Approximation Algorithms

Thomas Rothvof

Institute of Mathematics
EPFL, Lausanne
Spring 2010

O}S'Tcnprg&rnon ECOLE POLYTECHNIQUE

| FEDERALE DE LAUSANNE

% L T

1/292

e Introduction (page 3)
e Steiner tree (page 8)
o i-Center (page 13)
e Traveling Salesman Problem (page 22)
e The Capacitated Vehicle Routing Problem (page 31)
e Set Cover (page 35)
e Set Cover via LPs (page 38)
e Insertion: Linear Programming (page 44)
o Weighted Vertex Cover (page 60)
o Insertion: Algorithmic probability theory (page 66)
e Minimizing Congestion (page 75)
e Knapsack (page 91)
e Multi Constraint Knapsack (page 96)
e Bin Packing (page 102)
e The algorithm of Karmarkar & Karp (page 109)
o Minimum Makespan Scheduling (page 128)
e Scheduling on Unrelated Parallel Machines (page 134)
o Multiprocessor Scheduling with Precedence Constraints (page 143)
e Euclidean TSP (page 148)
e Tree Embeddings (page 174)
e Introduction into Primal dual algorithms (page 199)
o Steiner Forest (page 204)
o Facility Location (page 227)
e Insertion: Semidefinite Programming (page 244)
e MaxCut (page 254)
e Max2Sat (page 263)
e Budgeted Spanning Tree (page 270)
o k-Median (page 281)

¥

M

¥

PART 1
INTRODUCTION

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Why approximation algorithms?

Task: Solve NP-hard optimization problem A
— no efficient algorithm (unless NP = P)
Possible approaches:

» exponential time algorithms — some theory but too slow
and no lower bounds

» heuristic — fast, easy but no guarantee, not much theory

» approximation algorithms — rich theory in many cases

good lower bounds

Running times: n = number of objects in instance, B biggest
appearing number, € > 0 constant

» exponential: 2", n- B

. O(1/¢)
» polynomial: n?,n'% n.logB,n - 21/e pO(1/e)

Basic definitions

Definition

Let II be an optimization problem and I is instance for A.
Then OPTy(I) is the value of the optimum solution.

Definition

Let o > 1. A is an a-approximation algorithm for a
minimization problem II if

A(I) < - OPTy(I) V instances I

where A([I) is the value of the solution, that A returns for I.

» Typical values for a: 1.5,2,0(1),O(log n)

» Usually we omit II and I in OPTy (1)

» For a maximization problem: A(I) > = - OPTy(I)

» Attention: Sometimes i 1n literature o < 1 for maximization
problems. For example 3-apx means A(I) > $OPTy(I)

Definition PTAS

Definition

A; is a polynomial time approximation scheme (PTAS) for a
minimization problem II if

A (I) < (1+4¢€)-OPT(I) V instances I

and for every fixed € > 0, the running time of A; is polynomial
in the input size.

o(1/¢)

Typical running times: O(n/¢),2Y/°n?log?(B),n?(1/%)

Definition FPTAS

Definition

A¢ is a fully polynomial time approximation scheme (FPTAS)
for a minimization problem II if for every ¢ > 0

A (I) < (1+4¢€)-OPT(I) V instances I

and the running time of A, is polynomial in the input size and
1/e.

» Typical running time: O(n3/e?)

~

PART 2
STEINER TREE

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Steiner Tree

Problem: STEINER TREE

» Given: Undirected graph G = (V, E), metric cost function
c: F — Qy, terminals R CV

» Find: Minimum cost tree 1" connecting all terminals R:

OPT = min{c¢(T) | T spans R}

> C(T) = ZeET Ce
» metric: Yu,v,w € V i cyy < Cup + Gy (triangle inequality)

/

T Steiner tree (O

o, terminal

O
Steiner node \C W, ®
D/O él \D/

Steiner tree (2)

Fact

If R =V, then STEINER TREE is just the MINIMUM SPANNING
TREE Problem which can be solved optimally by picking
greedily the cheapest edges (without closing a cycle).

Algorithm:
(1) Compute the minimum spanning tree 7" on R
(2) Return T’

Theorem
The algorithm gives a 2-approzimation.

Proof of approximation guarantee

» Claim: 3 spanning tree of cost < 2- OPT

» Let T be optimum Steiner tree

» Double the edges of T*

> Observe: Degrees now even = 3 Euler tour £ visiting each
terminal

Theorem (Euler)

Given an undirected, connected graph G = (V, E). Then G has
an Euler tour (tour containing each edge exactly once) if and
only if |0(v)| is even for allv e V.

» Shortcut £ such that each terminal is visited once
» Remove an edge = spanning tree of cost < 2 - ¢(T™) U

Neds N/
VARV Ej

State of the art

Known results:
» There is a 1.39-approximation.

» For quasi-bipartite graphs (no Steiner nodes incident):
1.22-apx

» No < %—apx unless NP = P.

92 /92992
12/292

PART 3
k-CENTER

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

13 /292

k-Center

Problem: k-CENTER
» Given: Undirected, metric graph G = (V, E), k € N. Define

l(v, F) := mi
(v, F) 17}16111}0“1,

» Find: £ many centers F' C V that minimize the maximum
distance from any v € V' to the nearest center:

OPT = min max{/{(v,F)}
FCV,|F|=k veV

14 /292

The algorithm

Algorithm:
(1) Guess OPT € {cyy | u,v € V}
(2) F:=0
(3) REPEAT
(4) IF v € V : (v, F) > 2- OPT THEN F := F U {v}
ELSE RETURN F

The algorithm

Algorithm:
(1) Guess OPT € {cyy | u,v € V}
(2) F:=0
(3) REPEAT
(4) IF Jv € V : (v, F) > 2- OPT THEN F := F U {v}
ELSE RETURN F

// ~
7 \
,72-0PT N
/ \
/ \
/ \ [J [J
\
I F>e 1 @
\ 1
\ /
\ L4 / [
\ /
\ /7
AN 7

S~_-

The algorithm

Algorithm:
(1) Guess OPT € {cyy | u,v € V}
(2) F:=0
(3) REPEAT
(4) IF Jv € V : (v, F) > 2- OPT THEN F := F U {v}
ELSE RETURN F

// e \\
,72-0PT PN \
/ / \ \
/ / \ \
/ I \ [.\
I 1 \
1 Foe 1 | @ec F 1
\ \] I
\ 1 /
\ d\ /! @ /
\ \ / /
\ N /7 7/
AN v 7
~ 7 N 7

Guessing

For simplicity we sometimes guess parameters:
Algorithm with guessing:
(1) Guess a parameter m

(2) ... compute a solution S using m ...
(3) return S

Algorithm without guessing:
(1) FOR all choices of m DO
(2) ... compute a solution S(m) ...

(3) return the best found solution S(m)

» Still polynomial if the domain of m is polynomial

» Typical guesses: OPT, O(1) many nodes in a graph

The analysis

Theorem
One has |F| <k and £(v,F) <2-OPT forallveV.

l(v,F) < 2-O0PT, otherwise algo would not have stopped.
Remains to show |F| < k.

Let F* C V,|F*| = k be optimum solution.

Observe: ¢y > 2-OPT Yu,v € F:u#v

Hence the centers in F'* that serve u and v must be
different = |F| < |F*| < k.

vV vYVvyyVvyy

// ~ // \\
24 P 7\ \
4 - ~ / \ T~ \
/ Vs A A PRN \
1 ’ Iy 7y 9, @,
I @1 1 1 1@A |
\ OP\T (WARY / !
\ - X YealL”’ /
\ = \ / /

N A4 /7

N N

~ - ~ -

~—_— Rl

opt centers F*

Dominating Set

Problem: DOMINATING SET
» Given: Undirected graph G = (V, E)

» Find: Dominating set U C V of minimum size

OPTps =min{|U| | U CV,UU |] 6(u) =V}

uclU
o O, o
\//__ _\\/
N d
~ -~

N —_———

dominating set

Theorem
Given (G, k), it is NP-hard to decide, whether OPTps < k. J

Hardness of k-Center

Theorem

Unless NP = P, for all ¢ > 0, there is no (2 — €)-approzimation
algorithm for k-CENTER.

v

Let (G, k) be DOMINATINGSET instance.

v

Suppose A is a (2 — ¢)-algorithm for k-Center

v

Define complete graph G’ on nodes V' with

{1 (u,v) € B

c(u,v) :=)
() 2 otherwise

v

3 DS of size < k = k-Center solution with value 1
Jk-CENTER solution with value < 1 = 3 DS of size < k
Run A on G":

» A(G') <2= A(G') =1 = answer to DS instance is YES
» A(G') > 2 = answer is NO O

vy

21 /292

PART 4
TRAVELING SALESMAN PROBLEM

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

¥
¥

¥

]

TSP

Problem: TRAVELING SALESMAN PROBLEM (TsP)

» Given: Undirected graph G = (V, FE) with metric cost
c: B —Qy

» Find: Minimum cost tour visiting all nodes

o el

vE

A 2-approximation for TSP

Algorithm:

(1) Compute an MST T on G

(2) Double the edges in T

(3) Compute Euler tour £ using edges in T’
(4) Shortcut to obtain a tour 7

Theorem
Algorithm yields a 2-apz.

» Let #* be optimum tour

» 3 a spanning tree on G of cost ¢(T") < OPT (just delete an
arbitrary edge from 7*)

> Degrees are even after doubling, hence £ exists and
() <2-0PT

» c¢(m) <2-OPT (G is metric, hence shortcutting does not
increase the cost) O

2

A 3/2-approximation for TSP

Algorithm (Christofides):

(1) Compute an MST T

(2) Find min cost perfect matching M on nodes V° C V/
with odd degree in T’

(3) Find Euler tour in TU M.

(4) Return 7 obtained by shortcutting the Euler tour

®) odd
M eV
T
M > /.—.

Reminder

A perfect matching in an undirected graph G' = (V', E') is an
edge set M C E' with |0p(v)] =1 Vv € V'. The cheapest
perfect matching can be found in poly-time.

A 3/2-approximation for TSP (2)

Theorem
The algorithm gives a 3/2-apz. J

» Again ¢(T) < OPT
» Vodd .= Ly € V | |67(v)| odd}.
» Claim: |V°%] is even because

Vol =y > Jor(v)| =2 Y I6r(v)| =20

veyodd veV
//—\\\ _
/ o S _ -7, ® \Vodd
N s
~ E T /,— -
~ 7’
N s
' 0——0
/ /7
/7 /
7 /
Ve /
7/ /
¢

A 3/2-approximation for TSP (3)
dd

» Let #* be optimum tour. Obtain shortcutted tour 7°¢¢ on
yedd, ¢(goddy < OPT.

Partition 7°4 into 2 matchings M, My on V°4d
Let M € {M;, Ms} be the cheaper of both matchings
(M) < Se(x0ddy < lOPT

In T"U M all nodes have even degree, hence 17'U M contains
an Euler tour of cost < ¢(T) + ¢(M) < 30PT.

vV v v Vv

A 3/2-approximation for TSP (3)
dd

» Let #* be optimum tour. Obtain shortcutted tour 7°¢¢ on
yedd, ¢(goddy < OPT.

Partition 7°4 into 2 matchings M, My on V°4d
Let M € {M;, Ms} be the cheaper of both matchings
(M) < Se(x0ddy < lOPT

In T"U M all nodes have even degree, hence 17'U M contains
an Euler tour of cost < ¢(T) + ¢(M) < 30PT.

vV v v Vv

A 3/2-approximation for TSP (3)

» Let 7* be optimum tour. Obtain shortcutted tour 7°44 on
yedd, ¢(goddy < OPT.
Partition 7°4 into 2 matchings M, My on V°4d
Let M € {M;, Ms} be the cheaper of both matchings
(M) < Se(x0ddy < lOPT

In T"U M all nodes have even degree, hence 17'U M contains
an Euler tour of cost < ¢(T) + ¢(M) < 30PT.

o,
WQ M >

My > @ [)
€ M,y

vV v v Vv

Open Problems on TSP

Open Problem
» Is there a < 3/2-apx for TSP?

» Held-Karp LP relaxation is conjectured to have integrality
gap 4/3.
» No (28 — ¢)-apx even if ¢, € {1,2}

PART 5
THE CAPACITATED VEHICLE ROUTING
PROBLEM

SOURCE: Bounds and Heuristics for capacitated routing problems
(Haimovich, Rinnooy Kan)
http://www.]jstor.org/stable/3689422

31 /292

http://www.jstor.org/stable/3689422

The Capacitated Vehicle Routing Problem

Problem: Cvrp
» Given: Undirected graph G = (C U {r}, E') with metric
costs ¢ : £ — Q4 , depot r, clients C and vehicle capacity &
» Find: A tour 7 of minimal cost which visits all clients at
least once, but must revisit the depot after each < k client
visits

< k clients

Assume: |C| =Z- k (otherwise add clients at the depot)

¢

A 5/2-apx for CVRP

Algorithm:

(1) Compute a 3/2-approximate TSP tour 7 on clients
(2) Let vg,...,v,—1 be clients in visiting order
(3) Choose randomly a starting node v;=
(4)

Starting from v;= revisit r every k£ many clients (i.e.
augment the tour with edges r — v;,v;_1 — r if i =¢ i*) to
obtain a CVRP solution 7’

Vi 41 v
. ../,..\.1,

33 /292

The analysis

Lemma
E[APX] < 20PT \

» Opt. TSP tour costs OPTrgsp < OPT hence ¢(m) < %OPT
> Pr[need edge (r,v;)] = %
» E[APX] <c(m)+ 23, ccc(rv)

» Look at a subtour in optimum CVRP (.Q. ‘\\
[J

solution. Send k/2 clients

[counter-]clockwise to r: edges in T | subtour

subtour used < k/2 times »
<torr o{/

= Yl < & _

2 3 2
< — < = .z = _
E[APX] < ¢(m) + - E c(r,v) < 2OPT—I— - 2OIDT OPT

veC

PART 6
SET COVER

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

35 /292

Set Cover

Problem: SET COVER
» Given: Elements U :={1,...,n}, sets S1,...,S, C U with
cost ¢(S;)
» Find:

OPT = _min { S s IS = U}

el i€l

Greedy algorithm:
(1) I:=10
(2) WHILE not yet all elements covered DO
) ¢(S)
3) price(S) i = —————
e Iy, S
(4) I:=TU{set S with minimum price(S)}

Theorem
The greedy algorithm yields a O(log n)-approzimation. J

Analysis

» Let eq,...,e, be elements in the order of covering.
» Suppose S (S € I) newly covered eg,...,e;

n—k—+1 elements

€1,€2,€3,...,€Cy...,€5,...,€¢,...,€Ep

covered by S

» Define price(e;) := price(S) for j € {k,...,¢}.

