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Connected Facility Location

Given:
◮ graph G = (V,E), with edge costs c : E → Q+

◮ facilities F ⊆ V , with opening cost f : F → Q+

◮ a set of demands D ⊆ V

◮ a parameter M ≥ 1,

Goal:
◮ open facilities F ⊆ F

◮ find Steiner tree T spanning opened facilities

minimizing

∑

i∈F

f(i)

︸ ︷︷ ︸

opening cost O

+ M
∑

e∈T

c(e)

︸ ︷︷ ︸

Steiner cost S

+
∑

j∈D

ℓ(j, F )

︸ ︷︷ ︸

connection cost C
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Previous Results

◮ APX-hard (reduction from Steiner tree)

◮ 10.66 worst-case approximation based on LP-rounding
[Gupta et al STOC’01].

◮ primal-dual 8.55 worst-case approximation [Swamy,
Kumar APPROX’02].
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Single-Sink Rent-or-Buy

Def: CFL with F = V and f(i) = 0

Known Results:

◮ 9.01 worst-case approximation based on LP-rounding
[Gupta et al STOC’01].

◮ primal-dual 4.55 worst-case approximation [Swamy, Kumar
APPROX’02].

◮ 3.55 expected approximation based on random-sampling
[Gupta, Kumar, Roughgarden STOC’03].

◮ 4.2 worst-case approximation based on the derandomized of
GK&R [Gupta, Srinivasan, Tardos APPROX’04].

◮ 4.0 worst-case approximation based on the derandomized of
GK&R [van Zuylen, Williamson ORL].



Single-Sink Rent-or-Buy

Def: CFL with F = V and f(i) = 0

Known Results:

◮ 9.01 worst-case approximation based on LP-rounding
[Gupta et al STOC’01].

◮ primal-dual 4.55 worst-case approximation [Swamy, Kumar
APPROX’02].

◮ 3.55 expected approximation based on random-sampling
[Gupta, Kumar, Roughgarden STOC’03].

◮ 4.2 worst-case approximation based on the derandomized of
GK&R [Gupta, Srinivasan, Tardos APPROX’04].

◮ 4.0 worst-case approximation based on the derandomized of
GK&R [van Zuylen, Williamson ORL].

⇒ Here: 2.92-approximation



The Algorithm

- - = FL approximate solution

= sampled demand

= sampled facility

— = Steiner tree in APX

- - = connections in APX



The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.

- - = FL approximate solution

= sampled demand

= sampled facility

— = Steiner tree in APX

- - = connections in APX



The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.

2. Mark each demand independently with prob. p ≈ 1/M

3. Mark a random demand

- - = FL approximate solution

= sampled demand

= sampled facility

— = Steiner tree in APX

- - = connections in APX



The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.

2. Mark each demand independently with prob. p ≈ 1/M

3. Mark a random demand

4. Open the facilities, serving sampled demand.

- - = FL approximate solution

= sampled demand

= sampled facility

— = Steiner tree in APX

- - = connections in APX



The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.

2. Mark each demand independently with prob. p ≈ 1/M

3. Mark a random demand

4. Open the facilities, serving sampled demand.

5. Compute 1.55-approx. Steiner Tree T spanning opened
facilities

b b

- - = FL approximate solution

= sampled demand

= sampled facility

— = Steiner tree in APX

- - = connections in APX



What to do. . .

We will bound separately

◮ Opening cost

◮ Steiner tree cost

◮ Connection cost

Each cost type will bounded by combination of

◮ O∗ = opening cost

◮ S∗ = Steiner tree cost

◮ C∗ = connection cost






in opt. solution

◮ Ofl = opening cost

◮ Cfl = connection cost

}

in approx. facility location solution

We use

◮ O∗ + S∗ + C∗ = OPT

◮ Ofl + Cfl ≤ 1.52 · OPTfl ≤ 1.52 · OPT

Assume |D|/M ≫ 1 (otherwise we have a PTAS)



Analysis: Opening Cost

Lemma

The opening cost Oapx satisfies Oapx ≤ Ofl.

Ofl and Cfl denote the opening and connection costs in the
approximate (unconnected) facility location solution computed
in the first step of the algorithm.
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The Steiner cost Sapx satisfies
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Analysis: Connection Cost

Lemma

The connection cost Capx satisfies

E[Capx] ≤ 2C∗ + Cfl + S∗/(p M).

