Iterative Randomized Rounding

Thomas Rothvoß

Department of Mathematics, M.I.T.

$$
\text { Cargèse } 2011
$$

Joint work with Jarosław Byrka, Fabrizio Grandoni and Laura Sanità

Massachusetts

What is Iterative Randomized Rounding?

Set Cover:

- Input: Sets S_{1}, \ldots, S_{m} over elements $1, \ldots, n$; cost $c\left(S_{i}\right)$
- Goal: $\min _{I \subseteq[m]}\left\{\sum_{i \in I} c_{i} \mid \bigcup_{i \in I} S_{i}=[n]\right\}$

What is Iterative Randomized Rounding?

Set Cover:

- Input: Sets S_{1}, \ldots, S_{m} over elements $1, \ldots, n$; cost $c\left(S_{i}\right)$
- Goal: $\min _{I \subseteq[m]}\left\{\sum_{i \in I} c_{i} \mid \bigcup_{i \in I} S_{i}=[n]\right\}$

Standard LP:

$$
\begin{aligned}
\min \sum_{i=1}^{m} c\left(S_{i}\right) \cdot x_{i} & \\
\sum_{i: j \in S_{i}} x_{i} & \geq 1 \quad \forall j \in[n] \\
x_{i} & \geq 0 \quad \forall i \in[m]
\end{aligned}
$$

What is Iterative Randomized Rounding?

Set Cover:

- Input: Sets S_{1}, \ldots, S_{m} over elements $1, \ldots, n ; \operatorname{cost} c\left(S_{i}\right)$
- Goal: $\min _{I \subseteq[m]}\left\{\sum_{i \in I} c_{i} \mid \bigcup_{i \in I} S_{i}=[n]\right\}$

Standard LP:

$$
\begin{aligned}
\min \sum_{i=1}^{m} c\left(S_{i}\right) \cdot x_{i} & \\
\sum_{i: j \in S_{i}} x_{i} & \geq 1 \quad \forall j \in[n] \\
x_{i} & \geq 0 \quad \forall i \in[m]
\end{aligned}
$$

What is Iterative Randomized Rounding?

Set Cover:

- Input: Sets S_{1}, \ldots, S_{m} over elements $1, \ldots, n$; $\operatorname{cost} c\left(S_{i}\right)$
- Goal: $\min _{I \subseteq[m]}\left\{\sum_{i \in I} c_{i} \mid \bigcup_{i \in I} S_{i}=[n]\right\}$ Standard LP:

$$
\begin{aligned}
\min \sum_{i=1}^{m} c\left(S_{i}\right) \cdot x_{i} & \\
\sum_{i: j \in S_{i}} x_{i} & \geq 1 \quad \forall j \in[n] \\
x_{i} & \geq 0 \quad \forall i \in[m]
\end{aligned}
$$

Known:

- Integrality gap is $\Theta(\ln n)$

What is Iterative Randomized Rounding?

Set Cover:

- Input: Sets S_{1}, \ldots, S_{m} over elements $1, \ldots, n$; cost $c\left(S_{i}\right)$
- Goal: $\min _{I \subseteq[m]}\left\{\sum_{i \in I} c_{i} \mid \bigcup_{i \in I} S_{i}=[n]\right\}$ Standard LP:

$$
\begin{aligned}
\min \sum_{i=1}^{m} c\left(S_{i}\right) \cdot x_{i} & \\
\sum_{i: j \in S_{i}} x_{i} & \geq 1 \quad \forall j \in[n] \\
x_{i} & \geq 0 \quad \forall i \in[m]
\end{aligned}
$$

Known:

- Integrality gap is $\Theta(\ln n)$
- Suppose $\left|S_{i}\right| \leq k$. Then gap is $\Theta(\ln k)$.

