On the complexity of the asymmetric VPN problem

Thomas Rothvoß & Laura Sanità

Institute of Mathematics EPFL, Lausanne

ISMP'09

Concave Cost VPN

Given:

- ▶ Undirected graph G = (V, E), costs $c : E \to \mathbb{Q}_+$
- ▶ Outgoing traffic bound $b_v^+ \in \mathbb{N}_0$, ingoing traffic bound $b_v^- \in \mathbb{N}_0$
- Concave non-decreasing function $f : \mathbb{Q}_+ \to \mathbb{Q}_+$

Find: Paths P_{uv} , capacities x_e s.t.

$$\sum_{e \in E} c(e) \cdot f(x_e) \to \text{minimized}$$

and every valid traffic matrix $(D_{u,v})_{u,v \in V}$ can be routed. D is valid if v sends $\leq b_v^+$ and receives $\leq b_v^-$

Concave Cost VPN

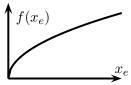
Given:

- ▶ Undirected graph G = (V, E), costs $c : E \to \mathbb{Q}_+$
- ▶ Outgoing traffic bound $b_v^+ \in \mathbb{N}_0$, ingoing traffic bound $b_v^- \in \mathbb{N}_0$
- Concave non-decreasing function $f : \mathbb{Q}_+ \to \mathbb{Q}_+$

Find: Paths P_{uv} , capacities x_e s.t.

$$\sum_{e \in E} c(e) \cdot f(x_e) \to \text{minimized}$$

and every valid traffic matrix $(D_{u,v})_{u,v \in V}$ can be routed. D is valid if v sends $\leq b_v^+$ and receives $\leq b_v^-$



Concave Cost VPN

Given:

- ▶ Undirected graph G = (V, E), costs $c : E \to \mathbb{Q}_+$
- ▶ Outgoing traffic bound $b_v^+ \in \mathbb{N}_0$, ingoing traffic bound $b_v^- \in \mathbb{N}_0$
- Concave non-decreasing function $f : \mathbb{Q}_+ \to \mathbb{Q}_+$

Find: Paths P_{uv} , capacities x_e s.t.

$$\sum_{e \in E} c(e) \cdot f(x_e) \to \text{minimized}$$

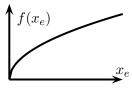
and every valid traffic matrix $(D_{u,v})_{u,v \in V}$ can be routed. D is valid if v sends $\leq b_v^+$ and receives $\leq b_v^-$

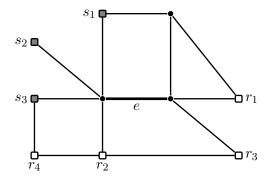
W.l.o.g.:

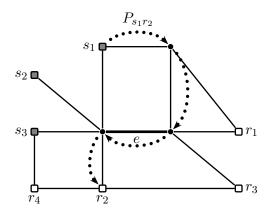
• senders
$$s \in S$$
: $b_s^+ = 1, b_s^- = 0$

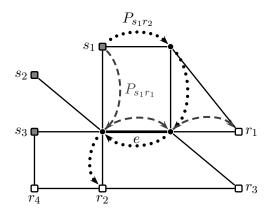
• receivers
$$r \in R$$
: $b_r^+ = 0, b_r^- = 1$

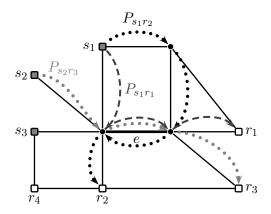
► non-terminals
$$v: b_v^+ = b_v^- = 0$$