» Consider the iteration, when S was chosen: Stilln — k + 1
elements where uncovered and it was still possible to cover
them all at cost OPT'. Since S minimizes the price:

OPT < OPT
n—k+1 " n—j5+1

price(ej) = price(ey) <

> Finally

n

PT
APX = Zprzce (e5) <Z O]+1 —OPTZ O(logn)-OPT
n—

PART 7
SET COVER VIA LPs

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

38 /292

A linear program for SETCOVER

Introduce decision variables

1 take set S;
€Tr, =
' 0 otherwise

Formulate SETCOVER as integer linear program:
m
min Z c(Si)z; (ILP)
i=1
oz > 1 VjeU

1:JES;
z € {0,1} Vi

» Cheapest SET COVER solution = best (ILP) solution

The LP relaxation

We relax this to a linear program

» (LP) can be solved in polynomial time (see next chapter)
» Let OPTy be value of optimum solution

» Of course OPTy < OPT

» Integrality gap

a(n) = sup OPT(I)
‘ instances |Z|=n OPTf()

The algorithm

Algorithm:

(1) Solve (LP) — z* opt. fractional solution

(2) (Randomized rounding:) FOR i=1,...,m DO
(3) Pick S; with probability min{ln(n) - z¥,1}

(4) (Repairing:) FOR every not covered element j € U pick the
cheapest set containing j

Analysis

Theorem

E[APX] < (In(n) + 1) - OPTy

Consider an element 5 € U:

Pr[j not covered in (2)]

IN

1+y<e¥

IA

H Pr[S; not picked in (2)]
:jES;

[I @)

i:jES;

H e—ln(n)-x;‘
i:jES;
>1 due to LP ineq.
—
*
Ok > ijes; T

e~ In(n) _

SEES

Analysis (2)
» Cost of randomized rounding;:
Elcost in (2)] = Y Pr[S; picked in (2)] - ¢(S;)
=1
zm
<) In(n)zie(S;) = In(n) - OPTy
=1

» Cost of repairing step: In step (3), we pick n times with
prob. < % a set of cost < OPT}. Hence

Elcost of step (3)] <n-—-OPTy = OPTy

S|k

» By linearity of expectation

E[APX] = E|cost in (2)]4+E[cost in (3)] < (In(n)+1)-OPTy

O

PART 8
INSERTION: LINEAR PROGRAMMING

SOURCE: Geometric Algorithms and Combinatorial Optimization
(Grotschel, Lovész, Schrijver)

44 /292

Linear programs

Let A € R™ " h e R™ ¢ € R then
)

~

~d opt. sol.

max ¢’ x C
~
Az < b Ssoaln < b
~
x; 2>

0 Vi \ N

is called a linear program. Alternatively one might have

» min instead of max
» no non-negativity z; > 0
> Az =0
More terminology
» conv({z,y}) :={dz+ (1 - Ny | Xxe0,1]}
» Set Q@ C R" convex if Vz,y € @ : conv({z,y}) CQ
» A set P is called a polyhedron if P = {z € R" | Az < b}
» If P bounded (3M : P C [-M, M]") then P is a polytope.

Vertices
Let P = {z € R" | Az < b} be a polyhedron.

Definition

A point z* € P is called a vertex if there is a ¢ € R" such that
o* is the unique optimum solution of max{c’'z | z € P}.

Alternative names: basic solution, extreme point.

T2

T

Alternative characterisations

Lemma
Let x* € P ={z € R" | Az < b}. The following statements are
equivalent
> z* is a vertex
» There are no y,z € P with (z*,y,z pairwise different) and
z* € conviy, z}

» There is a linear independent subsystem A'x <V (with n
constraints) of Az <b s.t. {x*} ={x e R* | A'lz =V'}.

o 1
~ |
N |
|
Ig;*
\\ T
\P RN
i T

S

Not every polyhedron has vertices

Example: The polyhedron P = {x € R? | —z1 + x5 < 1} does

not have any vertices.

Lo —x1+x92 <1

A° .
A

Any polytope has vertices.

Lemma

Lemma

Any polyhedron P C R"™ with non-negativity constraints
z; > 0Vi=1,...,n has vertices.

Support of vertex solutions

Lemma
Let z* be a vertex of

P={zeR" |aJTx§ijj:1,...,m;xiZOW}

Then |{i | z7 > 0} < m (#non-zero entries < #constraints).

Z3

<
(0, 3) P={x€R2| 4‘T1+6‘T2—3}

z1 > 0522 >0

I

0.0 (3.0
Proof: There is a subsystem I, J with |J| 4+ |I| = n and
{a*} ={z| aJTLE =b;Vj € J; x; =0Vi € I}. Hence
lI| =n—|J| >n—m.

Linear programming is doable in polytime

Theorem
Given A € Q""" b € Q™,c € Q", there is an algorithm which

solves
max{c z | Az < b}

in time polynomial in n,m and the encoding length of A, b, c.
The algorithm returns an optimum vertex solution if there is
any.

» Polynomial here means that the number of bit operations is

bounded by a polynomial (Turing model).
» Encoding length (= #bits used to encode an object) for

> integer a € Z: (a) := [log,(Ja] +1)] + 1.
rational number a = % €Q: (o) =)+ (9
vector ¢ € Q" (¢) :== Y i, (¢)
inequality a”z < 6: (a) + (0)
(4) = X7 S0 (aig)

vVvyVvVvyy

matrix A = (a;;) € Qm*":

The ellipsoid method

Input: Fulldimensional polytope P C R"”
Output: Point in P
(1) Find ellipsoid E; D P with center z;
(2) FOR t=1,...,00 DO
(3) IF z, € P THEN RETURN 2z
(4) Find hyperplane a’z = § through z; such that
P C{z|alz <6}
(5) Compute ellipsoid Eyy1 D E; N {z | a’z < §} with
vol(Ep11) = (1 — 28)vol(Et

Zt+1

E;

The ellipsoid method (2)

Problem: SEPARATION PROBLEM FOR P:
» Given: y € Q"
» Find: a € Q" with oy > o’z Vo € P (or assert y € P).

N\
AS
N\
N\
N\

N
s

N\
N\

Rule of thumb

If one can solve the SEPARATION PROBLEM for P C R"” in
poly-time, then one can solve max{c’z | z € P} efficiently.

Important: The number of inequalities does not play a role.
Especially we can optimize in many cases even if the number of

inequalities is exponential.

Theorem

Let P CR" be a polyhedron that can be described as

P={z eR"| Az < b} with A € Q" ", b€ Q", and let c € Q"
be an objective function. Let ¢ be an upper bound on

> the encoding length of each single inequality in Az < b.
> the dimension n

» the encoding length of c.
Suppose one can solve the following problem in time poly(p):
Separation problem: Given y € Q" with encoding

length poly(p) as input. Decide, whether y € P. If not
find an a € Q* with a’y > o’z Yz € P.

Then there is an algorithm that yields in time poly(yp) either

» z* € Q" attaining max{c'z | z € P} (z* will be a vertez if
P has vertices)

> P empty

» Vectors z,y € Q" with x + Xy € PYA >0 and ¢’y > 1.

Here running times are w.r.t. the Turing machine model.

Weak duality

Observation
Consider the LP max{c'z | z € P} with
P={z€R"| Az <b}. Let y > 0. Then (y"A)z < yTbis a
feasible inequality for P (i.e. (y' A)z < y''bVz € P). In fact, if
yTA = c"', then

e=@wA)z <y'> VzeP

Example: max{z; +z2 | 21 + 222 <6, 1 <2, 1 —x9 < 1}
Optimum solution: z* = (2,2) with ¢/ z* = 4.

ZL‘1+$2§%

\ cC
<
%(1 +2(II2 S 6) $1+2x2_(§
0(e S 2) P-
(@ —m £ | L
13 ~
R e L /4 ig; ;2
1>
/ I

Weak duality (2)

Theorem (Weak duality)
Let Ac R™ ™ b e R™ ce R". Then
max{c’z | Az < b} < min{d'y |yTA=c"; y >0}

-~

(P) (D)

given that both systems are feasible.

» If (P) is the primal program, then (D) is the dual program
to (P).
» Note: The dual of the dual is the primal.

Strong duality

Theorem (Strong duality I)
Let Ac R™ ™ b e R™ ce R". Then

max{c' z | Az < b} =min{bTy | yT A =c"; y >0}

given that both systems are feasible.

Theorem (Strong duality II)
Let Ac R™"™ be R™ ceR" Then

max{clz | Az < b,z > 0} = min{bTy | yTA > L,y > 0}

given that both systems are feasible.

Hand-waving proof of strong duality

Claim

Let #* be optimum solution of max{c’z | Az < b}. Then there
isay >0 with y"A =¢" and y'b = c'z*.

>

>

>

v

Let aq,...,a.;, be rows of A.
Let I :={i | alz* = b;} be
the tight inequalities.

a,;f';x < b,
Suppose for contradiction ¢ ¢ {>°, a;y; | y; > 0,i € I} =:C
Then there is a A € R* with ¢!'XA >0, al A < 0Vi € I.
Walking in direction A improves objective function.

But z* was optimal. Contradiction!

ot
~

Hand-waving proof of strong duality

Claim

Let #* be optimum solution of max{c’z | Az < b}. Then there
isay>0withy’A=c"and y'b=c'z

» Let ai,...,a,; berows of A.
» Let I:= {i | al'2* = b;} be
the tight inequalities.

» Jy>0:y"A=c" and y; =0 Vi ¢ I (we only use tight
inequalities)
yTb—cla* = yTb—yT Ax* = o7 (b—Az™) Z (b —alz*) =0

_ _/—/
=19 1f7,¢[=0ifiel ..

Complementary Slackness
Warning: Primal and dual are switched here.

Theorem (Complementary slackness)

Let x* be a solution for
(P) : min{c'z | Az > b,z > 0}
and y* a solution for
(D) : max{bTy | ATy < ¢,y > 0}.

Let a; be the ith row of A and o’ be its jth column. Then z*
and y* are both optimal < both following conditions are true

» Primal complementary slackness: z; > 0= (a?)Ty = ¢;

» Dual complementary slackness: y; > 0 = aZT:I; =0b;

PART 9
WEIGHTED VERTEX COVER

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

60 /292

Vertex Cover

Problem: WEIGHTED VERTEX COVER
» Given: Undirected graph G = (V, F), node weights
c:V = Qy
» Find: Subset U C V such that every edge is incident to at
least one node in U and) ;s ¢(v) is minimized.

VAREN
P N
\ @ N { [J

0—\\—0,' vertex cover

~ -

Consider the LP

1 V(u,v) €F
0 YveV

Half-integrality

Lemma
Let x* be a basic solution of (LP). Then z} € {0, 1 5,1} for all
v €V, i.e. £¥ is half-integral.

» Suppose z* is not half-integral, i.e. not both sets are empty:
1 1
V+::{v|§<xz<1},v_ ::{v|0<xz<§}

» It suffices to show that ac can be written as convex
combination z* = 3y + 1z for 2 different feasible (LP)

solutions v, z.

A Loy
1 (LP)
x, = 0.7 !
V_osuv1 @ @ Uy € V+ z* %
i =0.3 . o0

Half-integrality (2)

» Define
Ty, +e xy,€Vy Ty —€
Yp:=<Q @, —€ x,€V_ and z, =z +¢€
xy otherwise xy
V- V+ iL“: € {05 %71} V_ V+ iL“:
—E€®, @—c

?—r»e o0 +ce® :
|
] >

W
\f

» Tight edges (u,v) € E : z} + z}; = 1 drawn solid

» Constraints satisfied by y, z for € > 0 small enough.

$:€V+
xy € V_

otherwise

€{0,3,1}
-0

The Algorithm
Algorithm:

(1) Compute an optimum basic solution z* to (LP)
(2) Choose vertex cover U := {v | z; > 0}

Theorem
U is a vertex cover of cost <2-OPTy.

Proof.
Clearly U is feasible. Furthermore

Z c(v) = Z [z]c(v) <2 Z z,c(v) =2 - OPTy.

velU veV veV

Inapproximability

Theorem (Khot & Regev '03)

There is no polynomial time (2 — €)-apz unless Unique Games
Conjecture 1s false.

Unique Games Conjecture

For all € > 0, there is a prime p := p(e) such that the following
problem is NP-hard:

» GIVEN: Equations z; =, a;jz; for some (i, j) pairs
» DISTINGUISH:

» YES: max satisfiable fraction > 1 —¢
» NoO: max satisfiable fraction < e

Example:
Ty =13 4733

9 =13 9-:131

http://linkinghub.elsevier.com/retrieve/pii/S0022000007000864

PART 10
INSERTION: ALGORITHMIC PROBABILITY
THEORY

SOURCE: Probability and Computing (Mitzenmacher & Upfal,
Cambridge Press)

66 /292

Probability theory

Definition
A (discrete) probability space consists of
» A (countable) sample space 2 modelling all possible
outcomes of a random process.
» A probability function Pr : 22 — R such that

()0<Pr[E]§1VEgQ
(() rfQ =1

c) For any (countable) sequence of pairwise disjoint events
El;EZ; 0 g Q

Pr [U E] =Y piE

i>1 i>1

Definition (Random variable)

A function X : Q — R is called a random variable.

Probability theory (2)

Definition (Expectation)
Let X : Q2 — R be a random variable. Then

E[X] = Zz’-Pr[X =

Lemma (Linearity of expectation)

Let Xq,..., X, : Q — R random variables with finite
expectations. Then

E[ZX] = ij[Xi]

Probability theory (3)

Lemma (Independence)

Random wvariables Xy, ..., X, are called independent if
VIC{l,...,n}:Vz;: Pr [ﬂ] HPr = z;]
el el
Lemma

Let X4, ..., X, independent random variables. Then

E[ﬁXl] :f[E[XZ

Probability theory (4)

Lemma (Union bound)
Let En, ..., E, CQ be events

n n

Pr [U EZ] < PiE]

1=1 =1

70 / 292

Probability theory (5)

Lemma (Markov bound)
Let X > 0 be a random variable. Then

EX
Pr[X >a] < X
a
Proof.
The value F[X] is
EX] = EX|X >a]-Pr[X >a]+ E[X | X <a]-Pr[X <a]
. e - ~ A . ~ -
>a >0 >0

> a-Pr[X > a]

Probability theory (6)

Theorem (Chernov bound)

Let Xq,...,X, be independent random variables with
X; €{0,1} and X := X1 + ...+ X,,. For any 6 > 0 one has

) ElX]
PrX > (1 +0)E[X]] < (W)

~
¥

Let ¢t :=In(1 4 6) > 0, p; := Pr[X; = 1]. Note that E[X;] = p;.
PI‘[X > (1 4 5)E[X]] et® mon.inc. Pr[etX > 6t(1—|—6) [X}]
Markov E[etX]
< il S
= ol (1+0)E[X]
< E[H?:l etXi]
= ot (L+0) E[X]
X1, Xy indep | [1mq Ele™]
B et(1+0)E[X]
(2) [, e’
= ot (1+0) E[X]
@62?:1[)@'
- ot(1+9) B[X]
EIX]=X, pi e Bl
B (1+6)0+9)
() Bl =pi- & +(1—p)- & =1+0dp; <™ O

=146

Probability theory (7)

Theorem (Variants of Chernov bound)

Let X1,..., Xy € {0,1} be independent random variables with
and X = X1 +...+ X, and 0 < <1. Then

» Let p > E[X], then
Pr[X > (14 6)u] < e #9072
» Let p < E[X], then

PriX <(1-d)p] < e w9/2

PArT 11
MINIMIZING CONGESTION

SOURCE: Randomized rounding: A technique for provably good
algorithms and algorithmic proofs (Raghavan, Tompson)
http://www.springerlink.com /content /n16347864k4536 7w /fulltext.pdf

75 /292

http://www.springerlink.com/content/n16347864k45367w/fulltext.pdf

Minimizing Congestion

Problem: MINCONGESTION
» Given: Directed graph G = (V, E') with demand pairs
(si,ti) si,ti€V,i=1,...,k

» Find: s;-f; paths P; that minimize the congestion

) - 12
max [{i: e € Py}

S1 e (R3]

52 @ oo

S3 @ o3

Minimizing Congestion

Problem: MINCONGESTION

» Given: Directed graph G = (V, E') with demand pairs
(si,ti) si,ti€V,i=1,...,k

» Find: s;-f; paths P; that minimize the congestion

) - 12
max [{i: e € Py}

S1 e ot
\. Py | ./

59 .\ oty
e

congestion of 2

.t3

~
~

A flow-based LP formulation of MINCONGESTION

> file)

ecdt(v)
file) =% onred e
f2(e) = 3 on blue e

f3(e) = %

on green e

(LP)

min C
1 v =S;

- > file) -1

ecd(v) 0

k
>_file)
i=1

v=t;

otherwise

C VeeF

1
0 ViVece E

St

S2 @

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}
v; :=min{f(e) | e € p;}

(4)
(5) fle) = f(e) —vi Ve € p;
(6) i:=i+1

~

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}

(4) v; :==min{f(e) | e € p;}
(5) () ()—wVeEpi
(6) ¢
priv =2
3 2
S o 1

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}

(4) v; :==min{f(e) | e € p;}
(5) () ()—Ui\feepi
(6) @
1
S ¢ 1

81 /292

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}

(4) v; :==min{f(e) | e € p;}
(5) () ()—Ui\feepi
(6) @
1
S ¢ 1
2

P2 1 U2 =

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}
(4) v; :==min{f(e) | e € p;}
(
(

)
5) () ()—wVeEpi
6)

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}
(4) v; :=min{f(e) | e € p;}
(
(

)
5) () ()—wVeEpi
6)

P3

84 /292

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}
(4) v; :==min{f(e) | e € p;}
(
(

)
5) () ()—wVeEpi
6)

Path Decomposition

» Input: s-t flow f: E — Q4 (without directed cycles)
» Output: Paths pq,...,p, with values v{,...,v,, >0
(1) i:==1
(2) WHILE f # 0 DO
(3) Let p; be any s-t path in {e | f(e) > 0}
(4) v; :=min{f(e) | e € p;}
(
(

)
5) () ()—wVeEpi
6)

p1:

p;} ML

Path Decomposition

Lemma

The algorithm decomposes the flow in s-t paths p1,...,pm with
m < |E|.