Iterative randomized rounding algorithm:
(1) FOR $t=1 \mathrm{TO} \infty$
(2) Solve LP $\rightarrow x$
(3) FOR ALL i : Buy S_{i} with prob. x_{i} (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:
(1) FOR $t=1 \mathrm{TO} \infty$
(2) Solve LP $\rightarrow x$
(3) FOR ALL i : Buy S_{i} with prob. x_{i} (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:
(1) FOR $t=1 \mathrm{TO} \infty$
(2) Solve LP $\rightarrow x$
(3) FOR ALL i : Buy S_{i} with prob. x_{i} (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:
(1) FOR $t=1 \mathrm{TO} \infty$
(2) Solve LP $\rightarrow x$
(3) FOR ALL i : Buy S_{i} with prob. x_{i} (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:
(1) FOR $t=1 \mathrm{TO} \infty$
(2) Solve LP $\rightarrow x$
(3) FOR ALL i : Buy S_{i} with prob. x_{i} (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Iterative randomized rounding algorithm:
(1) FOR $t=1 \mathrm{TO} \infty$
(2) Solve LP $\rightarrow x$
(3) FOR ALL i : Buy S_{i} with prob. x_{i} (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

Analysis

$$
E[A P X]=\sum_{t \geq 1} E\left[O P T_{f} \text { in step } t\right]
$$

Analysis

- Let I^{*} be optimal Set Cover solution.

$$
\begin{aligned}
E[A P X] & =\sum_{t \geq 1} E\left[O P T_{f} \text { in step } t\right] \\
& \leq \sum_{t \geq 1} E\left[c\left(I^{t}\right)\right]
\end{aligned}
$$

Analysis

- Let I^{*} be optimal Set Cover solution.

$$
\begin{aligned}
E[A P X] & =\sum_{t \geq 1} E\left[O P T_{f} \text { in step } t\right] \\
& \leq \sum_{t \geq 1} E\left[c\left(I^{t}\right)\right]
\end{aligned}
$$

Analysis

- Let I^{*} be optimal Set Cover solution.
- $I^{t}:=\left\{i \in I^{*} \mid\right.$ not yet all elements in S_{i} covered $\}(\leftarrow$ feasible in step t)

$$
\begin{aligned}
E[A P X] & =\sum_{t \geq 1} E\left[O P T_{f} \text { in step } t\right] \\
& \leq \sum_{t \geq 1} E\left[c\left(I^{t}\right)\right]
\end{aligned}
$$

Analysis

- Let I^{*} be optimal Set Cover solution.
- $I^{t}:=\left\{i \in I^{*} \mid\right.$ not yet all elements in S_{i} covered $\}(\leftarrow$ feasible in step t)

$$
\begin{aligned}
E[A P X] & =\sum_{t \geq 1} E\left[O P T_{f} \text { in step } t\right] \\
& \leq \sum_{t \geq 1} E\left[c\left(I^{t}\right)\right] \\
& =\sum_{i \in I^{*}} E\left[\# \text { iterations } S_{i} \text { is in } I^{t}\right] \cdot c\left(S_{i}\right)
\end{aligned}
$$

Analysis

- Let I^{*} be optimal Set Cover solution.
- $I^{t}:=\left\{i \in I^{*} \mid\right.$ not yet all elements in S_{i} covered $\}(\leftarrow$ feasible in step t)
- $\operatorname{Pr}[$ element j not covered after $\ln (2 k)$ it. $] \leq e^{-\ln (2 k)}=\frac{1}{2 k}$
- $\operatorname{Pr}\left[\right.$ not all el. in S_{i} covered after $\ln (2 k)$ it. $] \leq k \cdot \frac{1}{2 k}=\frac{1}{2}$

Analysis

- Let I^{*} be optimal Set Cover solution.
- $I^{t}:=\left\{i \in I^{*} \mid\right.$ not yet all elements in S_{i} covered $\}(\leftarrow$ feasible in step t)
- $\operatorname{Pr}[$ element j not covered after $\ln (2 k)$ it. $] \leq e^{-\ln (2 k)}=\frac{1}{2 k}$
- $\operatorname{Pr}\left[\right.$ not all el. in S_{i} covered after $\ln (2 k)$ it. $] \leq k \cdot \frac{1}{2 k}=\frac{1}{2}$

$$
\begin{aligned}
E[A P X] & =\sum_{t \geq 1} E\left[O P T_{f} \text { in step } t\right] \\
& \leq \sum_{t \geq 1} E\left[c\left(I^{t}\right)\right] \\
& =\sum_{i \in I^{*}} \underbrace{E\left[\# \text { iterations } S_{i} \text { is in } I^{t}\right]}_{\leq O(\ln (k))} \cdot c\left(S_{i}\right)^{\text {covered after } t \mathrm{it}} \\
& =O(\ln k) \cdot O P T
\end{aligned}
$$

Steiner Tree

Given:

- undirected graph $G=(V, E)$
- $\operatorname{cost} c: E \rightarrow \mathbb{Q}_{+}$
- terminals $R \subseteq V$

Find: Min-cost Steiner tree, spanning R.

$$
O P T:=\min \{c(S) \mid S \text { spans } R\}
$$

W.l.o.g.: c is metric.

