Approximation Algorithms

Thomas Rothvoß

Institute of Mathematics EPFL, Lausanne Spring 2010

- Introduction (page 3)
- Steiner tree (page 8)
- k-Center (page 13)
- Traveling Salesman Problem (page 22)
- The Capacitated Vehicle Routing Problem (page 31)
- Set Cover (page 35)
- Set Cover via LPs (page 38)
- Insertion: Linear Programming (page 44)
- Weighted Vertex Cover (page 60)
- Insertion: Algorithmic probability theory (page 66)
- Minimizing Congestion (page 75)
- Knapsack (page 91)
- Multi Constraint Knapsack (page 96)
- Bin Packing (page 102)
 - The algorithm of Karmarkar & Karp (page 109)
- Minimum Makespan Scheduling (page 128)
- Scheduling on Unrelated Parallel Machines (page 134)
- Multiprocessor Scheduling with Precedence Constraints (page 143)
- Euclidean TSP (page 148)
- Tree Embeddings (page 174)
- Introduction into Primal dual algorithms (page 199)
- Steiner Forest (page 204)
- Facility Location (page 227)
- Insertion: Semidefinite Programming (page 244)
- MaxCut (page 254)
- Max2Sat (page 263)
- Budgeted Spanning Tree (page 270)
- k-Median (page 281)

PART 1 INTRODUCTION

Source: Approximation Algorithms (Vazirani, Springer Press)

Why approximation algorithms?

Task: Solve **NP**-hard optimization problem $A \rightarrow$ no efficient algorithm (unless **NP** = **P**)

Possible approaches:

- ▶ exponential time algorithms → some theory but too slow and no lower bounds
- ▶ heuristic → fast, easy but no guarantee, not much theory
- ▶ approximation algorithms → rich theory in many cases good lower bounds

Running times: n = number of objects in instance, B biggest appearing number, $\varepsilon > 0 \text{ constant}$

- ightharpoonup exponential: $2^n, n \cdot B$
- ▶ polynomial: $n^2, n^{100}, n \cdot \log B, n \cdot 2^{1/\varepsilon}, n^{O(1/\varepsilon)^{O(1/\varepsilon)}}$

Basic definitions

Definition

Let Π be an optimization problem and I is instance for A. Then $OPT_{\Pi}(I)$ is the value of the optimum solution.

Definition

Let $\alpha \geq 1$. A is an α -approximation algorithm for a minimization problem Π if

$$A(I) \leq \alpha \cdot OPT_{\Pi}(I) \quad \forall \text{ instances } I$$

where A(I) is the value of the solution, that A returns for I.

- ▶ Typical values for α : 1.5, 2, O(1), $O(\log n)$
- ▶ Usually we omit Π and I in $OPT_{\Pi}(I)$
- ► For a maximization problem: $A(I) \ge \frac{1}{\alpha} \cdot OPT_{\Pi}(I)$
- ▶ Attention: Sometimes in literature $\alpha < 1$ for maximization problems. For example $\frac{1}{2}$ -apx means $A(I) \geq \frac{1}{2}OPT_{\Pi}(I)$

Definition PTAS

Definition

 A_{ε} is a polynomial time approximation scheme (PTAS) for a minimization problem Π if

$$A_{\varepsilon}(I) \leq (1+\varepsilon) \cdot OPT(I) \quad \forall \text{ instances } I$$

and for every fixed $\varepsilon > 0$, the running time of A_{ε} is polynomial in the input size.

Typical running times: $O(n/\varepsilon), 2^{1/\varepsilon} n^2 \log^2(B), n^{O(1/\varepsilon)^{O(1/\varepsilon)}}$

Definition FPTAS

Definition

 A_{ε} is a fully polynomial time approximation scheme (FPTAS) for a minimization problem Π if for every $\varepsilon > 0$

$$A_{\varepsilon}(I) \leq (1+\varepsilon) \cdot OPT(I) \quad \forall \text{ instances } I$$

and the running time of A_{ε} is polynomial in the input size and $1/\varepsilon$.

