Approximating Connected Facility Location Problems via Random Facility Sampling and Core Detouring

Thomas Rothvoß
Institute of Mathematics
École Polytechnique Fédérale de Lausanne

This is joint work with Fritz Eisenbrand, Fabrizio Grandoni \& Guido Schäfer

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

Connected Facility Location

Given:

- graph $G=(V, E)$, with edge costs $c: E \rightarrow \mathbb{Q}^{+}$
- facilities $\mathcal{F} \subseteq V$, with opening cost $f: \mathcal{F} \rightarrow \mathbb{Q}^{+}$
- a set of demands $\mathcal{D} \subseteq V$
- a parameter $M \geq 1$,

Goal:

- open facilities $F \subseteq \mathcal{F}$
- find Steiner tree T spanning opened facilities minimizing

The Problem

$\square=$ facility
$\mathbf{O}=$ demand

The Problem

$\square=$ facility
$\mathbf{O}=$ demand
$\square=$ open facility

- - = connection path
$-=$ Steiner tree edge

Previous Results

- APX-hard (reduction from Steiner tree)
- 10.66 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- primal-dual 8.55 worst-case approximation [Swamy, Kumar APPROX'02].

Previous Results

- APX-hard (reduction from Steiner tree)
- 10.66 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- primal-dual 8.55 worst-case approximation [Swamy, Kumar APPROX'02].
\Rightarrow Here: 4-approximation

Single-Sink Rent-or-Buy

Def: \quad CFL with $\mathcal{F}=V$ and $f(i)=0$
Known Results:

- 9.01 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- primal-dual 4.55 worst-case approximation [Swamy, Kumar APPROX'02].
- 3.55 expected approximation based on random-sampling [Gupta, Kumar, Roughgarden STOC'03].
- 4.2 worst-case approximation based on the derandomized of GK\&R [Gupta, Srinivasan, Tardos APPROX'04].
- 4.0 worst-case approximation based on the derandomized of GK\&R [van Zuylen, Williamson ORL].

Single-Sink Rent-or-Buy

Def: \quad CFL with $\mathcal{F}=V$ and $f(i)=0$
Known Results:

- 9.01 worst-case approximation based on LP-rounding [Gupta et al STOC'01].
- primal-dual 4.55 worst-case approximation [Swamy, Kumar APPROX'02].
- 3.55 expected approximation based on random-sampling [Gupta, Kumar, Roughgarden STOC'03].
- 4.2 worst-case approximation based on the derandomized of GK\&R [Gupta, Srinivasan, Tardos APPROX'04].
- 4.0 worst-case approximation based on the derandomized of GK\&R [van Zuylen, Williamson ORL].
\Rightarrow Here: 2.92-approximation

The Algorithm

0
 $\square \circ \square$

口 \quad

0

$--=$ FL approximate solution $-=$ Steiner tree in APX
$\mathbf{O}=$ sampled demand

- - = connections in APX
\square = sampled facility

The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.

$--=$ FL approximate solution $-=$ Steiner tree in APX
$\mathbf{O}=$ sampled demand $\quad--=$ connections in APX
\square = sampled facility

The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.
2. Mark each demand independently with prob. $p \approx 1 / M$
3. Mark a random demand

$--=$ FL approximate solution $-=$ Steiner tree in APX
$\mathbf{O}=$ sampled demand $\quad--=$ connections in APX
\square = sampled facility

The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.
2. Mark each demand independently with prob. $p \approx 1 / M$
3. Mark a random demand
4. Open the facilities, serving sampled demand.

$--=$ FL approximate solution $-=$ Steiner tree in APX
$\mathbf{O}=$ sampled demand $\quad--=$ connections in APX
\square = sampled facility

The Algorithm

1. Run a (black-box) algo for (unconnected) facility location.
2. Mark each demand independently with prob. $p \approx 1 / M$
3. Mark a random demand
4. Open the facilities, serving sampled demand.
5. Compute 1.55-approx. Steiner Tree T spanning opened facilities

$--=$ FL approximate solution $-=$ Steiner tree in APX
$\mathbf{O}=$ sampled demand $\quad--=$ connections in APX
\square = sampled facility

What to do...

