
Iterative Randomized Rounding

Thomas Rothvoß

Department of Mathematics, M.I.T.

Cargèse 2011

Joint work with Jaros law Byrka,
Fabrizio Grandoni and Laura Sanità

What is Iterative Randomized Rounding?

Set Cover:

◮ Input: Sets S1, . . . , Sm over elements 1, . . . , n; cost c(Si)

◮ Goal: minI⊆[m]{
∑

i∈I ci |
⋃

i∈I Si = [n]}

What is Iterative Randomized Rounding?

Set Cover:

◮ Input: Sets S1, . . . , Sm over elements 1, . . . , n; cost c(Si)

◮ Goal: minI⊆[m]{
∑

i∈I ci |
⋃

i∈I Si = [n]}

Standard LP:

min

m∑

i=1

c(Si) · xi

∑

i:j∈Si

xi ≥ 1 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

What is Iterative Randomized Rounding?

Set Cover:

◮ Input: Sets S1, . . . , Sm over elements 1, . . . , n; cost c(Si)

◮ Goal: minI⊆[m]{
∑

i∈I ci |
⋃

i∈I Si = [n]}

Standard LP:

min

m∑

i=1

c(Si) · xi

∑

i:j∈Si

xi ≥ 1 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

What is Iterative Randomized Rounding?

Set Cover:

◮ Input: Sets S1, . . . , Sm over elements 1, . . . , n; cost c(Si)

◮ Goal: minI⊆[m]{
∑

i∈I ci |
⋃

i∈I Si = [n]}

Standard LP:

min

m∑

i=1

c(Si) · xi

∑

i:j∈Si

xi ≥ 1 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

Known:

◮ Integrality gap is Θ(lnn)

What is Iterative Randomized Rounding?

Set Cover:

◮ Input: Sets S1, . . . , Sm over elements 1, . . . , n; cost c(Si)

◮ Goal: minI⊆[m]{
∑

i∈I ci |
⋃

i∈I Si = [n]}

Standard LP:

min

m∑

i=1

c(Si) · xi

∑

i:j∈Si

xi ≥ 1 ∀j ∈ [n]

xi ≥ 0 ∀i ∈ [m]

1/2

1/2

1/2

1/2
1/2

1/2

1/2

1/2

1/2

Known:

◮ Integrality gap is Θ(lnn)

◮ Suppose |Si| ≤ k. Then gap is Θ(ln k).

Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2

bought
sets

Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2

bought
sets

Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2 1 1

1

bought
sets

Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2 1 1

1

bought
sets

Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2 1 1

1

bought
sets SOLUTION

Analysis

E[APX] =
∑

t≥1

E[OPTf in step t]

I
∗

Analysis

◮ Let I∗ be optimal Set Cover solution.

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)]
I
∗

Analysis

◮ Let I∗ be optimal Set Cover solution.

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)] b

b
b

b

b
I
∗

covered after t it

Analysis

◮ Let I∗ be optimal Set Cover solution.

◮ It := {i ∈ I∗ | not yet all elements in Si covered} (←
feasible in step t)

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)] b

b
b

b

b
I
t

covered after t it

Analysis

◮ Let I∗ be optimal Set Cover solution.

◮ It := {i ∈ I∗ | not yet all elements in Si covered} (←
feasible in step t)

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)]

=
∑

i∈I∗

E[# iterations Si is in It] · c(Si)

b

b
b

b

b
I
t

covered after t it

Analysis

◮ Let I∗ be optimal Set Cover solution.

◮ It := {i ∈ I∗ | not yet all elements in Si covered} (←
feasible in step t)

◮ Pr[element j not covered after ln(2k) it.] ≤ e− ln(2k) = 1
2k

◮ Pr[not all el. in Si covered after ln(2k) it.] ≤ k · 1
2k = 1

2

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)]

=
∑

i∈I∗

E[# iterations Si is in It]
︸ ︷︷ ︸

≤O(ln(k))

·c(Si)

b

b
b

b

b
I
t

covered after t it

Analysis

◮ Let I∗ be optimal Set Cover solution.

