A bicriteria PTAS for Real-time Scheduling with fixed priorities

Thomas Rothvoß University of Paderborn

8.01.08

This is joint work with Fritz Eisenbrand

Content of the talk

- 1. Preliminaries
- 2. Rounding the instance
- 3. The algorithm for "large" tasks
- 4. Dealing with "small" tasks
- 5. Open problems

Definition

Problem: Given periodic Tasks $T_1, ..., T_n$ with implicit deadlines such that each T_i has running time c_i and period p_i . Task T_i generates a job of running time c_i each p_i time units, that has to be completed before its period ends.

Goal: Distribute tasks among as few processors as possible using preemptive scheduling.

Dynamic priorities

Theorem. Dynamic priorities & preemptive Scheduling: Earliest-Deadline First is optimal

Def.: $\frac{c_i}{p_i} = \text{utilization of } T_i$

Theorem. [Liu, Layland '73] If dynamic priorities are allowed: Tasks are feasible on a single processor $\Leftrightarrow \sum_{i=1}^{n} \frac{c_i}{p_i} \leq 1$

 \Rightarrow Bin Packing with item sizes $\frac{c_i}{p_i}$ and bin size 1.

Theorem. [Liu, Layland '73] Optimal priorities: $\frac{1}{p_i}$ for T_i (Rate-monotonic Schedule)

$$c_{1} = 1, \ p_{1} = 2 \qquad \dots \\ c_{2} = 2, \ p_{2} = 5 \qquad \dots \\ 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \qquad 10 \text{ time}$$

Theorem. [Liu, Layland '73] Optimal priorities: $\frac{1}{p_i}$ for T_i (Rate-monotonic Schedule)

$$c_{1} = 1, \ p_{1} = 2$$

$$c_{2} = 2, \ p_{2} = 5$$

$$0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\dots$$

Theorem. [Liu, Layland '73] Optimal priorities: $\frac{1}{p_i}$ for T_i (Rate-monotonic Schedule)

$$c_{1} = 1, \ p_{1} = 2$$

$$c_{2} = 2, \ p_{2} = 5$$

$$Job 1$$

$$Job 2$$

$$...$$

$$0 \ 1 \ 2 \ 3 \ 4 \ 5$$

$$Job 2$$

$$...$$

Theorem. [Liu, Layland '73] Optimal priorities: $\frac{1}{p_i}$ for T_i (Rate-monotonic Schedule)

$$c_{1} = 1, \ p_{1} = 2$$

$$c_{2} = 2, \ p_{2} = 5$$

$$Job 1$$

$$Job 2$$

$$...$$

$$0 \ 1 \ 2 \ 3 \ 4 \ 5$$

$$10 \ time$$

$$Utilization \ \frac{1}{2} + \frac{2}{5} = \frac{9}{10}$$

$$idle \ time$$

Feasibility

Lemma. [Liu, Layland '73] $\sum_{i=1}^{n} \frac{c_i}{p_i} \le \ln(2) \approx 0.69 \Rightarrow$ tasks feasible on a single processor

Def.: $r_i = \text{be Response Time of } T_i = \text{longest time that an instance of task } T_i$ waits for accomplishment

Lemma. [Lehoczky et al. '89] If $p_1 \leq ... \leq p_n$ then r_i is the smallest value s.t.

$$r_i = c_i + \sum_{j < i} \left\lceil \frac{r_i}{p_j} \right\rceil c_j$$

Tasks are feasible $\Leftrightarrow \forall i : r_i \leq p_i$

Def.: Task T_i is locally feasible if $\exists r_i \leq p_i$

$$c_i + \sum_{j < i} \left\lceil \frac{r_i}{p_j} \right\rceil c_j \le r_i$$

Def.: Task T_i is locally feasible if $\exists r_i \leq p_i$

$$c_i + \sum_{j < i, p_j \le \varepsilon p_i} \left\lceil \frac{r_i}{p_j} \right\rceil c_j + \sum_{j < i, p_j > \varepsilon p_i} \left\lceil \frac{r_i}{p_j} \right\rceil c_j \le r_i$$