Z f(e ivi and Zvl—)Ve € E

e€dt(s 1=1 i:e€p;

» f remains a flow throughout the algorithm.

» In each iteration there is an edge, where the flow drops
down to 0.

An approximation algorithm for MINCONGESTION

Algorithm
(1) Solve (LP) — flows f1,..., fi frac. congestion OPTy
(2) FORi=1,...,k DO
(3) apply path decomposition to f; — (p],]) (Z v = 1Vi)
(4) Choose P; among p“s with Pr[P; = pj] v}

Theorem
With probability > 1 — = the congestion is < O(p3L) . OPTy.

Inlnn

» Consider any edge e € F.
» Let X¢ € {0,1} be the random variable, saying whether the
si-t; path uses e. X7,..., X/ are independent!

> Let X°¢:= Zle X{ be the number of paths, crossing e.
» E[X] =% Pr[Xf]=3F | file) < OPT}.
~—
=fi(e)

Proof (2)

=:0
—_—— >E[X€] 5 OPTf
o logn e
PN (TR
loglog n 5
() hiril:bn
1
Clnlir?n
c2>3 Inlnn Tl
<
- < Inn)
Chatan
= (exp(lnlnlnn—lnlnn))
n big clnn
< exp (— —lnlnn)
Inlnn
B 1
- nc/?
In 1 1
e
Pr[\/(X>1)]<|E|—3 - O

eckE

Inapproximability

Theorem (Andrews & Zhang - JACM’08)
There is no log'~¢ n-apz unless NP C ZPTIME (nroWlos(n)), J

http://portal.acm.org/citation.cfm?id=1455248.1455251

PART 12
KNAPSACK

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

91 /292

Knapsack

Problem: KNAPSACK
» Given: n objects with weight w; € Q4 and profit p; € Q.
size G € Qy
» Find: Subset of objects, maximizing the profit and not
exceeding the weight bound:

OPT = max {sz | Zwi < G}

IC{L,m} & 5e7 i€l

A dynamic program for KNAPSACK

Dynamic program:
(1) Assume restricted profits p; € {0,..., B}
(2) Compute table entries

T(i,b) = Igg?{{,i}{zwg 1Y pi > b}

jel
= minimum weight needed for a subset of the first ¢

objects to obtain a profit of at least b
using dynamic programming
T(3, b)—mm{Tz—l b) (7,—1 b—pi) +wZ}Vsz—0

-~

don’t take ¢ take ¢
(3) Reconstruct I leading to max{b € Ny | T'(n,b) < G}

Observation

The algorithm finds optimum solutions in time O(n - B).

The FPTAS

Algorithm:

(1) Scale profits s.t. pmax = n/e

(2) Round pf := |p;]

(3) Compute and return optimum solution I for weights p/

Analysis of FPTAS

Theorem
Let 0 < e < 5. The algo gives a (1 + 2¢)-apz in time O(n?/e).

» W.lo.g. OPT > ppax = n/e (we can delete objects that
even alone do not fit into the knapsack)

» Let I* be optimum solution for original profits. Let OPT"’
be optimum value for profits p’. Then

oPT' >3 pi=>Ipil > > pi—I'|>0PT-n
er* tel* tel*

> (1-¢)OPT > orT

1+ 2¢

» Let I be solution found by dynamic program:

OPT
S Y- orr > 2L
icl icl 142

» B = max{p.} < n/e hence the running time is O(n?/¢)

PART 13
MuLTi CONSTRAINT KNAPSACK

SouRrcek: Folklore

96 / 292

Multi Constraint Knapsack

Problem: MurLti CONSTRAINT KNAPSACK (MCK)

» Given: n objects with profits p; € Q; and k& many budgets
Bj. Object i has requirement o] € Q4 w.r.t. budget j.

» Find: Subset of objects, maximizing the profit and not
exceeding any budget:

OPT = max {Zp”Za?SBJ-Vj:l,...,k}

Ic{L,...n} L 57 i€l

» For arbitrary k there is no n' “-apx: Take an

INDEPENDENT SET instance G = (V, E). For each edge
e = (u,v) add an “edge budget constraint”
a¢ =a =1,B, = 1. Then OPT = OPTis.
le max x; +x9 +x3
1$1 +1.’132 +0.’133 S 1

/. s = 0z +lzg +lzs <1
2e i € {07 1} 97 /292

A PTAS for k = O(1)
Algorithm:

(1) Guess the [£] items Ijsge in the optimum solution with
maximum profit

(2) Let z* be optimum basic solution to the following LP

n
maxz.mipi
=1
n .
Y alwg < By Vi=1,...k
=1
z, = 1 Vie Ilarge
z, = 0 Vi ¢ Ilarge 1pi > min{pj | JE Ila.rge}
0<z; <1 Vi=1,...,n

(3) Output I :={i |z} =1}.

The Analysis

Theorem

For constant k the algorithm has polynomial running time.
Furthermore APX > (1 —¢)OPT.

» The produced solution is clearly feasible

» LP > OPT (since we guess elements from OPT)

» Observation: |{i | 0 < =} < 1}| < k since z* is a basic
solution and appart from 0 < ... <1 there are only k
constraints.

» For i with 0 < 7 <1 one has p; < tOPT

n
APX > M |zilp>LP- Y p
i=1 :0<zy<1
———r
<k-£OPT

OPT — k- %OPT = (1 —€)OPT

Vv

Hardness of MULTICONSTRAINTKNAPSACK

Theorem

There is no FPTAS for MULTICONSTRAINTKNAPSACK even for
2 budgets, unless NP = P.

4

Problem: PARTITION
» Given: Numbers ag,...,ap €N, S:=>"" | a;,
m € {l,...,n}
» Find: I C{1,...,n}: [I| =m, ;c;a; =5/2

» Recall: PARTITION is NP-hard.
» Define MCK instance with 2 constraints:
max y . | I
Yoimiap < S/2
Y wi(S—ai) < S(m—3)
z; € {0,1} Vi=1,...,n

100 /292

Proof

» Claim: 3 PARTITION solution < OPTyicx > m
» = Suppose 31 : [I| =m,) ,.;a; = S/2. Then this is a
MCcK solution of value m since
1
S —a;)) =mS — a;=8S(m— =
iezl(i) lezl i=8(m-73)
» < Let I be McK solution of value > m.

S 1. constr. 2. const. S
[-8-5 = |I|'S_Zai:Z(S_ai) < mS—g
el el
~———
<S/2

» Hence |I| = m. Then ineq. holds with ”="

» Thus) ;c;a; = S/2. O

» Now suppose for contradiction we would have an FPTAS
for Mck: Then choose ¢ := %‘Fl Then the FPTAS would
give an optimum solution for the instance resulting from
the PARTITION reduction.

PArT 14
BIN PACKING

SOURCE: Combinatorial Optimization: Theory and Algorithms
(Korte, Vygen)

¥

¥

]

Bin Packing

Problem: BINPACKING
» Given: Items with sizes ay,...,a, € [0,1]

» Find: Assign items to minimum number of bins of size 1.

OPT:min{k|EIIlU...L'JIk:{l,...,n}:Vj:Zai < 1}
iEI]'

<

» Define size(l) =) ,c; a;

First Fit

First Fit algorithm:
(1) Start with empty bins
(2) FORi=1,...,n DO
(3) Assign item i to the bin B with least index such that
a; + E]’eB a; <1

Lemma

Let m be the number of used bins. Then
m<2y",a4;+1<2-OPT+1.

» All but m — 1 bins must be filled with > £ (otherwise we
would not have opened a new bln

. 1
g aizg(m—l 0.5=
i=1

» Hence m <23 a;+ 1. b1n1 blnm

104 / 292

Linear Grouping

» INPUT: Instance I = (a1,...,a,), k €N
» OuTPUT: Instance I' = (af,...,a]) with a] > a; and <k
different item sizes
(1) Sort a1 <ax <...<ay

(2) Partition items into k consecutive groups of [n/k] items
(the last group might have less items)

(3) Let a! be the size of the largest item in 4’s group

group 1 group 2 group k
I [l a’.l a’.2 ol o o ol o o 1 P an |
0 \ \l \ \ 1
I : - : |

Linear Grouping (2)

Lemma
OPT(I') < OPT(I) + [n/k].

» Consider solution OPT(I). Assign item a) of group j to a
space for item in group 5 + 1

» Assign largest [n/k] items to their own bin

group 1 group 2 group k

a1 a2 Gnp

An asymptotic PTAS

Algorithm of Fernandez de la Vega & Lueker:

(1) Let I = {i|a; > €} be set of large items (other items are
small)

(2) Apply linear grouping with k = 1/¢2 groups to I — I

(3) Compute an optimum distribution of I’

(4) Distribute the small items over the used bins using First Fit

Lemma

The algorithm runs in polynomial time and uses at most
(14 2¢)OPT + 1 bins.

> Let b1,...,by /> different item sizes in I'.
» Possible bin configurations
P={pe{0,...,1/e}'/=" | pTp < 1}. |P| < (1/2)V/e.
» Solution is described by (np)pep (np, = how many times
shall I pack a bin with configuration p?), n, € {0,...,n}
» < n(/e0Y° possibilities for (np)pep.

An asymptotic PTAS (2)

» We need OPT(I') + # of bins additionally opened for the
small items

» Note that
OPT(I') < OPT(I)+[|I|-€*] < OPT(I)+[e-OPT(I)] = (142¢)-OPT

using OPT(I) > > ;c;a; > €~ |I| and OPT > OPT(I).
» Suppose we need to open an additional bin for small items.

Let m be total number of used bins. Then all but one bin
are filled to > 1 — . Hence

OPT>Zal_ (1—¢)-(m—1)

=1

and _ OPT

SECTION 14.1
THE ALGORITHM OF KARMARKAR & KARP

109 / 292

The Algorithm of Karmarkar & Karp

Theorem (Karmarkar, Karp ’82)

One can compute a BINPACKING solution with
OPT + O(log®n) many bins in polynomial time.

> Assume a; > § := % (again one can distribute items that
are smaller than % after distributing the large items.

110 /292

The Gilmore-Gomory LP-relaxation

» Let b; € N now the number of items of size a;
» n = number of different item sizes

» m:= Y., b = total number of items

» P ={peZ|alp <1} set of feasible patterns
» Variable z, = # of bins packed with pattern p

Primal
Dual
min 17z (P(P))
max y b (D(P))
prp > b T
beP py < 1 VpeP
r > 0 y > 0
> # var. exponential > # var.
> # constr. » # constr. exponential

Idea: Solve the dual with Ellipsoid!

Example

» Item sizes a1 = 0.3,a9 = 0.4
> # of items by = 31,00 =7
> Set of patterns P =

{®),6), (1))) 6)- G}

Primal
min 17z
(991%3688) > (%)
r > 0

» Opt basic solution is
z = (0,0,0,7,0,0, &)

Dual
max 3ly; + Ty
01 1
11 i
eS|
20 1
30 1
y 2 0
1.0*:3\/—2———|——T————_0‘1
\\\ : 5 : ! (L)
0.81 \\\\\ 1(0) 1(0)
\ \: : 0
| AN
0.6 \\ _:_:\.:.___(2_)__
0.4 L
v AN
0.2 D(P) | \(}) ‘<\i\>
G | \\: | \\I yl

0 02 04 06 0.8 1.0,

Weak Separation Problem

e-Weak Separation Oracle for P C R”, obj.fct. ¢ € Q"
INPUT: Vector z € Q"
OuTpPUT: One of the following

» Case (A): Vector a with a’z < a2 Vz € P

» Case (B): Point y € P with ¢’y > Tz — £

Case (A):

Case (B):

» If z € P, just return z (— case (B)).

Grotschel-Lovasz-Schrijver Algorithm

> INPUT: c€ ", 20 € Q",e,r, R € Q4 :
l?(aq),r) - P c lg(ﬂig,]%)
» OUTPUT: y* € P with cl'y* > OPTy —¢
(1) Ellipsod Ej := B(zo, R) with center zy := zg, y* := x9
(2) FOR t=0,...,poly DO
(4) Submit z; to e-weak separation oracle
(5) Case (A) — a: Compute Eyyq O EyN{zx|alz <alz}
(6) Case (B) >y € P:
(7) IF 'y > cTy* THEN y* :=y
(8) Compute Eip1 2 E N {x | Tz > cth}

Input/ /- < N
Output: =&
wkpus: 1 N

~
-

114 /292

Grotschel-Lovasz-Schrijver Algorithm

> INPUT: c€ ", 20 € Q",e,r, R € Q4 :
B(LE(),T‘) - P c B($0,R)
» OUTPUT: y* € P with cl'y* > OPTy —¢
(1) Ellipsod Ej := B(zo, R) with center zy := zg, y* := x9
(2) FOR t=0,...,poly DO
(4) Submit z; to e-weak separation oracle
(5) Case (A) — a: Compute Eyyq O EyN{zx|alz <alz}
(6) Case (B) >y € P:
(7) IF 'y > cTy* THEN y* :=y
(8) Compute Eit1 2 E N {x | Tz > cth}

Case (A):

Grotschel-Lovasz-Schrijver Algorithm

> INPUT: c€ ", 20 € Q",e,r, R € Q4 :
B(.’Eo,’f‘) - P c B($0,R)
» OUTPUT: y* € P with cl'y* > OPTy —¢
(1) Ellipsod Ej := B(zo, R) with center zy := zg, y* := x9
(2) FOR t=0,...,poly DO
(4) Submit z; to e-weak separation oracle
(5) Case (A) — a: Compute Eyyq O EyN{zx|alz <alz}
(6) Case (B) >y € P:
(7) IF 'y > cTy* THEN y* :=y
(8) Compute Eit1 2 E N {x | Tz > cth}

Grotschel-Lovasz-Schrijver Algorithm

> INPUT: c€ ", 20 € Q",e,r, R € Q4 :
B(LE(),T‘) - P c B($0,R)
» OUTPUT: y* € P with cl'y* > OPTy —¢
(1) Ellipsod Ej := B(zo, R) with center zy := zg, y* := x9
(2) FOR t=0,...,poly DO
(4) Submit z; to e-weak separation oracle
(5) Case (A) — a: Compute Eyyq O EyN{zx|alz <alz}
(6) Case (B) >y € P:
(7) IF 'y > cTy* THEN y* :=y
(8) Compute Eit1 2 E N {x | Tz > cth}

Case (B):

Grotschel-Lovasz-Schrijver Algorithm

> INPUT: c€ ", 20 € Q",e,r, R € Q4 :
B(LE(),T‘) - P c B($0,R)
» OUTPUT: y* € P with cl'y* > OPTy —¢
(1) Ellipsod Ej := B(zo, R) with center zy := zg, y* := x9
(2) FOR t=0,...,poly DO
(4) Submit z; to e-weak separation oracle
(5) Case (A) — a: Compute Eyyq O EyN{zx|alz <alz}
(6) Case (B) >y € P:
(7) IF 'y > cTy* THEN y* :=y
(8) Compute Eit1 2 E N {x | Tz > cth}

Case (B):

Analysis

Theorem

Let OPTy = max{c"z | z € P}. The GLS algorithm finds a
y* € P with cT'y* > OPTy —¢.