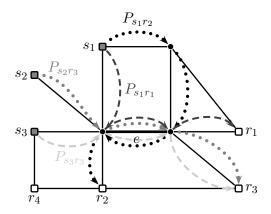


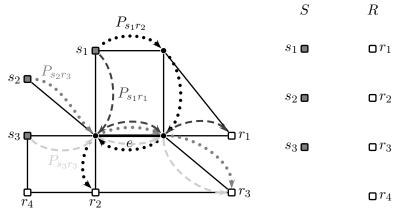


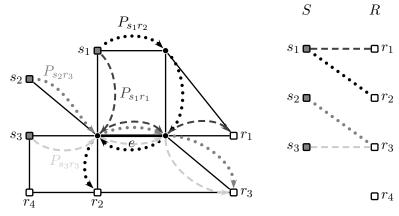


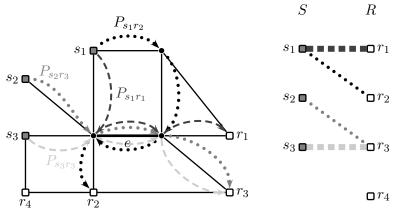




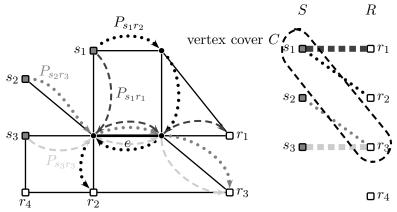








 x_e = maximal cardinality of a matching in $G_e = (S \cup R, E_e)$ with $(s, r) \in E_e \Leftrightarrow e \in P_{sr}$



 x_e = maximal cardinality of a matching in $G_e = (S \cup R, E_e)$ with $(s, r) \in E_e \Leftrightarrow e \in P_{sr}$

Linear costs:

- ► **APX**-hard
- ▶ 5.55-apx [Gupta, Kumar, Roughgarden '03]
- ▶ 4.74-apx [Eisenbrand, Grandoni '05]
- ▶ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella '07]

Linear costs:

- ► **APX**-hard
- ▶ 5.55-apx [Gupta, Kumar, Roughgarden '03]
- ▶ 4.74-apx [Eisenbrand, Grandoni '05]
- ▶ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella '07]

Linear costs/symmetric $(b_v^+ = b_v^-)$:

- ▶ Opt. solution is a tree [Goyal, Olver, Shepherd '08]
- ▶ Opt. tree solution = best shortest path tree [Fingerhut et al. '97; Gupta et al. '01]

Linear costs:

- ► **APX**-hard
- ▶ 5.55-apx [Gupta, Kumar, Roughgarden '03]
- ▶ 4.74-apx [Eisenbrand, Grandoni '05]
- ▶ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella '07]

Linear costs/symmetric $(b_v^+ = b_v^-)$:

- ▶ Opt. solution is a tree [Goyal, Olver, Shepherd '08]
- ▶ Opt. tree solution = best shortest path tree [Fingerhut et al. '97; Gupta et al. '01]

Linear costs/balanced (|R| = |S|):

▶ Opt. tree solution = best shortest path tree [Italiano, Leonardi, Oriolo '06]

Linear costs:

- ► **APX**-hard
- ▶ 5.55-apx [Gupta, Kumar, Roughgarden '03]
- ▶ 4.74-apx [Eisenbrand, Grandoni '05]
- ▶ 3.55-apx [Eisenbrand, Grandoni, Oriolo, Skutella '07]

Linear costs/symmetric $(b_v^+ = b_v^-)$:

- ▶ Opt. solution is a tree [Goyal, Olver, Shepherd '08]
- ▶ Opt. tree solution = best shortest path tree [Fingerhut et al. '97; Gupta et al. '01]

Linear costs/balanced (|R| = |S|):

▶ Opt. tree solution = best shortest path tree [Italiano, Leonardi, Oriolo '06]

Theorem

There is a polytime 50-approximation for Concave Cost VPN that also gives a tree solution.

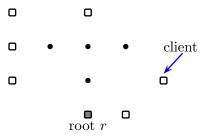
Single Sink Buy-at-Bulk

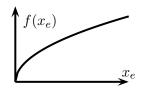
Given:

- G = (V, E), costs $c : E \to \mathbb{Q}_+$
- clients $D \subseteq V$, root r
- Concave non-decreasing function $f : \mathbb{Q}_+ \to \mathbb{Q}_+$
- **Find:** Capacities x_e s.t.

$$\sum_{e \in E} c(e) \cdot f(x_e) \to \text{minimize}$$

and each client can send a flow of 1 to r (simultaneously).