Def.: Task T_i is locally feasible if $\exists r_i \leq p_i$

$$c_i + \sum_{j < i, p_j \le \varepsilon p_i} \frac{r_i}{p_j} c_j + \sum_{j < i, p_j > \varepsilon p_i} \left\lceil \frac{r_i}{p_j} \right\rceil c_j \le r_i$$

Def.: Task T_i is locally feasible if $\exists r_i \leq p_i$

$$c_i + r_i \cdot \sum_{j < i, p_j \le \varepsilon p_i} \underbrace{\frac{c_j}{p_j}}_{\text{utilization}} + \sum_{j < i, p_j > \varepsilon p_i} \left\lceil \frac{r_i}{p_j} \right\rceil c_j \le r_i$$

Lemma. Tasks locally feasible w.r.t. $\varepsilon > 0 \Rightarrow$ tasks feasible on a processor of speed $1 + 2\varepsilon$

Our main result

Theorem. For any $\varepsilon > 0$ we can schedule tasks on $(1 + \varepsilon)OPT + O(1)$ many processors with speed $1 + \varepsilon$ in polynomial time.

Recently best algorithm: $\frac{7}{4}$ -approximation [Burchard et al. '95]

- $p_i = (1 + \varepsilon)^{\mathbb{Z}}$
- $\frac{c_i}{p_i} \in \{0, \varepsilon^2, 2\varepsilon^2, ..., 1\}$
- Choose $k \in \{0, ..., 1/\varepsilon 1\}$ randomly. Remove all tasks having their period in an interval $[1/\varepsilon^i, 1/\varepsilon^{i+1}[$ with $i \equiv_{1/\varepsilon} k$.

- $p_i = (1 + \varepsilon)^{\mathbb{Z}}$
- $\frac{c_i}{p_i} \in \{0, \varepsilon^2, 2\varepsilon^2, ..., 1\}$
- Choose $k \in \{0, ..., 1/\varepsilon 1\}$ randomly. Remove all tasks having their period in an interval $[1/\varepsilon^i, 1/\varepsilon^{i+1}[$ with $i \equiv_{1/\varepsilon} k$.

- $p_i = (1 + \varepsilon)^{\mathbb{Z}}$
- $\frac{c_i}{p_i} \in \{0, \varepsilon^2, 2\varepsilon^2, ..., 1\}$
- Choose $k \in \{0, ..., 1/\varepsilon 1\}$ randomly. Remove all tasks having their period in an interval $[1/\varepsilon^i, 1/\varepsilon^{i+1}[$ with $i \equiv_{1/\varepsilon} k$.

- $p_i = (1 + \varepsilon)^{\mathbb{Z}}$
- $\frac{c_i}{p_i} \in \{0, \varepsilon^2, 2\varepsilon^2, ..., 1\}$
- Choose $k \in \{0, ..., 1/\varepsilon 1\}$ randomly. Remove all tasks having their period in an interval $[1/\varepsilon^i, 1/\varepsilon^{i+1}[$ with $i \equiv_{1/\varepsilon} k$.

Assume that $\frac{c_i}{p_i} \geq \varepsilon$ and $\frac{1}{\varepsilon} \in \mathbb{Z}$. Round such that

- $p_i = (1 + \varepsilon)^{\mathbb{Z}}$
- $\frac{c_i}{p_i} \in \{0, \varepsilon^2, 2\varepsilon^2, ..., 1\}$
- Choose $k \in \{0, ..., 1/\varepsilon 1\}$ randomly. Remove all tasks having their period in an interval $[1/\varepsilon^i, 1/\varepsilon^{i+1}[$ with $i \equiv_{1/\varepsilon} k$.

 \Rightarrow Blocks $\mathcal{B}_1, ..., \mathcal{B}_k$

Dynamic programming

$$A(a_1, ..., a_n, \ell) = \begin{cases} 1 & \text{if tasks in } \mathcal{B}_1, ..., \mathcal{B}_\ell \text{ can locally feasible} \\ & \text{distributed s.t. processor } i \text{ has util.} \leq a_i \\ 0 & \text{otherwise} \end{cases}$$

Compute

$$\begin{aligned} A(a_1,...,a_n,\ell) &= 1 \quad \Leftrightarrow \quad \exists 0 \le b_i \le a_i : A(b_1,...,b_n,\ell-1) \& \\ \text{tasks } \mathcal{B}_\ell \text{ can distributed feasibly} \end{aligned}$$

Finally we need

$$\min\{j \mid A(\underbrace{1,...,1}_{j-\text{times}},0,...,0,k)=1\}$$

many processors.