◮ It := {i ∈ I∗ | not yet all elements in Si covered} (←
feasible in step t)

◮ Pr[element j not covered after ln(2k) it.] ≤ e− ln(2k) = 1
2k

◮ Pr[not all el. in Si covered after ln(2k) it.] ≤ k · 1
2k = 1

2

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)]

=
∑

i∈I∗

E[# iterations Si is in It]
︸ ︷︷ ︸

≤O(ln(k))

·c(Si)

= O(ln k) ·OPT

b

b
b

b

b
I
t

covered after t it

Steiner Tree

Given:

◮ undirected graph G = (V,E)

◮ cost c : E → Q+

◮ terminals R ⊆ V

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

terminals

W.l.o.g.: c is metric.

Steiner Tree

Given:

◮ undirected graph G = (V,E)

◮ cost c : E → Q+

◮ terminals R ⊆ V

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

Steiner node

Steiner tree
W.l.o.g.: c is metric.

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
◮ Can be computed in poly-time.

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
◮ Can be computed in poly-time.

◮ Costs ≤ 2 · OPT .

Known results for Steiner tree:

Approximations:

◮ 2-apx (minimum spanning tree heuristic)

◮ 1.83-apx [Zelikovsky ’93]

◮ 1.667-apx [Prömel & Steger ’97]

◮ 1.644-apx [Karpinski & Zelikovsky ’97]

◮ 1.598-apx [Hougardy & Prömel ’99]

◮ 1.55-apx [Robins & Zelikovsky ’00]

Known results for Steiner tree:

Approximations:

◮ 2-apx (minimum spanning tree heuristic)

◮ 1.83-apx [Zelikovsky ’93]

◮ 1.667-apx [Prömel & Steger ’97]

◮ 1.644-apx [Karpinski & Zelikovsky ’97]

◮ 1.598-apx [Hougardy & Prömel ’99]

◮ 1.55-apx [Robins & Zelikovsky ’00]

Hardness:

◮ NP-hard even if edge costs ∈ {1, 2} [Bern & Plassmann ’89]

◮ no < 96
95 -apx unless NP = P [Chlebik & Chlebikova ’02]

Our results:

Theorem

There is a polynomial time 1.39-approximation.

◮ LP-based! (Directed-Component Cut Relaxation)

◮ Algorithmic framework: Iterative Randomized Rounding

Our results:

Theorem

There is a polynomial time 1.39-approximation.

◮ LP-based! (Directed-Component Cut Relaxation)

◮ Algorithmic framework: Iterative Randomized Rounding

Theorem

The Directed-Component Cut Relaxation has an integrality gap
of at most 1.55.

◮ First < 2 bound for any LP-relaxation.

Bi-directed cut relaxation

Bi-directed cut relaxation

◮ Pick a root r ∈ R

root r

Bi-directed cut relaxation

◮ Pick a root r ∈ R

◮ Bi-direct edges

root r

Bi-directed cut relaxation

◮ Pick a root r ∈ R

◮ Bi-direct edges

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V \ {r} : U ∩R 6= ∅

ze ≥ 0 ∀e ∈ E.

root r

U

Bi-directed cut relaxation

◮ Pick a root r ∈ R

◮ Bi-direct edges

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V \ {r} : U ∩R 6= ∅

ze ≥ 0 ∀e ∈ E.

root r

U

ze = 1
2

Bi-directed cut relaxation

◮ Pick a root r ∈ R

◮ Bi-direct edges

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V \ {r} : U ∩R 6= ∅

ze ≥ 0 ∀e ∈ E.

root r

U

ze = 1
2

Theorem (Edmonds ’67)

R = V ⇒ BCR integral

◮ Integrality gap ≤ 4/3 for quasi-bipartite graphs
[Chakrabarty, Devanur, Vazirani ’08]

◮ Integrality gap ∈ [1.16, 2]

Components

directed component C

sink(C)

◮ C = set of directed components

Directed component cut relaxation

min
∑

C∈C

c(C) · xC (DCR)

∑

C ∈ C : R(C) ∩ U 6= ∅,
sink(C) /∈ U

xC ≥ 1 ∀∅ ⊂ U ⊆ R \ {r}

xC ≥ 0 ∀C ∈ C

root r

U

Directed component cut relaxation

min
∑

C∈C

c(C) · xC (DCR)

∑

C ∈ C : R(C) ∩ U 6= ∅,
sink(C) /∈ U

xC ≥ 1 ∀∅ ⊂ U ⊆ R \ {r}

xC ≥ 0 ∀C ∈ C

xC1
= 1

2

xC2
= 1

2

xC3
= 1

2b b b

root r

U

Directed component cut relaxation

min
∑

C∈C

c(C) · xC (DCR)

∑

C ∈ C : R(C) ∩ U 6= ∅,
sink(C) /∈ U

xC ≥ 1 ∀∅ ⊂ U ⊆ R \ {r}

xC ≥ 0 ∀C ∈ C

Properties:

◮ Number of variables: exponential

◮ Number of constraints: exponential

◮ Approximable within 1 + ε (we ignore the ε here).