Steiner Tree

Given:

- undirected graph $G=(V, E)$
- cost $c: E \rightarrow \mathbb{Q}_{+}$
- terminals $R \subseteq V$

Find: Min-cost Steiner tree, spanning R.

$$
O P T:=\min \{c(S) \mid S \text { spans } R\}
$$

W.l.o.g.: c is metric.

Spanning tree

Min-cost terminal spanning tree (MST):

Spanning tree

Min-cost terminal spanning tree (MST):

- Can be computed in poly-time.

Spanning tree

Min-cost terminal spanning tree (MST):

- Can be computed in poly-time.
- Costs $\leq 2 \cdot O P T$.

Known results for Steiner tree:

Approximations:

- 2-apx (minimum spanning tree heuristic)
- 1.83-apx [Zelikovsky '93]
- 1.667-apx [Prömel \& Steger '97]
- 1.644-apx [Karpinski \& Zelikovsky '97]
- 1.598-apx [Hougardy \& Prömel '99]
- 1.55-apx [Robins \& Zelikovsky '00]

Known results for Steiner tree:

Approximations:

- 2-apx (minimum spanning tree heuristic)
- 1.83-apx [Zelikovsky '93]
- 1.667-apx [Prömel \& Steger '97]
- 1.644-apx [Karpinski \& Zelikovsky '97]
- 1.598-apx [Hougardy \& Prömel '99]
- 1.55-apx [Robins \& Zelikovsky '00]

Hardness:

- NP-hard even if edge costs $\in\{1,2\}$ [Bern \& Plassmann '89]
- no $<\frac{96}{95}$-apx unless $\mathbf{N P}=\mathbf{P}$ [Chlebik \& Chlebikova '02]

Our results:

Theorem

There is a polynomial time 1.39-approximation.

- LP-based! (Directed-Component Cut Relaxation)
- Algorithmic framework: Iterative Randomized Rounding

Our results:

Theorem

There is a polynomial time 1.39-approximation.

- LP-based! (Directed-Component Cut Relaxation)
- Algorithmic framework: Iterative Randomized Rounding

Theorem

The Directed-Component Cut Relaxation has an integrality gap of at most 1.55.

- First <2 bound for any LP-relaxation.

Bi-directed cut relaxation

Bi-directed cut relaxation

- Pick a root $r \in R$

Bi-directed cut relaxation

- Pick a root $r \in R$
- Bi-direct edges

Bi-directed cut relaxation

- Pick a root $r \in R$
- Bi-direct edges

$$
\begin{aligned}
\min \sum_{e \in E} c(e) z_{e} & (\mathrm{BCR}) \\
\sum_{e \in \delta^{+}(U)} z_{e} \geq 1 & \forall U \subseteq V \backslash\{r\}: U \cap R \neq \emptyset \\
z_{e} \geq 0 & \forall e \in E
\end{aligned}
$$

Bi-directed cut relaxation

- Pick a root $r \in R$
- Bi-direct edges

$$
\begin{aligned}
\min \sum_{e \in E} c(e) z_{e} & (\mathrm{BCR}) \\
\sum_{e \in \delta^{+}(U)} z_{e} \geq 1 & \forall U \subseteq V \backslash\{r\}: U \cap R \neq \emptyset \\
z_{e} \geq 0 & \forall e \in E
\end{aligned}
$$

Bi-directed cut relaxation

- Pick a root $r \in R$
- Bi-direct edges

$$
\begin{aligned}
\min \sum_{e \in E} c(e) z_{e} & (\mathrm{BCR}) \\
\sum_{e \in \delta^{+}(U)} z_{e} \geq 1 & \forall U \subseteq V \backslash\{r\}: U \cap R \neq \emptyset \\
z_{e} \geq 0 & \forall e \in E
\end{aligned}
$$

Theorem (Edmonds '67)
$R=V \Rightarrow B C R$ integral

- Integrality gap $\leq 4 / 3$ for quasi-bipartite graphs [Chakrabarty, Devanur, Vazirani '08]
- Integrality gap $\in[1.16,2]$

