Approximating Connected Facility Location Problems via Random Facility Sampling and Core Detouring

Thomas Rothvoß

Institute of Mathematics École Polytechnique Fédérale de Lausanne

This is joint work with Fritz Eisenbrand, Fabrizio Grandoni & Guido Schäfer

Connected Facility Location

Given:

- graph G = (V, E), with edge costs $c : E \to \mathbb{Q}^+$
- facilities $\mathcal{F} \subseteq V$, with opening cost $f : \mathcal{F} \to \mathbb{Q}^+$
- a set of demands $\mathcal{D} \subseteq V$
- a parameter $M \ge 1$,

Goal:

- ▶ open facilities $F \subseteq \mathcal{F}$
- ▶ find Steiner tree T spanning opened facilities minimizing

The Problem

○

The Problem

 $\mathbf{D} = facility$ $\mathbf{O} = demand$

 \square = open facility

- - = connection path
- --- = Steiner tree edge

Previous Results

- ▶ APX-hard (reduction from Steiner tree)
- ▶ 10.66 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- ▶ primal-dual 8.55 worst-case approximation [Swamy, Kumar APPROX'02].

Previous Results

- ▶ APX-hard (reduction from Steiner tree)
- ▶ 10.66 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- ▶ primal-dual 8.55 worst-case approximation [Swamy, Kumar APPROX'02].
- \Rightarrow Here: 4-approximation

Single-Sink Rent-or-Buy

Def: CFL with $\mathcal{F} = V$ and f(i) = 0

Known Results:

- ▶ 9.01 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- ▶ primal-dual 4.55 worst-case approximation [Swamy, Kumar APPROX'02].
- ▶ 3.55 expected approximation based on random-sampling [Gupta, Kumar, Roughgarden STOC'03].
- ▶ 4.2 worst-case approximation based on the derandomized of GK&R [Gupta, Srinivasan, Tardos APPROX'04].
- ▶ 4.0 worst-case approximation based on the derandomized of GK&R [van Zuylen, Williamson ORL].

Single-Sink Rent-or-Buy

Def: CFL with $\mathcal{F} = V$ and f(i) = 0

Known Results:

- ▶ 9.01 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- ▶ primal-dual 4.55 worst-case approximation [Swamy, Kumar APPROX'02].
- ▶ 3.55 expected approximation based on random-sampling [Gupta, Kumar, Roughgarden STOC'03].
- ▶ 4.2 worst-case approximation based on the derandomized of GK&R [Gupta, Srinivasan, Tardos APPROX'04].
- ▶ 4.0 worst-case approximation based on the derandomized of GK&R [van Zuylen, Williamson ORL].
- \Rightarrow Here: 2.92-approximation

оΠ 0 ПОП O

- -- = FL approximate solution -- = Steiner tree in APX
- $\mathbf{O} =$ sampled demand
 - = sampled facility

- - =connections in APX

1. Run a (black-box) algo for (unconnected) facility location.

- -- = FL approximate solution -- = Steiner tree in APX
- $\mathbf{O} = \text{sampled demand}$
 - = sampled facility

- - =connections in APX

- 1. Run a (black-box) algo for (unconnected) facility location.
- 2. Mark each demand independently with prob. $p \approx 1/M$
- 3. Mark a random demand

- -- = FL approximate solution -- = Steiner tree in APX
- $\mathbf{O} = \text{sampled demand}$
 - = sampled facility

- - =connections in APX

- 1. Run a (black-box) algo for (unconnected) facility location.
- 2. Mark each demand independently with prob. $p \approx 1/M$
- 3. Mark a random demand
- 4. Open the facilities, serving sampled demand.

- -- = FL approximate solution -- = Steiner tree in APX
- $\mathbf{O} = \text{sampled demand}$
- = sampled facility

- - =connections in APX

- 1. Run a (black-box) algo for (unconnected) facility location.
- 2. Mark each demand independently with prob. $p\approx 1/M$
- 3. Mark a random demand
- 4. Open the facilities, serving sampled demand.
- 5. Compute 1.55-approx. Steiner Tree T spanning opened facilities

What to do...

We will bound separately

- ▶ Opening cost
- ▶ Steiner tree cost
- Connection cost

Each cost type will bounded by combination of

$$O^* = \text{opening cost}$$

$$S^* = \text{Steiner tree cost}$$
in opt. solution
$$C^* = \text{connection cost}$$

$$O_{fl} = \text{opening cost}$$

$$C_{fl} = \text{connection cost}$$
in approx. facility location solution

We use

$$\blacktriangleright O^* + S^* + C^* = OPT$$

► $O_{fl} + C_{fl} \le 1.52 \cdot OPT_{fl} \le 1.52 \cdot OPT$ Assume $|\mathcal{D}|/M \gg 1$ (otherwise we have a PTAS)

Analysis: Opening Cost

Lemma

The opening cost O_{apx} satisfies $O_{apx} \leq O_{fl}$.

 O_{fl} and C_{fl} denote the opening and connection costs in the approximate (unconnected) facility location solution computed in the first step of the algorithm.

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

$$E[C_{apx}] \le 2C^* + C_{fl} + S^*/(pM).$$

Lemma

Lemma

Lemma

Lemma

 Connect each demand to the closest open facility w.r.t. number of edges in the auxiliary graph above

Lemma

$$E[C_{apx}] \le 2C^* + C_{fl} + S^*/(pM).$$

- $X_i := \#$ of cycle edges used by $i \in D$
- #demands = #cycle edges
- ▶ By symmetry: $E[\text{flow on cycle edge}] = E[X_i]$

Total Cost

Theorem

There is an expected 4.55 approximation algorithm for CFL.