Solvability of the LP

Lemma

For any ε > 0, a solution x of cost ≤ (1 + ε)OPTf can be
computed in polynomial time.

Solvability of the LP

Lemma

For any ε > 0, a solution x of cost ≤ (1 + ε)OPTf can be
computed in polynomial time.

◮ Use only components of size 2⌈1/ε⌉ = O(1)
[Borchers & Du ’97]: Increases cost by ≤ 1 + ε
→ # variables polynomial

Solvability of the LP

Lemma

For any ε > 0, a solution x of cost ≤ (1 + ε)OPTf can be
computed in polynomial time.

≤ 2⌈1/ε⌉

◮ Use only components of size 2⌈1/ε⌉ = O(1)
[Borchers & Du ’97]: Increases cost by ≤ 1 + ε
→ # variables polynomial

Solvability of the LP

Lemma

For any ε > 0, a solution x of cost ≤ (1 + ε)OPTf can be
computed in polynomial time.

≤ 2⌈1/ε⌉

◮ Use only components of size 2⌈1/ε⌉ = O(1)
[Borchers & Du ’97]: Increases cost by ≤ 1 + ε
→ # variables polynomial

◮ Compact flow formulation → # constraints polynomial
(or solve with ellipsoid method).

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

xC1
= 1

2

xC2
= 1

2

xC3
= 1

2b b b

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

bC1

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

b C2

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

C1
b b C2

An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

◮ W.l.o.g. M := 1Tx invariant

Roadmap

◮ In one iteration t:

E[c(comp. sampled in it. t)] =
∑

C

xC
M
·c(C) ≤

1

M
·OPT in it t

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

Roadmap

◮ In one iteration t:

E[c(comp. sampled in it. t)] =
∑

C

xC
M
·c(C) ≤

1

M
·OPT in it t

◮ In total
∑

t≥1

E[c(comp. sampled in it. t)] ≤
∑

t≥1

1

M
·E[OPT in iteration t]

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

Roadmap

◮ In one iteration t:

E[c(comp. sampled in it. t)] =
∑

C

xC
M
·c(C) ≤

1

M
·OPT in it t

◮ In total
∑

t≥1

E[c(comp. sampled in it. t)] ≤
∑

t≥1

1

M
·E[OPT in iteration t]

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

E[OPT after t it] ≤ (1− 1
2M)t · OPT

Roadmap

◮ In one iteration t:

E[c(comp. sampled in it. t)] =
∑

C

xC
M
·c(C) ≤

1

M
·OPT in it t

◮ In total
∑

t≥1

E[c(comp. sampled in it. t)] ≤
∑

t≥1

1

M
·E[OPT in iteration t]

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

E[OPT after t it] ≤ (1− 1
M)t · 2 · OPT

E[OPT after t it] ≤ (1− 1
2M)t · OPT

Bridges

◮ Let S be Steiner tree

C

Bridges

◮ Let S be Steiner tree, C a component

C

Bridges

◮ Let S be Steiner tree, C a component

C

◮ Bridges:

BrS(C) = argmax{c(B) | B ⊆ S, S\B ∪ C is connected}

Bridges

◮ Let S be Steiner tree, C a component

C

◮ Bridges:

BrS(C) = argmax{c(B) | B ⊆ S, S\B ∪ C is connected}

The saving function

Definition

For a Steiner tree S, the saving function w : E → Q+ is
defined as

w(u, v) := max{c(e) | e on u− v path in S}.

u v

w(u, v) := max{c(e) | e on u− v path in S}

A saving lemma

Lemma

For any component C, ∃ saving tree spanning the terminals of
C with

c(BrS(C)) = w(saving tree)

1S

1

1 1

5

2

r r

C

r

A saving lemma

Lemma

For any component C, ∃ saving tree spanning the terminals of
C with

c(BrS(C)) = w(saving tree)

