A simpler proof for O(congestion + dilation)packet routing

Thomas Rothvoß

Department of Mathematics, MIT

IPCO 2013

• Input: directed graph G = (V, E)

▶ Input: Paths P_i in a directed graph G = (V, E)

- ▶ **Input:** Paths P_i in a directed graph G = (V, E)
- ▶ Goal: Route packets along paths to minimize makespan Constraint: edge can be crossed by 1 packet per time unit

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

▶ Input: Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

▶ **Input:** Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

• Input: Paths P_i in a directed graph G = (V, E)

Packet Routing (2)

Lower bounds:

Packet Routing (2)

Lower bounds:

• congestion =
$$\max_{e \in E} \{ \#i : e \in P_i \}$$
Lower bounds:

• congestion =
$$\max_{e \in E} \{ \#i : e \in P_i \}$$

• dilation = $\max_i |P_i|$

Lower bounds:

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

Theorem (Leighton, Maggs, Rao '94)

 \exists schedule of length O(congestion + dilation) (even with O(1)-size edge buffers).

Lower bounds:

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

Theorem (Leighton, Maggs, Rao '94)

 \exists schedule of length O(congestion + dilation) (even with O(1)-size edge buffers).

Lower bounds:

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

Theorem (Leighton, Maggs, Rao '94)

 \exists schedule of length O(congestion + dilation) (even with O(1)-size edge buffers).

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

Lower bounds:

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

▶ Polytime algorithm [Leighton, Maggs, Richa '99]

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

- ▶ Polytime algorithm [Leighton, Maggs, Richa '99]
- ▶ $39 \cdot (C + D)$ suffices [Scheideler '98]

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

- ▶ Polytime algorithm [Leighton, Maggs, Richa '99]
- ▶ $39 \cdot (C + D)$ suffices [Scheideler '98]
- ▶ $24 \cdot (C + D)$ suffices [Peis, Wiese '11]

- congestion = $\max_{e \in E} \{ \#i : e \in P_i \}$
- dilation = $\max_i |P_i|$

- ▶ Polytime algorithm [Leighton, Maggs, Richa '99]
- ▶ $39 \cdot (C + D)$ suffices [Scheideler '98]
- ▶ $24 \cdot (C + D)$ suffices [Peis, Wiese '11]
- ▶ O(1)-apx for finding paths + schedule [Srinivasan, Teo '00]

Theorem (R. '13)

Much simpler proof of O(congestion + dilation)-packet routing (also with O(1)-size edge buffers).

Theorem (R. '13)

Much simpler proof of O(congestion + dilation)-packet routing (also with O(1)-size edge buffers).

- [Wiese '12]: Is $(1 + o(1)) \cdot (\text{congestion} + \text{dilation})$ possible?
- True if congestion \gg dilation!

Theorem (R. '13)

Much simpler proof of O(congestion + dilation)-packet routing (also with O(1)-size edge buffers).

- [Wiese '12]: Is $(1 + o(1)) \cdot (a + o(1)) + dilation)$ possible?
- **True** if congestion \gg dilation!

Theorem (R. '13)

 \exists instance requiring $(1 + \varepsilon) \cdot (\text{congestion} + \text{dilation})$ time.

Theorem (R. '13)

Much simpler proof of O(congestion + dilation)-packet routing (also with O(1)-size edge buffers).

- [Wiese '12]: Is $(1 + o(1)) \cdot (c + o(1)) + dilation)$ possible?
- **True** if congestion \gg dilation!

Theorem (R. '13)

 \exists instance requiring $(1 + \varepsilon) \cdot (\text{congestion} + \text{dilation})$ time.

Assumptions:

• $D := \text{dilation} = \text{congestion} = |P_i| \ \forall i$

Theorem (R. '13)

Much simpler proof of O(congestion + dilation)-packet routing (also with O(1)-size edge buffers).

- [Wiese '12]: Is $(1 + o(1)) \cdot (a + o(1)) + dilation)$ possible?
- **True** if congestion \gg dilation!

Theorem (R. '13)

 \exists instance requiring $(1 + \varepsilon) \cdot (\text{congestion} + \text{dilation})$ time.

