-apx in polytime (for any $\varepsilon>0$) \rightarrow sophisticated greedy algo [Zelikovsky '97]
- $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time \rightarrow (more) sophisticated greedy algo
[Charikar, Chekuri, Cheung, Goel, Guha and Li '99]

What's known?

Generalizes:

- Set Cover
- (Non-metric / Multi-Level) Facility Location
- Group Steiner Tree

Known results:

- $\Omega\left(\log ^{2-\varepsilon} n\right)$-hard [Halperin, Krauthgamer '03]
- $|X|^{\varepsilon}$-apx in polytime (for any $\varepsilon>0$) \rightarrow sophisticated greedy algo [Zelikovsky '97]
- $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time
\rightarrow (more) sophisticated greedy algo
[Charikar, Chekuri, Cheung, Goel, Guha and Li '99]

A flow based LP

Variables:

- $y_{e}=$ "use edge e ?"
- $f_{s, e}=$ " $r-s$ flow uses e ?"

Constraints:

$$
\begin{aligned}
\min \sum_{e \in E} c_{e} y_{e} & \\
\sum_{e \in \delta^{+}(v)} f_{s, e}-\sum_{e \in \delta^{-}(v)} f_{s, e} & =\left\{\begin{array}{ll}
1 & v=r \\
-1 & v=s \\
0 & \text { otherwise }
\end{array} \quad \forall s \in X \forall v \in V\right. \\
f_{s, e} & \leq y_{e} \quad \forall s \in X \forall e \in E \\
y\left(\delta^{-}(v)\right) & \leq 1 \quad \forall v \in V \\
0 \leq y_{e} & \leq 1 \quad \forall e \in E \\
0 \leq f_{s, e} & \leq 1 \quad \forall s \in X \forall e \in E
\end{aligned}
$$

A flow based LP

Variables:

- $y_{e}=$ "use edge e ?"
- $f_{s, e}=$ " $r-s$ flow uses e ?"

Constraints:

$$
\begin{aligned}
\min \sum_{e \in E} c_{e} y_{e} & \\
\sum_{e \in \delta^{+}(v)} f_{s, e}-\sum_{e \in \delta^{-}(v)} f_{s, e} & =\left\{\begin{array}{ll}
1 & v=r \\
-1 & v=s \\
0 & \text { otherwise }
\end{array} \quad \forall s \in X \forall v \in V\right. \\
f_{s, e} & \leq y_{e} \quad \forall s \in X \forall e \in E \\
y\left(\delta^{-}(v)\right) & \leq 1 \quad \forall v \in V \\
0 \leq y_{e} & \leq 1 \quad \forall e \in E \\
0 \leq f_{s, e} & \leq 1 \quad \forall s \in X \forall e \in E
\end{aligned}
$$

A flow based LP

Variables:

- $y_{e}=$ "use edge e ?"
- $f_{s, e}=$ " $r-s$ flow uses e ?"

Constraints:

$$
\begin{aligned}
\min \sum_{e \in E} c_{e} y_{e} & =\left\{\begin{array}{ll}
1 & v=r \\
-1 & v=s \\
0 & \text { otherwise }
\end{array} \quad \forall s \in X \forall v \in V\right. \\
\sum_{e \in \delta^{+}(v)} f_{s, e}-\sum_{e \in \delta^{-}(v)} f_{s, e} & =\begin{array}{l}
f_{s, e}
\end{array} \\
y\left(\delta^{-}(v)\right) & \leq 1 \quad \forall v \in X \\
0 \leq y_{e} & \leq 1 \quad \forall e \in E \\
0 \leq f_{s, e} & \leq 1 \quad \forall s \in X \forall e \in E
\end{aligned}
$$

A flow based LP

Variables:

- $y_{e}=$ "use edge e ?"
- $f_{s, e}=$ " $r-s$ flow uses e ?"

Constraints:

$$
\begin{aligned}
\min \sum_{e \in E} c_{e} y_{e} & \begin{aligned}
\sum_{e \in \delta^{+}(v)} f_{s, e}-\sum_{e \in \delta^{-}(v)} f_{s, e} & =\left\{\begin{array}{ll}
1 & v=r \\
-1 & v=s \\
0 & \text { otherwise }
\end{array} \quad \forall s \in X \forall v \in V\right. \\
f_{s, e} & \leq y_{e} \quad \forall s \in X \quad \forall e \in E \\
y\left(\delta^{-}(v)\right) & \leq 1 \quad \forall v \in V \\
0 \leq y_{e} & \leq 1 \quad \forall e \in E \\
0 \leq f_{s, e} & \leq 1 \quad \forall s \in X \forall e \in E
\end{aligned} . \quad \begin{array}{l}
1 / 2 \\
0
\end{array}
\end{aligned}
$$

A flow based LP

Variables:

- $y_{e}=$ "use edge e ?"
- $f_{s, e}=$ " $r-s$ flow uses e ?"