1S

1

1 1

5

2

b

5 2
r r r

saving tree

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

E

[

c

(
terminal spanning tree
after 1 sampling step

)]

≤
(

1−
1

M

)

· c(T)

root r

T

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

root r

T

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

◮ For any C, ∃ saving tree:
c(BrT (C)) = w(saving tree of C)

root r

T

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

◮ For any C, ∃ saving tree:
c(BrT (C)) = w(saving tree of C)

◮ Transfer capacity from component to
its saving tree
→ capacity reservation y : E → Q+ b

root r

T

1/2

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

◮ For any C, ∃ saving tree:
c(BrT (C)) = w(saving tree of C)

◮ Transfer capacity from component to
its saving tree
→ capacity reservation y : E → Q+ b

root r

T

1/2

1/2

1/2

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

◮ For any C, ∃ saving tree:
c(BrT (C)) = w(saving tree of C)

◮ Transfer capacity from component to
its saving tree
→ capacity reservation y : E → Q+ b b

root r

T

1/2

1/2

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

◮ For any C, ∃ saving tree:
c(BrT (C)) = w(saving tree of C)

◮ Transfer capacity from component to
its saving tree
→ capacity reservation y : E → Q+ b b

root r

T

1/2

1/2

1/2

1/2

1/2

1/2

1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
∑

C∈C
xC · c(BrT (C)) ≥ c(T)

◮ For any C, ∃ saving tree:
c(BrT (C)) = w(saving tree of C)

◮ Transfer capacity from component to
its saving tree
→ capacity reservation y : E → Q+

∑

C∈C

xC · c(BrT (C)) = w(y)

b b b

root r

T

1/2

1/2

1/2

1/2

1/2

1/2

The Bridge Lemma (2)

∑

C∈C

xC · c(BrT (C)) = w(y)

root r

T

1/2

1/2

1/2

1/2

1/2

1/2

The Bridge Lemma (2)

∑

C∈C

xC · c(BrT (C)) = w(y) ≥ w(F)

Edmonds Thm

root r

T

F

The Bridge Lemma (2)

∑

C∈C

xC · c(BrT (C)) = w(y) ≥ w(F) ≥ c(T)

Edmonds Thm

Cycle rule

root r

T

F

A 1st bound on OPT

Lemma

E[OPT after it. t] ≤
(
1− 1

M

)t
· 2 ·OPT .

A 1st bound on OPT

Lemma

E[OPT after it. t] ≤
(
1− 1

M

)t
· 2 ·OPT .

◮ Initially c(MST) ≤ 2 ·OPT

A 1st bound on OPT

Lemma

E[OPT after it. t] ≤
(
1− 1

M

)t
· 2 ·OPT .

◮ Initially c(MST) ≤ 2 ·OPT

◮ In any iteration

E[c(new MST)] ≤ c(old MST)− E[c(Brold MST(C))]

A 1st bound on OPT

Lemma

E[OPT after it. t] ≤
(
1− 1

M

)t
· 2 ·OPT .

◮ Initially c(MST) ≤ 2 ·OPT

◮ In any iteration

E[c(new MST)] ≤ c(old MST)− E[c(Brold MST(C))]

= c(old MST)−
1

M

∑

C∈C

xC · c(Brold MST(C))

A 1st bound on OPT

Lemma

E[OPT after it. t] ≤
(
1− 1

M

)t
· 2 ·OPT .

◮ Initially c(MST) ≤ 2 ·OPT

◮ In any iteration

E[c(new MST)] ≤ c(old MST)− E[c(Brold MST(C))]

= c(old MST)−
1

M

∑

C∈C

xC · c(Brold MST(C))

︸ ︷︷ ︸

≥c(old MST)

A 1st bound on OPT

Lemma

E[OPT after it. t] ≤
(
1− 1

M

)t
· 2 ·OPT .