Assumptions:

- $D := \text{dilation} = \text{congestion} = |P_i| \ \forall i$
- ▶ O(1) packets can cross an edge per time unit

Preliminaries

Lemma (Lovász Local Lemma) Let A_1, \ldots, A_m be events such that (1) $\Pr[A_i] \leq p$ (2) each A_i depends on $\leq d$ other events (3) $4 \cdot p \cdot d \leq 1$ Then $\Pr\left[\bigcap_{i=1}^m \bar{A}_i\right] > 0.$

▶ Constructive via [Moser, Tardos '10]

Preliminaries

Lemma (Lovász Local Lemma) Let A_1, \ldots, A_m be events such that (1) $\Pr[A_i] \le p$ (2) each A_i depends on $\le d$ other events (3) $4 \cdot p \cdot d \le 1$ Then $\Pr\left[\bigcap_{i=1}^m \bar{A}_i\right] > 0.$

▶ Constructive via [Moser, Tardos '10]

Lemma (Chernov-Hoeffding)

Let $Z_1, \ldots, Z_k \in [0, \delta]$ be independently RV, sum $Z := \sum_{i=1}^k Z_i$. Then

$$\Pr[Z > (1+\varepsilon) \mathbb{E}[Z]] \le \exp\left(-\frac{\varepsilon^2}{3} \cdot \frac{\mathbb{E}[Z]}{\delta}\right)$$

Waiting rule:

- At source: wait $\alpha_0 \sim [D]$
- When entering kth level ℓ interval: Wait $\alpha_{\ell,k} \sim [D_{\ell}^{1/4}]$
- When **leaving** kth level ℓ interval: Wait $D_{\ell}^{1/4} \alpha_{\ell,k}$

Observations:

▶ total waiting time: $D + \sum_{\ell \ge 1} \frac{D}{D_{\ell}} \cdot D_{\ell}^{1/4} = O(D)$

Observations:

- ► total waiting time: $D + \sum_{\ell \ge 1} \frac{D}{D_{\ell}} \cdot D_{\ell}^{1/4} = O(D)$
- ▶ time that i crosses e depends only on waiting times of intervals containing e

Observations:

- ▶ total waiting time: $D + \sum_{\ell \ge 1} \frac{D}{D_{\ell}} \cdot D_{\ell}^{1/4} = O(D)$
- ▶ time that i crosses e depends only on waiting times of intervals containing e
- ▶ Pr[packet *i* crosses *e* at time *t*] $\leq \frac{1}{D}$ & $\mathbb{E}[\text{load}(e, t)] \leq 1$

Idea:

Fix waiting times on level $\ell = 0, 1, 2, \ldots$ iteratively.

Idea:

- Fix waiting times on level $\ell = 0, 1, 2, \ldots$ iteratively.
- ► Show $\max_{e,t} \{ \mathbb{E}[\operatorname{load}(e,t)] \}$ increases $\leq D_{\ell}^{-\frac{1}{32}}$ in step ℓ .

Idea:

- Fix waiting times on level $\ell = 0, 1, 2, \ldots$ iteratively.
- ► Show $\max_{e,t} \{ \mathbb{E}[\operatorname{load}(e,t)] \}$ increases $\leq D_{\ell}^{-\frac{1}{32}}$ in step ℓ .
- Eventually load $(e, t) \leq 1 + \sum_{\ell \geq 0} D_{\ell}^{-\frac{1}{32}} \leq O(1).$

- Pick level-0 waiting times $\boldsymbol{\alpha} \sim [D]^n$.
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Lemma

 $\Pr[Y(e,t) \leq 1 + D^{-\frac{1}{32}} \; \forall e,t] > 0$

- Pick level-0 waiting times $\boldsymbol{\alpha} \sim [D]^n$.
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Lemma

 $\Pr[Y(e,t) \le 1 + D^{-\frac{1}{32}} \; \forall e,t] > 0$

$$\blacktriangleright \ \mathbb{E}[Y(e,t)] \leq 1$$

- Pick level-0 waiting times $\boldsymbol{\alpha} \sim [D]^n$.
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Lemma

 $\Pr[Y(e,t) \leq 1 + D^{-\frac{1}{32}} \; \forall e,t] > 0$

•
$$\mathbb{E}[Y(e,t)] \leq 1$$

• $Y(e,t) = \sum_{i=1}^{n} \underbrace{\Pr[i \text{ crosses } e \text{ at } t \mid \boldsymbol{\alpha}]}_{\in [0,\frac{1}{(\sqrt{D})^{1/4}}]}$

- Pick level-0 waiting times $\boldsymbol{\alpha} \sim [D]^n$.
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Lemma