Constraints:

$$
\begin{aligned}
\min \sum_{e \in E} c_{e} y_{e} & =\left\{\begin{array}{ll}
1 & v=r \\
-1 & v=s \\
0 & \text { otherwise }
\end{array} \quad \forall s \in X \forall v \in V\right. \\
\sum_{e \in \delta^{+}(v)} f_{s, e}-\sum_{e \in \delta^{-}(v)} f_{s, e} & =\begin{array}{l}
f_{s, e}
\end{array} \\
y\left(\delta^{-}(v)\right) & \leq 1 \quad \forall v \in X \quad \forall e \in E \\
0 \leq y_{e} & \leq 1 \quad \forall e \in E \\
0 \leq f_{s, e} & \leq 1 \quad \forall s \in X \forall e \in E
\end{aligned}
$$

Integrality gap instance [Zosin - Khuller '02]

- Integrality gap is $\Omega(\sqrt{k})$ already for 5 layers. (though $n=2^{\tilde{\Theta}(\sqrt{k})} ;$ no $\omega\left(\log ^{2} n\right)$ gap instance known)

Integrality gap instance [Zosin - Khuller '02]

- Integrality gap is $\Omega(\sqrt{k})$ already for 5 layers. (though $n=2^{\tilde{\Theta}(\sqrt{k})} ;$ no $\omega\left(\log ^{2} n\right)$ gap instance known)

Integrality gap instance [Zosin - Khuller '02]

- Integrality gap is $\Omega(\sqrt{k})$ already for 5 layers. (though $n=2^{\tilde{\Theta}(\sqrt{k})} ;$ no $\omega\left(\log ^{2} n\right)$ gap instance known)

Integrality gap instance [Zosin - Khuller '02]

- Integrality gap is $\Omega(\sqrt{k})$ already for 5 layers. (though $n=2^{\tilde{\Theta}(\sqrt{k})} ;$ no $\omega\left(\log ^{2} n\right)$ gap instance known)

Round- t Lasserre relaxation

- Given: $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$.

Round- t Lasserre relaxation

- Given: $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$.
- Introduce variables $y_{I} \equiv \bigwedge_{i \in I}\left(x_{i}=1\right)$ for $I \subseteq\{1, \ldots, n\}$ with $|I| \leq 2 t+2$

Round- t Lasserre relaxation

- Given: $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\}$.
- Introduce variables $y_{I} \equiv \bigwedge_{i \in I}\left(x_{i}=1\right)$ for $I \subseteq\{1, \ldots, n\}$ with $|I| \leq 2 t+2$

Round- t Lasserre relaxation

$$
\begin{aligned}
\left(y_{I \cup J}\right)_{|I|,|J| \leq t+1} & \succeq 0 \\
\left(\sum_{i \in[n]} A_{\ell i} y_{I \cup J \cup\{i\}}-b_{\ell} y_{I \cup J}\right)_{|I|,|J| \leq t} & \succeq 0 \quad \forall \ell \in[m] \\
y_{\emptyset} & =1
\end{aligned}
$$

Properties of Lasserre hierarchy

Theorem

$$
\text { Let } K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t
$$

Properties of Lasserre hierarchy

Theorem

$$
\text { Let } K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t
$$

Properties of Lasserre hierarchy

Theorem

Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t$
(a) Local consistency:

$$
y \in \operatorname{conv}\left\{z \in \operatorname{LaS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}
$$

Properties of Lasserre hierarchy

Theorem

Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t$
(a) Local consistency:
$y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}$
(b) Decomposition: [Karlin-Mathieu-Nguyen '11]

Let $S \subseteq[n] ; k:=\max \left\{|I|: I \subseteq S ; x \in K ; x_{i}=1 \forall i \in I\right\} \leq t$. Then $y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-k}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in S\right\}$.

Properties of Lasserre hierarchy

> Theorem
> Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t$
> (a) Local consistency:
> $y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}$
> (b) Decomposition: [Karlin-Mathieu-Nguyen '11]
> Let $S \subseteq[n] ; k:=\max \left\{|I|: I \subseteq S ; x \in K ; x_{i}=1 \forall i \in I\right\} \leq t$.
> Then $y \in \operatorname{conv}\left\{z \in \operatorname{Las}_{t-k}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in S\right\}$.

