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Known:

◮ Integrality gap is Θ(lnn)

◮ Suppose |Si| ≤ k. Then gap is Θ(ln k).



Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets



Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2

bought
sets



Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2

bought
sets



Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2 1 1

1

bought
sets



Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2 1 1

1

bought
sets



Iterative randomized rounding algorithm:

(1) FOR t = 1 TO ∞
(2) Solve LP → x
(3) FOR ALL i: Buy Si with prob. xi (remove covered el.)
(4) IF no elemente left THEN RETURN all bought sets

iteration t = 1 iteration t = 2

x

1
2

1
2

1
2

1
2 1

2

1
2

1
2

1
2

1
2 1 1

1

bought
sets SOLUTION



Analysis

E[APX] =
∑

t≥1

E[OPTf in step t]

I
∗



Analysis

◮ Let I∗ be optimal Set Cover solution.

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)]
I
∗



Analysis

◮ Let I∗ be optimal Set Cover solution.

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)] b

b
b

b

b
I
∗

covered after t it



Analysis

◮ Let I∗ be optimal Set Cover solution.

◮ It := {i ∈ I∗ | not yet all elements in Si covered} (←
feasible in step t)

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)] b

b
b

b

b
I
t

covered after t it



Analysis

◮ Let I∗ be optimal Set Cover solution.

◮ It := {i ∈ I∗ | not yet all elements in Si covered} (←
feasible in step t)

E[APX] =
∑

t≥1

E[OPTf in step t]

≤
∑

t≥1

E[c(It)]

=
∑

i∈I∗

E[# iterations Si is in It] · c(Si)

b

b
b

b

b
I
t

covered after t it



Analysis

◮ Let I∗ be optimal Set Cover solution.
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Find: Min-cost Steiner tree, spanning R.
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Steiner node
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W.l.o.g.: c is metric.
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Spanning tree

terminal spanning tree

Min-cost terminal spanning tree (MST):
◮ Can be computed in poly-time.

◮ Costs ≤ 2 · OPT .
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◮ 1.667-apx [Prömel & Steger ’97]

◮ 1.644-apx [Karpinski & Zelikovsky ’97]

◮ 1.598-apx [Hougardy & Prömel ’99]

◮ 1.55-apx [Robins & Zelikovsky ’00]

Hardness:

◮ NP-hard even if edge costs ∈ {1, 2} [Bern & Plassmann ’89]

◮ no < 96
95 -apx unless NP = P [Chlebik & Chlebikova ’02]
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Our results:

Theorem

There is a polynomial time 1.39-approximation.

◮ LP-based! (Directed-Component Cut Relaxation)

◮ Algorithmic framework: Iterative Randomized Rounding

Theorem

The Directed-Component Cut Relaxation has an integrality gap
of at most 1.55.

◮ First < 2 bound for any LP-relaxation.
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◮ Pick a root r ∈ R

◮ Bi-direct edges

min
∑

e∈E

c(e)ze (BCR)

∑

e∈δ+(U)

ze ≥ 1 ∀U ⊆ V \ {r} : U ∩R 6= ∅

ze ≥ 0 ∀e ∈ E.

root r

U

ze = 1
2

Theorem (Edmonds ’67)

R = V ⇒ BCR integral

◮ Integrality gap ≤ 4/3 for quasi-bipartite graphs
[Chakrabarty, Devanur, Vazirani ’08]

◮ Integrality gap ∈ [1.16, 2]



Components

directed component C

sink(C)

◮ C = set of directed components
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Directed component cut relaxation

min
∑

C∈C

c(C) · xC (DCR)

∑

C ∈ C : R(C) ∩ U 6= ∅,
sink(C) /∈ U

xC ≥ 1 ∀∅ ⊂ U ⊆ R \ {r}

xC ≥ 0 ∀C ∈ C

Properties:

◮ Number of variables: exponential

◮ Number of constraints: exponential

◮ Approximable within 1 + ε (we ignore the ε here).
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Solvability of the LP

Lemma

For any ε > 0, a solution x of cost ≤ (1 + ε)OPTf can be
computed in polynomial time.

≤ 2⌈1/ε⌉

◮ Use only components of size 2⌈1/ε⌉ = O(1)
[Borchers & Du ’97]: Increases cost by ≤ 1 + ε
→ # variables polynomial

◮ Compact flow formulation → # constraints polynomial
(or solve with ellipsoid method).
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An iterative randomized rounding algo

(1) FOR t = 1, . . . ,∞ DO
(2) Compute opt. LP solution x
(3) Sample a component:

Pr[sample C] =
xC

1Tx

and contract it.
(4) IF all terminals connected THEN output sampled

components

◮ W.l.o.g. M := 1Tx invariant
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◮ In one iteration t:

E[c(comp. sampled in it. t)] =
∑

C
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M
·OPT in it t

◮ In total
∑
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The saving function