▶ Typical running time: $O(n^3/\varepsilon^2)$

PART 2 STEINER TREE

Source: Approximation Algorithms (Vazirani, Springer Press)

Steiner Tree

Problem: Steiner tree

- ▶ Given: Undirected graph G = (V, E), metric cost function $c: E \to \mathbb{Q}_+$, terminals $R \subseteq V$
- ightharpoonup Find: Minimum cost tree T connecting all terminals R:

$$OPT = \min\{c(T) \mid T \text{ spans } R\}$$

- $ightharpoonup c(T) := \sum_{e \in T} c_e$
- ▶ metric: $\forall u, v, w \in V : c_{uw} \leq c_{uv} + c_{vw}$ (triangle inequality)

Steiner tree (2)

Fact

If R=V, then Steiner Tree is just the Minimum Spanning Tree Problem which can be solved optimally by picking greedily the cheapest edges (without closing a cycle).

Algorithm:

- (1) Compute the minimum spanning tree T on R
- (2) Return T

Theorem

The algorithm gives a 2-approximation.

Proof of approximation guarantee

- ▶ Claim: \exists spanning tree of cost $\leq 2 \cdot OPT$
- \blacktriangleright Let T^* be optimum Steiner tree
- ▶ Double the edges of T^*
- ▶ Observe: Degrees now even $\Rightarrow \exists$ Euler tour \mathcal{E} visiting each terminal

Theorem (Euler)

Given an undirected, connected graph G=(V,E). Then G has an Euler tour (tour containing each edge exactly once) if and only if $|\delta(v)|$ is even for all $v \in V$.

 \triangleright Shortcut \mathcal{E} such that each terminal is visited once

State of the art

Known results:

- ▶ There is a 1.39-approximation.
- ► For quasi-bipartite graphs (no Steiner nodes incident): 1.22-apx
- No $< \frac{96}{95}$ -apx unless $\mathbf{NP} = \mathbf{P}$.

Part 3 k-Center

Source: Approximation Algorithms (Vazirani, Springer Press)

k-Center

Problem: k-Center

▶ Given: Undirected, metric graph $G = (V, E), k \in \mathbb{N}$. Define

$$\ell(v,F) := \min_{u \in F} c_{uv}$$

▶ Find: k many centers $F \subseteq V$ that minimize the maximum distance from any $v \in V$ to the nearest center:

$$OPT = \min_{F \subset V, |F| = k} \max_{v \in V} \{\ell(v, F)\}$$

The algorithm

Algorithm:

- (1) Guess $OPT \in \{c_{uv} \mid u, v \in V\}$
- (2) $F := \emptyset$
- (3) REPEAT
 - (4) IF $\exists v \in V : \ell(v, F) > 2 \cdot OPT$ THEN $F := F \cup \{v\}$ ELSE RETURN F

15 / 292

The algorithm

Algorithm:

- (1) Guess $OPT \in \{c_{uv} \mid u, v \in V\}$
- (2) $F := \emptyset$
- (3) REPEAT
 - (4) IF $\exists v \in V : \ell(v, F) > 2 \cdot OPT$ THEN $F := F \cup \{v\}$ ELSE RETURN F

The algorithm

Algorithm:

- (1) Guess $OPT \in \{c_{uv} \mid u, v \in V\}$
- (2) $F := \emptyset$
- (3) REPEAT
 - (4) IF $\exists v \in V : \ell(v, F) > 2 \cdot OPT$ THEN $F := F \cup \{v\}$ ELSE RETURN F

Guessing

For simplicity we sometimes **guess** parameters:

Algorithm with guessing:

- (1) Guess a parameter m
- (2) ... compute a solution S using m ...
- (3) return S

Algorithm without guessing:

- (1) FOR all choices of m DO
 - (2) ... compute a solution S(m) ...
- (3) return the best found solution S(m)
 - ▶ Still polynomial if the domain of m is polynomial
 - \triangleright Typical guesses: OPT, O(1) many nodes in a graph

The analysis

Theorem

One has $|F| \leq k$ and $\ell(v, F) \leq 2 \cdot OPT$ for all $v \in V$.

- ▶ $\ell(v, F) \leq 2 \cdot OPT$, otherwise algo would not have stopped.
- ▶ Remains to show $|F| \le k$.
- ▶ Let $F^* \subseteq V, |F^*| = k$ be optimum solution.
- ▶ Observe: $c_{uv} > 2 \cdot OPT \ \forall u, v \in F : u \neq v$
- ▶ Hence the centers in F^* that serve u and v must be different $\Rightarrow |F| \leq |F^*| \leq k$.

