Approximating Connected Facility Location Problems via Random Facility Sampling and Core Detouring

Thomas Rothvoß
Institute of Mathematics
École Polytechnique Fédérale de Lausanne

This is joint work with Fritz Eisenbrand, Fabrizio Grandoni & Guido Schäfer
Connected Facility Location

Given:
- graph \(G = (V, E) \), with edge costs \(c : E \to \mathbb{Q}^+ \)
- facilities \(F \subseteq V \), with opening cost \(f : F \to \mathbb{Q}^+ \)
- a set of demands \(D \subseteq V \)
- a parameter \(M \geq 1 \),

Goal:
- open facilities \(F \subseteq F \)
- find Steiner tree \(T \) spanning opened facilities

minimizing

\[
\sum_{i \in F} f(i) + M \sum_{e \in T} c(e) + \sum_{j \in D} \ell(j, F')
\]

opening cost \(O \)
Steiner cost \(S \)
connection cost \(C \)
The Problem

- □ = facility
- ○ = demand
The Problem

- \(\square\) = facility
- \(\bigcirc\) = demand
- \(-\) = connection path
- \(\text{green}\) = open facility
- \(\text{green dashed}\) = Steiner tree edge
Previous Results

- APX-hard (reduction from Steiner tree)
- 10.66 worst-case approximation based on LP-rounding [Gupta et al STOC’01].
- primal-dual 8.55 worst-case approximation [Swamy, Kumar APPROX’02].
Previous Results

- APX-hard (reduction from Steiner tree)
- 10.66 worst-case approximation based on LP-rounding [Gupta et al STOC’01].
- Primal-dual 8.55 worst-case approximation [Swamy, Kumar APPROX’02].

⇒ Here: 4-approximation
Single-Sink Rent-or-Buy

Def: CFL with $\mathcal{F} = V$ and $f(i) = 0$

Known Results:

- 9.01 worst-case approximation based on LP-rounding [Gupta et al STOC’01].
- Primal-dual 4.55 worst-case approximation [Swamy, Kumar APPROX’02].
- 3.55 expected approximation based on random-sampling [Gupta, Kumar, Roughgarden STOC’03].
- 4.2 worst-case approximation based on the derandomized of GK&R [Gupta, Srinivasan, Tardos APPROX’04].
- 4.0 worst-case approximation based on the derandomized of GK&R [van Zuylen, Williamson ORL].
Single-Sink Rent-or-Buy

Def: CFL with $\mathcal{F} = V$ and $f(i) = 0$

Known Results:

- 9.01 worst-case approximation based on LP-rounding [Gupta et al STOC’01].
- primal-dual 4.55 worst-case approximation [Swamy, Kumar APPROX’02].
- 3.55 expected approximation based on random-sampling [Gupta, Kumar, Roughgarden STOC’03].
- 4.2 worst-case approximation based on the derandomized of GK&R [Gupta, Srinivasan, Tardos APPROX’04].
- 4.0 worst-case approximation based on the derandomized of GK&R [van Zuylen, Williamson ORL].

⇒ Here: 2.92-approximation
The Algorithm

- - = FL approximate solution
 ○ = sampled demand
 □ = sampled facility
 ---- = Steiner tree in APX
 ---- = connections in APX
The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.

- - = FL approximate solution
- - = Steiner tree in APX

= sampled demand

= connections in APX

= sampled facility
The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.
2. Mark each demand independently with prob. \(p \approx 1/M \)
3. Mark a random demand

\[- - = \text{FL approximate solution} \quad - = \text{Steiner tree in APX} \]
\[\textbullet = \text{sampled demand} \quad \text{---} = \text{connections in APX} \]
\[\text{■} = \text{sampled facility} \]
The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.
2. Mark each demand independently with prob. \(p \approx \frac{1}{M} \)
3. Mark a random demand
4. Open the facilities, serving sampled demand.

- - = FL approximate solution
--- = Steiner tree in APX
● = sampled demand
□ = sampled facility
- - = connections in APX
The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.
2. Mark each demand independently with prob. $p \approx 1/M$
3. Mark a random demand
4. Open the facilities, serving sampled demand.
5. Compute 1.55-approx. Steiner Tree T spanning opened facilities

- - - = FL approximate solution
- - - = connections in APX
○ = sampled demand
■ = sampled facility

- - - = Steiner tree in APX
What to do...

We will bound separately

- Opening cost
- Steiner tree cost
- Connection cost

Each cost type will be bounded by a combination of

\[
O^* = \text{opening cost} \quad S^* = \text{Steiner tree cost} \quad C^* = \text{connection cost}
\]

in the optimal solution

\[
O_{fl} = \text{opening cost} \quad C_{fl} = \text{connection cost}
\]

in the approximate facility location solution

We use

\[
O^* + S^* + C^* = OPT
\]

\[
O_{fl} + C_{fl} \leq 1.52 \cdot OPT_{fl} \leq 1.52 \cdot OPT
\]

Assume \(|D|/M \gg 1\) (otherwise we have a PTAS)
Analysis: Opening Cost

Lemma

The opening cost O_{apx} satisfies $O_{apx} \leq O_{fl}$.