◮ Initially c(MST) ≤ 2 ·OPT

◮ In any iteration

E[c(new MST)] ≤ c(old MST)− E[c(Brold MST(C))]

= c(old MST)−
1

M

∑

C∈C

xC · c(Brold MST(C))

︸ ︷︷ ︸

≥c(old MST)

≤

(

1−
1

M

)

· c(old MST)

A 2nd bound on OPT

Theorem

In any iteration

E[new OPT] ≤
(

1−
1

2M

)

· old OPT

◮ Let S be opt. Steiner tree S

A 2nd bound on OPT

Theorem

In any iteration

E[new OPT] ≤
(

1−
1

2M

)

· old OPT

◮ Let S be opt. Steiner tree

◮ From each inner node in S: Contract
the cheapest edge going to a child

S

A 2nd bound on OPT

Theorem

In any iteration

E[new OPT] ≤
(

1−
1

2M

)

· old OPT

◮ Let S be opt. Steiner tree

◮ From each inner node in S: Contract
the cheapest edge going to a child

◮ A terminal spanning tree T
remains

T
b b

b

A 2nd bound on OPT

Theorem

In any iteration

E[new OPT] ≤
(

1−
1

2M

)

· old OPT

◮ Let S be opt. Steiner tree

◮ From each inner node in S: Contract
the cheapest edge going to a child

◮ A terminal spanning tree T
remains

T
b b

b

E[save on S] ≥ E[save on T]
Bridge Lem
≥

1

M
· c(T)

︸︷︷︸

≥
1

2
c(S)

≥
1

2M
· c(S)

The approximation guarantee

Theorem

E[APX] ≤ (1.5+ε) · OPT .

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

◮ Cost of sampled components:
∞∑

t=1

1

M
· E[OPT in it. t]

The approximation guarantee

Theorem

E[APX] ≤ (1.5+ε) · OPT .

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

E[OPT after t it] ≤ (1− 1
M)t · 2 ·OPT

≤ 2e−t/M ·OPT

E[OPT after t it] ≤ (1− 1
2M)t ·OPT

≤ e−t/(2M) · OPT

◮ Cost of sampled components:
∞∑

t=1

1

M
· E[OPT in it. t]

The approximation guarantee

Theorem

E[APX] ≤ (1.5+ε) · OPT .

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

E[OPT after t it] ≤ (1− 1
M)t · 2 ·OPT

≤ 2e−t/M ·OPT

E[OPT after t it] ≤ (1− 1
2M)t ·OPT

≤ e−t/(2M) · OPT

◮ Cost of sampled components:
∞∑

t=1

1

M
· E[OPT in it. t]

M→∞
→ OPT ·

∫ ∞

0
min{2e−x, e−x/2} dx

The approximation guarantee

Theorem

E[APX] ≤ (1.5+ε) · OPT .

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

E[OPT after t it] ≤ (1− 1
M)t · 2 ·OPT

≤ 2e−t/M ·OPT

E[OPT after t it] ≤ (1− 1
2M)t ·OPT

≤ e−t/(2M) · OPT

◮ Cost of sampled components:
∞∑

t=1

1

M
· E[OPT in it. t]

M→∞
→ OPT ·

∫ ∞

0
min{2e−x, e−x/2} dx = 1.5 ·OPT

A generalized bridge lemma

1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

A generalized bridge lemma

1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

pr. 1
3 pr. 1

3 pr. 1
3

A generalized bridge lemma

1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

pr. 1
3 pr. 1

3 pr. 1
3

A generalized bridge lemma

1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

pr. 1
3 pr. 1

3 pr. 1
3

pr. 1 pr. 0 pr. 1 pr. 0 pr. 1

◮ Observe: Each edge in T removed with prob 2 · 13 = 1
M !

A generalized bridge lemma

1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

pr. 1
3 pr. 1

3 pr. 1
3

pr. 1 pr. 0 pr. 1 pr. 0 pr. 1

◮ Observe: Each edge in T removed with prob 2 · 13 = 1
M !

◮ To show: We can always find these probabilities!

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B ⊆ T (dep. on C) s.t.

◮ (T\B) ∪C spans all terminals

◮ Pr[e ∈ B] ≥ 1
M ∀e ∈ T .

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B ⊆ T (dep. on C) s.t.

◮ (T\B) ∪C spans all terminals

◮ Pr[e ∈ B] ≥ 1
M ∀e ∈ T .

∑

B:(T\B)∪C conn. Pr[rem. B | C] = 1 ∀C
∑

B∋e,C Pr[C] · Pr[rem. B | C] ≥ 1
M ∀e

◮ Suppose system (1) has no non-negative solution.

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B ⊆ T (dep. on C) s.t.