Dominating Set

Problem: DOMINATING SET

- ▶ Given: Undirected graph G = (V, E)
- ▶ Find: Dominating set $U \subseteq V$ of minimum size

$$OPT_{DS} = \min\{|U| \mid U \subseteq V, U \cup \bigcup_{u \in U} \delta(u) = V\}$$

Theorem

Given (G,k), it is **NP**-hard to decide, whether $OPT_{DS} \leq k$.

Hardness of k-Center

Theorem

Unless $\mathbf{NP} = \mathbf{P}$, for all $\varepsilon > 0$, there is no $(2 - \varepsilon)$ -approximation algorithm for k-Center.

- ▶ Let (G, k) be DominatingSet instance.
- ▶ Suppose A is a (2ε) -algorithm for k-Center
- ▶ Define complete graph G' on nodes V with

$$c(u, v) := \begin{cases} 1 & (u, v) \in E \\ 2 & \text{otherwise} \end{cases}$$

- ▶ \exists DS of size $\leq k \Rightarrow k$ -Center solution with value 1
- ▶ $\exists k$ -Center solution with value $\leq 1 \Rightarrow \exists$ DS of size $\leq k$
- ightharpoonup Run A on G':
 - ▶ $A(G') < 2 \Rightarrow A(G') = 1 \Rightarrow$ answer to DS instance is YES
 - ▶ $A(G') \ge 2 \Rightarrow \text{answer is NO}$

PART 4 TRAVELING SALESMAN PROBLEM

Source: Approximation Algorithms (Vazirani, Springer Press)

TSP

Problem: Traveling Salesman Problem (TSP)

- ▶ Given: Undirected graph G = (V, E) with metric cost $c: E \to \mathbb{Q}_+$
- ► <u>Find:</u> Minimum cost tour visiting all nodes

$$\min_{\text{tour } \pi: V \to V} \left\{ \sum_{v \in V} c(v, \pi(v)) \right\}$$

A 2-approximation for TSP

Algorithm:

- (1) Compute an MST T on G
- (2) Double the edges in T
- (3) Compute Euler tour \mathcal{E} using edges in T
- (4) Shortcut to obtain a tour π

Theorem

Algorithm yields a 2-apx.

- ▶ Let π^* be optimum tour
- ▶ \exists a spanning tree on G of cost $c(T) \leq OPT$ (just delete an arbitrary edge from π^*)
- ▶ Degrees are even after doubling, hence \mathcal{E} exists and $c(\mathcal{E}) \leq 2 \cdot OPT$
- ▶ $c(\pi) \le 2 \cdot OPT$ (G is metric, hence shortcutting does not increase the cost)

A 3/2-approximation for TSP

Algorithm (Christofides):

- (1) Compute an MST T
- (2) Find min cost perfect matching M on nodes $V^{\text{odd}} \subseteq V$ with odd degree in T
- (3) Find Euler tour in $T \cup M$.
- (4) Return π obtained by shortcutting the Euler tour

Reminder

A perfect matching in an undirected graph G' = (V', E') is an edge set $M \subseteq E'$ with $|\delta_M(v)| = 1 \ \forall v \in V'$. The cheapest perfect matching can be found in poly-time.

A 3/2-approximation for TSP (2)

Theorem

The algorithm gives a 3/2-apx.

- ightharpoonup Again c(T) < OPT
- $V^{\text{odd}} := \{ v \in V \mid |\delta_T(v)| \text{ odd} \}.$
- ightharpoonup Claim: $|V^{\text{odd}}|$ is even because

A 3/2-approximation for TSP (3)

- ▶ Let π^* be optimum tour. Obtain shortcutted tour π^{odd} on V^{odd} : $c(\pi^{\text{odd}}) \leq OPT$.
- ▶ Partition π^{odd} into 2 matchings M_1, M_2 on V^{odd}
- ▶ Let $M \in \{M_1, M_2\}$ be the cheaper of both matchings
- $ightharpoonup c(M) \le \frac{1}{2}c(\pi^{\text{odd}}) \le \frac{1}{2}OPT$
- ▶ In $T \cup M$ all nodes have even degree, hence $T \cup M$ contains an Euler tour of cost $\leq c(T) + c(M) \leq \frac{3}{2}OPT$.

