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What is Iterative Randomized Rounding?

Set Cover:
» Input: Sets Si,...,S,, over elements 1,...,n; cost ¢(S;)

» Goal: min[g[m]{zig ¢i | Uier Si = [n]}
Standard LP:

Known:
» Integrality gap is O(lnn)
» Suppose |S;| < k. Then gap is O(In k).
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Analysis

» Let I* be optimal SET COVER solution.

» I':={i € I* | not yet all elements in S; covered} (+
feasible in step t)

» Prlelement j not covered after In(2k) it.] < e~ (k) = L
» Prinot all el. in S; covered after In(2k) it.] < k-

1
2k

E[APX] = ) E[OPTy in step t]
t>1
< D Ble(I")
t>1 \
= Z E[# iterations S; is in I'] -¢(S;)

iel*

<O(In(k))
= O(lnk)-OPT
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Steiner Tree
Given:
» undirected graph G = (V, E)
» cost c: B — Q4
» terminals RCV

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

Steiner node

Steiner tree
W.l.o.g.: cis metric.
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terminal spanning tree

Min-cost terminal spanning tree (MST):
» Can be computed in poly-time.

» Costs <2-0OPT.
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Known results for Steiner tree:

Approximations:
» 2-apx (minimum spanning tree heuristic)
> 1.83-apx [Zelikovsky '93]
1.667-apx [Promel & Steger '97]
1.644-apx [Karpinski & Zelikovsky "97]
1.598-apx [Hougardy & Promel '99]
1.55-apx [Robins & Zelikovsky ’00]
Hardness:
» NP-hard even if edge costs € {1,2} [Bern & Plassmann '89]
» no < 3¢-apx unless NP = P [Chlebik & Chlebikova *02]
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Our results:

Theorem J

There is a polynomial time 1.39-approximation.

» LP-based! (Directed-Component Cut Relazation)

» Algorithmic framework: [terative Randomized Rounding

The Directed-Component Cut Relaxation has an integrality gap

Theorem
of at most 1.55. J

» First < 2 bound for any LP-relaxation.
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Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z cle)ze (BCR)
Z ze>1 NYUCV\{r}:UNR#D

2e > 0 Ve € E.

Theorem (Edmonds '67)
R =V = BCR integral

» Integrality gap < 4/3 for quasi-bipartite graphs
[Chakrabarty, Devanur, Vazirani ’08]
» Integrality gap € [1.16, 2]



Components

directed component C

sink(C')

» C = set of directed components
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min Z c(C) -z (DCR)
CceC
> rc > 1 YPcUCR\{r}
CeC:R(C)NU #0,
sink(C) ¢ U

zc > 0 VCeC

root r



Directed component cut relaxation
min Z c(C) -z (DCR)

SR
CeC:RC)NU #0,
sink(C) ¢ U

v

1 V0 CcUCR\{r}

zc > 0 VCeC




Directed component cut relaxation

min Z c(C) -z (DCR)
CceC
> rc > 1 YPcUCR\{r}
CeC:RCO)NU #0,
sink(C) ¢ U

zc > 0 VCeC

Properties:
» Number of variables: exponential
» Number of constraints: exponential

» Approximable within 1 + & (we ignore the ¢ here).



Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

g :
-



Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

" -

» Use only components of size 2/1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by < 1+¢
— # variables polynomial



Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

-

» Use only components of size 2/1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by < 1+¢
— # variables polynomial



Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

-

» Use only components of size 2/1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by < 1+¢
— # variables polynomial

» Compact flow formulation — # constraints polynomial
(or solve with ellipsoid method).

O
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An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.
(4) IF all terminals connected THEN output sampled

components

» W.lLo.g. M := 17z invariant
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Roadmap

» In one iteration t:

E[c(comp. sampled in it. ¢)] = zc: MO c(C) < % OPT init t
» In total
Z E[c(comp. sampled in it. t)] Z E[OPT in iteration t]
t>1 t>1
2-0OPTH

E[OPT after t it] < (1— £)'-2-OPT

/

1-OPT- E[OPT after t it] < (1 — 57)! - OPT

1-M 2-M t = #iterations
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» Let S be Steiner tree, C a component

C

» Bridges:

Brg(C) = argmax{c(B) | B C S, S\BUC is connected}



The saving function

Definition

For a Steiner tree S, the saving function w : £ — Q. is

defined as

w(u,v) := max{c(e) | e on u — v path in S}.

w(u,v) := max{c(e) | e on u — v path in S}

ud a |.—.|U/|:|
O O
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savinAtr(ie

S
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The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

terminal spanning tree 1
<(1=-—).
E [c( after 1 sampling step )] - (1 M) A

root r

1/2

0
1/2
/
T
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The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

ZCGC zc - e(Brr(C)) 2 «(T)

» For any C, 3 saving tree:
c(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree
— capacity reservation y : F — Q.