Proof:

E[APX] $O_{fl} + \rho_{st}(S^* + pMC^*) + pMC_{fl} + 2C^* + C_{fl} + \frac{S^*}{nM}$ \leq $(1+pM)(O_{fl}+C_{fl}) + \rho_{st}(S^*+pMC^*) + 2C^* + \frac{S^*}{pM}$ \leq $\stackrel{O_{fl}^* + C_{fl}^* \le O^* + C^*}{\le} \quad (1 + pM)\rho_{fl}(O^* + C^*) + \rho_{st}(S^* + pMC^*) + 2C^* + \frac{S^*}{pM}$ $p{=}0.334/M$ $2.03 O^* + 4.55 C^* + 4.55 S^*$ \leq < 4.55 OPT

Refinements

Theorem

There is an expected 4 approximation algorithm for CFL.

▶ Using bi-factor facility location, for a parameter $\delta \ge 1$, we obtain:

$$C_{fl} + O_{fl} \le (1.11 + \ln \delta)O^* + (1 + 0.78/\delta)C^*.$$

▶ Using flow cancelling over the Euler tour, we can show that (for $|\mathcal{D}|/M \gg 1$)

$$C_{apx} \le 2C^* + C_{fl} + \frac{0.807}{pM}.$$

Refinements

Theorem

 $There \ is \ a \ 4.23 \ worst-case \ approximation \ algorithm \ for \ CFL.$

Proof: Use idea of van Zuylen and Williamson to estimate expected Steiner cost

Corollary

There is an expected 2.92 and worst-case 3.28 approximation algorithm for SROB.

Proof: Same analysis with $C_{fl} = O_{fl} = 0$.

Summarizing

More results			
Problem	Now	Previous best	
CFL	4.00^{*} 4.23	8.55 Swamy, Kumar '02	
SROB	2.92^{*} 3.28	3.55 [*] Gupta, Kumar, Roughgarden '03 4 van Zuylen, Williamson '07	,
k-CFL	6.85^{*} 6.98	15.55^* Swamy and Kumar '02	
tour-CFL soft-CFL	4.12^{*} 6.33^{*}	5.83* Ravi, Salman '99 (special case) $^-$	

The * indicates randomized results

A CFL PTAS for $|\mathcal{D}|/M = O(1)$

Algorithm:

- 1. Guess the best choice of $\leq k$ facilities F
- 2. Compute an optimum Steiner tree spanning ${\cal F}$

A CFL PTAS for $|\mathcal{D}|/M = O(1)$

Algorithm:

- 1. Guess the best choice of $\leq k$ facilities F
- 2. Compute an optimum Steiner tree spanning F

Lemma

For $k := \frac{2|\mathcal{D}|}{\varepsilon M}$ the algorithm yields a solution of cost $\leq (1 + \varepsilon)OPT$.

\mathbf{Proof}

• $T^* :=$ Steiner tree in opt solution

\mathbf{Proof}

- $T^* :=$ Steiner tree in opt solution
- ▶ C := Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$

- $T^* :=$ Steiner tree in opt solution
- C := Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- ▶ Mark facility "each" distance of $\frac{2c(T^*)}{k} \to F$
- ▶ k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$

- $T^* :=$ Steiner tree in opt solution
- ▶ C := Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- ▶ Mark facility "each" distance of $\frac{2c(T^*)}{k} \to F$
- ▶ k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$

- $T^* :=$ Steiner tree in opt solution
- ► C := Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- ▶ Mark facility "each" distance of $\frac{2c(T^*)}{k} \to F$
- ▶ k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$

• Opening costs: $\leq O^*$

- $T^* :=$ Steiner tree in opt solution
- ▶ C := Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- ▶ Mark facility "each" distance of $\frac{2c(T^*)}{k} \to F$
- ▶ k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$

• Steiner costs: $\leq S^*$

- $T^* :=$ Steiner tree in opt solution
- ▶ C := Euler tour (on opt. facilities) of cost $\leq 2c(T^*)$
- ▶ Mark facility "each" distance of $\frac{2c(T^*)}{k} \to F$
- ▶ k marked facilities F: $\forall i \in F^* : \ell(i, F) \leq \frac{2c(T^*)}{k}$

- Opening costs: $\leq O^*$
- Steiner costs: $\leq S^*$
- ► Connection costs:

$$\leq C^* + \frac{2c(T^*)}{k} \cdot |\mathcal{D}|$$

$$\leq C^* + \frac{2|\mathcal{D}|}{M \cdot k} \cdot S^*$$

$$\leq C^* + \varepsilon S^*$$

Open Problems

- Some of the best known approximation algorithms for network design are based on random sampling:
 - Single-Sink Buy-at-Bulk
 - Multi-Commodity Rent-or-Buy
 - Virtual Private Network Design
 - <u>۱</u>...
- Can the improved bound on the connection cost help for these problems?

Open Problems

- Some of the best known approximation algorithms for network design are based on random sampling:
 - Single-Sink Buy-at-Bulk
 - Multi-Commodity Rent-or-Buy
 - Virtual Private Network Design
 - <u>►</u> ...
- Can the improved bound on the connection cost help for these problems?

Thanks for your attention