Components

directed component C

- $\mathbf{C}=$ set of directed components

Directed component cut relaxation

$$
\begin{gathered}
\min \sum_{C \in \mathbf{C}} c(C) \cdot x_{C} \\
\sum_{\substack{C \in \mathbf{C}: R(C) \cap U \neq \emptyset, \operatorname{sink}(C) \notin U}} x_{C} \geq 1 \quad \forall \emptyset \subset U \subseteq R \backslash\{r\} \\
x_{C} \geq 0 \quad \forall C \in \mathbf{C}
\end{gathered}
$$

Directed component cut relaxation

$$
\begin{gathered}
\min \sum_{C \in \mathbf{C}} c(C) \cdot x_{C} \quad(\mathrm{DCR}) \\
\sum_{\substack{\mathrm{C}: R(C) \cap U \\
\operatorname{sink}(C) \notin U}} x_{C} \geq 1 \quad \forall \emptyset \subset U \subseteq R \backslash\{r\} \\
x_{C} \geq 0 \quad \forall C \in \mathbf{C} \\
x_{C_{1}}=\frac{1}{2}
\end{gathered}
$$

Directed component cut relaxation

$$
\begin{aligned}
& \min \sum_{C \in \mathbf{C}} c(C) \cdot x_{C}(\mathrm{DCR}) \\
& \sum_{\substack{C \in \mathbf{C}: R(C) \cap U \neq \emptyset, \operatorname{sink}(C) \notin U}} x_{C} \geq 1 \quad \forall \emptyset \subset U \subseteq R \backslash\{r\} \\
& x_{C} \geq 0 \quad \forall C \in \mathbf{C}
\end{aligned}
$$

Properties:

- Number of variables: exponential
- Number of constraints: exponential
- Approximable within $1+\varepsilon$ (we ignore the ε here).

Solvability of the LP

Lemma

For any $\varepsilon>0$, a solution x of cost $\leq(1+\varepsilon) O P T_{f}$ can be computed in polynomial time.

Solvability of the LP

Lemma
 For any $\varepsilon>0$, a solution x of cost $\leq(1+\varepsilon) O P T_{f}$ can be computed in polynomial time.

- Use only components of size $2^{\lceil 1 / \varepsilon\rceil}=O(1)$
[Borchers \& Du '97]: Increases cost by $\leq 1+\varepsilon$ \rightarrow \# variables polynomial

Solvability of the LP

Lemma

For any $\varepsilon>0$, a solution x of cost $\leq(1+\varepsilon) O P T_{f}$ can be computed in polynomial time.

- Use only components of size $2^{\lceil 1 / \varepsilon\rceil}=O(1)$
[Borchers \& Du '97]: Increases cost by $\leq 1+\varepsilon$ \rightarrow \# variables polynomial

Solvability of the LP

Lemma

For any $\varepsilon>0$, a solution x of cost $\leq(1+\varepsilon) O P T_{f}$ can be computed in polynomial time.

- Use only components of size $2^{\lceil 1 / \varepsilon\rceil}=O(1)$
[Borchers \& Du '97]: Increases cost by $\leq 1+\varepsilon$
\rightarrow \# variables polynomial
- Compact flow formulation \rightarrow \# constraints polynomial (or solve with ellipsoid method).

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty$ DO
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty \mathrm{DO}$
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty \mathrm{DO}$
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty \mathrm{DO}$
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty$ DO
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty$ DO
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components
\square

An iterative randomized rounding algo

(1) FOR $t=1, \ldots, \infty$ DO
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

An iterative randomized rounding algo

(1) $\operatorname{FOR} t=1, \ldots, \infty$ DO
(2) Compute opt. LP solution x
(3) Sample a component:

$$
\operatorname{Pr}[\text { sample } C]=\frac{x_{C}}{\mathbf{1}^{T} x}
$$

and contract it.
(4) IF all terminals connected THEN output sampled components

- W.l.o.g. $M:=\mathbf{1}^{T} x$ invariant

Roadmap

- In one iteration t :
$E[c($ comp. sampled in it. $t)]=\sum_{C} \frac{x_{C}}{M} \cdot c(C) \leq \frac{1}{M} \cdot O P T$ in it t

