Iterative Randomized Rounding

Thomas Rothvof3
Department of Mathematics, M.I.T.

Cargese 2011

Joint work with Jarostaw Byrka,
Fabrizio Grandoni and Laura Sanita

I I I H B Massachusetits

I I Institute of
Alexander von Humboldt
Technology Stiftung/Foundation

What is Iterative Randomized Rounding?

Set Cover:

» Input: Sets Si,...,S,, over elements 1,...,n; cost ¢(S;)
» Goal: min[g[m]{zig ¢i | Uier Si = [n]}

What is Iterative Randomized Rounding?

Set Cover:
» Input: Sets Si,...,S,, over elements 1,...,n; cost ¢(S;)

» Goal: min[g[m]{zig ¢i | Uier Si = [n]}
Standard LP:

What is Iterative Randomized Rounding?

Set Cover:
» Input: Sets Si,...,S,, over elements 1,...,n; cost ¢(S;)

» Goal: min[g[m]{zig ¢i | Uier Si = [n]}
Standard LP:

What is Iterative Randomized Rounding?

Set Cover:
» Input: Sets Si,...,S,, over elements 1,...,n; cost ¢(S;)

» Goal: min[g[m]{zig ¢i | Uier Si = [n]}
Standard LP:

mian(Sl) x;
i=1
x> 1 Vjeln]
:jE€S;
z; > 0 Vie[m]
Known:

» Integrality gap is O(lnn)

What is Iterative Randomized Rounding?

Set Cover:
» Input: Sets Si,...,S,, over elements 1,...,n; cost ¢(S;)

» Goal: min[g[m]{zig ¢i | Uier Si = [n]}
Standard LP:

Known:
» Integrality gap is O(lnn)
» Suppose |S;| < k. Then gap is O(In k).

Iterative randomized rounding algorithm:

(1) FORt=1TO oo
(2) Solve LP — z
(3) FOR ALL i: Buy S; with prob. z; (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:

(1) FORt=1TO oo
(2) Solve LP — z
(3) FOR ALL i: Buy S; with prob. z; (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t =1 iteration t = 2

bought
sets

Iterative randomized rounding algorithm:

(1) FORt=1TO oo
(2) Solve LP — z
(3) FOR ALL i: Buy S; with prob. z; (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t =1 iteration t = 2

bought
sets
[]

Iterative randomized rounding algorithm:

(1) FORt=1TO oo
(2) Solve LP — z
(3) FOR ALL i: Buy S; with prob. z; (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t =1 iteration t = 2

bought
sets
[]

Iterative randomized rounding algorithm:

(1) FORt=1TO oo
(2) Solve LP — z
(3) FOR ALL i: Buy S; with prob. z; (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t =1 iteration t = 2

bought °® °
sets
() ()
o @_®

Iterative randomized rounding algorithm:

(1) FORt=1TO oo
(2) Solve LP — z
(3) FOR ALL i: Buy S; with prob. z; (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t =1 iteration t = 2

bought °® °
sots Q LUTI
°)
. &_®©

Analysis

E[APX] =) E[OPTy in step t]
t>1

Analysis

» Let I* be optimal SET COVER solution.

E[APX] =) E[OPTy in step t]
t>1

< > Ele(IY)

t>1

[*

Analysis

» Let I* be optimal SET COVER solution.

E[APX] =) E[OPTy in step t]
t>1

< > Ele(IY)

*
>1 I

Analysis

» Let I* be optimal SET COVER solution.

» I':={i € I* | not yet all elements in S; covered} (+
feasible in step t)

E[APX] =) E[OPTy in step {]
t>1

< > Ele(I)

t>1

Analysis

» Let I* be optimal SET COVER solution.

» I':={i € I* | not yet all elements in S; covered} (+
feasible in step t)

E[APX] = Y E[OPTy in step t] @
t>1

a -
< Z Elc(I")]) \ It /e
t>1 (B ,/ /,

\
= Z E[# iterations S; is in I'] - ¢(S;) j \®/

iel*

Analysis

» Let I* be optimal SET COVER solution.