A 3/2-approximation for TSP (3)

- ▶ Let π^* be optimum tour. Obtain shortcutted tour π^{odd} on V^{odd} : $c(\pi^{\text{odd}}) \leq OPT$.
- ▶ Partition π^{odd} into 2 matchings M_1, M_2 on V^{odd}
- ▶ Let $M \in \{M_1, M_2\}$ be the cheaper of both matchings
- $ightharpoonup c(M) \le \frac{1}{2}c(\pi^{\text{odd}}) \le \frac{1}{2}OPT$
- ▶ In $T \cup M$ all nodes have even degree, hence $T \cup M$ contains an Euler tour of cost $\leq c(T) + c(M) \leq \frac{3}{2}OPT$.

A 3/2-approximation for TSP (3)

- ▶ Let π^* be optimum tour. Obtain shortcutted tour π^{odd} on V^{odd} : $c(\pi^{\text{odd}}) \leq OPT$.
- ▶ Partition π^{odd} into 2 matchings M_1, M_2 on V^{odd}
- ▶ Let $M \in \{M_1, M_2\}$ be the cheaper of both matchings
- $ightharpoonup c(M) \le \frac{1}{2}c(\pi^{\text{odd}}) \le \frac{1}{2}OPT$
- ▶ In $T \cup M$ all nodes have even degree, hence $T \cup M$ contains an Euler tour of cost $\leq c(T) + c(M) \leq \frac{3}{2}OPT$.

Open Problems on TSP

Open Problem

- ▶ Is there a < 3/2-apx for TSP?
- ▶ Held-Karp LP relaxation is conjectured to have integrality gap 4/3.
- ▶ No $(\frac{5381}{5380} \varepsilon)$ -apx even if $c_e \in \{1, 2\}$

PART 5 THE CAPACITATED VEHICLE ROUTING PROBLEM

Source: Bounds and Heuristics for capacitated routing problems (Haimovich, Rinnooy Kan)

http://www.jstor.org/stable/3689422

The Capacitated Vehicle Routing Problem

Problem: CVRP

- ▶ Given: Undirected graph $G = (C \cup \{r\}, E)$ with metric costs $c: E \to \mathbb{Q}_+$, depot r, clients C and vehicle capacity k
- ▶ Find: A tour π of minimal cost which visits all clients at least once, but must revisit the depot after each $\leq k$ client visits

Assume: $|C| = \mathbb{Z} \cdot k$ (otherwise add clients at the depot)

A 5/2-apx for CVRP

Algorithm:

- (1) Compute a 3/2-approximate TSP tour π on clients
- (2) Let v_0, \ldots, v_{n-1} be clients in visiting order
- (3) Choose randomly a starting node v_{i^*}
- (4) Starting from v_{i^*} revisit r every k many clients (i.e. augment the tour with edges $r \to v_i, v_{i-1} \to r$ if $i \equiv_k i^*$) to obtain a CVRP solution π'

The analysis

Lemma

$E[APX] \le \frac{5}{2}OPT$

- ▶ Opt. TSP tour costs $OPT_{TSP} \leq OPT$ hence $c(\pi) \leq \frac{3}{2}OPT$
- ▶ Pr[need edge (r, v_i)] = $\frac{2}{k}$
- $E[APX] \le c(\pi) + \frac{2}{k} \sum_{v \in C} c(r, v)$
- ▶ Look at a subtour in optimum CVRP solution. Send k/2 clients [counter-]clockwise to r: edges in subtour used $\leq k/2$ times $\Rightarrow \sum_{v \in C} c(v, r) \leq \frac{k}{2} OPT$

$$E[APX] \le c(\pi) + \frac{2}{k} \sum_{v \in C} c(r, v) \le \frac{3}{2}OPT + \frac{2}{k} \cdot \frac{k}{2}OPT = \frac{5}{2}OPT$$

Part 6 Set Cover

Source: Approximation Algorithms (Vazirani, Springer Press)

Set Cover

Problem: Set Cover

- ▶ Given: Elements $U := \{1, ..., n\}$, sets $S_1, ..., S_m \subseteq U$ with cost $c(S_i)$
- ▶ <u>Find:</u>

$$OPT = \min_{I \subseteq \{1, \dots, m\}} \left\{ \sum_{i \in I} c(S_i) \mid \bigcup_{i \in I} S_i = U \right\}$$

Greedy algorithm:

- (1) $I := \emptyset$
- (2) WHILE not yet all elements covered DO
 - (3) $price(S) := \frac{c(S)}{|S \setminus \bigcup_{i \in I} S_i|}$
 - (4) $I := I \cup \{ \text{ set } S \text{ with minimum } price(S) \}$

Theorem

The greedy algorithm yields a $O(\log n)$ -approximation.