Roadmap

- In one iteration t :
$E[c($ comp. sampled in it. $t)]=\sum_{C} \frac{x_{C}}{M} \cdot c(C) \leq \frac{1}{M} \cdot O P T$ in it t
- In total
$\sum_{t \geq 1} E[c($ comp. sampled in it. $t)] \leq \sum_{t \geq 1} \frac{1}{M} \cdot E[O P T$ in iteration $t]$
$2 \cdot O P T$
$1 \cdot O P T$
$1 \cdot M$
$2 \cdot M$
$t=$ \#iterations

Roadmap

- In one iteration t :
$E[c($ comp. sampled in it. $t)]=\sum_{C} \frac{x_{C}}{M} \cdot c(C) \leq \frac{1}{M} \cdot O P T$ in it t
- In total
$\sum_{t \geq 1} E[c($ comp. sampled in it. $t)] \leq \sum_{t \geq 1} \frac{1}{M} \cdot E[O P T$ in iteration $t]$

$$
E[O P T \text { after } t \text { it }] \leq\left(1-\frac{1}{2 M}\right)^{t} \cdot O P T
$$

$1 \cdot M$
$2 \cdot M$
$t=\#$ iterations

Roadmap

- In one iteration t :
$E[c($ comp. sampled in it. $t)]=\sum_{C} \frac{x_{C}}{M} \cdot c(C) \leq \frac{1}{M} \cdot O P T$ in it t
- In total
$\sum_{t \geq 1} E[c($ comp. sampled in it. $t)] \leq \sum_{t \geq 1} \frac{1}{M} \cdot E[O P T$ in iteration $t]$

Bridges

- Let S be Steiner tree

Bridges

- Let S be Steiner tree, C a component

Bridges

- Let S be Steiner tree, C a component

- Bridges:

$$
B r_{S}(C)=\operatorname{argmax}\{c(B) \mid B \subseteq S, S \backslash B \cup C \text { is connected }\}
$$

Bridges

- Let S be Steiner tree, C a component

- Bridges:

$$
B r_{S}(C)=\operatorname{argmax}\{c(B) \mid B \subseteq S, S \backslash B \cup C \text { is connected }\}
$$

The saving function

Definition

For a Steiner tree S, the saving function $w: E \rightarrow \mathbb{Q}_{+}$is defined as

$$
w(u, v):=\max \{c(e) \mid e \text { on } u-v \text { path in } S\}
$$

A saving lemma

Lemma

For any component C, \exists saving tree spanning the terminals of C with

$$
c\left(B r_{S}(C)\right)=w(\text { saving tree })
$$

A saving lemma

Lemma

For any component C, \exists saving tree spanning the terminals of C with

$$
c\left(B r_{S}(C)\right)=w(\text { saving tree })
$$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
E\left[c\binom{\text { terminal spanning tree }}{\text { after } 1 \text { sampling step }}\right] \leq\left(1-\frac{1}{M}\right) \cdot c(T)
$$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

- For any C, \exists saving tree: $c\left(B r_{T}(C)\right)=w($ saving tree of $C)$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

- For any C, \exists saving tree: $c\left(B r_{T}(C)\right)=w($ saving tree of $C)$
- Transfer capacity from component to its saving tree
\rightarrow capacity reservation $y: E \rightarrow \mathbb{Q}_{+}$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

- For any C, \exists saving tree: $c\left(B r_{T}(C)\right)=w($ saving tree of $C)$
- Transfer capacity from component to its saving tree
\rightarrow capacity reservation $y: E \rightarrow \mathbb{Q}_{+}$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

- For any C, \exists saving tree: $c\left(B r_{T}(C)\right)=w($ saving tree of $C)$
- Transfer capacity from component to its saving tree
\rightarrow capacity reservation $y: E \rightarrow \mathbb{Q}_{+}$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

- For any C, \exists saving tree: $c\left(B r_{T}(C)\right)=w($ saving tree of $C)$
- Transfer capacity from component to its saving tree
\rightarrow capacity reservation $y: E \rightarrow \mathbb{Q}_{+}$

The Bridge Lemma (1)

Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right) \geq c(T)
$$

- For any C, \exists saving tree: $c\left(B r_{T}(C)\right)=w($ saving tree of $C)$
- Transfer capacity from component to its saving tree
\rightarrow capacity reservation $y: E \rightarrow \mathbb{Q}_{+}$