◮ (T\B) ∪C spans all terminals

◮ Pr[e ∈ B] ≥ 1
M ∀e ∈ T .

∑

B:(T\B)∪C conn. Pr[rem. B | C] = 1 ∀C
∑

B∋e,C Pr[C] · Pr[rem. B | C] ≥ 1
M ∀e

yC ≥ xC · c(B) ∀B : T\B ∪ C conn.
∑

C yC < c(T)

dual

◮ Suppose system (1) has no non-negative solution.
◮ Farkas Lemma: System (2) has solution (y, c) ≥ 0

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B ⊆ T (dep. on C) s.t.

◮ (T\B) ∪C spans all terminals

◮ Pr[e ∈ B] ≥ 1
M ∀e ∈ T .

∑

B:(T\B)∪C conn. Pr[rem. B | C] = 1 ∀C
∑

B∋e,C Pr[C] · Pr[rem. B | C] ≥ 1
M ∀e

yC ≥ xC · c(B) ∀B : T\B ∪ C conn.
∑

C yC < c(T)

dual

◮ Suppose system (1) has no non-negative solution.
◮ Farkas Lemma: System (2) has solution (y, c) ≥ 0
◮ Contradiction to Bridge Lemma!

The 1.39 bound

◮ Let S∗ optimum Steiner tree.

The 1.39 bound

e

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.

The 1.39 bound

◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.
◮ Such edges {u, v} induce terminal spanning tree T

The 1.39 bound

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

The 1.39 bound

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

The 1.39 bound

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

The 1.39 bound

e

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

◮ Random process deletes an edge e ∈ T with pr. 1
M per it.

The 1.39 bound

e

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

◮ Random process deletes an edge e ∈ T with pr. 1
M per it.

◮ E[t : e deleted] ≤M

The 1.39 bound

e1

e2

ek

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

◮ Random process deletes an edge e ∈ T with pr. 1
M per it.

◮ E[t : e deleted] ≤M
◮ E[t : e1, . . . , ek deleted] ≤ (1 + 1

2 + . . . + 1
k) ·M = H(k) ·M

→ Coupon Collector Theorem

The 1.39 bound

e

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

◮ Random process deletes an edge e ∈ T with pr. 1
M per it.

◮ E[t : e deleted] ≤M
◮ E[t : e1, . . . , ek deleted] ≤ (1 + 1

2 + . . . + 1
k) ·M = H(k) ·M

→ Coupon Collector Theorem
◮ E[t : e deleted] ≤ H(#cycles through e) ·M

The 1.39 bound

e

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

◮ Random process deletes an edge e ∈ T with pr. 1
M per it.

◮ E[t : e deleted] ≤M
◮ E[t : e1, . . . , ek deleted] ≤ (1 + 1

2 + . . . + 1
k) ·M = H(k) ·M

→ Coupon Collector Theorem
◮ E[t : e deleted] ≤ H(#cycles through e) ·M
◮ Pr[e in k cycles] = (12)k

E[t : e deleted] ≤
∑

k≥1

(1

2

)k
·H(k)·M = ln(4)·M ≈ 1.39·M.

Open problems

Open Problem I

1.01 ≤ Steiner tree approximability ≤ 1.39

Open problems

Open Problem I

1.01 ≤ Steiner tree approximability ≤ 1.39

Open Problem II

Is there an iterative randomized rounding approach for
Facility Location or k-Median?

Open problems

Open Problem III

Is there an iterative randomized rounding approach for ATSP?

(1) Solve Held-Karp relaxation:

min cTx

x(δ+(S)) ≥ 1 ∀∅ ⊂ S ⊂ V

x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(2) Sample a collection of cycles C from x∗.

(3) Show E[c(C)] ≤ 1000 · OPT

(4) Show E[OPT after contracting C] ≤ 0.999 ·OPT .

This would yield a O(1)-apx.

Open problems

Open Problem III

Is there an iterative randomized rounding approach for ATSP?

(1) Solve Held-Karp relaxation:

min cTx

x(δ+(S)) ≥ 1 ∀∅ ⊂ S ⊂ V

x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(2) Sample a collection of cycles C from x∗.

(3) Show E[c(C)] ≤ 1000 · OPT

(4) Show E[OPT after contracting C] ≤ 0.999 ·OPT .

This would yield a O(1)-apx.

Thanks for your attention