» Suppose for contradiction this is false. 5 5

» Let z* € P be opt. sol.; ¢ input size.

» Inequalities from case (A) never cut
points from P

» Ineq. from case (B) never cut points
better than OPTy — 5 (otherwise we
would have found a suitable y*)

» Let U := conv{B(zg,r),z*} and
U ={zeU|c's>0PT; - 5}. By standard volume
bounds: vol(U') > (1)P°W(%). But U’ C E, Vt. After
poly(yp) many it. vol(E;) = (1 — %)t -vol(Ey) < vol(U").
Contradiction!

119 /292

A useful observation

Observation
Counsider a run of the GLS algorithm for P C R” which yields
y* € P. Let a{x < b,... ,a%x < by be the inequalities which
the oracle are returned for Case (A).

» Each aZT:E < b; is feasible for P

» cly* > max{cl'z |alz <b;Vi=1,...,N} —¢

Solving D(P)

Lemma

Suppose a; > §. Then we can find a feasible solution y* to D(P)
of value > OPTy — 1 in time polynomial in n,m, %.

NS,

» Apply GLS algo for ¢ := 1. Choose yy = (g, el

B(yo, g> (5,...,C

).

» We use 7 p; < ¢ for
any feasible pattern
p € P since a; > 6

Solving D(P) (2)

» We solve e-weak separation problem for z € Q".
» If z; <0 — Case (A) (inequality z; > 0 violated)
» If z; > 1 — Case (A) (inequality z7e; < 1 violated)

» Round z down to nearest multiple of ﬁ and term this
vector y. Solve p* = argmax{y’p | p € P}

(KNAPSACK with profits from 0,1 5,2 55 ... 1)
Case y'p* > 1: Case y'p* < 1:
» Then z'p* > y'p* > 1 » Then y € D(P). And
— Case (A). ZTo—yTh<m-gt =1=2¢
% — Case (B)
.y *Z
<.yt <1
1

» GLS yields a solution y*

Finding a near optimal basic solution for P(P)

Theorem

Suppose a; > §. Then we can find a basic solution x* for P(P)
of value < OPTy + 1 in time polynomial in n,m, %

» Run GLS to obtain sol. y* to D(P) with bTy* > OPTy — 1

» Let y'p <1, p € P be inequalities returned by oracle for
case (A). P' C P has polynomial size and Y

. e P
* valid for D(P) ,
b ST iy = pP) -1 (1) ~~D(P)

Y1
» Compute optimum basic solution z* for P(P’) in poly-time.

(1) uali
D(P)+1"2Y p(p) +1

172* = p(P') “&% p(p')

» z* is also a (non-optimal) basic solution for P(P)

Geometric Grouping

» INPUT: Instance I = (a1, ...,ap), size(I) =Y. | a;b; <n,
a; >0
» OUTPUT: Rounded up instance I' with n/2 diff. item sizes
OPTy(I') < OPTy(I) plus waste of O(log)
(1) Sort items w.r.t. sizes e; < ey < ... < ey, (a; appears b;
times)
(2) Let G; = {ey, ..., e } be minimal set of items with
> icq, € = 2, then continue with Ga,.... Let ¢; := |G;| be

number of items in G; 4 1 / by ¢
(3) Remove first and last /_HJM

group — waste ! I |
eereerrrrtrrrrrr]

(4) From G; throw away

smallest ¢; — £;11 : ITl_lTi |T|Ti ﬂT Vi

items — waste

I [

(5) Round up items in G; N.“Tm R R @ waste
! T T T

to largest item — [G Gy Gy Gi Gs

124 /292

Geometric Grouping (2)

Lemma

Size of waste is O(log 3).

» Size of 1st and last group is O(1)
» Consider group G;. Total size of items in G; is < 3.
» Num of groups is < n/2. Cleary >0 > 0y >
» The n; := ¥¢; — £; 1 smallest 1tems in GG; have size < 372—;.
1 e1<2/5 1
te < 3 < 3 -
e <35 3 <331 02 ot

&- items of total size < 3
N

-
G;

n; items of total size < 3%

The algorithm

Algorithm:

(1) Compute a basic solution z to P(P) with 172 < OPTy +1

(2) Buy |z,] times pattern p, let I be remaining instance

(3) Apply geometric grouping to I (with n different item sizes)
— I' (with n/2 different item sizes)

(4) Recurse

Theorem
One has APX < OPT; + O(log?n).

» Since z is basic solution, |{p | z, > 0}| < n.

> After (2) size(I) <3 (zp — [7p]) < n.

» Let 2! be solution z in iteration t. We buy > |z},] bins,
but OPTy decreases by the same quantity.

» We pay in total OPT+ total waste. We have O(logn)
recursions; in each recursion we have a waste of

O(log §) = O(logn). O

State of the art

» Computing OPT exactly is NP-hard even if the numbers
a; are unary encoded (i.e. BINPACKING is strongly
NP-hard).

Open question
One can compute a BIN PACKING solution with < OPT + 1
bins in poly-time?

Mixed Integer Roundup Conjecture
One has OPT < [OPTy] + 1.

127 /292

PART 15
MINIMUM MAKESPAN SCHEDULING

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Minimum Makespan

Problem: MINIMUM MAKESPAN SCHEDULING

» Given: n jobs, job j has processing time p;. Number m of
machines.

» Find: Assign jobs to machines to minimize the makespan.

J

OPT = min { _max { pj}}
0. Om={1,...n} Li=lom | &

A PTAS for Minimum Makespan Scheduling
Algorithm:

(1)
(2)

Guess OPT

Call job with p; > e - OPT large and small otherwise —
sub-instance I of large jobs

Round processing times p; for large jobs down to multiple
of OPT - £? — instance I' with processing times Pj

Distribute rounded large jobs I’ such that makesepan is
< OPT

Distribute small jobs consecutively on least loaded machine

Analysis

Lemma

The algorithm runs in polynomial time and produces a
makespan of at most (1 4+ ¢)OPT.

» Large jobs with rounded processing times can be
distributed optimally in polynomial time since: 1/¢?
different job sizes, at most 1/¢ large jobs per machine,
hence O((1/£2)Y/%) many ways how to pack a machine,
hence < nO((1/e*)*) possible solutions.

» Clearly OPT(I') < OPT(I) < OPT. Let I; set of jobs on
most loaded machine (attaining the makespan).

» Case: Small jobs don’t inc. makespan. No small job in I;.

ZjelinSOPT
ij < Z (pj +e- EOPT) < (1+¢e)OPT
J€el; Jj€el;

Analysis (2)
» OPT > L Z?Zl p; = average load
» Case: Small jobs do inc. makespan. Then all machines are
filled up to makespan — ¢ - OPT < OPT. Hence
makespan < (1 +¢)OPT

makespan- =+ + =44 -4+ -
| —1 {<e-OPT

< OPT

Hardness

Lemma
There is no FPTAS for MINIMUM MAKESPAN SCHEDULING
unless NP = P.

» Recall that given a BINPACKING instance
I =(ay,...,ay),a; € N unary encoded and m, B € N, it is
NP-hard to decide, whether m bins of size B suffice to
pack the items.

» Suppose there is an FPTAS for MINIMUM MAKESPAN
SCHEDULING. Take items as jobs, m as number of
machines and ¢ := m Then the FPTAS would give

an exact answer.

opt. makespan < B < 3 BIN PACKING solution with m bins.

PART 16
SCHEDULING ON UNRELATED PARALLEL
MACHINES

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

134 /292

Scheduling on Unrelated Parallel Machines

Problem: UNRELATED MACHINE SCHEDULING
» Given: Jobs J ={1,...,n}, machines M = {1,...,m}.
Running job j on machine 4 takes a processing time p;;.
» Find: Assign jobs to machine to minimize the makespan.
OPT = min { max { pij}}
€l;

LU..UI,={1,...,n} Li=l,...m

J

job j

makespan—————-——— -]

How NOT to solve the problem

LP: Variables:
minT
Z z; = 1 VjeJd 1 job j is assigned
ieM Tij = to machine ¢
Zpijxij < T VieM 0 otherwise
jed T = makespan

zij > 0 ViVy

Example: 1 job with execution time p;; =m, Ve =1,...,m
Fractional solution: z;; = % Integer solution: z1; =1
T=m - -tT-
T=1

> Integrality gap of > m

A 2-approximation

Algorithm:
(1) Guess OPT

(2) Compute basic solution z* to

Z.’I)ij =1 VjeJ

€M
Zpijxij < OPT VieM
JjeJ
ziyj = 0 fori,j with p;; > OPT

Tij > 0 V’iEMVjEJ
(3) z7; =1 = assign job j to machine i
(4) For not yet assigned jobs: Assign j to a machine ¢ with
0< xfj < 1 s.t. every machine receives at most 1 extra job

Analysis

Theorem

The algorithm runs in polynomial time and the makespan is at
most OPT + max{p;; | zj; > 0} <2-OPT.

» Running time is clearly polynomial:
We solve a poly size LP in (2) and solve
a maximum matching problem in (4).

> Let H = (J UM, E) with
E:={(j,7) | 0 <zj; <1}. For claim on
makespan we need to show that E
contains a
{j not assigned in (3)}-perfect
matching.

138 / 292

Analysis

Theorem

The algorithm runs in polynomial time and the makespan is at
most OPT + max{p;; | zj; > 0} <2-OPT.

» Running time is clearly polynomial:
We solve a poly size LP in (2) and solve
a maximum matching problem in (4).
> Let H = (J UM, E) with
E:={(j,7) | 0 <zj; <1}. For claim on
makespan we need to show that E
contains a .
{j not assigned in (3)}-perfect
matching.

= @

139 /292

Assigning the fractional jobs (1)

Claim

Consider a connected component (J U M, E) of H. Then)
T* = (2];)(j,i)er 1s still a basic solution of the subsystem LP(E).

-————-

-~ ~

» m; = 1 VjelJ (LP(E))

ieM
Zpijwij < T-— Zpijxrj Vi € M
jeg J¢J

ngijg 1 V(],Z)EE

Reason: If 7 € conv({y("),4?}) then
z* = (z*,2") € conv({(y"), &%), (y?, 2%)}).
Contradiction.

140 / 292

Assigning the fractional jobs (2)

> . . .
Z is basic solution, hence — 4constr. in LP(E)

_ —— _
£l ={(5,4) |0 < z}; <1} < |J| + | M| < #nodes in E

» But £ is connected, thus E is a tree + < 1 extra edge.

» Jobs have degree > 2, hence leaves must be machines. As
long as there are machine-leaves i, assign a j with z;; > 0
to ¢+ and remove both, 7 and j.

» A single even length job-machine cycle (potentially)
remains. Extract a matching and we are done.

e

141 /292

State of the art

Exercise

There is no (3/2 — ¢)-apx for UNRELATED MACHINE
SCHEDULING unless NP = P.

Open Problem 1
Is there a 3/2-apx?

Open Problem 2

A (2 — e)-apx is still unknown even for the RESTRICTED
ASSIGNMENT PROBLEM where p;; € {p;, 00}

Theorem (Ebenlendr, Krcal, Sgall "08)

There is a 1.75-apx for the RESTRICTED ASSIGNMENT
PROBLEM if each job j is admissible on < 2 machines.

PART 17
MULTIPROCESSOR SCHEDULING WITH
PRECEDENCE CONSTRAINTS

SOURCE:

» Graham (1966): Bounds for certain multiprocessor anomalies
(Bell Systems Technical Journal).

» Lecture notes of Chandra Chekuri
http://www.cs.illinois.edu/class /sp09/cs598csc /Lectures/lecture’ 6.pdf

143 /292

http://www.cs.illinois.edu/class/sp09/cs598csc/Lectures/lecture_6.pdf

Multiprocessor Scheduling with Precedence
Constraints

Problem: PRECSCHEDULING (P | p;, prec | Ciax)
» Given: Jobs Ji,...,Jy, job J; has processing time p;,
precedence relation <, # of machines m
» Find: (Non-preemptive) schedule of the jobs on m
machines respecting the precedence order and minimizing
the makespan

» J; < Jy means that J; has to be finished, before .J; is
allowed to start.
Input: Solution:

Ji < Jg Dy

makespan |, /202

The algorithm

Graham’s List Scheduling:
(1) FORt=1,... DO
(2) IF a machine j € {1,...,m} is idle at ¢
AND all predecessors of some (not yet processed) job J; are
already finished
THEN schedule J; on machine j starting from ¢

» In other words: At any time, just start a job whenever
possible.

The analysis

Theorem J

The makespan of the produced schedule is at most 2 - OPT

» Find a sequence (w.l.o.g. after reordering) Jy, ..., Ji s.t.
» J is the last job of the whole schedule that finishes
» J1 < J2 < ... < Jj (chain in the partial order <)
» J; is the predecessor of J; 1 that is finished last

1 N |
m NN !
makéspan

» After J; finished J;;1 is startet as soon as a machine is
available. Hence between J; is finished and J;y; begins, all
machines must be fully busy.

» length of all busy periods < OPT

Length of chain Jy,...,J; is < OPT

» Makespan < length chain + busy period < 2- OPT

v

146 /2

92

Hardness

Theorem (Svensson - STOC’10)

For every fized € > 0, there is no (2 — €)-apz unless a variant of

the Unique Games Conjecture is false.

4

Open Problem
What is the complexity status of P3 | p; = 1, prec | Cpax (i-e.

PRECSCHEDULING with unit processing times and 3 machines)?

Known:
> 4/3-apx.
» P2 |p; = 1,prec | Cpax is poly-time solvable

PART 18
EucLipEaAN TSP

SOURCE: Polynomial-time Approzimation Schemes for Euclidean
TSP and other Geometric Problems (Arora 98, Link)

148 /292

http://www.cs.princeton.edu/~arora/pubs/tsp.ps

Euclidean Travelling Salesman Problem

Problem: EUCLIDEANTSP
» Given: Points v, ...,v, € @ in the plane.

» Find: Minimum cost tour visiting all nodes

n
o {20 = vl

[] @
X /
[
vi=(y]) @ v = (;)
ooz

Goal: Find a PTAS!

A random bounding box

» Choose a minimal square S containing all points.

» W.lo.g. this square is [£, L)? with L = n/e € 2V after
scaling. Hence OPT > L = n/e.

» Choose a,b € {1,...,L/2} randomly.

» Let R=[a,a+ L] X [b,b+ L] O S be the randomly shifted

bounding box.

| L |
= -
L_____
[] {]
\.// L
Ll o\!oS
2
| |
bq--- T T -
11 I
11 |
(IR A

Discretization

» Move all points v to nearest point in Z2.
» Changes the cost of any tour by < 2n < 2¢- OPT
(since OPT > L = n/e)

~®

~e

I.

151 /292

The dissection

» Divide the L >< L bounding box into 4 squares of size g X g
» Divide each 5 X & square into 4 squares of size % X %
» Recurse, untll umt size squares are reached
> Size 2—L1 X A squares are level 7 squares
>

A line segment is on level 4, if it is the boundary of a level ¢
square but not of a level i — 1 square
A grid line is on level 1, if it consists of level ¢ segments

L L]

v

I,level 2 square

level 0 square—s .