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right)=w(y)
$$

The Bridge Lemma (2)

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right)=w(y)
$$

The Bridge Lemma (2)

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right)=w(y) \stackrel{\downarrow}{\geq} w(F)
$$

The Bridge Lemma (2)

Cycle rule

$$
\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{T}(C)\right)=w(y) \geq w(F) \geq c(T)
$$

A 1st bound on OPT

Lemma

$$
E[O P T \text { after it. } t] \leq\left(1-\frac{1}{M}\right)^{t} \cdot 2 \cdot O P T
$$

A 1st bound on OPT

Lemma

$$
E[O P T \text { after it. } t] \leq\left(1-\frac{1}{M}\right)^{t} \cdot 2 \cdot O P T
$$

- Initially $c(\mathrm{MST}) \leq 2 \cdot O P T$

A 1st bound on OPT

Lemma

$E[O P T$ after it. $t] \leq\left(1-\frac{1}{M}\right)^{t} \cdot 2 \cdot O P T$.

- Initially $c(\mathrm{MST}) \leq 2 \cdot O P T$
- In any iteration
$E[c($ new $\operatorname{MST})] \leq c($ old $\operatorname{MST})-E\left[c\left(B r_{\text {old MST }}(C)\right)\right]$

A 1st bound on OPT

Lemma

$$
E[O P T \text { after it. } t] \leq\left(1-\frac{1}{M}\right)^{t} \cdot 2 \cdot O P T
$$

- Initially $c(\mathrm{MST}) \leq 2 \cdot O P T$
- In any iteration

$$
\begin{aligned}
E[c(\text { new MST })] & \leq c(\text { old MST })-E\left[c\left(B r_{\text {old MST }}(C)\right)\right] \\
& =c(\text { old MST })-\frac{1}{M} \sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{\text {old MST }}(C)\right)
\end{aligned}
$$

A 1st bound on OPT

Lemma

$$
E[O P T \text { after it. } t] \leq\left(1-\frac{1}{M}\right)^{t} \cdot 2 \cdot O P T .
$$

- Initially $c(\mathrm{MST}) \leq 2 \cdot O P T$
- In any iteration

$$
\begin{aligned}
E[c(\text { new MST })] & \leq c(\text { old MST })-E\left[c\left(B r_{\text {old MST }}(C)\right)\right] \\
& =c(\text { old MST })-\frac{1}{M} \underbrace{\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{\text {old MST }}(C)\right)}_{\geq c(\text { old MST })}
\end{aligned}
$$

A 1st bound on OPT

Lemma

$$
E[O P T \text { after it. } t] \leq\left(1-\frac{1}{M}\right)^{t} \cdot 2 \cdot O P T .
$$

- Initially $c(\mathrm{MST}) \leq 2 \cdot O P T$
- In any iteration
$E[c($ new $\operatorname{MST})] \leq c($ old $\operatorname{MST})-E\left[c\left(B r_{\text {old } \operatorname{MST}}(C)\right)\right]$
$=c($ old MST $)-\frac{1}{M} \underbrace{\sum_{C \in \mathbf{C}} x_{C} \cdot c\left(B r_{\text {old MST }}(C)\right)}_{\geq c(\text { old } \operatorname{MST})}$

$$
\leq\left(1-\frac{1}{M}\right) \cdot c(\operatorname{old} \mathrm{MST})
$$

A 2nd bound on $O P T$

Theorem

In any iteration

$$
E[\text { new } O P T] \leq\left(1-\frac{1}{2 M}\right) \cdot \text { old } O P T
$$

- Let S be opt. Steiner tree

A 2nd bound on $O P T$

Theorem

In any iteration

$$
E[\text { new } O P T] \leq\left(1-\frac{1}{2 M}\right) \cdot \text { old } O P T
$$

- Let S be opt. Steiner tree
- From each inner node in S : Contract the cheapest edge going to a child

A 2nd bound on $O P T$

Theorem

In any iteration

$$
E[\text { new } O P T] \leq\left(1-\frac{1}{2 M}\right) \cdot \text { old } O P T
$$

- Let S be opt. Steiner tree
- From each inner node in S : Contract the cheapest edge going to a child
- A terminal spanning tree T remains

A 2nd bound on $O P T$

Theorem

In any iteration

$$
E[\text { new } O P T] \leq\left(1-\frac{1}{2 M}\right) \cdot \text { old } O P T
$$