We will bound separately

- Opening cost
- Steiner tree cost
- Connection cost

Each cost type will bounded by combination of

- $O^{*}=$ opening cost
$\left.\begin{array}{l}\text { - } S^{*}=\text { Steiner tree cost } \\ \text { - } C^{*}=\text { connection cost }\end{array}\right\}$ in opt. solution
$\left.\begin{array}{l}\text { - } O_{f l}=\text { opening cost } \\ \text { - } C_{f l}=\text { connection cost }\end{array}\right\}$ in approx. facility location solution
We use
- $O^{*}+S^{*}+C^{*}=O P T$
- $O_{f l}+C_{f l} \leq 1.52 \cdot O P T_{f l} \leq 1.52 \cdot O P T$

Assume $|\mathcal{D}| / M \gg 1$ (otherwise we have a PTAS)

Analysis: Opening Cost

Lemma

The opening cost $O_{a p x}$ satisfies $O_{a p x} \leq O_{f l}$.
$O_{f l}$ and $C_{f l}$ denote the opening and connection costs in the approximate (unconnected) facility location solution computed in the first step of the algorithm.

Analysis: Steiner Cost

Lemma

The Steiner cost $S_{a p x}$ satisfies

$$
\left.E\left[S_{a p x}\right] \leq \rho_{s t}\left(S^{*}+p M(1+o(1)) \cdot C^{*}\right)+p M(1+o(1)) \cdot C_{f l}\right)
$$

Analysis: Steiner Cost

Lemma

The Steiner cost $S_{a p x}$ satisfies

$$
\left.E\left[S_{a p x}\right] \leq \rho_{s t}\left(S^{*}+p M(1+o(1)) \cdot C^{*}\right)+p M(1+o(1)) \cdot C_{f l}\right)
$$

$\underbrace{S^{*} / M}$
Steiner tree in OPT

Analysis: Steiner Cost

Lemma

The Steiner cost $S_{a p x}$ satisfies

$$
\left.E\left[S_{a p x}\right] \leq \rho_{s t}\left(S^{*}+p M(1+o(1)) \cdot C^{*}\right)+p M(1+o(1)) \cdot C_{f l}\right)
$$

Analysis: Steiner Cost

Lemma

The Steiner cost $S_{a p x}$ satisfies

$$
\left.E\left[S_{a p x}\right] \leq \rho_{s t}\left(S^{*}+p M(1+o(1)) \cdot C^{*}\right)+p M(1+o(1)) \cdot C_{f l}\right)
$$

$$
\underbrace{\rho_{S t}}_{<1.55} \cdot(\underbrace{S^{*} / M}_{\begin{array}{c}
\text { Steiner tree } \\
\text { in OPT }
\end{array}}+\underbrace{\left(p+\frac{1}{|\mathcal{D}|}\right) C^{*}}_{\begin{array}{c}
\text { paths sampled demands } \\
- \text { Steiner tree }
\end{array}})
$$

Analysis: Steiner Cost

Lemma

The Steiner cost $S_{\text {apx }}$ satisfies

$$
\left.E\left[S_{a p x}\right] \leq \rho_{s t}\left(S^{*}+p M(1+o(1)) \cdot C^{*}\right)+p M(1+o(1)) \cdot C_{f l}\right)
$$

Analysis: Steiner Cost

Lemma

The Steiner cost $S_{\text {apx }}$ satisfies

$$
\left.E\left[S_{a p x}\right] \leq \rho_{s t}\left(S^{*}+p M(1+o(1)) \cdot C^{*}\right)+p M(1+o(1)) \cdot C_{f l}\right)
$$

$$
M \cdot(\underbrace{\rho_{S t}}_{\substack{<1.55}} \cdot(\underbrace{S^{*} / M}_{\begin{array}{c}
\text { Steiner tree } \\
\text { in OPT }
\end{array}}+\underbrace{\left(p+\frac{1}{|\mathcal{D}|}\right) C^{*}}_{\begin{array}{c}
\text { paths sampled demands } \\
- \text { Steiner tree }
\end{array}})+\underbrace{\left(p+\frac{1}{|\mathcal{D}|} C_{f l}\right.}_{\begin{array}{c}
\text { paths sampled demands } \\
\text { - sampled facilities }
\end{array}})
$$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