Analysis

- ▶ Let e_1, \ldots, e_n be elements in the order of covering.
- ▶ Suppose S ($S \in I$) newly covered e_k, \ldots, e_ℓ

$$e_1, e_2, e_3, \dots, \underbrace{e_k, \dots, e_j, \dots, e_\ell, \dots, e_n}_{\text{covered by } S}$$

- ▶ Define $price(e_j) := price(S)$ for $j \in \{k, ..., \ell\}$.
- ▶ Consider the iteration, when S was chosen: Still n k + 1 elements where uncovered and it was still possible to cover them all at cost OPT. Since S minimizes the price:

$$price(e_j) = price(e_k) \le \frac{OPT}{n-k+1} \le \frac{OPT}{n-j+1}$$

► Finally

$$APX = \sum_{j=1}^{n} price(e_j) \le \sum_{j=1}^{n} \frac{OPT}{n-j+1} = OPT \cdot \sum_{j=1}^{n} \frac{1}{j} = O(\log n) \cdot OPT$$

PART 7 SET COVER VIA LPS

Source: Approximation Algorithms (Vazirani, Springer Press)

A linear program for SetCover

Introduce decision variables

$$x_i = \begin{cases} 1 & \text{take set } S_i \\ 0 & \text{otherwise} \end{cases}$$

Formulate SetCover as integer linear program:

$$\min \sum_{i=1}^{m} c(S_i) x_i \qquad (ILP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$x_i \in \{0,1\} \quad \forall i$$

▶ Cheapest Set Cover solution = best (ILP) solution

The LP relaxation

We relax this to a linear program

$$\min \sum_{i=1}^{m} c(S_i) x_i \qquad (LP)$$

$$\sum_{i:j \in S_i} x_i \geq 1 \quad \forall j \in U$$

$$0 \leq x_i \leq 1 \quad \forall i$$

- ightharpoonup (LP) can be solved in polynomial time (see next chapter)
- ▶ Let OPT_f be value of optimum solution
- ▶ Of course $OPT_f \leq OPT$
- ► Integrality gap

$$\alpha(n) := \sup_{\text{instances } |\mathcal{I}| = n} \frac{OPT(\mathcal{I})}{OPT_f(\mathcal{I})}$$

The algorithm

Algorithm:

- (1) Solve $(LP) \to x^*$ opt. fractional solution
- (2) (Randomized rounding:) FOR i = 1, ..., m DO (3) Pick S_i with probability min $\{\ln(n) \cdot x_i^*, 1\}$
- (4) (Repairing:) FOR every not covered element $j \in U$ pick the cheapest set containing j

Analysis

Theorem

$$E[APX] \le (\ln(n) + 1) \cdot OPT_f$$

Consider an element $j \in U$:

$$\begin{array}{ll} \Pr[j \text{ not covered in } (2)] & = & \displaystyle \prod_{i:j \in S_i} \Pr[S_i \text{ not picked in } (2)] \\ & \leq & \displaystyle \prod_{i:j \in S_i} (1 - \ln(n) \cdot x_i^*) \\ & \stackrel{1+y \leq e^y}{\leq} & \displaystyle \prod_{i:j \in S_i} e^{-\ln(n) \cdot x_i^*} \\ & = & e^{-\ln(n) \cdot \sum_{i:j \in S_i} x_i^*} \\ & \leq & e^{-\ln(n)} = \frac{1}{n} \end{array}$$

Analysis (2)

▶ Cost of randomized rounding:

$$E[\text{cost in } (2)] = \sum_{i=1}^{m} \Pr[S_i \text{ picked in } (2)] \cdot c(S_i)$$

$$\leq \sum_{i=1}^{m} \ln(n) x_i^* c(S_i) = \ln(n) \cdot OPT_f$$

▶ Cost of repairing step: In step (3), we pick n times with prob. $\leq \frac{1}{n}$ a set of cost $\leq OPT_f$. Hence

$$E[\text{cost of step }(3)] \le n \cdot \frac{1}{n} \cdot OPT_f = OPT_f$$

▶ By linearity of expectation

$$E[APX] = E[\text{cost in } (2)] + E[\text{cost in } (3)] \le (\ln(n) + 1) \cdot OPT_f$$

PART 8 INSERTION: LINEAR PROGRAMMING

Source: Geometric Algorithms and Combinatorial Optimization (Grötschel, Lovász, Schrijver)