1§ B !
° II& - -level 1 square
1

T

The dissection

» Divide the L >< L bounding box into 4 squares of size £ x
» Divide each 5 X & square into 4 squares of size % X #
» Recurse, untll umt size squares are reached
>
>

L L

Size 25 X 3+ squares are level ¢ squares

21

L
272
L L

4 4

A line segment is on level 4, if it is the boundary of a level ¢

square but not of a level i — 1 square
A grid line is on level 4, if it consists of level 7 segments

v

)

level 2 segment/

L

e

level 1 segment

The dissection

Divide the L >< L bounding box into 4 squares of size £ x
Divide each 5 X & square into 4 squares of size % X #

L L

Size 25 X 3+ squares are level ¢ squares

21

>
>
» Recurse, untll umt size squares are reached
>
>

L
272
L L

4 4

A line segment is on level 4, if it is the boundary of a level ¢
square but not of a level i — 1 square

v

)

level 2 grid ling™ |

L

e

A grid line is on level 4, if it consists of level 7 segments

level 1 grid line

Basic idea

» Method: Use dynamic programming.

» Idea: Consider a level ¢ square () in the dissection. For all
ways how OPT can intersect (), compute the cheapest
extension inside () that visits all nodes in @) (using that we
computed similar information already for all smaller

squares).
Q

opt. tour

» Difficulty: The number of possibilities how OPT can
cross () might be exponential/infinite.
» Solution: Limit this number.

Basic idea

» Method: Use dynamic programming.

» Idea: Consider a level ¢ square () in the dissection. For all
ways how OPT can intersect (), compute the cheapest
extension inside () that visits all nodes in @) (using that we
computed similar information already for all smaller

squares).

opt. tour

» Difficulty: The number of possibilities how OPT can
cross () might be exponential/infinite.
» Solution: Limit this number.

Portals

» On any level ¢ line segment, place %logL many
level i portals (plus one per corner)

» Distance of consecutive level 7 portals is < % . lﬁgi

\

1
>E log L portals

L/2
_J
le—>{
L € tal
< 2 logL level i square por

157 / 292

Well rounded tours

Definition

A tour 7 is called well-rounded
tour if:

» It leaves and enters squares
only at portals.

» Each square is entered at most
% times.

» Each square has < glogL + 4 many portals. The number
of times that a well-rounded tour can leave/enter a square
is bounded by < (£ log L + 4)9(1/¢) (which is polynomial).

Theorem (Structure Theorem)
There is always a well-rounded tour of cost < (14 O(e))OPT. J

158 / 292

Well rounded tours

Definition

A tour 7 is called well-rounded
tour if:

» It leaves and enters squares
only at portals.

» Each square is entered at most
% times.

<

» Each square has < glogL + 4 many portals. The number
of times that a well-rounded tour can leave/enter a square
is bounded by < (£ log L + 4)9(1/¢) (which is polynomial).

Theorem (Structure Theorem)
There is always a well-rounded tour of cost < (14 O(e))OPT. }

159 / 292

Relation OPT vs. number of crossings

» For the optimum tour m and a grid line 4, let #(m, £) be the
number of times that = crosses £.

1

3 Ym0 <OPT<V2- > m)
grid lines ¢ grid lines ¢

» OPT = O(1) - #crossings -

» Goal: Turn opt. tour 7 | =
into a well-rounded tour, l \
such that the expected cost I </ —
increase is O(e) - Y, t(m,) I7T ~—_

» Alternatively: Average I T
cost increase per crossing I/ _—
must be O(1) - e /

t(m, l) =4

160 / 292

Bending edges through portals

» Consider a crossing of the l
. s L €
optimum tour 7 at a grid line ¢ — .
: 2t log L
. . .2 []
» Pr[line / is at level 7] = T =
» If line £ is at level 4, we have to S~g7 7
bend edge through the nearest
€
tal and 1 < —-
portal and loose < % gl T
» The expected length increase is /

lo

g L
Z Pr[¢ at level 7] - portal distance at level ¢

Patching Lemma

Lemma

Given a TSP tour w, crossing o line segment £ of length s an
arbitrary number of times. 3 tour 7' crossing £ at most 2 times
which can be obtained by adding segments of length < 6s.

» Cut 7 at £. Let Lq,...,L; be endpoints on the
left side, Ry,..., R; end points on the right.
Imagine their distance to ¢ as 0. Say t is even _

(other case is similar). :)

» Add tours on L;’s and on R;’s of cost < 2s each. T

» Add matchings (Lo;_1, Lo;), (Ro;—1, Ro;) for C s
2i < t and 2 edges (L; 1, R; 1), (L, R;) of total :)
cost < 2s.

» Degree of VU{L;,R; |i=1,...,t} is even. 0 -

Graph is again connected. Hence there is a tour
visiting all nodes (at least once).

Patching Lemma

Lemma

Given a TSP tour w, crossing o line segment £ of length s an
arbitrary number of times. 3 tour 7' crossing £ at most 2 times
which can be obtained by adding segments of length < 6s.

» Cut 7 at £. Let Lq,...,L; be endpoints on the
left side, Ry,..., R; end points on the right.
Imagine their distance to £ as 0. Say ¢ is even

(other case is similar). ')

» Add tours on L;’s and on R;’s of cost < 2s each. T

» Add matchings (Lo;_1, Lo;), (Ro;—1, Ro;) for C s
2i < t and 2 edges (L; 1, R; 1), (L, R;) of total)
cost < 2s.

» Degree of VU{L;,R; |i=1,...,t} is even. L 0 R =
Graph is again connected. Hence there is a tour |(-)|

visiting all nodes (at least once).

Patching Lemma

Lemma

Given a TSP tour w, crossing o line segment £ of length s an
arbitrary number of times. 3 tour 7' crossing £ at most 2 times
which can be obtained by adding segments of length < 6s.

» Cut 7 at £. Let Lq,...,L; be endpoints on the
left side, Ry,..., R; end points on the right.
Imagine their distance to £ as 0. Say ¢ is even

(other case is similar).

» Add tours on L;’s and on R;’s of cost < 2s each. T

» Add matchings (Lo;_1, Lo;), (Ro;—1, Ro;) for s
2i < t and 2 edges (L; 1, R; 1), (L, R;) of total
cost < 2s.

» Degree of VU{L;,R; |i=1,...,t} is even. L 0 R =
Graph is again connected. Hence there is a tour |(-)|

visiting all nodes (at least once).

164 /292

Patching Lemma

Lemma

Given a TSP tour w, crossing o line segment £ of length s an
arbitrary number of times. 3 tour 7' crossing £ at most 2 times
which can be obtained by adding segments of length < 6s.

» Cut 7 at £. Let Lq,...,L; be endpoints on the
left side, Ry,..., R; end points on the right.
Imagine their distance to £ as 0. Say ¢ is even

(other case is similar). y

» Add tours on L;’s and on R;’s of cost < 2s each. T

» Add matchings (Lo;_1, Lo;), (Ro;—1, Ro;) for O < s
2i < t and 2 edges (L; 1, R; 1), (L, R;) of total
cost < 2s.

» Degree of VU{L;,R; |i=1,...,t} is even. L 0 R =
Graph is again connected. Hence there is a tour |(-)|

visiting all nodes (at least once).

Reducing the number of crossings (1)

MODIFY Procedure:
» Input: Grid line £ on level ¢
» Output: Tour 7’ crossing each segment of £ at most 1/e
times
(1) FOR j = log L downto i« DO
(2) FOR all level j segments DO

(3) IF segment is crossed > 1/ times
THEN reduce # crossings to 2 via Patching Lemma

j=logL j=1+1 j=1 Output:

/ / / 4 / 166 /292

Reducing the number of crossings (2)

>

Starting from optimum tour, we apply MODIFY to all
horizontal and vertical grid lines.
Now consider a fixed grid line £. Want to show:

Elcost for crossing reduction at £] < O(e) - t(n, £)

Let ¢y ; be number of times that MODIFY is applied to level
j segments of grid line £

Each application of MODIFY reduces the number of crossings
of tby 1/e —2 > L (assuming e <1/4). Hence

D ey < 1/ = 2¢ - t(m, £)

3>0

The cost increase of a single crossing reduction on level j is
< 6 £ (by Patching Lemma).
Thus

El[cost increase at £ | £ at level |- < Z coj-6
j2i

Reducing the number of crossings (3)

<

reordering

<

2o j>0 e, S2et(m L)
<

E|cost for crossing reduction at /]

Z Pr[¢ at level 7] - E[cost increase at £ | £ at level 1]

i>0

‘ L
DT e by

i>0 §>i

DIE B
27
J20 1<J
——
<22

123 ey

J20

24¢ - t(m,1)

» 3 well-rounded tour of cost (1 + O(¢e)) - OPT

The dynamic program (1)
» Table entries:

A(Q7 (Slutl)a e (Stptq))

= cost of cheapest extension of ¢ subtours to well-rounded tour
visiting all nodes in @) such that subtour ¢ goes from s; to t;
V squares @ Vq € {0,...,4/¢} V portals s;,t; of Q

» Number of table entries:

» O(n -log L) many non-empty
squares ()

» There are O(L logn)
many ways to choose O(1/¢)
portals out of O(LlogL)
portals

» Total number of entries:

O(1/¢)

O(n(logn)°(/9)

The dynamic program (1)
» Table entries:

A(Q7 (Slutl)a e (Stptq))

= cost of cheapest extension of ¢ subtours to well-rounded tour
visiting all nodes in @) such that subtour ¢ goes from s; to t;
V squares @ Vq € {0,...,4/¢} V portals s;,t; of Q

» Number of table entries: 89

» O(n -log L) many non-empty o Q
squares () ¢ t

» There are O(% logn)©1/%) ! 2
many ways to choose O(1/¢) S3
portals out of O(LlogL)
portals s1

» Total number of entries:

O(n(logn)*/9)) t3

170 /292

The dynamic program (2)

Lemma
The best well rounded tour can be computed in O(n(log n)O(l/E))J

» Compute table entries bottom-up (starting with smallest
squares)

» For entry A(Q, (s1,t1),...,(Sq,tqg)):
Let Q1,...,Q4 be the subsquares of
Q. Guess (i.e. try out all
combinations) the visited portals of
Q1,...,Q4 and their order
— O(% log n)?1/%) combinations

» Look up table entries for Q1,...,Q4
to determine cost.

171 /292

The dynamic program (2)

Lemma
The best well rounded tour can be computed in O(n(log n)O(l/E))J

» Compute table entries bottom-up (starting with smallest
squares)

» For entry A(Q, (s1,t1),...,(Sq,tqg)):
Let Q1,...,Q4 be the subsquares of
Q. Guess (i.e. try out all
combinations) the visited portals of
Q1,...,Q4 and their order
— O(% log n)?1/%) combinations

» Look up table entries for Q1,...,Q4
to determine cost.

Generalizations

Advantages of this approach:

» Applicable for many graph optimization problems, when
nodes are points in the Euclidean plane (like STEINER
TREE, k-MEDIAN, STEINER FOREST, k-TspP, k-MST.

» Works for general £,-metrices (like maximums-norm)
» Extends to any constant dimension

» (Theoretically) nice dependence on e

Theorem (Arora ’98)

Let d € Nye > 0,p € NU {oo} be fized constants. Then there is
an expected (1 + €)-apz for TSP if the nodes are points in R%
and distances are measured as ||v — ul|, := (Z?Zl |v; — u;[P)L/P
in time n(O(log n))o(‘/a'l/s)d_l. This can be derandomized by
increasing the running time by a factor of O(n/e).

PART 19
TREE EMBEDDINGS

SOURCE: A tight bound on approximating arbitrary metrics by tree
metrics (Fakcharoenphol, Rao, Talwar: Link)

174 /292

http://research.microsoft.com/pubs/74347/06-journal.pdf

Tree metric

Definition (Tree metric)

Given nodes V, spanning tree T', edge costs c(e) Ve € T. Then
d' .V xV — Q; with

d” (u,v) := length of v — v path in T

is called a tree metric.

7
VN

Motivation

» Motivation: Many optimization problems are easy on
trees: STEINER TREE, TSP, k-TSP, STEINER FOREST, ...

» Question: Can we for any node set V' and metric
d:V xV — Q,, find a tree metric d’ such that

d(u,v) < d''(u,v) < a-d(u,v) Yu,v €V

for a small distortion «?

4

o———— @
u d(u,v) v

» Possible approach: For some graph optimization
problem, compute tree T'. Then solve problem on tree
optimally (or get O(1)-apx). Obtain a a-apx (or O(«a)-apx)
for original problem.

Motivation

» Motivation: Many optimization problems are easy on
trees: STEINER TREE, TSP, k-TSP, STEINER FOREST, ...

» Question: Can we for any node set V' and metric
d:V xV — Q,, find a tree metric d’ such that

d(u,v) < d''(u,v) < a-d(u,v) Yu,v €V

for a small distortion «?

ﬁ@

u d(u,v)

» Possible approach: For some graph optimization
problem, compute tree T'. Then solve problem on tree
optimally (or get O(1)-apx). Obtain a a-apx (or O(«a)-apx)
for original problem.

177/

/ 9299

One good, one bad news

Bad news:

1 __e

/
Theorem (Rabinovitch, Raz '95) ’JN
Any tree embedding for an n-cycle 1 /’
t have distortion (n). . 1

must have distortion Q(n) 1\.

Good news:

_//\ » Delete a random edge.

1

1 » For u,v € V with d(u,v) = k one has

1 / d” (u,v) = n — k with probability £ and
—1\\ d" (u,v) = k with probability 1 — %

» Expected distortion is at most 2 since:

1

v

E[dT (u,v)] = E(n—1~c)+(1—§) <2k
- <k <k

http://www.wisdom.weizmann.ac.il/~ranraz/publications/Pyuri2.ps

The Theorem

Theorem (Fakcharoenphol, Rao, Talwar ’03)

Given any metric (V,d), one can find randomly (in time O(n?))
a tree metric (V UU,d") such that

> d(u,v) < d''(u,v) Yu,v €V (i.e. d' dominates d)
» E[d" (u,v)] < O(logn) - d(u,v) Yu,v € V

That means the tree metric has an expected O(logn) distortion.

4

Remark: The tree will contain extra nodes U, which were not
contained in the original nodeset.

Preliminaries

Assumptions:
» 20 = maxy yev {d(u,v)} is diameter
» d(u,v) > 1Vu#v

Definition

A set system S is called laminar if for every Si,S2 € S one has
either S;N Sy, =0 or S; C Sy or Sy C 5.

Idea: Obtain a random laminar family.