» I':={i € I* | not yet all elements in S; covered} (+
feasible in step t)

» Prlelement j not covered after In(2k) it.] < e~ (k) = T

» Prinot all el. in S; covered after In(2k) it.] < k-

L
2k

E[APX] =) E[OPTy in step t]
t>1
< D Ble(I")
t>1 \
= Z E[# iterations S; is in I'] -¢(S;)

iel*

<O(In(k))

Analysis

» Let I* be optimal SET COVER solution.

» I':={i € I* | not yet all elements in S; covered} (+
feasible in step t)

» Prlelement j not covered after In(2k) it.] < e~ (k) = L
» Prinot all el. in S; covered after In(2k) it.] < k-

1
2k

E[APX] =) E[OPTy in step t]
t>1
< D Ble(I")
t>1 \
= Z E[# iterations S; is in I'] -¢(S;)

iel*

<O(In(k))
= O(lnk)-OPT

Steiner Tree
Given:
» undirected graph G = (V, E)
» cost c: B — Q4
» terminals RCV

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

>terminals

W.l.o.g.: c is metric.

Steiner Tree
Given:
» undirected graph G = (V, E)
» cost c: B — Q4
» terminals RCV

Find: Min-cost Steiner tree, spanning R.

OPT := min{c(S) | S spans R}

Steiner node

Steiner tree
W.l.o.g.: cis metric.

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
» Can be computed in poly-time.

Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
» Can be computed in poly-time.

» Costs <2-0OPT.

Known results for Steiner tree:

Approximations:
» 2-apx (minimum spanning tree heuristic)
> 1.83-apx [Zelikovsky '93]
1.667-apx [Promel & Steger '97]
1.644-apx [Karpinski & Zelikovsky "97]
1.598-apx [Hougardy & Promel '99]
1.55-apx [Robins & Zelikovsky ’00]

v

v

v

v

Known results for Steiner tree:

Approximations:
» 2-apx (minimum spanning tree heuristic)
> 1.83-apx [Zelikovsky '93]
1.667-apx [Promel & Steger '97]
1.644-apx [Karpinski & Zelikovsky "97]
1.598-apx [Hougardy & Promel '99]
1.55-apx [Robins & Zelikovsky ’00]
Hardness:
» NP-hard even if edge costs € {1,2} [Bern & Plassmann '89]
» no < 3¢-apx unless NP = P [Chlebik & Chlebikova *02]

v

v

v

v

Our results:

Theorem
There is a polynomial time 1.39-approximation.

» LP-based! (Directed-Component Cut Relazation)

» Algorithmic framework: [terative Randomized Rounding

Our results:

Theorem J

There is a polynomial time 1.39-approximation.

» LP-based! (Directed-Component Cut Relazation)

» Algorithmic framework: [terative Randomized Rounding

The Directed-Component Cut Relaxation has an integrality gap

Theorem
of at most 1.55. J

» First < 2 bound for any LP-relaxation.

Bi-directed cut relaxation

Bi-directed cut relaxation

» Pick arootr ¢ R

root r

Bi-directed cut relaxation

» Pick a root r € R
» Bi-direct edges

Bi-directed cut relaxation

» Pick a root r € R
» Bi-direct edges

min Z cle)ze (BCR)

Z ze>1 NYUCV\{r}:UNR#D
cest (U)
2e > 0 Ve € E.

Bi-directed cut relaxation

» Pick a root r € R
» Bi-direct edges

min Z cle)ze (BCR)
Z ze>1 NYUCV\{r}:UNR#D

2e > 0 Ve € E.

Bi-directed cut relaxation

» Pick aroot r € R
» Bi-direct edges

min Z cle)ze (BCR)
Z ze>1 NYUCV\{r}:UNR#D

2e > 0 Ve € E.