Linear programs

Let $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m, c \in \mathbb{R}^n$ then

is called a linear program. Alternatively one might have

- min instead of max
- ightharpoonup no non-negativity $x_i \geq 0$
- Ax = b

More terminology

- $\operatorname{conv}(\{x, y\}) := \{\lambda x + (1 \lambda)y \mid \lambda \in [0, 1]\}$
- ▶ Set $Q \subseteq \mathbb{R}^n$ convex if $\forall x, y \in Q$: conv $(\{x, y\}) \subseteq Q$
- ▶ A set P is called a polyhedron if $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$
- ▶ If P bounded $(\exists M : P \subseteq [-M, M]^n)$ then P is a polytope.

Vertices

Let $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ be a polyhedron.

Definition

A point $x^* \in P$ is called a vertex if there is a $c \in \mathbb{R}^n$ such that x^* is the unique optimum solution of $\max\{c^T x \mid x \in P\}$.

Alternative names: basic solution, extreme point.

Alternative characterisations

Lemma

Let $x^* \in P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$. The following statements are equivalent

- \triangleright x^* is a vertex
- ▶ There are no $y, z \in P$ with $(x^*, y, z \text{ pairwise different})$ and $x^* \in conv\{y, z\}$
- ▶ There is a linear independent subsystem $A'x \leq b'$ (with n constraints) of $Ax \leq b$ s.t. $\{x^*\} = \{x \in \mathbb{R}^n \mid A'x = b'\}$.

Not every polyhedron has vertices

Example: The polyhedron $P = \{x \in \mathbb{R}^2 \mid -x_1 + x_2 \leq 1\}$ does not have any vertices.

Lemma

Any polytope has vertices.

Lemma

Any polyhedron $P \subseteq \mathbb{R}^n$ with non-negativity constraints $x_i > 0 \ \forall i = 1, ..., n$ has vertices.

Support of vertex solutions

Lemma

Let x^* be a vertex of

$$P = \{x \in \mathbb{R}^n \mid a_j^T x \le b_j \ \forall j = 1, \dots, m; x_i \ge 0 \ \forall i\}$$

Then $|\{i \mid x_i^* > 0\}| \le m \ (\#non\text{-}zero \ entries \le \#constraints).$

Proof: There is a subsystem I, J with |J| + |I| = n and $\{x^*\} = \{x \mid a_j^T x = b_j \ \forall j \in J; \ x_i = 0 \ \forall i \in I\}$. Hence $|I| = n - |J| \ge n - m$.

Linear programming is doable in polytime

Theorem

Given $A \in \mathbb{Q}^{m \times n}$, $b \in \mathbb{Q}^m$, $c \in \mathbb{Q}^n$, there is an algorithm which solves

$$\max\{c^Tx\mid Ax\leq b\}$$

in time polynomial in n, m and the encoding length of A, b, c. The algorithm returns an optimum vertex solution if there is any.

- ▶ Polynomial here means that the number of bit operations is bounded by a polynomial (Turing model).
- ► Encoding length (= #bits used to encode an object) for
 - integer $\alpha \in \mathbb{Z}$: $\langle \alpha \rangle := \lceil \log_2(|\alpha| + 1) \rceil + 1$.
 - ▶ rational number $\alpha = \frac{p}{q} \in \mathbb{Q}$: $\langle \alpha \rangle := \langle p \rangle + \langle q \rangle$
 - vector $c \in \mathbb{Q}^n$: $\langle c \rangle := \sum_{i=1}^n \langle c_i \rangle$
 - inequality $a^T x \leq \delta$: $\langle a \rangle + \langle \delta \rangle$
 - ▶ matrix $A = (a_{ij}) \in \mathbb{Q}^{m \times n}$: $\langle A \rangle := \sum_{i=1}^{m} \sum_{j=1}^{n} \langle a_{ij} \rangle$

The ellipsoid method

Input: Fulldimensional polytope $P \subseteq \mathbb{R}^n$ **Output:** Point in P

- (1) Find ellipsoid $E_1 \supseteq P$ with center z_1
- (2) FOR $t = 1, ..., \infty$ DO
 - (3) IF $z_t \in P$ THEN RETURN z_t
 - (4) Find hyperplane $a^T x = \delta$ through z_t such that $P \subseteq \{x \mid a^T x < \delta\}$
 - (5) Compute ellipsoid $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \le \delta\}$ with $\operatorname{vol}(E_{t+1}) = (1 \frac{\Theta(1)}{2}) \operatorname{vol}(E_t)$

The ellipsoid method (2)

Problem: Separation Problem for P:

- ▶ Given: $y \in \mathbb{Q}^n$
- ▶ Find: $a \in \mathbb{Q}^n$ with $a^T y > a^T x \ \forall x \in P$ (or assert $y \in P$).