- Example: For Knapsack take $S:=$ \{large items $\}$

Properties of Lasserre hierarchy

Theorem

Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t$
(a) Local consistency:
$y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}$
(b) Decomposition: [Karlin-Mathieu-Nguyen '11]

Let $S \subseteq[n] ; k:=\max \left\{|I|: I \subseteq S ; x \in K ; x_{i}=1 \forall i \in I\right\} \leq t$.
Then $y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-k}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in S\right\}$.

- Example: For Knapsack take $S:=$ \{large items $\}$
- Decomposition not true for Sherali-Adams or Lovász-Schrijver hierarchies

Properties of Lasserre hierarchy

Theorem

Let $K=\left\{x \in \mathbb{R}^{n} \mid A x \geq b\right\} ; \quad y \in \operatorname{Las}_{t}(K) ; \quad|I|,|J| \leq t$
(a) Local consistency:
$y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-|I|}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in I\right\}$
(b) Decomposition: [Karlin-Mathieu-Nguyen '11]

Let $S \subseteq[n] ; k:=\max \left\{|I|: I \subseteq S ; x \in K ; x_{i}=1 \forall i \in I\right\} \leq t$.
Then $y \in \operatorname{conv}\left\{z \in \operatorname{LAS}_{t-k}(K) \mid z_{\{i\}} \in\{0,1\} \forall i \in S\right\}$.
(c) Convergence: $\operatorname{conv}\left(K \cap\{0,1\}^{n}\right)=\operatorname{LAS}_{n}^{p r o j}(K)$
(d) Monotonicity: $I \supseteq J \Longrightarrow 0 \leq y_{I} \leq y_{J} \leq 1$
(e) $y_{I}=1 \Longleftrightarrow \bigwedge_{i \in I}\left(y_{\{i\}}=1\right)$.
(f) $\left(\forall i \in I: y_{\{i\}} \in\{0,1\}\right) \Longrightarrow y_{I}=\prod_{i \in I} y_{\{i\}}$.
(g) $y_{I}=1 \Longrightarrow y_{I \cup J}=y_{J}$.

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Input: Group Steiner Tree instance
tree embedding

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

> Input: Group Steiner Tree instance
tree embedding

LP-rounding on tree graph

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

Our contribution

Theorem

The integrality gap of an $O(\ell)$-round Lasserre solution for an ℓ-level Directed Steiner Tree instance is $O(\ell \log |X|)$.

- Recall: gap is $\Omega(\sqrt{|X|})$ (for $\ell=4$) without strengthening.
- This gives an $O\left(\log ^{3}|X|\right)$-apx in $n^{O(\log |X|)}$ time (matching the greedy algo of [Charikar et al. '99])
- Garg-Konjevod-Ravi rounding:

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
\operatorname{Pr}[\operatorname{add}\{e\}]=y_{\{e\}}
$$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
\operatorname{Pr}[\operatorname{add}\{e\}]=y_{\{e\}}
$$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
\operatorname{Pr}[\operatorname{add}\{e\}]=y_{\{e\}}
$$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
\operatorname{Pr}[\operatorname{add}\{e\}]=y_{\{e\}}
$$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
\operatorname{Pr}[\operatorname{add}\{e\}]=y_{\{e\}}
$$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[\operatorname{add} P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[\operatorname{add} P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[\operatorname{add} P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[\operatorname{add} P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[\operatorname{add} P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[\operatorname{add} P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
\operatorname{Pr}[\text { add } P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}
$$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{LaS}_{O(\ell)}(\mathrm{LP})$ (y_{P} value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$\operatorname{Pr}[$ add $P \cup\{e\}]=\frac{y_{P \cup\{e\}}}{y_{P}}$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[$ add $P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
T=\{\text { sampled paths }\}
$$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
T=\{\text { sampled paths }\}
$$

Road map:

- Show $\operatorname{Pr}[e \in T]=y_{\{e\}}$

The rounding algorithm

- Let $Y \in \operatorname{Las}_{O(\ell)}(\mathrm{LP})\left(y_{P}\right.$ value for $\left\{y_{e} \mid e \in P\right\}$-variables)
(1) $T:=\{\emptyset\}$
(2) FOR all $P \in T$ and incident $e \in E \mathrm{DO}$
(3) $\operatorname{Pr}[\operatorname{add} P \cup\{e\}$ to $T]=\frac{y_{P \cup\{e\}}}{y_{P}}$

$$
T=\{\text { sampled paths }\}
$$

Road map:

- Show $\operatorname{Pr}[e \in T]=y_{\{e\}}$
- $\operatorname{Pr}[s$ connected $] \geq \Omega\left(\frac{1}{\# \text { levels }}\right)$ for each terminal s

Probability to sample a particular path

Lemma

For any root-path $P: \operatorname{Pr}[P \in T]=y_{P}$.

$$
\operatorname{Pr}[P \in T]=y_{\left\{e_{1}\right\}} \cdot \frac{y_{\left\{e_{1}, e_{2}\right\}}}{y_{\left\{e_{1}\right\}}} \cdot \frac{y_{\left\{e_{1}, e_{2}, e_{3}\right\}}}{y_{\left\{e_{1}, e_{2}\right\}}} \cdot \ldots \cdot \frac{y_{P}}{y_{P \backslash\left\{e_{j}\right\}}}=y_{P}
$$

Upper bounding the expected cost

Lemma

$$
\sum_{P \text { ending in } e y_{P} \leq y_{\{e\}}}
$$

Upper bounding the expected cost

Lemma

$$
\sum \quad y_{P} \leq y_{\{e\}}
$$

P ending in e

- It suffices to consider case $y_{\{e\}} \in\{0,1\}$ (costs 1 level).

Upper bounding the expected cost

Lemma

$$
\sum \quad y_{P} \leq y_{\{e\}}
$$

P ending in e

- It suffices to consider case $y_{\{e\}} \in\{0,1\}$ (costs 1 level).

Upper bounding the expected cost

Lemma

$$
\sum_{P \text { ending in } e} y_{P} \leq y_{\{e\}}
$$

- It suffices to consider case $y_{\{e\}} \in\{0,1\}$ (costs 1 level).

Upper bounding the expected cost

Lemma

$$
\sum \quad y_{P} \leq y_{\{e\}}
$$

P ending in e

- It suffices to consider case $y_{\{e\}} \in\{0,1\}$ (costs 1 level).
- By induction $\sum_{P \text { ending in } e^{\prime}} y_{P} \leq y_{\left\{e^{\prime}\right\}}$

Upper bounding the expected cost

Lemma

$$
\sum \quad y_{P} \leq y_{\{e\}}
$$

P ending in e

- It suffices to consider case $y_{\{e\}} \in\{0,1\}$ (costs 1 level).
- By induction $\sum_{P \text { ending in } e^{\prime}} y_{P} \leq y_{\left\{e^{\prime}\right\}}$
- Since $y_{\{e\}}=1 \Longrightarrow y_{P \cup\{e\}}=y_{P}$,

$$
\sum_{\text {ending in } e} y_{P}=\sum_{e^{\prime} \in \delta^{-}(v)} \sum_{P \text { ending in } e^{\prime}} y_{P} \leq 1 \quad \square
$$

Upper bounding the expected cost

Lemma

$$
\sum \quad y_{P} \leq y_{\{e\}}
$$

P ending in e

- It suffices to consider case $y_{\{e\}} \in\{0,1\}$ (costs 1 level).
- By induction $\sum_{P \text { ending in } e^{\prime}} y_{P} \leq y_{\left\{e^{\prime}\right\}}$
- Since $y_{\{e\}}=1 \Longrightarrow y_{P \cup\{e\}}=y_{P}$,

$$
\sum_{\text {ending in } e} y_{P}=\sum_{e^{\prime} \in \delta^{-}(v) P} \sum_{P \text { ending in } e^{\prime}} y_{P} \leq 1 \quad \square
$$

Each terminal connected once in expectation

Lemma
For terminal s: $\sum_{P \text { ending in } s} y_{P}=1$.

Each terminal connected once in expectation

Lemma

For terminal s: $\sum_{P \text { ending in } s} y_{P}=1$.

- No feasible frac. flow with $\left|\left\{e: f_{s, e}=1\right\}\right|>\ell$

Each terminal connected once in expectation

Lemma

For terminal s: $\sum_{P \text { ending in } s} y_{P}=1$.

- No feasible frac. flow with $\left|\left\{e: f_{s, e}=1\right\}\right|>\ell$
- Decomposition: Write sol. as convex comb. of sol. that are integral on $f_{s, *}$ (costs ℓ levels)

Each terminal connected once in expectation

Lemma

For terminal s: $\sum_{P \text { ending in } s} y_{P}=1$.

- No feasible frac. flow with $\left|\left\{e: f_{s, e}=1\right\}\right|>\ell$
- Decomposition: Write sol. as convex comb. of sol. that are integral on $f_{s, *}$ (costs ℓ levels)
- Suffices to show claim if $f_{s, e} \in\{0,1\} \forall e \in E$

Each terminal connected once in expectation

Lemma

For terminal s: $\sum_{P \text { ending in } s} y_{P}=1$.