Theorem (Edmonds '67)
R =V = BCR integral

» Integrality gap < 4/3 for quasi-bipartite graphs
[Chakrabarty, Devanur, Vazirani ’08]
» Integrality gap € [1.16, 2]

Components

directed component C

sink(C')

» C = set of directed components

Directed component cut relaxation

min Z c(C) -z (DCR)
CceC
> rc > 1 YPcUCR\{r}
CeC:R(C)NU #0,
sink(C) ¢ U

zc > 0 VCeC

root r

Directed component cut relaxation
min Z c(C) -z (DCR)

SR
CeC:RC)NU #0,
sink(C) ¢ U

v

1 V0 CcUCR\{r}

zc > 0 VCeC

Directed component cut relaxation

min Z c(C) -z (DCR)
CceC
> rc > 1 YPcUCR\{r}
CeC:RCO)NU #0,
sink(C) ¢ U

zc > 0 VCeC

Properties:
» Number of variables: exponential
» Number of constraints: exponential

» Approximable within 1 + & (we ignore the ¢ here).

Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

g :
-

Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

" -

» Use only components of size 2/1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by < 1+¢
— # variables polynomial

Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

-

» Use only components of size 2/1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by < 1+¢
— # variables polynomial

Solvability of the LP

Lemma

For any € > 0, a solution x of cost < (1 +¢e)OPTy can be
computed in polynomial time.

-

» Use only components of size 2/1/¢1 = O(1)
[Borchers & Du ’97]: Increases cost by < 1+¢
— # variables polynomial

» Compact flow formulation — # constraints polynomial
(or solve with ellipsoid method).

O

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.
(4) TF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

1) FORt=1,...,00 DO

(
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C] = 17
x

and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.

(4) TF all terminals connected THEN output sampled
components

(‘n“

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.
(4) TF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.

(4) IF all terminals connected THEN output sampled
components

02

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.
(4) IF all terminals connected THEN output sampled
components

(m]

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.
(4) IF all terminals connected THEN output sampled
components

An iterative randomized rounding algo

(1) FOR t=1,...,00 DO
(2) Compute opt. LP solution z
(3) Sample a component:

e}

Pr[sample C]| = 17
x

and contract it.
(4) IF all terminals connected THEN output sampled

components

» W.lLo.g. M := 17z invariant

Roadmap

» In one iteration t:
1

(©) <+

-OPT initt

Elc(comp. sampled in it. t)] = Z MC
C

2-OPT¥

1-OPT+

1-M 2-M t = #iterations

Roadmap

» In one iteration t:

E[c(comp. sampled in it. ¢)] = zc: MC c(C) < % OPT init t
> In total
Z E[c(comp. sampled in it. t)] Z E[OPT in iteration t]
t>1 t>1
2-0OPT+
1-OPTH

1-M 2-M t = #iterations

Roadmap

» In one iteration t:

E[c(comp. sampled in it. ¢)] = zc: MC c(C) < % OPT init t
> In total
Z E[c(comp. sampled in it. t)] Z E[OPT in iteration t]
t>1 t>1
2-0OPT+
L. OPTA E[OPT after t it] < (1 — 57)! - OPT

/

1-M 2-M t = #iterations

Roadmap

» In one iteration t:

E[c(comp. sampled in it. ¢)] = zc: MO c(C) < % OPT init t
» In total
Z E[c(comp. sampled in it. t)] Z E[OPT in iteration t]
t>1 t>1
2-0OPTH

E[OPT after t it] < (1— £)'-2-OPT

/

1-OPT- E[OPT after t it] < (1 — 57)! - OPT

1-M 2-M t = #iterations

Bridges

» Let S be Steiner tree

V.

Bridges

» Let S be Steiner tree, C a component

C

V.

O O

Bridges

» Let S be Steiner tree, C a component

V.