Rule of thumb

If one can solve the Separation Problem for $P \subseteq \mathbb{R}^n$ in poly-time, then one can solve $\max\{c^T x \mid x \in P\}$ efficiently.

Important: The number of inequalities does <u>not</u> play a role. Especially we can optimize in many cases even if the number of inequalities is exponential.

52/292

Theorem

Let $P \subseteq \mathbb{R}^n$ be a polyhedron that can be described as $P = \{x \in \mathbb{R}^n \mid Ax \leq b\}$ with $A \in \mathbb{Q}^{m \times n}, b \in \mathbb{Q}^m$, and let $c \in \mathbb{Q}^n$ be an objective function. Let φ be an upper bound on

- ▶ the encoding length of each <u>single</u> inequality in $Ax \leq b$.
- ightharpoonup the dimension n
- \blacktriangleright the encoding length of c.

Suppose one can solve the following problem in time $poly(\varphi)$:

Separation problem: Given $y \in \mathbb{Q}^n$ with encoding length $poly(\varphi)$ as input. Decide, whether $y \in P$. If not find an $a \in \mathbb{Q}^n$ with $a^T y > a^T x \ \forall x \in P$.

Then there is an algorithm that yields in time $poly(\varphi)$ either

- ▶ $x^* \in \mathbb{Q}^n$ attaining $\max\{c^T x \mid x \in P\}$ (x^* will be a vertex if P has vertices)
- \triangleright P empty
- ▶ Vectors $x, y \in \mathbb{Q}^n$ with $x + \lambda y \in P \ \forall \lambda \geq 0 \ and \ c^T y \geq 1$.

Here running times are w.r.t. the Turing machine model.

Weak duality

Observation

Consider the LP $\max\{c^Tx\mid x\in P\}$ with $P=\{x\in\mathbb{R}^n\mid Ax\leq b\}$. Let $y\geq \mathbf{0}$. Then $(y^TA)x\leq y^Tb$ is a feasible inequality for P (i.e. $(y^TA)x\leq y^Tb\;\forall x\in P$). In fact, if $y^TA=c^T$, then

$$c^T x = (y^T A)x \le y^T b \quad \forall x \in P$$

Example: $\max\{x_1 + x_2 \mid x_1 + 2x_2 \le 6, \ x_1 \le 2, \ x_1 - x_2 \le 1\}$ Optimum solution: $x^* = (2, 2)$ with $c^T x^* = 4$.

$$\frac{\frac{2}{3} \cdot (x_1 + 2x_2 \le 6)}{0 \cdot (x_1 \le 2)}$$

$$\frac{\frac{1}{3} \cdot (x_1 - x_2 \le 1)}{x_1 + x_2 \le \frac{13}{3} \approx 4.33}$$

Weak duality (2)

Theorem (Weak duality)

Let $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Then

$$\underbrace{\max\{c^Tx\mid Ax\leq b\}}_{(P)}\leq \underbrace{\min\{b^Ty\mid y^TA=c^T;\ y\geq \mathbf{0}\}}_{(D)}$$

given that both systems are feasible.

- ▶ If (P) is the primal program, then (D) is the dual program to (P).
- ▶ Note: The dual of the dual is the primal.

Strong duality

Theorem (Strong duality I)

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Then

$$\max\{c^T x \mid Ax \le b\} = \min\{b^T y \mid y^T A = c^T; \ y \ge \mathbf{0}\}$$

given that both systems are feasible.

Theorem (Strong duality II)

Let
$$A \in \mathbb{R}^{m \times n}$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$. Then

$$\max\{c^Tx\mid Ax\leq b, x\geq \mathbf{0}\}=\min\{b^Ty\mid y^TA\geq c^T, y\geq \mathbf{0}\}$$

given that both systems are feasible.

Hand-waving proof of strong duality

Claim

Let x^* be optimum solution of $\max\{c^Tx \mid Ax \leq b\}$. Then there is a $y \geq \mathbf{0}$ with $y^TA = c^T$ and $y^Tb = c^Tx^*$.