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
(2) Choose g € [0,1] uniformly at random
(3) Ds:={V}
(4) FOR i=46 —1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (in D;;1) form a new cluster of D;

,// o (7)
Ds: ¢ o 7(2)
. n(3)
{
! e (1) o 7(6)
“\ o m(8)

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'

(
(
(

2) Choose g € [0, 1] uniformly at random
3) D5 = {V}
4) FOR i=0 -1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (in D;;1) form a new cluster of D;

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
2) Choose g € [0, 1] uniformly at random
3) D(g = {V}
4) FOR i=0 -1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (in D;;1) form a new cluster of D;

(
(
(

,/, \\ : b ’/T(Y\) II \\
. . v
D;: //, o 7(2) Vy \ :' . 7r‘|4)
, VA ' 1
S '\ e 7r(|.3)| 1
’ vy [I
\
’ \ S U | 1
/ o (1) o 7(6) \ e nf5)
1)} \ 1
I Re U/
L e

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
(2) Choose g € [0,1] uniformly at random
(3) Dy :=A{V}
(4) FOR i=46 —1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢~1
(6) All nodes that are assigned to the same node and are in the

same cluster (in D;;1) form a new cluster of D;
- - N i
\

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
(2) Choose g € [0,1] uniformly at random
(3) Ds:={V}
(4) FOR i=46 —1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (in D;;1) form a new cluster of D;

1 \ -
/ \ [71'(\7) II \‘
. 71',(2) ! \ | e(4)
-- \ L
R e 7T‘|(3) ! I
-~ - Pk \\ .¢' |l l'
’ > ’ \ 1 I
/ o i} e n(6) o i(5)
! \\ /l \ /
| | - \ 7
‘\ o 7T(8) /' -
\ /

N . 185 /292

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
(2) Choose g € [0,1] uniformly at random
(3) Ds:={V}
(4) FOR i=46 —1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (in D;;1) form a new cluster of D;

186 / 292

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
2) Choose g € [0, 1] uniformly at random
3) D(g = {V}
4) FOR i=0 -1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (in D;;1) form a new cluster of D;
o7 (7)
Dy : o 7(2) o 7(4)

(
(
(

e 7(3)

Clustering

Algorithm:
(1) Choose a random permutation 7 on nodes V'
2) Choose g € [0, 1] uniformly at random
3) D5 = {V}
4) FOR i=0 -1 DOWNTO 0 DO
(5) Assign every node to first node (w.r.t. order 7) that has
distance < 27 . 2¢—1
(6) All nodes that are assigned to the same node and are in the
same cluster (1n D;;1) form a new cluster of D;

(
(
(

7’ A 127\ N
// ,/, TS \\ ||‘\. Y) II \\ \\
D D - , LR L ll 1\ 4 N
0y.-,/Ds: o, ll.’]’(2) \ \\ e ‘
4 N v \
’ e pN A v ‘| u \
’ ’ - VL - 1 || s
A Y
LS AN oﬁ(‘ﬁﬁ T \
P SN LA RN I ||
1 ’ ~ -\ S Y \
/ 7N DI N ||
] / 4 =3\ L™\ N - [T Ks 1
vy "T(I‘) 11 e w(h) \"F:5 !
1 1 Sav AN 4 1
1 <=0 W=
1 " _ " Re “w II 1
\ 7 N \“v 1
\l\ v 1 em(8) ’ 7 = /
\ e ’ s
WM . - 188 / 2b2

Defining the tree metric

» Each cluster becomes an extra node
» Insert edge of cost 2/ between S € D;, S’ € D;_; if S’ C S

—_—_~

: /’w ¥
/\ /\ /\

» Note that in the last iteration (i = 0) we assign each node
to a cluster center at distance < 28 .20-1 < 1. Hence the
clusters of Dy are indeed singletons (since
d(u,v) > 1Vu #v).

D;

d’ dominates d

Lemma
The tree metric d' dominates d, i.e. d(u,v) < d (u,v)Vu,v € VJ

» Suppose u, v are in the same D; cluster, but separated by
D;4

» Cluster in D; have diameter < 2.2 .2i-1 < i+l

» On the other hand d”'(u,v) > 2- 2"

» Hence d(u,v) < 2 < d¥(u,v) O

‘———_

b, ,-/_-—i\(
Di 4 /—N" .T2.i .T2:
/ \ ANVAW

Ds

Dy

190 / 292

Proof of O(logn) average distortion

Lemma
For any u,v € V: E[d" (u,v)] = O(logn) - d(u,v)

» If only one of the nodes u, v is assigned to center w in an
iteration 4, then we say w cuts edge (u,v) at level 1.

» We want to charge the u-v distance to that cluster center
that cuts the u-v edge

dL (u,v) := Z 2it2
i:w cuts (u,v) at level ¢
» Then
d¥ (u,v) < Z dL (u,v)
weV

since: Suppose u, v are separated by D; (i.e. they are in the
same D;; cluster). Then d (u,v) < E;ﬂ] 2.2/ <2202
But in iteration 7, we find 2 cluster centers w,w’ that cut
edge (u,v), for both dZ(u,v),dL, (u,v) > 22,

Proof of O(logn) average distortion (2)

» Assume w.l.o.g. that d(u,ws) < d(v,ws).
» Let wy,wo, ... be nodes in increasing distance from u
» ws can cut (u,v) only if

» (A) T level i, where d(u,w,) < 252171 < d(v,w,)
» (B) u is assigned to w;

wsfl. uil We_o®
26271 | wy,

2,8 X 2i—1

Proof of O(logn) average distortion (3)

» Assume for a second: 3i: 277 < d(u, w,) < d(v,ws) < 2.
» Then there is only one level 7 at which ws might cut (u,v)

» By triangle inequality, the length of the interval
d(u, wy), d(v, w,)] s

d(v,ws) — d(u,ws) < d(u,v).

21— 14 d(u,v)) .

» Logscale length of interval is at most logy (=1

2071+ d(u,) leg(142)<2e - d(u, v)

Pr{(4)] < log; (T) Sy A
Standard: d(u, ws) d(v, ws)
0 1 i—1 '

Logscale:

Proof of O(logn) average distortion (3)

» Assume for a second: 3i: 277 < d(u, w,) < d(v,ws) < 2.
» Then there is only one level 7 at which ws might cut (u,v)
» By triangle inequality, the length of the interval
(s w,), d(v, w,)] 35
d(’”a ws) - d(ua ws) < d(ua U)'

» Logscale length of interval is at most log, (W)

201 4 d(u,v) leg2(1+2)<2z _ d(u,v)
Pr{(4)] < log; (T) Sy A
Standard: d(u, wy) d(v, ws)
o | oot |
1 I I

%i) ! 2=1 e ! 211—1 ' ! |
0

B —L 1. 17

Logscale: cluster sizes

Proof of O(logn) average distortion (4)

» Next, condition on (A).
1
Pr[u assigned to ws|(A)] < Pr[ws 1st of wy, ..., ws wr.t. 7] = —
s

» If (A) & (B) happen, this incurs cost of 2¢+2.
» Hence

Bl (u,)] < 272 2.) Lo o))

» For general case: Let §; be length of
[d(u,ws), d(v, ws)] N [2°~1, 2] Then applying the arguments
for each 0;: E[dL (u,v)] < 32,6 - O(%) < Oy,
» Then
n—2 n—2

Bl (u,0)) < 3 Bl (0,0)] = 3 0842 = Oftogm)-d(u,v)

s=1 s=1

Distortion must be Q(logn)

Definition (Expander graph)
An undirected graph G = (V, E) is called an (n,d, a)-expander
graph if

» [V]=n

» constant degree: deg(v) =dVv eV

> edge expansion
_ e 16

a= min -——

1<|s|<n/2 ||

» Random d-regular graphs are good expanders w.h.p.
» The diameter of expanders is ©(logn).

Theorem (Bartal ’96)

A randomized tree embedding of any (n,d, o)-expander graph
(d, o constants) must have an edge with expected distortion of
Q(logn).

http://www.cs.huji.ac.il/~yair/pubs/B-prob-approx.ps

Steiner nodes are not really necessary

Theorem (Gupta '01)

Given a weighted tree T = (V, E, ¢), where the node set
V = RUS consists of required vertices R and Steiner nodes S.

Then in linear time, one can find o weighted tree
T* = (R, E*,c*) such that

d" (u,v) < d" (u,v) <8-d"(u,v)

where dX and d¥" are the induced tree metrices.

http://www.cs.cmu.edu/%7Eanupamg/papers/soda01.pdf

Derandomization

Theorem (FRT + Gupta + Charikar et al.)

Given a complete graph G = (V, E) with metric cost function

c: E— Q. One can find deterministically, in polynomial time:

spanning trees T1,..., Ty on 'V, costs d; : T; — Qy and

probabilities \; > 0, A\ + ...+ X, = 1 where g = poly(n). Then
» Foru,v €V andi=1,...,q one has c(u,v) < d’(u,v)

» For any u,v € V one has

q
Z A - d¥i(u,v) < O(logn) - c(u,v).
i=1

Here di :V xV — Q. is the tree metric induced by T; and d;.

http://research.microsoft.com/pubs/74347/06-journal.pdf
http://www.cs.cmu.edu/%7Eanupamg/papers/soda01.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.129.8881&rep=rep1&type=pdf

PART 20
INTRODUCTION INTO PRIMAL DUAL
ALGORITHMS

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

199 /292

A generic problem

Situation: We want to approximate a problem, which (in
many cases) is of the form

n
min E C].’EJ
i=1

n
Zaijxj > biViZI,...,m
Jj=1

zj € {0,1} Vi=1,...,n

Examples so far: SET COVER, STEINER TREE, VERTEX
COVER,. ..

200 / 292

A primal-dual pair

Primal ”covering” LP:
n
min E CjTj
j=1
n
=1

Lj

Dual ”packing” LP:
m
max Z biy;
i=1

m
E Ai5Y;
i=1

Yi

v

v

IN

Vv

(P)
by Vi=1,
0 Vj=1,
(D)
c; Vj=1,
0 Vi=1,

A generic Approximation algorithm

Generic primal-dual algorithm:
(1) z:=0,y=0
(2) WHILE z not feasible DO

(3) Increase dual variables in a suitable way until some dual
constraint j becomes tight
(4) Set T = 1

(5) RETURN =z

Generic analysis:
» Show: At the end z is integer and feasible for primal
» Show: At the end y is feasible for dual
> Show: 377 cjzj < - 37, biy; (s the apx factor)

dual solutions primal solutions

0 Z?;Lbiyi OPT; OPT Z?:j Cji;

~
< factor of «

202 /292

Relaxed complementary slackness

Lemma

Let o, 8 > 1. Let z,y be primal/dual feasible solutions obtained
by the algorithm. If

(A) Relazed primal compl. slack.: x; > 0= c; < ad 0", aijy;
(B) Relazed dual compl. slack.: y; > 0= E?Zl asjTj < B - b;
Then APX < «a-f-OPTy.

» Let APX be the cost of the produced solution. Then

APX = Zijj < ij (aZaijyi> :aZinaijxj
j=1 j=1 i=1 i=1 j=1

(B) m y dual feasible
< aBd b < ef-OPT; O
=1

PArT 21
STEINER FOREST

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Steiner Forest

Problem: STEINER FOREST
» Given: Undirected graph G = (V, F), edge cost
c¢: E — Qy, terminal pairs (s1,t1),. .., (Sk, tk)
» Find: Minimum cost subgraph F' connecting all terminal
pairs:

OPT = min { Zc(e) |Vi=1,...,k: F connects s; and ti}
FeE eclF

\/6
AN N

205 /292

Steiner Forest

Problem: STEINER FOREST
» Given: Undirected graph G = (V, F), edge cost
c¢: E — Qy, terminal pairs (s1,t1),. .., (Sk, tk)
» Find: Minimum cost subgraph F' connecting all terminal
pairs:

OPT = min { Zc(e) |Vi=1,...,k: F connects s; and ti}
FeE eclF

N
SN

The LP relaxation
» For any S C V define cut requirement

£(5) = {1 if 3i: |S N {si,ti}] =1

0 otherwise

Dual LP:
max Y f(S)ys (D)
SCV
Z ys < c. Ve€FE
S:e€d(S)

<
0
v
()
<
n
N
<

Preliminaries

» For FCE,SCV: 6p(S)={{u,v} € FlueSv¢S}

> A cut S CV is violated by F' C F, if there is a terminal
pair (s;,t;) with [{s;,t;} NS| =1 but 6p(S) =10

> A cut S is active w.r.t. F, if S is violated and minimal
(i.e. there is no subset S’ C S that is also violated).

» An edge e is tight w.r.t. a dual solution (ys)g if

252866(5) Ys = Ce
(i.e. if the dual constraint of ¢, satisfied with equality).

The algorithm

(1) F:==0,y:=0
(2) WHILE 3 violated cut DO

(3) Increase simultaneously ys for all active cuts S, until some
edge e gets tight
(4) Add the tight edge e to F

(5) Compute an arbitrary minimal feasible solution F' C F

The active cuts

Lemma
The active cuts w.r.t. F C E are connected components of F'.

» Counsider active cut S (S minimal, f(S) =1, dp(S) =0).
» 0p(S) = 0 = connected components of F' are either fully
contained in S or fully outside

» S is violated, hence there is a pair |{s;,t;} N S| =1
» The connected component of F' inside S that contains s; is
also violated. Hence, S is a single connected component (or

we would have a contradiction). O
F. ° ot;
® ® [] []

1
1
1
|
S ! S
\E—)
1
1

impossible

correct

impossible

Example

S1 20 tl
| /
16 e 19
% X
®)
52 to

Example

16) 19
12 12
o []
82 \ 2
active set

212 /292

Example
edges added to F

ys =6 for S = {s2}

214 /292

215 /292

20

\

1

1

1

I
I
I

- -

F at the end of WHILE loop

216 /292

-

-~ -

Solution F’

217 /292

Feasibility

Lemma J

F' is a feasible solution.

» Let F' be the solution at the end of the WHILE loop.
» Fis feasible, because there is no violated cut.

» We do not delete necessary edges, hence F’ is also
feasible. O

Lemma
y 1s dual feasible, i.e. 251665(5) ys < ce for all e € E. J

» Each time that an edge e gets tight (i.e.
D Siecs(s) Ys = Ce); we add it to F.

» We increase yg only for violated cuts — not for cuts
containing edges of F'. O

The main analysis (1)

Lemma
Let y be the dual solution at the end of the algorithm. Then

APX = Zceg2zysg2-0PTf.
ecF’ SCV

Zceeghtz< > ys)=Z|5F' S<22y5

ecF" e€F" Siecd(S) SCV Scv

» Consider any iteration :. Let « be the amount by which the
dual variables yg were increased. We show (*) by proving

a- Z |05/ (S)| < 2 -« - #active sets in it.s

S active in it.i

The main analysis (2)

> Consider an intermediate iteration 7 with intermediate F'.
» Remark: F'\F might contain edges that are added later
F\F' might contain edges that are deleted at the end.

> Claim:
Z |0F(S)| < 2 - #active sets in iteration %
S active in it.;

» Shrink connected components of F — H' (S becomes node
vg). Nodes vg steming from active cuts S are active nodes,
others are inactive nodes

active S \

"‘ - ‘\ . . S,
O == =@ active
&~ = ~¢)inactive

» H'is a forest. Degrees are preserved.

The main analysis (2)

> Consider an intermediate iteration 7 with intermediate F'.
» Remark: F'\F might contain edges that are added later
F\F' might contain edges that are deleted at the end.

> Claim:

Z |0F(S)| < 2 - #active sets in iteration %

S active in it.i

» Shrink connected components of F — H' (S becomes node
vg). Nodes vg steming from active cuts S are active nodes,
others are inactive nodes

-———y

- ~ . .
1e= =) inactive S

» H'is a forest. Degrees are preserved.

The main analysis (2)

> Consider an intermediate iteration 7 with intermediate F'.
» Remark: F'\F might contain edges that are added later
F\F' might contain edges that are deleted at the end.
> Claim:
Z |0F(S)| < 2 - #active sets in iteration %
S active in it.;
» Shrink connected components of F — H' (S becomes node
vg). Nodes vg steming from active cuts S are active nodes,
others are inactive nodes

H :

® O O
active vg

FI

®inactive vg

» H'is a forest. Degrees are preserved.

The main analysis (2)

H'

o O O
active vg

Fl

@inactive vg

» Consider non-singleton leaf vg. Edge to vg was not deleted.
Hence f(S) = 1. But then S was active (since S is a
connected component of F' at iteration 7).

» Average degree over all nodes in a forest is < 2 (since #
edges < # nodes) and each edge contributes at most 2 to
the degrees.

» Inactive nodes are inner nodes of degree > 2, hence average
degree of active nodes < average degree < 2. O

Deleting redundant edges is crucial

-

S == =

Observation: Without the pruning step at the end of the
algorithm, the solution would cost n + 4 instead of 4.

Conclusion

Theorem

The primal dual algorithm produces a 2-approzimation in time
O(n?logn).

Remark: The algorithm works whenever the requirement
function f : 2" — {0, 1} is proper, that means
» f(V)=0
> f(S) = f(V\S) (symmetry)
» If A,B CV are disjoint and f(AU B) =1 then f(A) =1
or f(B)=1.
Note: Function f for STEINER FOREST is proper.