» Bridges:

Brg(C) = argmax{c(B) | B C S, S\BUC is connected}

Bridges

» Let S be Steiner tree, C a component

C

» Bridges:

Brg(C) = argmax{c(B) | B C S, S\BUC is connected}

The saving function

Definition

For a Steiner tree S, the saving function w : £ — Q. is

defined as

w(u,v) := max{c(e) | e on u — v path in S}.

w(u,v) := max{c(e) | e on u — v path in S}

ud a |.—.|U/|:|
O O

A saving lemma
Lemma

For any component C, 3 saving tree spanning the terminals of
C with

c(Brg(C)) = w(saving tree)

C

A saving lemma
Lemma

For any component C, 3 saving tree spanning the terminals of
C with

c(Brg(C)) = w(saving tree)

savinAtr(ie

S
1 1
5 T U
sl

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

terminal spanning tree 1
<(1=-—).
E [c(after 1 sampling step)] - (1 M) A

root r

1/2

0
1/2
/
T

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> cec T c(Brr(C)) = o(T)

root r

1/2 T 1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> cec T c(Brr(C)) = o(T)

» For any C, 3 saving tree:
c(Brp(C)) = w(saving tree of C)

root r

]
1/2 T 1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> cec T c(Brr(C)) = o(T)

» For any C, 3 saving tree:
c(Brp(C)) = w(saving tree of C)
» Transfer capacity from component to T
it ing t
its saving tree 12

— capacity reservation y : F — Q. 1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

ZCGC zc - e(Brr(C)) 2 «(T)

» For any C, 3 saving tree: root r
c(Brp(C)) = w(saving tree of C) o
» Transfer capacity from component to
its saving tree

— capacity reservation y : F — Q. 1/2

/2 1/2

e S

172

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> cec T c(Brr(C)) = o(T)

» For any C, 3 saving tree: root r
c(Brp(C)) = w(saving tree of C) o
» Transfer capacity from component to
its saving tree

— capacity reservation y : F — Q. 1/2

/2 1/2

T

e S

172

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

> cec T c(Brr(C)) = o(T)

» For any C, 3 saving tree:
c(Brp(C)) = w(saving tree of C) o
» Transfer capacity from component to
its saving tree

— capacity reservation y : F — Q. 1/2

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

ZCGC zc - e(Brr(C)) 2 «(T)

» For any C, 3 saving tree:
c(Brp(C)) = w(saving tree of C)

» Transfer capacity from component to
its saving tree
— capacity reservation y : F — Q.

> @ (Brr(0)) = w(y)

cecC T

A2

172

root r

1/2

The Bridge Lemma (2)

Z zc - c(Brr(C))

CeC

1/2

= w(y)

root r

1/2

1/2

The Bridge Lemma (2)

Edmonds Thm

Zaxc c(Brp(C w(y) > w(F)

CeC

root r

The Bridge Lemma (2)
Cycle rule

Edmonds Thm

> we - e(Bri(C)) = w(y) 2 w(F) = ¢(T)
CeC
root r
a
F

A 1st bound on OPT

Lemma
E[OPT after it. t) < (1 - &)"-2-OPT.

A 1st bound on OPT

Lemma

E[OPT after it. t) < (1 - &)"-2-OPT.

» Initially ¢(MST) < 2-OPT

A 1st bound on OPT

Lemma

E[OPT after it. t) < (1 - &)"-2-OPT.

» Initially ¢(MST) < 2-OPT

» In any iteration

Ele(new MST)] < ¢(old MST) — E[¢(Brola mst(C))]

A 1st bound on OPT

Lemma

E[OPT after it. t) < (1 - &)"-2-OPT.

» Initially ¢(MST) <2-OPT
» In any iteration

Elc(new MST)] < ¢(old MST) — E[¢(Broq mst(C))]

1
= c(old MST) — — Y ¢ - ¢(Brog ust(C))
Cec

A 1st bound on OPT

Lemma

E[OPT after it. t) < (1 - &)"-2-OPT.

» Initially ¢(MST) < 2-OPT

» In any iteration

Elc(new MST)] < ¢(old MST) — E|¢(Broq mst(C))]

1
= c(old MST) — — Y ¢ - ¢(Brog ust(C))
Cec

>c(old MST)

A 1st bound on OPT

Lemma

E[OPT after it. t) < (1 - &)"-2-OPT.