> @ (Brr(0)) = w(y)

cecC T

A2

172
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The Bridge Lemma (2)

Z zc - c(Brr(C))

CeC

1/2

= w(y)

root r

1/2

1/2




The Bridge Lemma (2)

Edmonds Thm

Zaxc c(Brp(C w(y) > w(F)

CeC

root r




The Bridge Lemma (2)
Cycle rule

Edmonds Thm

> we - e(Bri(C)) = w(y) 2 w(F) = ¢(T)
CeC
root r
a
F
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Lemma

E[OPT after it. t) < (1 - &)"-2-OPT.

» Initially ¢(MST) < 2-OPT

» In any iteration

Elc(new MST)] < ¢(old MST) — E|¢(Broq mst(C))]

1
= c(old MST) — — Y ¢ - ¢(Brog ust(C))
Cec

>c(old MST)

1
< <1 - M) -c(old MST) O
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A 2nd bound on OPT

Theorem
In any iteration

1
Elnew OPT] < (1 . W) . old OPT

» Let S be opt. Steiner tree

» From each inner node in S: Contract

the cheapest edge going to a child T
» A terminal spanning tree T’ Q/?D/\D
remains /\D

Bridge Lem ] 1
El[save on S| > E[save on T] > A oT) > 2—-c(S)
~—~—~

1
> §c(S)
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The approximation guarantee

Theorem
E[APX] < (1.5+¢2) - OPT.

2.0PT E[OPT after tit] < (1—4)"-2-0PT
J/ < 2e7YM.OPT
1 E[OPT after t it (1— 5)t-OPT
borr e t/EM) . opT
1M 2. M t= fiterations

» Cost of sampled components:

Z— E[OPT in it. t]
t=1

M— o0

=3 OPT-/ min{2e"*,e %2} do = 1.5- OPT [
0
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A generalized bridge lemma

» Observe: Each edge in 1" removed with prob 2 - % = 47!



A generalized bridge lemma

» To show: We can always find these probabilities!
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A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B C T (dep. on C) s.t.

» (T\B) UC spans all terminals
» Prlee B| > L VeeT.

2 B{(T\B)UC comn. Pr[rem. B[ C] =
>_Bse,c Pr[C] - Prlrem. B|C] > % Ve

dual

yo > xc-c¢(B)VYB:T\BUC conn.
Yove < T)
» Suppose system (1) has no non-negative solution.

» Farkas Lemma: System (2) has solution (y,c) > 0
» Contradiction to Bridge Lemmal U
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The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

» Such edges {u,v} induce terminal spanning tree 7'
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Def S*: e € T not deleted = keep edges in corr. cycle in S*
Random process deletes an edge e € T" with pr. % per it.
E[t : e deleted] < M
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Def S*: e € T not deleted = keep edges in corr. cycle in S*

Random process deletes an edge e € T" with pr. % per it.

E[t : e deleted] < M

Elt:er,....ep deleted) < (1+4+...+7) - M=H(k)-M

— Coupon Collector Theorem

E[t : e deleted] < H(#cycles through e) - M

» Prle in k cycles] = (3)*

E[t : e deleted] <y (i)k-H(k‘)-M = In(4)-M ~ 1.39-M. O
k>1
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Open problems

Open Problem I
1.01 < Steiner tree approximability < 1.39
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Open Problem I
1.01 < Steiner tree approximability < 1.39

Open Problem II

Is there an iterative randomized rounding approach for
FAciLiTy LOCATION or k-MEDIAN?
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Open Problem III
Is there an iterative randomized rounding approach for ATSP?
(1) Solve Held-Karp relaxation:

minc! z

z(6T(S)) > 1 YWdcScV
z(0T(W) =z(0"(v)) = 1 WweV
z. > 0 VeeFE

(2) Sample a collection of cycles C from z*.

(3) Show E[c¢(C)] < 1000 - OPT

(4) Show E[OPT after contracting C] < 0.999 - OPT.
This would yield a O(1)-apx.
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Is there an iterative randomized rounding approach for ATSP?
(1) Solve Held-Karp relaxation:

minc! z

z(6T(S)) > 1 YWdcScV
z(0T(W) =z(0"(v)) = 1 WweV
z. > 0 VeeFE

(2) Sample a collection of cycles C from z*.

(3) Show E[c¢(C)] < 1000 - OPT

(4) Show E[OPT after contracting C] < 0.999 - OPT.
This would yield a O(1)-apx.

Thanks for your attention