 $\Pr[Y(e,t) \leq 1 + D^{-\frac{1}{32}} \; \forall e,t] > 0$

•
$$\mathbb{E}[Y(e,t)] \leq 1$$

• $Y(e,t) = \sum_{i=1}^{n} \underbrace{\Pr[i \text{ crosses } e \text{ at } t \mid \boldsymbol{\alpha}]}_{\in [0, \frac{1}{(\sqrt{D})^{1/4}}]}$
• $\Pr[Y(e,t) > 1 + D^{-\frac{1}{32}}] \leq e^{-\Omega(D^{1/16})}$
- Pick level-0 waiting times $\boldsymbol{\alpha} \sim [D]^n$.
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \alpha] = \text{ave. load on } e \text{ at } t \text{ dep. on } \alpha$

Lemma

 $\Pr[Y(e,t) \le 1 + D^{-\frac{1}{32}} \; \forall e,t] > 0$

•
$$\mathbb{E}[Y(e,t)] \leq 1$$

• $Y(e,t) = \sum_{i=1}^{n} \underbrace{\Pr[i \text{ crosses } e \text{ at } t \mid \boldsymbol{\alpha}]}_{\in [0, \frac{1}{(\sqrt{D})^{1/4}}]}$
• $\Pr[Y(e,t) > 1 + D^{-\frac{1}{32}}] \leq e^{-\Omega(D^{1/16})}$

Rand. var. packets

- Pick level-0 waiting times $\boldsymbol{\alpha} \sim [D]^n$.
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Rand. var.

e,t

e'

 $\leq O(D^2)$

packets

Lemma

 $\Pr[Y(e,t) \le 1 + D^{-\frac{1}{32}} \; \forall e,t] > 0$

•
$$\mathbb{E}[Y(e,t)] \leq 1$$

• $Y(e,t) = \sum_{i=1}^{n} \underbrace{\Pr[i \text{ crosses } e \text{ at } t \mid \alpha]}_{\in [0, \frac{1}{(\sqrt{D})^{1/4}}]}$
• $\Pr[Y(e,t) > 1 + D^{-\frac{1}{32}}] \leq e^{-\Omega(D^{1/16})}$

• Dependence degree $\leq O(D^3)$

- ▶ Suppose waiting times on level $0, \ldots, \ell 1$ already fixed.
- Pick level- ℓ waiting times $\boldsymbol{\alpha} \sim [\Delta^{1/4}]^{n \times \frac{D}{\Delta}}$. $\Delta := D_{\ell}$
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Lemma

 $\Pr[Y(e,t) \leq \mathbb{E}[Y(e,t)] + \Delta^{-\frac{1}{32}} \; \forall e,t] > 0$

 $\blacktriangleright \mathbb{E}[Y(e,t)] \leq 1 + o(1)$ packets Rand. var. • $Y(e,t) = \sum_{i=1}^{n} \Pr[i \text{ crosses } e \text{ at } t \mid \boldsymbol{\alpha}]$ $\in [0, \frac{1}{(\sqrt{\Delta})^{1/4}}]$ Y(e,t)• $\Pr[Y(e,t) > \mathbb{E}[Y(e,t)] + \Delta^{-\frac{1}{32}}] \le e^{-\Omega(\Delta^{1/16})}$ ▶ If nonzero, $\leq O(\Delta^2$ $\Pr[i \text{ crosses } e \text{ at } t] \ge \prod_{\ell' \ge \ell} \frac{1}{D^{1/4}} \ge \frac{1}{\Delta^2}$ Y(e',t')• Possible positions & time frame $\leq O(\Delta)$ • Dependence degree $< O(\Delta^4)$

- ▶ Suppose waiting times on level $0, \ldots, \ell 1$ already fixed.
- Pick level- ℓ waiting times $\boldsymbol{\alpha} \sim [\Delta^{1/4}]^{n \times \frac{D}{\Delta}}$. $\Delta := D_{\ell}$
- ► $Y(e,t) := \mathbb{E}[\text{load}(e,t) \mid \boldsymbol{\alpha}] = \text{ave. load on } e \text{ at } t \text{ dep. on } \boldsymbol{\alpha}$

Lemma

 $\Pr[Y(e,t) \leq \mathbb{E}[Y(e,t)] + \Delta^{-\frac{1}{32}} \; \forall e,t] > 0$

 $\blacktriangleright \mathbb{E}[Y(e,t)] \leq 1 + o(1)$ packets Rand. var. • $Y(e,t) = \sum_{i=1}^{n} \Pr[i \text{ crosses } e \text{ at } t \mid \boldsymbol{\alpha}]$ $\in [0, \frac{1}{(\sqrt{\Delta})^{1/4}}]$ Y(e,t)• $\Pr[Y(e,t) > \mathbb{E}[Y(e,t)] + \Delta^{-\frac{1}{32}}] \le e^{-\Omega(\Delta^{1/16})}$ ▶ If nonzero, $\leq O(\Delta^2$ $\Pr[i \text{ crosses } e \text{ at } t] \ge \prod_{\ell' \ge \ell} \frac{1}{D_{\ell'}^{1/4}} \ge \frac{1}{\Delta^2}$ (e',t')• Possible positions & time frame $< O(\Delta)$ • Dependence degree $< O(\Delta^4)$

Theorem

 $\exists O($ congestion + dilation)-time, O(1)-load schedule where packets wait $\{0, 1\}$ time units per node.