$\square=$ facility in OPT

- - = connections in OPT
$-=$ Steiner tree in OPT

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

\square = facility in OPT

- - = connections in OPT
$-=$ Steiner tree in OPT

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

- Connect each demand to the closest open facility w.r.t. number of edges in the auxiliary graph above

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

By symmetry:
$E[$ flow on \square - -
$E\left[\right.$ flow on $\left.\mathbf{O}^{-}-\square\right] \leq 1$

Analysis: Connection Cost

Lemma

The connection cost $C_{a p x}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M)
$$

- $X_{i}:=\#$ of cycle edges used by $i \in D$
- \#demands = \#cycle edges
- By symmetry: $E[$ flow on cycle edge $]=E\left[X_{i}\right]$

Analysis: Connection Cost

Lemma

The connection cost $C_{\text {apx }}$ satisfies

$$
E\left[C_{a p x}\right] \leq 2 C^{*}+C_{f l}+S^{*} /(p M) .
$$

$$
\begin{gathered}
\square-\mathrm{O} \\
\mathrm{D}-\mathrm{O}\left[X_{i}>k\right] \leq(1-p)^{2 k+1} \\
E\left[X_{i}\right]=\sum_{k \geq 1} \operatorname{Pr}\left[X_{i} \geq k\right]=\sum_{k \geq 1}(1-p)^{2 k-1} \leq \frac{1}{2} \cdot \frac{1}{p}
\end{gathered}
$$

$E[$ cost of used cycle edges $] \leq \frac{1}{2} \cdot \frac{1}{p} \cdot \frac{2 S^{*}}{M}=S^{*} /(p M)$

Total Cost

Theorem

There is an expected 4.55 approximation algorithm for CFL.
Proof:

$$
E[A P X]
$$

$$
\begin{array}{ll}
\leq & O_{f l}+\rho_{s t}\left(S^{*}+p M C^{*}\right)+p M C_{f l}+2 C^{*}+C_{f l}+\frac{S^{*}}{p M} \\
\leq & (1+p M)\left(O_{f l}+C_{f l}\right)+\rho_{s t}\left(S^{*}+p M C^{*}\right)+2 C^{*}+\frac{S^{*}}{p M}
\end{array}
$$

$$
\begin{aligned}
& O_{f l}^{*}+C_{f l}^{*} \leq O^{*}+C^{*} \\
& \leq
\end{aligned}
$$

$$
(1+p M) \rho_{f l}\left(O^{*}+C^{*}\right)+\rho_{s t}\left(S^{*}+p M C^{*}\right)+2 C^{*}+\frac{S^{*}}{p M}
$$

$$
\begin{array}{cl}
p=0.334 / M & 2.03 O^{*}+4.55 C^{*}+4.55 S^{*} \\
\leq & 4.55 O P T
\end{array}
$$

Refinements

Theorem

There is an expected 4 approximation algorithm for CFL.

- Using bi-factor facility location, for a parameter $\delta \geq 1$, we obtain:

$$
C_{f l}+O_{f l} \leq(1.11+\ln \delta) O^{*}+(1+0.78 / \delta) C^{*}
$$

- Using flow cancelling over the Euler tour, we can show that (for $|\mathcal{D}| / M \gg 1$)

$$
C_{a p x} \leq 2 C^{*}+C_{f l}+0.807 \frac{S^{*}}{p M}
$$

Refinements

Theorem

There is a 4.23 worst-case approximation algorithm for CFL.
Proof: Use idea of van Zuylen and Williamson to estimate expected Steiner cost

Corollary

There is an expected 2.92 and worst-case 3.28 approximation algorithm for $S R O B$.

Proof: Same analysis with $C_{f l}=O_{f l}=0$.