Single Sink Buy-at-Bulk

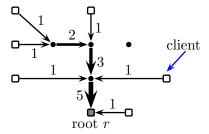
Given:

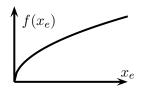
- G = (V, E), costs $c : E \to \mathbb{Q}_+$
- clients $D \subseteq V$, root r
- Concave non-decreasing function $f : \mathbb{Q}_+ \to \mathbb{Q}_+$

Find: Capacities x_e s.t.

$$\sum_{e \in E} c(e) \cdot f(x_e) \to \text{minimize}$$

and each client can send a flow of 1 to r (simultaneously).





Single Sink Buy-at-Bulk

Given:

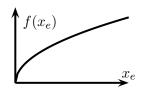
- G = (V, E), costs $c : E \to \mathbb{Q}_+$
- clients $D \subseteq V$, root r
- Concave non-decreasing function $f : \mathbb{Q}_+ \to \mathbb{Q}_+$

Find: Capacities x_e s.t.

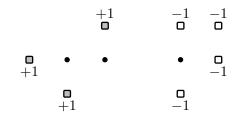
$$\sum_{e \in E} c(e) \cdot f(x_e) \to \text{minimize}$$

and each client can send a flow of 1 to r (simultaneously). Known results:

- ► **APX**-hard
- ▶ Opt. solution is tree [Karger, Minkoff '00]
- ▶ For cable-based formulation:
 - ▶ 76.8-apx [Gupta, Kumar, Roughgarden '03]
 - ▶ improved to 25-apx [Grandoni, Italiano '06]

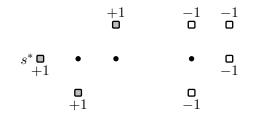


Algorithm:



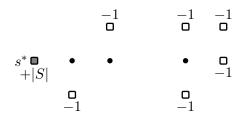
Algorithm:

1. Choose a sender $s^* \in S$ uniformly at random



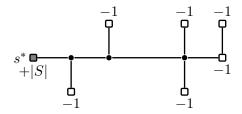
Algorithm:

- 1. Choose a sender $s^* \in S$ uniformly at random
- 2. Define $central\ hub$ instance with single sender s^* (but $b^+_{s^*}=|S|),$ receivers $S\cup R$



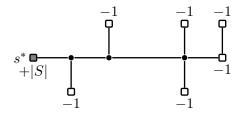
Algorithm:

- 1. Choose a sender $s^* \in S$ uniformly at random
- 2. Define central hub instance with single sender s^* (but $b^+_{s^*}=|S|),$ receivers $S\cup R$
- 3. Compute 25-apx solution x'_e using a SSBB algo for the central hub VPN instance



Algorithm:

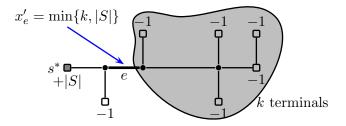
- 1. Choose a sender $s^* \in S$ uniformly at random
- 2. Define central hub instance with single sender s^* (but $b^+_{s^*}=|S|),$ receivers $S\cup R$
- 3. Compute 25-apx solution x'_e using a SSBB algo for the central hub VPN instance



Claim: Capacities x'_e suffice for orig. instance

Algorithm:

- 1. Choose a sender $s^* \in S$ uniformly at random
- 2. Define central hub instance with single sender s^* (but $b^+_{s^*}=|S|),$ receivers $S\cup R$
- 3. Compute 25-apx solution x'_e using a SSBB algo for the central hub VPN instance

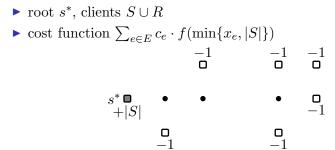


Claim: Capacities x'_e suffice for orig. instance

VPN:

▶ sender s^* $(b_{s^*}^+ = |S|)$, receivers $S \cup R$

• cost function $\sum_{e \in E} c_e \cdot f(x_e)$

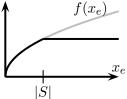


VPN:

- ▶ sender s^* $(b_{s^*}^+ = |S|)$, receivers $S \cup R$
- cost function $\sum_{e \in E} c_e \cdot f(x_e)$

SSBB:

▶ root s*, clients $S \cup R$ |S| ▶ cost function $\sum_{e \in E} c_e \cdot f(\min\{x_e, |S|\}) \rightarrow \text{concave}$ -1 -1 -1 -1 |S| -1 -1 -1 |S| -1 -1 -1 |S| -1 -1 -1 |S| |S| -1 -1 |S| |S| -1 -1 |S| |S| -1 -1 |S| |S||S|



VPN:

▶ sender s^* $(b_{s^*}^+ = |S|)$, receivers $S \cup R$

• cost function $\sum_{e \in E} c_e \cdot f(x_e)$

SSBB:

▶ root s*, clients S ∪ R
▶ cost function $\sum_{e \in E} c_e \cdot f(\min\{x_e, |S|\}) \rightarrow \text{concave}$ $\begin{array}{ccc} -1 & -1 & -1 \\ 0 & 0 & 0 \\ \end{array}$ $s^* \bullet & \bullet & \bullet \\ +|S| & \bullet & \bullet & \bullet \\ -1 & & -1 \\ \end{array}$

VPN:

- ▶ sender s^* $(b_{s^*}^+ = |S|)$, receivers $S \cup R$
- cost function $\sum_{e \in E} c_e \cdot f(x_e)$

- ▶ root s^* , clients $S \cup R$
- ▶ cost function $\sum_{e \in E} c_e \cdot f(\min\{x_e, |S|\}) \rightarrow \text{concave}$ k receivers/clients es* **De = = •**••• $[+]\hat{S}|$ **D** _1 capacity on $e \mid \text{cost for } e$ VPN SSBB

VPN:

- ▶ sender s^* $(b_{s^*}^+ = |S|)$, receivers $S \cup R$
- cost function $\sum_{e \in E} c_e \cdot f(x_e)$

- ▶ root s^* , clients $S \cup R$
- cost function $\sum_{e \in E} c_e \cdot f(\min\{x_e, |S|\}) \rightarrow \text{concave}$ k receivers/clients s* **De = = •**••• $+|\hat{S}|$ **D** _1 capacity on $e \mid \text{cost for } e$ $\min\{k, |S|\} \qquad c(e) \cdot f(\min\{k, |S|\})$ VPN SSBB

VPN:

- ▶ sender s^* $(b_{s^*}^+ = |S|)$, receivers $S \cup R$
- cost function $\sum_{e \in E} c_e \cdot f(x_e)$

- ▶ root s^* , clients $S \cup R$
- cost function $\sum_{e \in E} c_e \cdot f(\min\{x_e, |S|\}) \rightarrow \text{concave}$ k receivers/clients s* **D€ = = ●** $+|\hat{S}|$ **D** _1 capacity on $e \mid \text{cost for } e$ $\frac{\min\{k, |S|\}}{k} \qquad \begin{array}{c} c(e) \cdot f(\min\{k, |S|\}) \\ c(e) \cdot f(\min\{k, |S|\}) \end{array}$ VPN SSBB

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Proof:

▶ Let (x_e, P_{sr}) be optimal solution for orig. instance

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Proof:

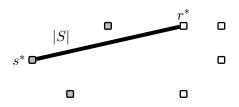
- ▶ Let (x_e, P_{sr}) be optimal solution for orig. instance
- Choose a receiver r^* randomly

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Proof:

- ▶ Let (x_e, P_{sr}) be optimal solution for orig. instance
- Choose a receiver r^* randomly
- ▶ Install |S| units of capacity on $P_{s^*r^*}$