◮ Connect each demand to the closest open facility w.r.t.
number of edges in the auxiliary graph above
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Analysis: Connection Cost

Lemma

The connection cost Capx satisfies

E[Capx] ≤ 2C∗ + Cfl + S∗/(p M).

◮ Xi := # of cycle edges used by i ∈ D

◮ #demands = #cycle edges

◮ By symmetry: E[flow on cycle edge] = E[Xi]



Analysis: Connection Cost

Lemma

The connection cost Capx satisfies

E[Capx] ≤ 2C∗ + Cfl + S∗/(p M).

Pr[Xi > k] ≤ (1 − p)2k+1

E[Xi] =
∑

k≥1

Pr[Xi ≥ k] =
∑

k≥1

(1 − p)2k−1 ≤
1

2
·
1

p

E[cost of used cycle edges] ≤
1

2
·
1

p
·
2S∗

M
= S∗/(pM)



Total Cost

Theorem

There is an expected 4.55 approximation algorithm for CFL.

Proof:

E[APX]

≤ Ofl + ρst(S
∗ + pMC∗) + pMCfl + 2C∗ + Cfl +

S∗

pM

≤ (1 + pM)(Ofl + Cfl) + ρst(S
∗ + pMC∗) + 2C∗ +

S∗

pM
O∗

fl
+C∗

fl
≤O∗+C∗

≤ (1 + pM)ρfl(O
∗ + C∗) + ρst(S

∗ + pMC∗) + 2C∗ +
S∗

pM
p=0.334/M

≤ 2.03O∗ + 4.55C∗ + 4.55S∗

≤ 4.55OPT



Refinements

Theorem

There is an expected 4 approximation algorithm for CFL.

◮ Using bi-factor facility location, for a parameter δ ≥ 1, we
obtain:

Cfl + Ofl ≤ (1.11 + ln δ)O∗ + (1 + 0.78/δ)C∗.

◮ Using flow cancelling over the Euler tour, we can show that
(for |D|/M ≫ 1)

Capx ≤ 2C∗ + Cfl + 0.807
S∗

pM
.



Refinements

Theorem

There is a 4.23 worst-case approximation algorithm for CFL.

Proof: Use idea of van Zuylen and Williamson to
estimate expected Steiner cost

Corollary

There is an expected 2.92 and worst-case 3.28 approximation

algorithm for SROB.

Proof: Same analysis with Cfl = Ofl = 0.



Summarizing

More results

Problem Now Previous best

CFL 4.00∗ 8.55 Swamy, Kumar ’02
4.23

SROB 2.92∗ 3.55∗ Gupta, Kumar, Roughgarden ’03
3.28 4 van Zuylen, Williamson ’07

k-CFL 6.85∗ 15.55∗ Swamy and Kumar ’02
6.98

tour-CFL 4.12∗ 5.83∗ Ravi, Salman ’99 (special case)

soft-CFL 6.33∗ –

The * indicates randomized results
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1. Guess the best choice of ≤ k facilities F

2. Compute an optimum Steiner tree spanning F



A CFL PTAS for |D|/M = O(1)

Algorithm:

1. Guess the best choice of ≤ k facilities F

2. Compute an optimum Steiner tree spanning F

Lemma

For k := 2|D|
εM the algorithm yields a solution of cost

≤ (1 + ε)OPT .
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Proof

◮ T ∗ := Steiner tree in opt solution

◮ C := Euler tour (on opt. facilities) of cost ≤ 2c(T ∗)

◮ Mark facility “each” distance of 2c(T ∗)
k → F

◮ k marked facilities F : ∀i ∈ F ∗ : ℓ(i, F ) ≤ 2c(T ∗)
k

◮ Opening costs: ≤ O∗

◮ Steiner costs: ≤ S∗

◮ Connection costs:

≤ C∗ +
2c(T ∗)

k
· |D|

≤ C∗ +
2|D|

M · k
· S∗

≤ C∗ + εS∗



Open Problems

◮ Some of the best known approximation algorithms for
network design are based on random sampling:

◮ Single-Sink Buy-at-Bulk
◮ Multi-Commodity Rent-or-Buy
◮ Virtual Private Network Design
◮ ...

◮ Can the improved bound on the connection cost help for
these problems?
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Thanks for your attention