- Let S be opt. Steiner tree
- From each inner node in S : Contract the cheapest edge going to a child
- A terminal spanning tree T remains

$E[$ save on $S] \geq E[$ save on $T] \stackrel{\text { Bridge Lem }}{\geq} \frac{1}{M} \cdot \underbrace{c(T)}_{1} \geq \frac{1}{2 M} \cdot c(S)$
$\geq \frac{1}{2} c(S)$

The approximation guarantee

Theorem

$$
E[A P X] \leq(1.5+\varepsilon) \cdot O P T
$$

$2 \cdot O P T \uparrow$
$1 \cdot O P T$

- Cost of sampled components:

$$
\sum_{t=1}^{\infty} \frac{1}{M} \cdot E[O P T \text { in it. } t]
$$

The approximation guarantee

Theorem

$$
E[A P X] \leq(1.5+\varepsilon) \cdot O P T
$$

- Cost of sampled components:

$$
\sum_{t=1}^{\infty} \frac{1}{M} \cdot E[O P T \text { in it. } t]
$$

The approximation guarantee

Theorem

$$
E[A P X] \leq(1.5+\varepsilon) \cdot O P T
$$

- Cost of sampled components:

$$
\begin{aligned}
& \sum_{t=1}^{\infty} \frac{1}{M} \cdot E[O P T \text { in it. } t] \\
\xrightarrow{M \rightarrow \infty} & O P T \cdot \int_{0}^{\infty} \min \left\{2 e^{-x}, e^{-x / 2}\right\} d x
\end{aligned}
$$

The approximation guarantee

Theorem

$$
E[A P X] \leq(1.5+\varepsilon) \cdot O P T
$$

- Cost of sampled components:

$$
\begin{aligned}
& \sum_{t=1}^{\infty} \frac{1}{M} \cdot E[O P T \text { in it. } t] \\
\xrightarrow{M \rightarrow \infty} & O P T \cdot \int_{0}^{\infty} \min \left\{2 e^{-x}, e^{-x / 2}\right\} d x=1.5 \cdot O P T
\end{aligned}
$$

A generalized bridge lemma

A generalized bridge lemma

A generalized bridge lemma

A generalized bridge lemma

- Observe: Each edge in T removed with prob $2 \cdot \frac{1}{3}=\frac{1}{M}$!

A generalized bridge lemma

- Observe: Each edge in T removed with pr b $2 \cdot \frac{1}{3}=\frac{1}{M}$!
- To show: We can always find these probabilities!

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x. There are $B \subseteq T$ (dep. on C) s.t.

- $(T \backslash B) \cup C$ spans all terminals
- $\operatorname{Pr}[e \in B] \geq \frac{1}{M} \forall e \in T$.

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x. There are $B \subseteq T$ (dep. on C) st.

- $(T \backslash B) \cup C$ spans all terminals
- $\operatorname{Pr}[e \in B] \geq \frac{1}{M} \forall e \in T$.

$$
\begin{aligned}
& \sum_{B:(T \backslash B) \cup C \text { conn. }} \operatorname{Pr}[\text { rem. } B \mid C]=1 \forall C \\
& \sum_{B \ni e, C} \operatorname{Pr}[C] \cdot \operatorname{Pr}[\text { rem. } B \mid C] \geq \frac{1}{M} \forall e \\
& \hline
\end{aligned}
$$

- Suppose system (1) has no non-negative solution.

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x. There are $B \subseteq T$ (dep. on C) s.t.

- $(T \backslash B) \cup C$ spans all terminals
- $\operatorname{Pr}[e \in B] \geq \frac{1}{M} \forall e \in T$.

- Suppose system (1) has no non-negative solution.
- Farkas Lemma: System (2) has solution $(y, c) \geq \mathbf{0}$

A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x. There are $B \subseteq T$ (dep. on C) s.t.

- $(T \backslash B) \cup C$ spans all terminals
- $\operatorname{Pr}[e \in B] \geq \frac{1}{M} \forall e \in T$.

- Suppose system (1) has no non-negative solution.
- Farkas Lemma: System (2) has solution (y, c) $\geq \mathbf{0}$
- Contradiction to Bridge Lemma!

The 1.39 bound

- Let S^{*} optimum Steiner tree.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.