State of the art

» There is no %—approximation algorithm unless NP = P
(same ratio as for the special case of STEINER TREE).

» There is still no better than 2-approximation known.

» The integrality gap of the considered LP is in fact exactly
2.

» There is also no other LP formulation known, which might
have a smaller gap.

PART 22
FAaciLiTy LOCATION

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Facility Location

Problem: FACILITY LOCATION
» Given: Facilities F', cities C, opening cost f; for every
facility 7. Metric cost ¢;; for connecting city j to facility s.

» Find: Set of facilities I and an assignment ¢ : C' — I of
cities to opened facilities, minimizing the total cost:

OPT = Ig}gﬁ)i:rclﬁl{ Sfi+> C¢(j),j}

il jec

C F

s » Remark: Without the metric

. assumption, the problem
becomes O(logn)-hard.

. » We assume w.l.o.g. ¢;j, fi € Z4

o fi

Facility Location

Problem: FACILITY LOCATION
» Given: Facilities F', cities C, opening cost f; for every
facility 7. Metric cost ¢;; for connecting city j to facility s.

» Find: Set of facilities I and an assignment ¢ : C' — I of
cities to opened facilities, minimizing the total cost:

OPT = Ig}g’ré)i:rclﬁl{ Sfi+> C¢(j),j}

il jec

C F

s » Remark: Without the metric

. assumption, the problem
becomes O(logn)-hard.

5 » We assume w.l.o.g. ¢;j, fi € Z4

o fi

The primal dual pair

Primal LP: mmzcw% + Z fiui

1eF
ZiEF Tij > 1 VYjeC
Tij <y Vie FVjeCl
Tij > 0 YieFVjeCl
yi > 0 VieF
Dual LP: maxz o
jecC
aj < ¢j+pBi; VieFVjel
djechBii < fi VieF
a; > 0 VjeC
/Bij > 0 Vi e F Vj eC

Intuition:
> «; is the amount that city j "pays” in total.
> [i; is what city j "pays” to open facility ¢.

The algorithm - Phase 1:

(1) Initially all cities are unconnected

(2) :=0,8:=0,F,:= 1

(3) WHILE not all cities are connected DO

(4) FOR ALL unconnected cities 7 DO

(5) Increase «vj (by 1 per time unit)

(6) For tight edges a; = ¢;; + fij increase also f;;
() IFY, By = fi (new) THEN

(8) open facility ¢ temporarily (F} := F; U {i})

(9) FOR ALL cities j where edge (i, 7) is tight DO
(10) connect city to facility ¢
(11) facility ¢ is connection witness of j: w(j) :=1
Phase 2:

Let H = (F}, E') with (i,i') € E' if 3j € C : By, By; > 0

Open a maximal independent set I C F}

FOR ALL j € C DO
IF 35 € I: B;; > 0 THEN ¢(j) := ¢ (j directly conn.)
ELSE IF w(j) € I THEN ¢(j) := w(j) (j directly conn.)
ELSE ¢(j) := a neighbour of w(j) in H (j indir. conn.)

N N N N S N
— N N N

Example:

Phase 1 - Time: 0

C F

N

¥

M

¥

Example:

Phase 1 - Time: 1

233 /292

Example:

Phase 1 - Time: 2

234 /292

Example:

conn.: w(l) =1,

conn.: w(2) =1,

conn.: w(3) =1,

Phase 1 - Time: 3

ap = © f1 =4 temp. opened

g =«

wl fa=25
a3 = K
oy = fz3=2

Example:
Phase 1 - Time: 4

conn.: w(l) =1, oy =3 © f1 =4 temp. opened

conn.: w(2) =1, ay = 3 e<

D fo = 5 temp. opened

conn.: w(3) =1, a3 =3 e

conn.: w(4) =2, oy =4

Example:
Phase 2: Graph H

C F

f1 =4 temp. opened
I
I
I
1 H
1
1
I

fo =5 temp. opened

Example:

Phase 2: The solution

C F
. € I (facility opened)

Analysis

Theorem
One has 3 jec Co(y),g + 2ier fi < 3L jec @4 J
We account the dual ”payments”
o if j directl ted
af := payment for opening := Peti). 1] ‘ 11tec ‘y conmecte
0 if 7 is indirectly conn.
af := payment for connection := Coli)y 1L directly connected
I o if 7 is indirectly conn.

im: s — o c
Claim: «a; = a; + aj.
» For indirectly connected cities: clear

» For directly connected cities: aj = c,(j); + By(j),; because
edge (4(j),7) was tight.

Bounding the opening costs

Lemma
The dual prices pay for the opening cost, i.e.

> fi=d e

il jec

» A facility 7 € I was temporarily opened because j Bij = fi

» All j with 3;; > 0 must be directly connected to 7 because:
We opened an independent set in H in Phase 2, hence any
i’ € F; with ,Bilj > (0 is not in [

» Thus all j with 3;; > 0 e
Z af _ Z Bis i temp_opened fi W
' €cH

]¢ Bz]>0) e

Z

» The claim follows from Birj >0

Sof=Y ¥ af=Y 5 O e

jec i€l jip(j)=i il

Bounding the connection cost

Lemma

For any city j € C one has cy;) ; < 301;.

» If j directly connected, then even of = c,(;
suppose j is indirectly connected.

» Then there is an edge (w(j), #(j)) € H (since j was
indirectly connected).

g Next,

» This edge implies that there is a j' € C' with
Botirit > 0 Bugj),jr > 0-
je tight: a; > Cw(j),j

’ re H
mv\ww(j)ef

j e

Bounding the connection cost (2)

» Event B,;),; > 0 only ; ‘
happened if aj Z C’w(j),j' For \‘)
the same reason: ajr > ¢y 5 Boiy.ir >0 o(j) €1

and aj > cg(jy it

» Claim o; > ajr: Con31der the time ¢, when w(j) was
temporarily opened. Since w(j) is connection witness of j,
aj > t. At this time ¢, it was f,(;); > 0 (since if
Buw(j),i = 0 at that time, then ,Bw jo =0 forever). At the
latest at this time ¢, also j' was connected and aj stopped
growing. Hence a; >t > ajr.

» Then

metric ineq.

Cotrd S Cw@)i T Cwl)g T ey < B3a =3aj O
——r W—’ W—’

<aj gajzga]- gaj,gaj

Conclusion

Theorem

The algorithm produces a 3-approzimation in time
O(m -log(m)), where m = |C| - |F| is the number of edges.

State of the art:

Theorem (Byrka '07)
There is a 1.499-apz for FACILITY LOCATION.

» The integrality gap for the considered LP lies in
[1.463,1.499].

Theorem

There is no polynomial time 1.463-apz for FACILITY LOCATION
unless NP C DTIME (n©(loglogn)),

PART 23
INSERTION: SEMIDEFINITE PROGRAMMING

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Positive definite matrices

Definition (positive semidefinite Matrix)

A matrix A € R"*" is called positive semi-definite if
Vo e R* : 2T Az > 0.

Theorem (Diagonalization)

Let A € R"™ be symmetric (i.e. a;j = aj;), then A is
diagonalizable, i.e. one can write

b

A: . e .) . :
N - N0 0 ... oA/ o — _
=L = N~ = =T
=D

where v; € R is orthonormal Eigenvector for Figenvalue A\;, i.e
Av; = Nwi, ||vill2 = 1anij =0Vi#j.

Some useful results

Lemma

Let A € R™™ be a symmetric matriz (v; orthonormal

FEigenvector for \;). Then the following statements are
equivalent

(1) Ve e R : 2T Az > 0
(2) A; > 0Vi
(3) There is W € R*™*™ with A =WTW

> (1) = (2) 0< ’UZTA’UZ' = ’UZT()\ZUl) =N\ ’()Tvi =N\

)

N

> (2) = (3). A= LDL' = LyDVDLT = 1(\/1_)LT)T (vVDLT)
!,_/

» (3) = (1). For any z € R": =W

el Az = T (WIW)z = Wa)T - (Wz) >0

Remark: Matrix W can be found by Cholesky decomposition
in O(n3) arithmetic operations (if / counts as 1 operation).

246 / 292

The semidefinite cone

» Def.: Write Y > 0 if Y is positive semidefinite.
» Fact: The set

{Y e R"™"™ | Y = 0,Y symmetric} = cone{zz’ | x € R"}

is a convex, non-polyhedral cone.

247 /292

A semidefinite program

Given:
» Obj. function vector C' = (cij)1<ij<n € Q"

» Linear constraints A; = (afj)lgingn eQ", b eQ

machijyij
i)j
Zaijij < bk Vk = 1,... ,
i)j

Y symmetric
Y = 0

» Frobenius inner product: CeY := 3" | E?Zl Cij * Yij

A semidefinite program
Given:
» Obj. function vector C' = (cij)1<ij<n € Q"

» Linear constraints A; = (afj)lgingn eQ", b eQ

maxCeY
AreY < by VE=1,....m
Y symmetric
Y = 0

> Frobenius inner product: C'eY :=371" | 37, ;5 - yij

249 /292

Pathological situations

» Case: All solutions might be irrational. z = v/2 is the
unique solution of

1 z 0 O
r 2 0 0
0 0 2z 2 =0 Z
0 0 2 =z

» Case: All sol. might have exponential encoding

length. Let Qi(z) = 1 —2,Q;(x) := <x1 xi_l). Then

i—1 Zj
aw=| " P
0 0 ... Qux)

if and only if Q1(z),...,Qn(x) = 0. Le. z; —2 >0 and
x; > o2 |, hence z,, > 22" L.

Solvability of Semidefinite Programs

Theorem

Given rational input Ay,...,Am,b1,...,05,C, R and € > 0,
suppose

SDP =max{C eY | Ay oY < by Vk; Y symmetric; Y = 0}

is feasible and all feasible points are contained in B(0,R). Then
one can find a Y* with

Ap o Y* < bp+e, Y™ symmetric, Y* = 0

such that C ¢ Y* > SDP—e. The running time is polynomial in
the input length, log(R) and log(1/e) (in the Turing machine
model).

Solving the separation problem
» Remark: We show that we can solve the separation
problem, ignore numerical inaccuracies.

» Let infeasible Y be given, we have to find a separating
hyperplane.

(1) Case A, oY < by: return ” A, ¢ Y > by, violated”

(2) CaseY not symmetric: Find the ¢, j with y;; < yj;. Return
”yij > Yji violated”.

(3) Case Y not positive semidefinite. Find eigenvector v with
Eigenvalue A < 0, i.e. Yv = Av. Then

Zviij “Yij = Yo <0
i7j

hence return "), . v; Tvj - yi; > 0 violated”.

Vectorprograms

Idea:
Y symmetric and Y > 0
& AW = (vi,...,v,) ERV" . WIW =Y
& Jvur, ..., v, ERY 1y :viij
SDP: Vector program:

max E CijYij max E C”U Vg
(¥

afi-yi; < be Vk Za” vlv; < b Vk
Y]
Y Sy, v € R' Vi
Y = 0

Observation
The SDP and the vector program are equivalent. }

PARrT 24
MaxCut

SOURCE:
> Approzimation Algorithms (Vazirani, Springer Press)

» Improved Approzimation Algorithms for Mazimum Cut and
Satisfiability Problems Using Semidefinite Programming
(Goemans, Williamson) (link)

http://www-math.mit.edu/~goemans/PAPERS/maxcut-jacm.pdf

Problem definition

Problem: MaxCur
» Given: Complete undirected graph G = (V, E), edge
weights w : £ — Q4

» Find: Cut maximizing the weight of separated edges

e —_——

A vector program

» Choose decision variable for any node 7 € V:
(L,0,...,0) €8

v; = ,
(-1,0,...,0) i¢S

> An exact MAXCUT vector program:

max Z %(1—1}?1@-)

(i.j)eE
viTvZ- =1 Vi=1,...,n
v, € R* Vi=1,...,n
v; = (£1,0,...,0) Vi=1,...,n
» Then

=1 if (4,5)€8(S), 0 0.w.

1
> wij - 5 (1~ v} vj = > wj
: e (i.4)€8(S)
=-11if (i,5)€d(S)

+1 o.w.

A vector program (2)

The relaxed vector program:

max Z %(1 — v; vj)
(i,j)eE

A physical interpretation

» n vectors on n-dim unit ball.
» Repulsion force of w;; between v; and v;

Example:
Graph G SDP solution:
2
@,
3./
Wij = 1
°1
4° /
\.5
» OPT =4
» For SDP solution, place V1, - - 1)5 equidistantly on 2-dim.

subspace. SDP =5-3(1 — cos(7)) ~ 4.52
» Hence integrality gap Z 1.13.

The algorithm

Algorithm:

(1) Solve MAXCUT vector program — vy,...,v, € Q"
(More precisely: Solve the equivalent SDP, obtain a matrix
Y € Q**". Apply Cholesky decomposition to Y to obtain
ViyeneyUp)

(2) Choose randomly a vector r from n-dimensional unit ball

(3) Choose cut S :={i|v;-r >0}

Theorem

E[E(i,j)e&(s) wij] > 0.87 - OPT (i.e. the algorithm gives an
expected 1.13-apz).

Proof

Consider 2 vectors v;, v; with angle
6 € [0,7]. Let R-a be the 1-dim.
intersection of the n — 1-dim.
hyperplane z - r = 0 with the plane
spanned by v;, v;

a has a random direction

> v;,vj are separated

< they lie on different sides of line aR
& a lies in one of the 2 gray arcs of
angle 6

Pr[v; and v; separated] = 2 - % = %

Expected contribution to APX is w;; - fr

)

aR ~ _

Proof (2)

» Expected contribution of edge (7, 5) to APX is w;; -
» Contribution of edge (i,5) to SDP is w;; - (1 — cos(6))

9
T

E[APX)] , 0/n

_— > —F =~ 0878. O
SDP — org%lélw (1 — cos(6))

0.87{===-==-=-== =

s
~
3
PPN R ——

State of the art

Theorem (Khot, Kindler, Mossel, O’Donnell ’05)

There is no polynomial time < 1.138-approximation algorithm
(unless the Unique Games Congjecture is false).

» That means the presented approximation is the best
possible.

262 /292

http://www.cs.cmu.edu/~odonnell/papers/maxcut.pdf

PART 25
MAX2SAT

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

Problem definition

Problem: MAX2SAT

» Given: SAT formula A\, C on variables z1,...,z,. Each

clause C contains at most 2 literals.

» Find: Truth assignment maximizing the number of satisfied

clauses

OPT = max |{C € C | C true for assignment a}

a=(ay,...,an)€{0,1}"

» Example:

(:f‘l \ J‘z) /\(:II1 \ {L‘Q) AN (fl,l V f‘z) A (’Ll V J‘z) N T
—_——

clause

Optimal assignment: a = (0,1) with 4 satisfied clauses.

» Remark: Problem is NP-hard though testing wether all
clauses can be satisfied is easy.

264 /2

92

A quadratic program

» Goal: Write MAX2SAT as quadratic program
max Y _ ag(1+ yiy;) + by (1 — yay;)
1,J
y;i =1
Yy; € 7

for suitable coefficients a;;, b;;.
» Here y; = 1 = x; true, y; = —1 = x; false
» Let yo := 1 be auxiliary variable.
» Write

v(C) =

1 if clause C true for y
0 otherwise

» For clauses with 1 literal

1 ; 1 — you,
o(z;) = +yoyz,v(ji): Yoyi

A quadratic program (2)
» For clause z; V z;

1 —yoyi 1—yoy;

v(x; V) = 1—ox;) v(z;)=1-

2 2
=1
1 2
= 1(3 + yoyi + Yoy; — Yo Vi)
L+yoyi 1+wyoy; 1—yy;
4 + 4 + 4

» Similar for z; V z; and z; V z;.

» We obtain promised coefficients a;;, b;; by summing up
ZCeC v(C).