» Initially ¢(MST) < 2-OPT

» In any iteration

Elc(new MST)] < ¢(old MST) — E|¢(Broq mst(C))]

1
= c(old MST) — — Y ¢ - ¢(Brog ust(C))
Cec

>c(old MST)

1
< <1 - M) -c(old MST) O

A 2nd bound on OPT

Theorem
In any iteration

1
Elnew OPT] < (1 . m) . old OPT

» Let S be opt. Steiner tree S

A 2nd bound on OPT

Theorem
In any iteration

1
Elnew OPT] < (1 . m) . old OPT

» Let S be opt. Steiner tree S

» From each inner node in S: Contract
the cheapest edge going to a child

A 2nd bound on OPT

Theorem
In any iteration

1
Elnew OPT] < (1 . m) . old OPT

» Let S be opt. Steiner tree

» From each inner node in S: Contract
the cheapest edge going to a child T

» A terminal spanning tree T’ D/?D/\D
remains /\D

A 2nd bound on OPT

Theorem
In any iteration

1
Elnew OPT] < (1 . W) . old OPT

» Let S be opt. Steiner tree

» From each inner node in S: Contract

the cheapest edge going to a child T
» A terminal spanning tree T’ Q/?D/\D
remains /\D

Bridge Lem] 1
El[save on S| > E[save on T] > A oT) > 2—-c(S)
~—~—~

1
> §c(S)

The approximation guarantee

Theorem
E[APX] < (1.5+¢) - OPT.

2-0OPT

1-OPTH

1-M 9. M t = Hiterations

» Cost of sampled components:

Z— E[OPT in it. t]
t=1

The approximation guarantee

Theorem
E[APX] < (1.5+¢2) - OPT.

E[OPT after tit] < (1—4)"-2-0PT
J/ < 2e7YM.OPT
E[OPT after t it (1— 5)t-OPT
—t/(2M) OPT

2-0OPT

<
<

1-M 9. M t = Hiterations

» Cost of sampled components:

Z— E[OPT in it. t]
t=1

The approximation guarantee

Theorem
E[APX] < (1.5+¢2) - OPT.

E[OPT after t it]

/

1—4)-2-0PT
—t/M.OPT

(1— o)t OPT
e /M) oPT

2-0OPT

DN —~
[

<
<

E[OPT after t it

1-M 9. M t = Hiterations

» Cost of sampled components:

Z— E[OPT in it. t]
t=1

Moo OPT~/ min{2e~*, e~%/?} da
0

The approximation guarantee

Theorem
E[APX] < (1.5+¢2) - OPT.

2.0PT E[OPT after tit] < (1—4)"-2-0PT
J/ < 2e7YM.OPT
1 E[OPT after t it (1— 5)t-OPT
borr e t/EM) . opT
1M 2. M t= fiterations

» Cost of sampled components:

Z— E[OPT in it. t]
t=1

M— o0

=3 OPT-/ min{2e"*,e %2} do = 1.5- OPT [
0

A generalized bridge lemma

N
@

IAI L]

A generalized bridge lemma

rg!pépl

A generalized bridge lemma

A generalized bridge lemma

» Observe: Each edge in 1" removed with prob 2 - % = 47!

A generalized bridge lemma

» To show: We can always find these probabilities!

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B C T (dep. on C) s.t.

» (T'\B) UC spans all terminals
» Prlee B| > L VeeT.

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B C T (dep. on C) s.t.

» (T\B) UC spans all terminals
» Prlee B| > L VeeT.

2 B{(T\B)UC comn. Pr[rem. B[C] =
>_Bse,c Pr[C] - Prlrem. B|C] > % Ve

» Suppose system (1) has no non-negative solution.

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B C T (dep. on C) s.t.

» (T\B) UC spans all terminals
» Prlee B| > L VeeT.

2 B{(T\B)UC comn. Pr[rem. B[C] =
>_Bse,c Pr[C] - Prlrem. B|C] > % Ve

dual

yo > xc-c¢(B)VYB:T\BUC conn.
Yoye < oT)

» Suppose system (1) has no non-negative solution.
» Farkas Lemma: System (2) has solution (y,c) > 0

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B C T (dep. on C) s.t.

» (T\B) UC spans all terminals
» Prlee B| > L VeeT.