The 1.39 bound

- Let S^{*} optimum Steiner tree.
- Goal: Define Steiner tree $S^{t} \subseteq S^{*}$ after t iterations with $E\left[t: e \in S^{t}\right] \leq 1.39 \cdot M$.
- For every internal node in S^{*} : Mark a random outgoing edge.
- Consider cycles $S^{*} \cup\{u, v\}$ containing exactly one marked edge.
- Such edges $\{u, v\}$ induce terminal spanning tree T

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}
- Random process deletes an edge $e \in T$ with pr. $\frac{1}{M}$ per it.

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}
- Random process deletes an edge $e \in T$ with pr. $\frac{1}{M}$ per it.
- $E[t: e$ deleted $] \leq M$

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}
- Random process deletes an edge $e \in T$ with pr. $\frac{1}{M}$ per it.
- $E[t: e$ deleted $] \leq M$
- $E\left[t: e_{1}, \ldots, e_{k}\right.$ deleted $] \leq\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \cdot M=H(k) \cdot M$
\rightarrow Coupon Collector Theorem

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}
- Random process deletes an edge $e \in T$ with pr. $\frac{1}{M}$ per it.
- $E[t: e$ deleted $] \leq M$
- $E\left[t: e_{1}, \ldots, e_{k}\right.$ deleted $] \leq\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \cdot M=H(k) \cdot M$ \rightarrow Coupon Collector Theorem
- $E[t: e$ deleted $] \leq H(\#$ cycles through $e) \cdot M$

The 1.39 bound

- Def $S^{t}: e \in T$ not deleted \Rightarrow keep edges in corr. cycle in S^{*}
- Random process deletes an edge $e \in T$ with pr. $\frac{1}{M}$ per it.
- $E[t: e$ deleted $] \leq M$
- $E\left[t: e_{1}, \ldots, e_{k}\right.$ deleted $] \leq\left(1+\frac{1}{2}+\ldots+\frac{1}{k}\right) \cdot M=H(k) \cdot M$ \rightarrow Coupon Collector Theorem
- $E[t: e$ deleted $] \leq H(\#$ cycles through $e) \cdot M$
- $\operatorname{Pr}[e$ in k cycles $]=\left(\frac{1}{2}\right)^{k}$
$E[t: e$ deleted $] \leq \sum_{k \geq 1}\left(\frac{1}{2}\right)^{k} \cdot H(k) \cdot M=\ln (4) \cdot M \approx 1.39 \cdot M$.

Open problems

Open Problem I
$1.01 \leq$ Steiner tree approximability ≤ 1.39

Open problems

Open Problem I
$1.01 \leq$ Steiner tree approximability ≤ 1.39

Open Problem II

Is there an iterative randomized rounding approach for Facility Location or k-Median?

Open problems

Open Problem III

Is there an iterative randomized rounding approach for ATSP?
(1) Solve Held-Karp relaxation:

$$
\begin{aligned}
\min c^{T} x & \\
x\left(\delta^{+}(S)\right) & \geq 1 \quad \forall \emptyset \subset S \subset V \\
x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right) & =1 \quad \forall v \in V \\
x_{e} & \geq 0 \quad \forall e \in E
\end{aligned}
$$

(2) Sample a collection of cycles \mathcal{C} from x^{*}.
(3) Show $E[c(\mathcal{C})] \leq 1000 \cdot O P T$
(4) Show $E[O P T$ after contracting $\mathcal{C}] \leq 0.999 \cdot O P T$.

This would yield a $O(1)$-apx.

Open problems

Open Problem III

Is there an iterative randomized rounding approach for ATSP?
(1) Solve Held-Karp relaxation:

$$
\begin{aligned}
\min c^{T} x & \\
x\left(\delta^{+}(S)\right) & \geq 1 \quad \forall \emptyset \subset S \subset V \\
x\left(\delta^{+}(v)\right)=x\left(\delta^{-}(v)\right) & =1 \quad \forall v \in V \\
x_{e} & \geq 0 \quad \forall e \in E
\end{aligned}
$$

(2) Sample a collection of cycles \mathcal{C} from x^{*}.
(3) Show $E[c(\mathcal{C})] \leq 1000 \cdot O P T$
(4) Show $E[O P T$ after contracting $\mathcal{C}] \leq 0.999 \cdot O P T$.

This would yield a $O(1)$-apx.
Thanks for your attention