» Now: Relax the quadratic program to a (solvable) vector
program.

The algorithm

Algorithm:
(1) Solve MAXCUT vector program

max Z (aij(l + vivj) + bij(l — 1)ﬂ)j)>
0<i<j<n
v2=1Vi=0,...,n false

(2) Choose randomly a vector r from
n-dimensional unit ball

(3) Let y; := 1 for all 7 that are on
the same side of the hyperplane true
x-r =0 as vy (the "truth” vector)

Theorem
Let APX := #satisfied clauses. Then E[APX] > 0.87-SDP. J

267 /292

Analysis

Case: Term b;;(1 — v;v;) with angle 6 between v;, v;
» Contribution to E[APX]: 2b;; - Prly; # y;] = 2bij%
» Contribution to Vector program: b;;(1 — cos(f))
» Gap: ming<g<r % ~ 0.878
Case: Term a;j(1 4 v;vj) with angle 6 between v;, v;
» Contribution to E[APX]: 2a;; - Prly; = y;] = 2a;;(1 — %)
» Contribution to Vector program: a;;(1 + cos(f))
» Gap: ming<g<r 20-0/m) 5 (.878

1+cos(6))

State of the art

Theorem (Feige, Goemans ’95)
There is a 1.0741-apx for MAX2SAT.

Theorem (Lewin, Livnat, Zwick '02)
There is a 1.064-apx for MAX2SAT.

Theorem (Hastad "97)
There is no 1.0476-apz for MAX2SAT (unless NP =P).

Theorem (Khot, Kindler, Mossel, O’Donnell '05)

There is no polynomial time 1.063-apz for MAX2SAT (unless
the Unique Games Conjecture is false).

269 /292

http://math.mit.edu/~goemans/PAPERS/preprint-feige.pdf
http://portal.acm.org/citation.cfm?doid=502090.502098
http://www.cs.cmu.edu/~odonnell/papers/maxcut.pdf

PART 26
BUDGETED SPANNING TREE

SOURCE: The Constrained Minimum Spanning Tree Problem
(Goemans, Ravi) (link)

http://www-math.mit.edu/~goemans/PAPERS/RaviGoemans-1996-TheConstrainedMinimumSpanningTreeProblem.pdf

The Budgeted Spanning Tree problem

Problem: BUDGETED SPANNING TREE
» Given: Undirected graph G = (V, E) with edge costs
c: E — Q and edge lengths ¢ : E — Q. Budget B.
» Find: Spanning tree 7" minimizing the cost, while not
exceeding the budget

OPT = max HZCAZE <B}‘

spanning tree 1’ e
e

/\
\

cost c length /(e

The Budgeted Spanning Tree problem

Problem: BUDGETED SPANNING TREE
» Given: Undirected graph G = (V, E) with edge costs
c: E — Q and edge lengths ¢ : E — Q. Budget B.
» Find: Spanning tree 7" minimizing the cost, while not
exceeding the budget

OPT = max ‘{Zce|2€e§3}‘
e€T

spanning tree 7' or
e

(3y.Y1)
0,2
/1>\ Al)

cost c(e) length £(e)

BUDGETED SPANNING TREE is NP-hard
Recall that PARTITION is (weakly) NP-hard:

Problem: PARTITION
» Given: Numbers a1,...,ap €N, S:=>"" , q;
» Find: I C{1,...,n}:> ;c;a; =5/2

Reduction to BUDGETED SPANNING TREE:

(a1,0) (ag,0) (an,0)
(070’1) (0,0,2) (O,Qn)

» Budget B := S/2. There is a feasible tree T of cost
¢(T) < B,4(T) < B if and only if there is a PARTITION
solution.

» Problem also NP-hard for simple graphs (our algorithm
will also work for multigraphs).

> Recall: The SPANNING TREE problem without a budget is
easy. s o

Lagrangian Relaxation

Original problem: Lagrangian Relaxation:
ming ¢(T) \ ming ¢(T) + z- (¢(T) — B)
T spanning tree T spanning tree
UT)<B
N N
Y Y
= OPT = OPTLR(z)
Lemma

For any Lagrange multiplier z > 0: OPTpr(z) < OPT.

» Let 7" be the optimum solution: ¢(T) = OPT,¢(T) < B.
Then
<0

A
la ~

OPT =¢(T) > ¢(T) +_z -(4(T) — B) > OPTpr(z) O
B

Solving the Lagrangian relaxation

Lemma

A sol. z*,T1,T> can be computed in poly-time where OPTpr =
OPTypr(z") is attained by Ty, Ty, £(Ty) > B > ¢(T3).

» Assume w.l.o.g. c(e),¥(e) € Z. amax = max{c(e),£(e)}
» For any spanning tree T', let g7 (2) := ¢(T) + z - (¢(T) — B)
» OPTrr(z) = miny{gr(z)}. Hence OPTy (%) is concave.

an (Z)
OPTLR—

N A J

OPTLR(z) ;t(ained by T: OPTLRr(z) ;ftained by T
(T)<OPT R, T)>B (T)>OPTyLp, UT)<B

Solving the Lagrangian relaxation (2)
» For a given z, choose ¢/(e) := c(e) + z - £(e), then
OPTyr(z) = min {c(T)+2z-({(T)-B)} = min {(T)}—2B

sp.tree T sp.tree T

> OPTLR(O) > OPTLR(Z)
» OPTLR(n - amax) < 0 (if there is no tree with budget < B,
then MST w.r.t. '(e) := £(e) + — —c(e) is optimal).

N-Qm

» Perform binary search (needs O(log(n - amax)) iterations):
(1) L _0 R:=n"amax
(2) WHILE |L — R| >
(3) = o= L4
(4) T := MST for cost function c'(e) := c(e) + z - £(e)
(5) IF ¢(T) > B THEN L:=z ELSE R :=z

6) z* := rational number in [L, R] with min. denominator

7) T1 = argming{gr(z* —¢)}

8) T :=argming{gr(z*+¢)} (e := 8272 should suffice) O

DO

An 2a2

NS S

. zZ 2 2
> Use: 2" € ¢ for some ¢ € {1,...,4n%a5 .«

An example

9
e1:(2,0) \

K\ g{eg}(z)
o "N,
e3: (3/2,1) ! Ter(?)

0 | z

» In this example OPT = 2, OPT g =1

Obtaining 2 trees differing in 2 edges

Lemma

One can find opt. Lagrange solutions Ty, Ty with
U(Ty) > B,4(T) < B which differ in ezxactly 2 edges.

s

» Let Sy, Sk the trees returned by the 775 A%~
algorithm with £(Sy) > B,¢(Sx) < B ‘< o\/ \lxgk“ !
that differ in |SyASy| := e€| N
151\ So| + |S0\Sk| = 2k edges ce=—=3f,

» Let ep € Sy be edge maximizing ¢/ (e) 1= c(e) + 2= - £(e).
There is an edge e; € S\ Sp such that S := Sp\{eo} U{e1}
is a spanning tree. Since ¢/(Sp) = ¢/(Sk), ¢/ (eg) > (e1).

On the other hand ¢(S1) > ¢(Sp) since Sy has minimal
’-cost. Hence ¢/(S1) = ¢/(Sp) and |S1ASy| = 2(k — 1).

» We iterate this to obtain Sy, ..., S with
d(So) = (S1) =... = (Sk) and |S;AS; 41| = 2 Vi.

» Since £(Sp) > B, £(Sk) < B there must be a pair
(Tl,Tg) = (SZ, Si+1) with E(SZ) > B,E(SZ’JA) < B. [l

T5 is not that bad

Lemma

Let z*,T1,T» be opt. Lagrange solutions, £(T1) > B,¢(T;) < B
s.t. |TiATy| =2. Then ¢(T3) < OPT + cmax-

» Recall that
>0

C(Tl) < C(Tl) + 25 (Z(Tl) - B) = OPTLR(Z*) < OPT
>0

» Let ej, ey be edges with Tb = (T1\{e1}) U {e2}. Then

c(Tz) = ¢(T1) —cler) + c(ez) < OPT + cpax U
—— N =~
<OPT >0 <cmax

A PTAS

Lemma
There is a PTAS for BUDGETED SPANNING TREE.

» Guess the 1/e many edges of maximum cost in the
optimum solution.

» Contract them. Now cpax < € - OPT in the remaining
instance.
State of the art:

» It is not know, whether there is an FPTAS for BUDGETED
SPANNING TREE.

» [Hong et al.] can find a tree T' with
c(T) < (14+¢e)OPT,UT) < (1+¢)B in poly(n,1/e) (i.e. a
bicriteria FPTAS).

PART 27
k-MEDIAN

SOURCE: Approzimation Algorithms (Vazirani, Springer Press)

k-Median

Problem: i-MEDIAN
» Given: Facilities F, cities C, parameter £ € N. Metric cost
c;j for connecting city j to facility i.
» Find: Set of at most k facilities / and an assignment
¢ : C'— I of cities to opened facilities, minimizing the
connection cost:

OPT := min Corl iy s
IQF,ng,qx(HziEZI ¢(5)

o F

k-Median

Problem: i-MEDIAN
» Given: Facilities F, cities C, parameter £ € N. Metric cost
c;j for connecting city j to facility i.
» Find: Set of at most k facilities / and an assignment
¢ : C'— I of cities to opened facilities, minimizing the
connection cost:

OPT := min Corl iy s
IEF,ng,qx(HziEZI ¢(5)

o F

°
A
Eal

Vv

4 Integer program :)
mind e p > iec TijCij
ZiEF Tij = 1 Vj eC
Tij < Vi € F Vj eC >: OPT
ZieF Yi < k
vyi,oi; € {0,1} Vie FVjeC
_ iy Lij {0,1} J)

-

Lagrangian Relaxation (z > 0) :
min Y e X jec Tii T2 - (Lier ¥i — k)

ZiEF Tij = 1 V_] eC =: OPTLR(z)
Zij <y Vie FVjeC
\ Yi, Tij € {0, 1} Vie FVYjel

_ optimum facility location k‘_z k

value for instance with f; := z

Y j
=: OPTFL(Z) 284 /292

("

Approximating the Lagrangean Relaxation (1)
Recall the previous result:

Theorem
One can compute a FACILITY LOCATION solution in poly-time,
with

connection cost + 3 - facility cost < 3 - OPTgy,.

» Let F'IL(z) C F be the set of facilities, opened by
approximation algorithm if f; := z for all facilities 7 € F.

» For F/ C F and j € C let c(F',j) := minjepr{c;;} be the
distance of city j to nearest facility in F’

> Let c(F") := > ;. c(F',j) be the connection cost of a
FACILITY LOCATION or k-MEDIAN solution F'.

Approximating the Lagrangean Relaxation (2)

|F'L(z)| = # facilities opened by apx-algo
\

B - R Rl
—_ | Nsol Fy: infeasible/ c(Fy) < 3- OPT
. !
| /sol Fy: feasible/ ¢(Fy) >3- OPT
) e At

Z*

> [FL(O)| = |F| > k, lim, o0 |[FL()| = 1< k

» By binary search in the interval [0, |C| - max; j{c;;}], find
z* >0, where |[FL(z*)| > k > |FL(z* +¢)|

» Let F| := FL(z* + ¢), Fy:= FL(z*) be the obtained
approximate solutions (we ignore the e-term from now on,
since it can be made exponentially small).

Bounding the cost of Fi, F,

Lemma
Choose 0 < X\ <1 with A|Fi|+ (1 — X\)|Fy| = k. Then

Ace(F1)+(1=X)-c(Fy) <3-OPT.

» Since we use a (3,1)-apx algo for FACILITY LOCATION:
c(F1)+3z-|F1| < 3-OPTpr(2)
c(Fy) +3z-|F3] < 3-OPTpr(z)
» Adding both inequalities with coefficient A and 1 — A, resp.:
Mol FL) + (1= Ne(Fy) + 32 - (AFL + (1 — \)|B])

~ J

%
S 3- OPTFL(Z) =3 OPTLR(Z) + 3z-k
» The 3zk term cancels out and

Ac(F1) + (1 = Ne(Fe) <3-0OPTLr(2) <3-0OPT O

Combining F; and F; (1)

Lemma

We can randomly choose a subset I C Fy U Fy of size |I| < k of
cost Elc(I)] <6-OPT.

» We want to choose I s.t.

Ele(I,)] <2- (A e(F1,j) 4+ (1 = X) - ¢(F2, j)).

Ele(D] = Y Ble(,)] <D 2(A-e(F,5) + (1= X) - e(Fy,)
jecC jecC
< 2-(A-e(F)+ (1=)\ -c(Fy)) <6-OPT

~ J

<3.0PT

Combining F; and F; (2)

. £ <e(i1,i3) Iy
Case (1): With prob 1 — A: <c(F1,5) \,\)
> Choose Fj C Fy with |1 |iresq- FeEag) _ \\E\Q
|F5| = |Fi| so that for \ o
any facility 7; € Fy, also c(Fm..&L. is >| e
the facility is € F» J -
minimizing ¢;, ;, is in F) - Y,

» Choose Fy C Fy\Fy with |FY| =k — |Fy| uniformly at
random. Open I := Fj) U Fy.

» Let i1 € F} and 73 € F5, be nearest facilities to j. Suppose
i3 ¢ Fj (other case later).

» Note that Pr[iz € I] = RAFL 1 — X Hence

|12]—[1]
Elc(1,4)] < Prlig € I]-c(is, j) + Prlis ¢ I+ c(i2,])
e e N N ——
=1-A <c(F2,5) =X <L2c(F1,5)+e(F2,))

(L=X+A)-c(Fa,5) +2X - c(F1,7)
c(Fp,j) + 2\ - c(F1,j)

Combining F; and F; (2)

Case (2): With prob X:
» Choose I := F} U Fy

» Then
Ele(1,j)] < Prlis € I]- c(i3, j) + Prliz & I - c(i1, J)
—_——— —— Y/ — ——
=1-X <c(F,j) =\ <c(F1,5)
S Ac(Flaj) + (1 - A)C(F%])

Fy

Fy
FI
|7 \% ’
C(F$ C(F2,l B >|F2|

~

[
[}
~
/JCJJ

Combining F; and F; (3)

» Overall:
Elc(1,)]
< Prlcase (1)]- E[c(1,7) in (1)] 4+ Prfcase (2)]- E[c(,74) in (2)]
—1-A 2Ac(Fy j‘),+C(F2) A <Ae(Fi ,j)+‘(,1*>\)C(F27j)
< A2 =) e(F1,5) + (1= A) - (L+A) -c(Fp,j) O
—_— ~——
<2 <2

» (For case iz € Fy: Elc(I,7)] < Ac(Fi1,j) + (1 = Ne(Fa, j)).

The main result

Theorem

There is an expected 6-approxzimation for k-NMEDIAN in
polynomial time (which can be easily derandomized).

State of the art:
Theorem (Arya et al.)

One can obtain a (3 + €)-apz in time O(n?/%).

> Algorithm uses local search.

» The natural LP relaxation has an integrality gap of 3, but
no algorithm is known that achieves this value.

	Introduction
	Steiner tree
	k-Center
	Traveling Salesman Problem
	The Capacitated Vehicle Routing Problem
	Set Cover
	Set Cover via LPs
	Insertion: Linear Programming
	Weighted Vertex Cover
	Insertion: Algorithmic probability theory
	Minimizing Congestion
	Knapsack
	Multi Constraint Knapsack
	Bin Packing
	The algorithm of Karmarkar & Karp

	Minimum Makespan Scheduling
	Scheduling on Unrelated Parallel Machines
	Multiprocessor Scheduling with Precedence Constraints
	Euclidean TSP
	Tree Embeddings
	Introduction into Primal dual algorithms
	Steiner Forest
	Facility Location
	Insertion: Semidefinite Programming
	MaxCut
	Max2Sat
	Budgeted Spanning Tree
	k-Median