Summarizing

More results

Problem	Now	Previous best	
CFL	4.00^{*}	8.55	Swamy, Kumar '02
	4.23		

The * indicates randomized results

A CFL PTAS for $|\mathcal{D}| / M=O(1)$

Algorithm:

1. Guess the best choice of $\leq k$ facilities F
2. Compute an optimum Steiner tree spanning F

A CFL PTAS for $|\mathcal{D}| / M=O(1)$

Algorithm:

1. Guess the best choice of $\leq k$ facilities F
2. Compute an optimum Steiner tree spanning F

Lemma

For $k:=\frac{2|\mathcal{D}|}{\varepsilon M}$ the algorithm yields a solution of cost $\leq(1+\varepsilon) O P T$.

Proof

0

$0 \quad \square \quad 0$
○ ロ ・ロ ○
口
00

Proof

- $T^{*}:=$ Steiner tree in opt solution

Proof

- $T^{*}:=$ Steiner tree in opt solution
- $C:=$ Euler tour (on opt. facilities) of cost $\leq 2 c\left(T^{*}\right)$

Proof

- $T^{*}:=$ Steiner tree in opt solution
- $C:=$ Euler tour (on opt. facilities) of cost $\leq 2 c\left(T^{*}\right)$
- Mark facility "each" distance of $\frac{2 c\left(T^{*}\right)}{k} \rightarrow F$
- k marked facilities $F: \forall i \in F^{*}: \ell(i, F) \leq \frac{2 c\left(T^{*}\right)}{k}$

Proof

- $T^{*}:=$ Steiner tree in opt solution
- $C:=$ Euler tour (on opt. facilities) of cost $\leq 2 c\left(T^{*}\right)$
- Mark facility "each" distance of $\frac{2 c\left(T^{*}\right)}{k} \rightarrow F$
- k marked facilities $F: \forall i \in F^{*}: \ell(i, F) \leq \frac{2 c\left(T^{*}\right)}{k}$

Proof

- $T^{*}:=$ Steiner tree in opt solution
- $C:=$ Euler tour (on opt. facilities) of cost $\leq 2 c\left(T^{*}\right)$
- Mark facility "each" distance of $\frac{2 c\left(T^{*}\right)}{k} \rightarrow F$
- k marked facilities $F: \forall i \in F^{*}: \ell(i, F) \leq \frac{2 c\left(T^{*}\right)}{k}$
- Opening costs: $\leq O^{*}$

Proof

- $T^{*}:=$ Steiner tree in opt solution
- $C:=$ Euler tour (on opt. facilities) of cost $\leq 2 c\left(T^{*}\right)$
- Mark facility "each" distance of $\frac{2 c\left(T^{*}\right)}{k} \rightarrow F$
- k marked facilities $F: \forall i \in F^{*}: \ell(i, F) \leq \frac{2 c\left(T^{*}\right)}{k}$
- Opening costs: $\leq O^{*}$
- Steiner costs: $\leq S^{*}$

Proof

- $T^{*}:=$ Steiner tree in opt solution
- $C:=$ Euler tour (on opt. facilities) of cost $\leq 2 c\left(T^{*}\right)$
- Mark facility "each" distance of $\frac{2 c\left(T^{*}\right)}{k} \rightarrow F$
- k marked facilities $F: \forall i \in F^{*}: \ell(i, F) \leq \frac{2 c\left(T^{*}\right)}{k}$
- Opening costs: $\leq O^{*}$
- Steiner costs: $\leq S^{*}$
- Connection costs:

$$
\begin{aligned}
& \leq C^{*}+\frac{2 c\left(T^{*}\right)}{k} \cdot|\mathcal{D}| \\
& \leq C^{*}+\frac{2|\mathcal{D}|}{M \cdot k} \cdot S^{*} \\
& \leq C^{*}+\varepsilon S^{*}
\end{aligned}
$$

Open Problems

- Some of the best known approximation algorithms for network design are based on random sampling:
- Single-Sink Buy-at-Bulk
- Multi-Commodity Rent-or-Buy
- Virtual Private Network Design
- ...
- Can the improved bound on the connection cost help for these problems?

Open Problems

- Some of the best known approximation algorithms for network design are based on random sampling:
- Single-Sink Buy-at-Bulk
- Multi-Commodity Rent-or-Buy
- Virtual Private Network Design
- ...
- Can the improved bound on the connection cost help for these problems?

Thanks for your attention