▶ Assign path edges to intervals s.t. level ℓ interval gets $D_{\ell}^{1/4}$ edges

▶ Assign path edges to intervals s.t. level ℓ interval gets $D_{\ell}^{1/4}$ edges

▶ Assign path edges to intervals s.t. level ℓ interval gets $D_{\ell}^{1/4}$ edges

- ▶ Assign path edges to intervals s.t. level ℓ interval gets $D_{\ell}^{1/4}$ edges
- Wait on first $\alpha \sim [D_{\ell}^{1/4}]$ assigned edges

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

 \blacktriangleright Congestion n

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- \blacktriangleright Congestion n
- ▶ Dilation 2n + 3

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- Dilation 2n+3

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- \blacktriangleright Congestion n
- Dilation 2n+3

- ▶ makespan $\geq 3n$
- ► Suppose makespan $\leq (3 + \varepsilon)n$

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$
- ▶ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park)

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$
- ▶ A routing strategy for a single packet is of the form

(park, park, go, wait, go, go, wait, wait, go, go, park) time horizon $(3 + \varepsilon)n$

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$
- ▶ A routing strategy for a single packet is of the form

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$
- ▶ A routing strategy for a single packet is of the form

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$
- ▶ A routing strategy for a single packet is of the form

A lower bound construction

• Choose P_1, \ldots, P_n : go through e_1, \ldots, e_n in random order

- ▶ Congestion n ▶ makespan $\geq 3n$
- ► Dilation 2n + 3 ► Suppose makespan $\leq (3 + \varepsilon)n$
- ▶ Goal: # schedules · $\Pr[\text{fixed schedule collision free}] \ll 1$
- ▶ total # routing strategies $\leq (2n \cdot \binom{4n}{\epsilon n})^n \leq 2^{o(n^2)}$ for $\epsilon \to 0$

Lemma

Fix a schedule. $\Pr[\text{schedule feasible}] \le (\frac{1}{2})^{\Theta(n^2)}$

Fix a schedule. $\Pr[\text{schedule feasible}] \le (\frac{1}{2})^{\Theta(n^2)}$

• $\Pr[\text{no collision}] \le (\frac{1}{8})^{n/8}$

- $\Pr[\text{no collision}] \le (\frac{1}{8})^{n/8}$
- ▶ $\exists \frac{n}{16}$ time steps in which $\frac{n}{4}$ packets cross a random edge e_j .

- $\Pr[\text{no collision}] \le (\frac{1}{8})^{n/8}$
- ▶ $\exists \frac{n}{16}$ time steps in which $\frac{n}{4}$ packets cross a random edge e_j .
- **Problem:** Steps not independent!

- $\Pr[\text{no collision}] \le (\frac{1}{8})^{n/8}$
- ▶ $\exists \frac{n}{16}$ time steps in which $\frac{n}{4}$ packets cross a random edge e_j .
- ► **Problem:** Steps not independent! But more careful analysis works.

The end

Open question

Can acyclic job shop with preemption be done in O(congestion + dilation)?

▶ $O((C + D) \cdot \log \log(C + D))$ suffices [Feige, Scheideler '02]

The end

Open question

Can acyclic job shop with preemption be done in O(congestion + dilation)?

▶ $O((C + D) \cdot \log \log(C + D))$ suffices [Feige, Scheideler '02]

Thanks for your attention

Acyclic job shop with preemption

Given:

- Directed (simple) paths P_i
- Processing times $p_{i,e} \ \forall i \in [n] \ \forall e \in P_i$

Constraints:

- Packet *i* takes time $p_{i,e}$ to cross $e \in P_i$
- At most one packet can actively move on an edge per time unit
- ▶ **Preemption:** Packet can "stop" in the middle of an edge (and another packet can be processed)

Parameters:

- Congestion $C := \max_{e \in E} \{ \sum_{i:e \in P_i} p_{i,e} \}$
- Dilation $D := \max_i \{ \sum_{e \in P_i} p_{i,e} \}$
- $L := \max\{C, D\}$

Question: Is O(L) possible? (Known: $O(L \cdot \log \log L)$)