O_{fl} and C_{fl} denote the opening and connection costs in the approximate (unconnected) facility location solution computed in the first step of the algorithm.
Analysis: Steiner Cost

Lemma

The Steiner cost S_{apx} satisfies

$$E[S_{apx}] \leq \rho_{st}(S^* + pM(1 + o(1)) \cdot C^*) + pM(1 + o(1)) \cdot C_{fl})$$
Lemma

The Steiner cost S_{apx} satisfies

$$E[S_{apx}] \leq \rho_{st}(S^* + pM(1 + o(1)) \cdot C^*) + pM(1 + o(1)) \cdot C_{fl})$$
Analysis: Steiner Cost

Lemma

The Steiner cost S_{apx} satisfies

$$E[S_{apx}] \leq \rho_{st}(S^* + pM(1 + o(1)) \cdot C^*) + pM(1 + o(1)) \cdot C_{fl})$$

S^*/M (Steiner tree in OPT) + $(p + \frac{1}{|D|}) C^*$ (paths sampled demands - Steiner tree)
Lemma

The Steiner cost S_{apx} satisfies

$$E[S_{apx}] \leq \rho_{st}(S^* + pM(1 + o(1)) \cdot C^*) + pM(1 + o(1)) \cdot C_{fl})$$
Analysis: Steiner Cost

Lemma

The Steiner cost S_{apx} satisfies

$$E[S_{apx}] \leq \rho_{st}(S^* + pM(1 + o(1)) \cdot C^*) + pM(1 + o(1)) \cdot C_{fl})$$

\[
\begin{align*}
\rho_{st} \cdot \left(S^*/M \right) &< 1.55 \\
&\text{Steiner tree in OPT} \\
&\text{paths sampled demands} \\
&\text{- Steiner tree} \\
&\text{paths sampled demands} \\
&\text{- sampled facilities}
\end{align*}
\]
Analysis: Steiner Cost

Lemma

The Steiner cost S_{apx} satisfies

$$E[S_{apx}] \leq \rho_{st}(S^* + pM(1 + o(1)) \cdot C^*) + pM(1 + o(1)) \cdot C_{fl})$$

$$M \cdot (\rho_{St} \cdot (\frac{S^*}{M} + \frac{1}{|\mathcal{D}|} C^*) + \frac{1}{|\mathcal{D}|} C_{fl}) + (p + 1) \cdot \text{paths sampled demands} - \text{Steiner tree} + (p + 1) \cdot \text{paths sampled demands} - \text{sampled facilities}$$
Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$
Analysis: Connection Cost

Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(p M).$$

- Red square = facility in OPT
- Red circle = connections in OPT
- Green = Steiner tree in OPT
Analysis: Connection Cost

Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(p M).$$

- Red and square = facility in OPT
- Dashed line = connections in OPT
- Solid line = Steiner tree in OPT
Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$
Lemma

The connection cost C_{apx} satisfies

$$E[C_{\text{apx}}] \leq 2C^* + C_{fl} + S^*/(pM).$$
Analysis: Connection Cost

Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$
Analysis: Connection Cost

Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$
Analysis: Connection Cost

Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$

- Connect each demand to the closest open facility w.r.t. number of edges in the auxiliary graph above.
Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$

By symmetry:

$$E[\text{flow on } \square - \circ] \leq 2$$

$$E[\text{flow on } \circ - \square] \leq 1$$
Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$

- $X_i := \#$ of cycle edges used by $i \in D$
- $\#$demands = $\#$cycle edges
- By symmetry: $E[\text{flow on cycle edge}] = E[X_i]$
Analysis: Connection Cost

Lemma

The connection cost C_{apx} satisfies

$$E[C_{apx}] \leq 2C^* + C_{fl} + S^*/(pM).$$

Pr$[X_i > k] \leq (1 - p)^{2k+1}$

$$E[X_i] = \sum_{k \geq 1} \Pr[X_i \geq k] = \sum_{k \geq 1} (1 - p)^{2k-1} \leq \frac{1}{2} \cdot \frac{1}{p}$$

$$E[\text{cost of used cycle edges}] \leq \frac{1}{2} \cdot \frac{1}{p} \cdot \frac{2S^*}{M} = \frac{S^*}{(pM)}$$
Total Cost

Theorem

There is an expected 4.55 approximation algorithm for CFL.

Proof:

\[
E[APX] \
\leq O_{fl} + \rho_{st}(S^* + pMC^*) + pMC_{fl} + 2C^* + C_{fl} + \frac{S^*}{pM} \
\leq (1 + pM)(O_{fl} + C_{fl}) + \rho_{st}(S^* + pMC^*) + 2C^* + \frac{S^*}{pM} \
\leq (1 + pM)p_{fl}(O^* + C^*) + \rho_{st}(S^* + pMC^*) + 2C^* + \frac{S^*}{pM} \
p = 0.334/M \leq 2.03 O^* + 4.55 C^* + 4.55 S^* \leq 4.55 OPT
\]
Refinements

Theorem

There is an expected 4 approximation algorithm for CFL.