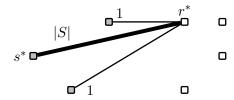
Analysis

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Proof:

- ▶ Let (x_e, P_{sr}) be optimal solution for orig. instance
- Choose a receiver r^* randomly
- ▶ Install |S| units of capacity on $P_{s^*r^*}$
- ▶ Install (cumulatively) 1 unit on each P_{sr^*} and P_{s^*r} (in total never more then |S|)



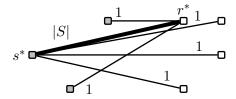
Analysis

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Proof:

- ▶ Let (x_e, P_{sr}) be optimal solution for orig. instance
- Choose a receiver r^* randomly
- ▶ Install |S| units of capacity on $P_{s^*r^*}$
- ▶ Install (cumulatively) 1 unit on each P_{sr^*} and P_{s^*r} (in total never more then |S|)



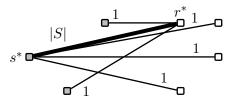
Analysis

Theorem

There is a central hub solution of expected cost $\leq 2 \cdot OPT$.

Proof:

- ▶ Let (x_e, P_{sr}) be optimal solution for orig. instance
- Choose a receiver r^* randomly
- ▶ Install |S| units of capacity on $P_{s^*r^*}$
- ▶ Install (cumulatively) 1 unit on each P_{sr^*} and P_{s^*r} (in total never more then |S|)
- Claim: $E[\text{capacity on } e] \leq 2 \cdot x_e$



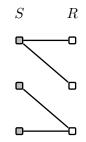
Lemma

 $E[capacity \ on \ e] \leq 2 \cdot x_e.$

Lemma

 $E[capacity \ on \ e] \leq 2 \cdot x_e.$

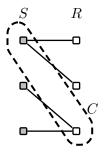
• Consider $G_e = (S \cup R, E_e)$ with edges $(s, r) \in E_e \Leftrightarrow e \in P_{s,r}$



Lemma

 $E[capacity \ on \ e] \leq 2 \cdot x_e.$

- Consider $G_e = (S \cup R, E_e)$ with edges $(s, r) \in E_e \Leftrightarrow e \in P_{s,r}$
- Let C be vertex cover with $|C| = x_e$

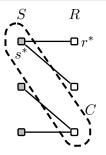


п

Lemma

 $E[capacity \ on \ e] \leq 2 \cdot x_e.$

- Consider $G_e = (S \cup R, E_e)$ with edges $(s, r) \in E_e \Leftrightarrow e \in P_{s,r}$
- Let C be vertex cover with $|C| = x_e$
- Case: s^* or r^* are in C
 - Prob: $\leq \frac{|S \cap C|}{|S|} + \frac{|R \cap C|}{|R|} \leq \frac{|C|}{|S|}$
 - Capacity: $\leq |S|$
 - Contribution: $\leq \frac{|C|}{|S|} \cdot |S| = |C| = x_e$

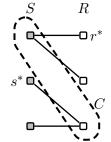


п

Lemma

 $E[capacity \ on \ e] \leq 2 \cdot x_e.$

- Consider $G_e = (S \cup R, E_e)$ with edges $(s, r) \in E_e \Leftrightarrow e \in P_{s,r}$
- Let C be vertex cover with $|C| = x_e$
- Case: s^* or r^* are in C
 - Prob: $\leq \frac{|S \cap C|}{|S|} + \frac{|R \cap C|}{|R|} \leq \frac{|C|}{|S|}$
 - Capacity: $\leq |S|$
 - Contribution: $\leq \frac{|C|}{|S|} \cdot |S| = |C| = x_e$



п

- Case: Neither s^* nor r^* are in C
 - Prob: ≤ 1
 - $\bullet (s^*, r^*) \notin E_e \Rightarrow e \notin P_{s^*r^*}$
 - Capacity: $\leq \deg(s^*) + \deg(r^*) \leq |R \cap C| + |S \cap C| = |C|$
 - Contribution: $\leq |C| = x_e$

Theorem

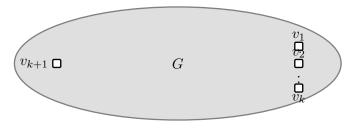
VPN with linear costs and |S| = |R| is still **NP**-hard.