Distribution of \mathcal{B}_{ℓ}

- # of utilization values: $\frac{1}{\varepsilon^2} + 1 = O(1)$
- # of periods in \mathcal{B}_{ℓ} : $1 + \log_{1+\varepsilon}(1/\varepsilon)^{1/\varepsilon 1} = O(1)$
- \Rightarrow # of different task types in \mathcal{B}_{ℓ} : O(1)
- Utilization $\geq \varepsilon \Rightarrow \leq \frac{1}{\varepsilon}$ tasks per processor
- $\Rightarrow O(1)$ possible packings
- Utilization on processor i can be increased from $b_i \in \varepsilon^2 \mathbb{Z}$ to $a_i \in \varepsilon^2 \mathbb{Z} \Rightarrow O(1)$ different processor types
- $n^{O(1)}$ many ways to distribute tasks in \mathcal{B}_ℓ among the processors

Dealing with small tasks

Partition tasks with util $\leq \varepsilon^6$ in $R_1 \dot{\cup} ... \dot{\cup} R_m$ such that

- all tasks in R_i have the same period.
- $\varepsilon^6 \leq$ utilization of $R_i \leq 3\varepsilon^6$

Glue tasks in each R_i together

Theorem. \mathcal{I}' merged instance $\Rightarrow \exists$ solution for \mathcal{I}' with $(1 + \varepsilon)OPT + O(1)$ processors of speed $1 + \varepsilon$

Let $S_1 \dot{\cup} ... \dot{\cup} S_m$ optimal solution for \mathcal{I} . Consider group R_j choose a task $T \in R_j$ randomly with prob $\frac{\text{utilization of } T}{\text{utilization of } R_j}$. Put new task for R_j on T's processor.

Theorem. \mathcal{I}' merged instance $\Rightarrow \exists$ solution for \mathcal{I}' with $(1 + \varepsilon)OPT + O(1)$ processors of speed $1 + \varepsilon$

Let $S_1 \cup ... \cup S_m$ optimal solution for \mathcal{I} . Consider group R_j choose a task $T \in R_j$ randomly with prob $\frac{\text{utilization of } T}{\text{utilization of } R_j}$. Put new task for R_j on T's processor.

Theorem. \mathcal{I}' merged instance $\Rightarrow \exists$ solution for \mathcal{I}' with $(1 + \varepsilon)OPT + O(1)$ processors of speed $1 + \varepsilon$

Let $S_1 \dot{\cup} ... \dot{\cup} S_m$ optimal solution for \mathcal{I} . Consider group R_j choose a task $T \in R_j$ randomly with prob $\frac{\text{utilization of } T}{\text{utilization of } R_j}$. Put new task for R_j on T's processor.

Task T_i still feasible on a processor of speed $1 + \varepsilon \Leftrightarrow \exists r_i \leq p_i$:

$$c_i + \sum_{j < i, T_i \text{ large}} \left\lceil \frac{r_i}{p_j} \right\rceil c_j + r_i \sum_{j < i, T_i \text{ small}} \underbrace{\left\lceil \frac{r_i}{p_j} \right\rceil \frac{p_j}{r_i}}_{\in [1, 2]} \cdot \underbrace{\frac{c_j}{p_j}}_{\text{utilization}} \leq (1 + \varepsilon) r_i$$

Via Chernoff bounds: $\Pr[T_i \text{ is not feasible}] \leq \varepsilon$

If T_i gets infeasible \Rightarrow remove T_i

Open problems

- What about a *real* (asymptotic) PTAS?
- Now running time $n^{g(\varepsilon)}.$ Is a bicriteria FPTAS possible or at least running time $f(\varepsilon)\cdot n^{O(1)}$
- Absolutely inefficient in practice! Is there a practicable algorithm (better then First-Fit)?