2 B{(T\B)UC comn. Pr[rem. B[C] =
>_Bse,c Pr[C] - Prlrem. B|C] > % Ve

dual

yo > xc-c¢(B)VYB:T\BUC conn.
Yove < T)
» Suppose system (1) has no non-negative solution.

» Farkas Lemma: System (2) has solution (y,c) > 0
» Contradiction to Bridge Lemmal U

The 1.39 bound

» Let S* optimum Steiner tree.

The 1.39 bound

» Let S* optimum Steiner tree.
» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

The 1.39 bound

» Let S* optimum Steiner tree.

» Goal: Define Steiner tree S? C S* after t iterations with
Elt:ee S <1.39-M.

» For every internal node in S*: Mark a random outgoing
edge.

» Consider cycles S* U {u,v} containing exactly one marked
edge.

» Such edges {u,v} induce terminal spanning tree 7'

The 1.39 bound

~— 7~ —

» Def S': ¢ € T not deleted = keep edges in corr. cycle in S*

The 1.39 bound

N T T

» Def S': ¢ € T not deleted = keep edges in corr. cycle in S*

The 1.39 bound

» Def S': ¢ € T not deleted = keep edges in corr. cycle in S*

The 1.39 bound

%/\y

» Def S': ¢ € T not deleted = keep edges in corr. cycle in S*
» Random process deletes an edge ¢ € T with pr. % per it.

The 1.39 bound

%/\y

» Def S': ¢ € T not deleted = keep edges in corr. cycle in S*
» Random process deletes an edge ¢ € T with pr. % per it.
» Elt: e deleted] < M

The 1.39 bound

€1

\9
%/

Def S*: e € T not deleted = keep edges in corr. cycle in S*
Random process deletes an edge e € T" with pr. % per it.
E[t : e deleted] < M

Elt:er,....ep deleted) < (1+4+...+7) - M=H(k)-M

— Coupon Collector Theorem

vV vyYyy

The 1.39 bound

€

w —
Def S*: e € T not deleted = keep edges in corr. cycle in S*
Random process deletes an edge e € T" with pr. % per it.
E[t : e deleted] < M

Elt:er,....ep deleted) < (1+4+...+7) - M=H(k)-M

— Coupon Collector Theorem
E[t : e deleted] < H(#cycles through e) - M

vV vyYyy

v

The 1.39 bound

€

w N——"

Def S*: e € T not deleted = keep edges in corr. cycle in S*

Random process deletes an edge e € T" with pr. % per it.

E[t : e deleted] < M

Elt:er,....ep deleted) < (1+4+...+7) - M=H(k)-M

— Coupon Collector Theorem

E[t : e deleted] < H(#cycles through e) - M

» Prle in k cycles] = (3)*

E[t : e deleted] <y (i)k-H(k‘)-M = In(4)-M ~ 1.39-M. O
k>1

vV vyYyy

v

Open problems

Open Problem I
1.01 < Steiner tree approximability < 1.39

Open problems

Open Problem I
1.01 < Steiner tree approximability < 1.39

Open Problem II

Is there an iterative randomized rounding approach for
FAciLiTy LOCATION or k-MEDIAN?

Open problems

Open Problem III
Is there an iterative randomized rounding approach for ATSP?
(1) Solve Held-Karp relaxation:

minc! z

z(6T(S)) > 1 YWdcScV
z(0T(W) =z(0"(v)) = 1 WweV
z. > 0 VeeFE

(2) Sample a collection of cycles C from z*.

(3) Show E[c¢(C)] < 1000 - OPT

(4) Show E[OPT after contracting C] < 0.999 - OPT.
This would yield a O(1)-apx.

Open problems

Open Problem III
Is there an iterative randomized rounding approach for ATSP?
(1) Solve Held-Karp relaxation:

minc! z

z(6T(S)) > 1 YWdcScV
z(0T(W) =z(0"(v)) = 1 WweV
z. > 0 VeeFE

(2) Sample a collection of cycles C from z*.

(3) Show E[c¢(C)] < 1000 - OPT

(4) Show E[OPT after contracting C] < 0.999 - OPT.
This would yield a O(1)-apx.

Thanks for your attention