G = (V, E) Steiner tree instance with terminals v₁,..., v_{k+1}
 C > ∑_{e∈E} c(e), M ≫ (k + 1)C

Theorem

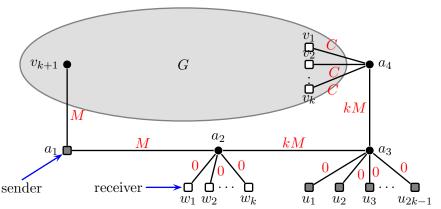
VPN with linear costs and |S| = |R| is still **NP**-hard.

G = (V, E) Steiner tree instance with terminals v₁,..., v_{k+1}
 C > ∑_{e∈E} c(e), M ≫ (k + 1)C



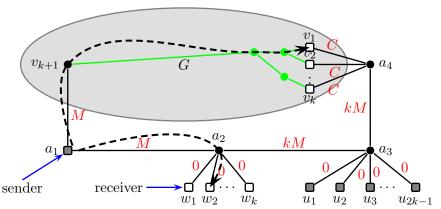
Theorem

- G = (V, E) Steiner tree instance with terminals v_1, \ldots, v_{k+1}
- $\blacktriangleright \ C > \sum_{e \in E} c(e), \ M \gg (k+1)C$



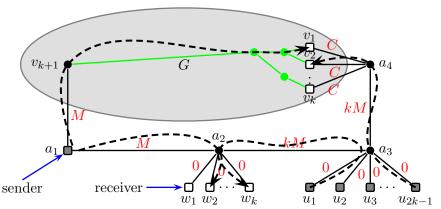
Theorem

- G = (V, E) Steiner tree instance with terminals v_1, \ldots, v_{k+1}
- $\blacktriangleright \ C > \sum_{e \in E} c(e), \ M \gg (k+1)C$



Theorem

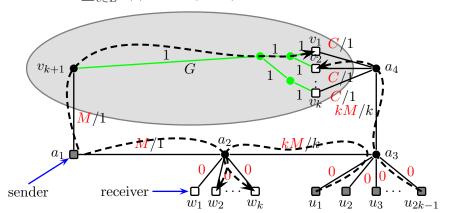
- G = (V, E) Steiner tree instance with terminals v_1, \ldots, v_{k+1}
- $\blacktriangleright \ C > \sum_{e \in E} c(e), \ M \gg (k+1)C$



Theorem

VPN with linear costs and |S| = |R| is still **NP**-hard.

G = (V, E) Steiner tree instance with terminals v₁,..., v_{k+1}
 C > ∑_{e∈E} c(e), M ≫ (k + 1)C



Theorem

There is a 50-apx for Concave Cost VPN

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

 ρ -apx for SSBB $\Rightarrow 2\rho$ -apx for Concave Cost VPN

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

 ρ -apx for SSBB $\Rightarrow 2\rho$ -apx for Concave Cost VPN

Corollary $OPT_{tree} \leq 2 \cdot OPT$ for Concave Cost VPN

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

 ρ -apx for SSBB $\Rightarrow 2\rho$ -apx for Concave Cost VPN

Corollary $OPT_{tree} \leq 2 \cdot OPT$ for Concave Cost VPN

Theorem

Theorem

There is a 50-apx for Concave Cost VPN

Corollary

 ρ -apx for SSBB $\Rightarrow 2\rho$ -apx for Concave Cost VPN

Corollary $OPT_{tree} \leq 2 \cdot OPT$ for Concave Cost VPN

Theorem

VPN with linear costs and |S| = |R| is still **NP**-hard.

Thanks for your attention