- No feasible frac. flow with $\left|\left\{e: f_{s, e}=1\right\}\right|>\ell$
- Decomposition: Write sol. as convex comb. of sol. that are integral on $f_{s, *}$ (costs ℓ levels)
- Suffices to show claim if $f_{s, e} \in\{0,1\} \forall e \in E$

Each terminal connected once in expectation

Lemma

For terminal $s: \sum_{P \text { ending in } s} y_{P}=1$.

- No feasible frac. flow with $\left|\left\{e: f_{s, e}=1\right\}\right|>\ell$
- Decomposition: Write sol. as convex comb. of sol. that are integral on $f_{s, *}$ (costs ℓ levels)
- Suffices to show claim if $f_{s, e} \in\{0,1\} \forall e \in E$
- Use LP-constraint: "Incoming capacity ≤ 1 "

Each terminal connected once in expectation

Lemma

For terminal s: $\sum_{P \text { ending in } s} y_{P}=1$.

- No feasible frac. flow with $\left|\left\{e: f_{s, e}=1\right\}\right|>\ell$
- Decomposition: Write sol. as convex comb. of sol. that are integral on $f_{s, *}$ (costs ℓ levels)
- Suffices to show claim if $f_{s, e} \in\{0,1\} \forall e \in E$
- Use LP-constraint: "Incoming capacity ≤ 1 "

(r)

For fixed $\mathrm{s}, Z:=\#$ paths connecting s

$$
\Rightarrow E[Z]=1
$$

y

Upper bounding the conditional expectation
Lemma
$E[Z \mid Z \geq 1] \leq \ell+1$.

Upper bounding the conditional expectation
Lemma

$$
E[Z \mid Z \geq 1] \leq \ell+1
$$

- $E[Z \mid Z \geq 1] \leq E[Z \mid P \in T]$ for some P

Upper bounding the conditional expectation
Lemma

$$
E[Z \mid Z \geq 1] \leq \ell+1
$$

- $E[Z \mid Z \geq 1] \leq E[Z \mid P \in T]$ for some P

Upper bounding the conditional expectation

Lemma

$E[Z \mid Z \geq 1] \leq \ell+1$.

- $E[Z \mid Z \geq 1] \leq E[Z \mid P \in T]$ for some P
- Suffices to prove $E[\# S: S \supseteq Q, s \in S \mid Q \in T] \leq 1$.

Upper bounding the conditional expectation

Lemma

$$
E[Z \mid Z \geq 1] \leq \ell+1 .
$$

- $E[Z \mid Z \geq 1] \leq E[Z \mid P \in T]$ for some P
- Suffices to prove $E[\# S: S \supseteq Q, s \in S \mid Q \in T] \leq 1$.

$$
\sum_{S: S \supseteq Q, s \in S} \operatorname{Pr}[S \in T \mid Q \in T] \stackrel{\text { cond. prob. }}{\leq} \sum_{S: S \supseteq Q, s \in S} \frac{y_{S}}{y_{Q}} \stackrel{\substack{\text { as in previous } \\ \text { lemma }}}{\leq} 1 \square
$$

Done...

- Recall: $Z=$ \#paths connecting a fixed terminal s

Lemma
$\operatorname{Pr}[Z \geq 1] \geq \frac{1}{\ell+1}$.

Done...

- Recall: $Z=$ \#paths connecting a fixed terminal s

Lemma
$\operatorname{Pr}[Z \geq 1] \geq \frac{1}{\ell+1}$.
$1=E[Z]$

Done. . .

- Recall: $Z=\#$ paths connecting a fixed terminal s

Lemma

$\operatorname{Pr}[Z \geq 1] \geq \frac{1}{\ell+1}$.

$$
1=E[Z]=\operatorname{Pr}[Z=0] \cdot \underbrace{E[Z \mid Z=0]}_{=0}+\operatorname{Pr}[Z \geq 1] \cdot \underbrace{E[Z \mid Z \geq 1]}_{\leq \ell+1}
$$

Open problems

Open problem
Is there a convex relaxation for Directed Steiner Tree that

- has polylog $(|\mathbf{X}|)$ integrality gap
- can be solved in polytime?

Open problems

Open problem

Is there a convex relaxation for Directed Steiner Tree that

- has polylog $(|\mathbf{X}|)$ integrality gap
- can be solved in polytime?

Thanks for your attention