- Using bi-factor facility location, for a parameter $\delta \geq 1$, we obtain:

 $$C_{fl} + O_{fl} \leq (1.11 + \ln \delta)O^* + (1 + 0.78/\delta)C^*.\$$

- Using flow cancelling over the Euler tour, we can show that (for $|D|/M \gg 1$)

 $$C_{apx} \leq 2C^* + C_{fl} + 0.807 \frac{S^*}{pM}.\$$
Theorem

There is a 4.23 worst-case approximation algorithm for CFL.

Proof: Use idea of van Zuylen and Williamson to estimate expected Steiner cost

Corollary

There is an expected 2.92 and worst-case 3.28 approximation algorithm for SROB.

Proof: Same analysis with $C_{fl} = O_{fl} = 0.$
Summarizing

More results

<table>
<thead>
<tr>
<th>Problem</th>
<th>Now</th>
<th>Previous best</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFL</td>
<td>4.00*</td>
<td>8.55 Swamy, Kumar ’02</td>
</tr>
<tr>
<td></td>
<td>4.23</td>
<td></td>
</tr>
<tr>
<td>SROB</td>
<td>2.92*</td>
<td>3.55* Gupta, Kumar, Roughgarden ’03</td>
</tr>
<tr>
<td></td>
<td>3.28</td>
<td>4 van Zuylen, Williamson ’07</td>
</tr>
<tr>
<td>k-CFL</td>
<td>6.85*</td>
<td>15.55* Swamy and Kumar ’02</td>
</tr>
<tr>
<td></td>
<td>6.98</td>
<td></td>
</tr>
<tr>
<td>tour-CFL</td>
<td>4.12*</td>
<td>5.83* Ravi, Salman ’99 (special case)</td>
</tr>
<tr>
<td>soft-CFL</td>
<td>6.33*</td>
<td>–</td>
</tr>
</tbody>
</table>

The * indicates randomized results.
A CFL PTAS for $|\mathcal{D}|/M = O(1)$

Algorithm:
1. Guess the best choice of $\leq k$ facilities F
2. Compute an optimum Steiner tree spanning F
A CFL PTAS for $|\mathcal{D}|/M = O(1)$

Algorithm:
1. Guess the best choice of $\leq k$ facilities F
2. Compute an optimum Steiner tree spanning F

Lemma

For $k := \frac{2|\mathcal{D}|}{\varepsilon M}$ the algorithm yields a solution of cost \leq (1 + \varepsilon)OPT.
Proof
Proof

- $T^* := \text{Steiner tree in opt solution}$
Proof

- \(T^* := \text{Steiner tree in opt solution} \)
- \(C := \text{Euler tour (on opt. facilities) of cost } \leq 2c(T^*) \)
Proof

- $T^* :=$ Steiner tree in opt solution
- $C :=$ Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- Mark facility “each” distance of $\frac{2c(T^*)}{k} \rightarrow F$
- k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$
Proof

- $T^* :=$ Steiner tree in opt solution
- $C :=$ Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- Mark facility “each” distance of $\frac{2c(T^*)}{k} \rightarrow F$
- k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$
Proof

- $T^*: \text{Steiner tree in opt solution}$
- $C: \text{Euler tour (on opt. facilities) of cost } \leq 2c(T^*)$
- Mark facility “each” distance of $\frac{2c(T^*)}{k} \rightarrow F$
- k marked facilities F: $\forall i \in F^*: \ell(i, F) \leq \frac{2c(T^*)}{k}$
- Opening costs: $\leq O^*$
Proof

- $T^* := \text{Steiner tree in opt solution}$
- $C := \text{Euler tour (on opt. facilities) of cost } \leq 2c(T^*)$
- Mark facility “each” distance of $\frac{2c(T^*)}{k} \rightarrow F$
- k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$
 - Opening costs: $\leq O^*$
 - Steiner costs: $\leq S^*$
Proof

- $T^* := \text{Steiner tree in opt solution}$
- $C := \text{Euler tour (on opt. facilities) of cost } \leq 2c(T^*)$
- Mark facility “each” distance of $\frac{2c(T^*)}{k} \rightarrow F$
- k marked facilities F: $\forall i \in F^*: \ell(i, F) \leq \frac{2c(T^*)}{k}$

- Opening costs: $\leq O^*$
- Steiner costs: $\leq S^*$
- Connection costs:

\[
\leq C^* + \frac{2c(T^*)}{k} \cdot |D| \\
\leq C^* + \frac{2|D|}{M \cdot k} \cdot S^* \\
\leq C^* + \varepsilon S^*
\]
Open Problems

- Some of the best known approximation algorithms for network design are based on random sampling:
 - Single-Sink Buy-at-Bulk
 - Multi-Commodity Rent-or-Buy
 - Virtual Private Network Design
 - ...

- Can the improved bound on the connection cost help for these problems?
Open Problems

- Some of the best known approximation algorithms for network design are based on random sampling:
 - Single-Sink Buy-at-Bulk
 - Multi-Commodity Rent-or-Buy
 - Virtual Private Network Design
 - ...

- Can the improved bound on the connection cost help for these problems?

Thanks for your attention