Definition

For a Steiner tree S, the saving function w : E → Q+ is
defined as

w(u, v) := max{c(e) | e on u− v path in S}.

u v

w(u, v) := max{c(e) | e on u− v path in S}



A saving lemma

Lemma

For any component C, ∃ saving tree spanning the terminals of
C with

c(BrS(C)) = w(saving tree)
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Lemma (Bridge Lemma)

For T terminal spanning tree, x LP solution:
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The Bridge Lemma (2)
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∑

C∈C

xC · c(BrT (C)) = w(y) ≥ w(F ) ≥ c(T )

Edmonds Thm

Cycle rule

root r

T

F
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Theorem

In any iteration

E[new OPT] ≤
(

1−
1

2M

)

· old OPT

◮ Let S be opt. Steiner tree

◮ From each inner node in S: Contract
the cheapest edge going to a child

◮ A terminal spanning tree T
remains

T
b b

b

E[save on S] ≥ E[save on T ]
Bridge Lem
≥

1

M
· c(T )

︸︷︷︸

≥
1

2
c(S)

≥
1

2M
· c(S)
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The approximation guarantee

Theorem

E[APX] ≤ (1.5+ε) · OPT .

1 ·OPT

2 ·OPT

1 ·M 2 ·M t = #iterations

E[OPT after t it] ≤ (1− 1
M )t · 2 ·OPT

≤ 2e−t/M ·OPT

E[OPT after t it] ≤ (1− 1
2M )t ·OPT

≤ e−t/(2M) · OPT

◮ Cost of sampled components:
∞∑

t=1

1

M
· E[OPT in it. t]

M→∞
→ OPT ·

∫ ∞

0
min{2e−x, e−x/2} dx = 1.5 ·OPT
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1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

pr. 1
3 pr. 1

3 pr. 1
3

pr. 1 pr. 0 pr. 1 pr. 0 pr. 1

◮ Observe: Each edge in T removed with prob 2 · 13 = 1
M !

◮ To show: We can always find these probabilities!
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A generalized bridge lemma (2)

Lemma

Let T be terminal spanning tree. Sample C from LP solution x.
There are B ⊆ T (dep. on C) s.t.

◮ (T\B) ∪C spans all terminals

◮ Pr[e ∈ B] ≥ 1
M ∀e ∈ T .

∑

B:(T\B)∪C conn. Pr[rem. B | C] = 1 ∀C
∑

B∋e,C Pr[C] · Pr[rem. B | C] ≥ 1
M ∀e

yC ≥ xC · c(B) ∀B : T\B ∪ C conn.
∑

C yC < c(T )

dual

◮ Suppose system (1) has no non-negative solution.
◮ Farkas Lemma: System (2) has solution (y, c) ≥ 0
◮ Contradiction to Bridge Lemma!
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◮ Let S∗ optimum Steiner tree.
◮ Goal: Define Steiner tree St ⊆ S∗ after t iterations with

E[t : e ∈ St] ≤ 1.39 ·M .
◮ For every internal node in S∗: Mark a random outgoing

edge.
◮ Consider cycles S∗ ∪ {u, v} containing exactly one marked

edge.
◮ Such edges {u, v} induce terminal spanning tree T
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The 1.39 bound

e

◮ Def St: e ∈ T not deleted ⇒ keep edges in corr. cycle in S∗

◮ Random process deletes an edge e ∈ T with pr. 1
M per it.

◮ E[t : e deleted] ≤M
◮ E[t : e1, . . . , ek deleted] ≤ (1 + 1

2 + . . . + 1
k ) ·M = H(k) ·M

→ Coupon Collector Theorem
◮ E[t : e deleted] ≤ H(#cycles through e) ·M
◮ Pr[e in k cycles] = (12)k

E[t : e deleted] ≤
∑

k≥1

(1

2

)k
·H(k)·M = ln(4)·M ≈ 1.39·M.
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1.01 ≤ Steiner tree approximability ≤ 1.39
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Is there an iterative randomized rounding approach for
Facility Location or k-Median?
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Is there an iterative randomized rounding approach for ATSP?

(1) Solve Held-Karp relaxation:

min cTx

x(δ+(S)) ≥ 1 ∀∅ ⊂ S ⊂ V

x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(2) Sample a collection of cycles C from x∗.

(3) Show E[c(C)] ≤ 1000 · OPT

(4) Show E[OPT after contracting C] ≤ 0.999 ·OPT .

This would yield a O(1)-apx.
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Is there an iterative randomized rounding approach for ATSP?

(1) Solve Held-Karp relaxation:

min cTx

x(δ+(S)) ≥ 1 ∀∅ ⊂ S ⊂ V

x(δ+(v)) = x(δ−(v)) = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

(2) Sample a collection of cycles C from x∗.

(3) Show E[c(C)] ≤ 1000 · OPT

(4) Show E[OPT after contracting C] ≤ 0.999 ·OPT .

This would yield a O(1)-apx.

Thanks for your attention