- ▶ Let a_1, \ldots, a_m be rows of A.
- Let $I := \{i \mid a_i^T x^* = b_i\}$ be the tight inequalities.

- ▶ Suppose for contradiction $c \notin \{\sum_i a_i y_i \mid y_i \geq 0, i \in I\} =: C$
- ▶ Then there is a $\lambda \in \mathbb{R}^n$ with $c^T \lambda > 0$, $a_i^T \lambda \leq 0 \ \forall i \in I$.
- Walking in direction λ improves objective function. But x^* was optimal. Contradiction!

Hand-waving proof of strong duality

Claim

Let x^* be optimum solution of $\max\{c^Tx \mid Ax \leq b\}$. Then there is a $y \geq \mathbf{0}$ with $y^TA = c^T$ and $y^Tb = c^Tx^*$.

- ▶ Let a_1, \ldots, a_m be rows of A.
- Let $I := \{i \mid a_i^T x^* = b_i\}$ be the tight inequalities.

▶ $\exists y \geq \mathbf{0} : y^T A = c^T \text{ and } y_i = 0 \ \forall i \notin I \text{ (we only use tight inequalities)}$

inequalities)
$$y^{T}b - c^{T}x^{*} = y^{T}b - y^{T}Ax^{*} = y^{T}(b - Ax^{*}) = \sum_{i=1}^{m} \underbrace{y_{i}}_{=0 \text{ if } i \notin I} \underbrace{(b_{i} - a_{i}^{T}x^{*})}_{=0 \text{ if } i \in I} = 0$$

Complementary Slackness

Warning: Primal and dual are switched here.

Theorem (Complementary slackness)

Let x^* be a solution for

$$(P): \min\{c^T x \mid Ax \ge b, x \ge \mathbf{0}\}\$$

and y^* a solution for

$$(D): \max\{b^T y \mid A^T y \le c, y \ge \mathbf{0}\}.$$

Let a_i be the ith row of A and a^j be its jth column. Then x^* and y^* are both optimal \Leftrightarrow both following conditions are true

- ▶ Primal complementary slackness: $x_j > 0 \Rightarrow (a^j)^T y = c_j$
- ▶ Dual complementary slackness: $y_i > 0 \Rightarrow a_i^T x = b_i$

Part 9 Weighted Vertex Cover

Source: Approximation Algorithms (Vazirani, Springer Press)

Vertex Cover

Problem: Weighted Vertex Cover

- ▶ Given: Undirected graph G = (V, E), node weights $c: V \to \mathbb{Q}_+$
- ▶ Find: Subset $U \subseteq V$ such that every edge is incident to at least one node in U and $\sum_{v \in U} c(v)$ is minimized.

Consider the LP

$$\min \sum_{v \in V} c(v) x_v$$

$$x_u + x_v \geq 1 \quad \forall \ (u, v) \in E$$

$$x_v \geq 0 \quad \forall v \in V$$

Half-integrality

Lemma

Let x^* be a basic solution of (LP). Then $x_v^* \in \{0, \frac{1}{2}, 1\}$ for all $v \in V$, i.e. x^* is <u>half-integral</u>.

▶ Suppose x^* is not half-integral, i.e. not both sets are empty:

$$V_{+} := \left\{ v \mid \frac{1}{2} < x_{v}^{*} < 1 \right\}, V_{-} := \left\{ v \mid 0 < x_{v}^{*} < \frac{1}{2} \right\}$$

▶ It suffices to show that x^* can be written as convex combination $x^* = \frac{1}{2}y + \frac{1}{2}z$ for 2 different feasible (LP) solutions y, z.

Half-integrality (2)

Define

$$y_v := \begin{cases} x_v^* + \varepsilon & x_v^* \in V_+ \\ x_v^* - \varepsilon & x_v^* \in V_- \\ x_v^* & \text{otherwise} \end{cases} \quad \text{and} \quad z_v := \begin{cases} x_v^* - \varepsilon & x_v^* \in V_+ \\ x_v^* + \varepsilon & x_v^* \in V_- \\ x_v^* & \text{otherwise} \end{cases}$$

- ▶ Tight edges $(u, v) \in E : x_v^* + x_u^* = 1$ drawn solid
- ▶ Constraints satisfied by y, z for $\varepsilon > 0$ small enough.

The Algorithm

Algorithm:

- (1) Compute an optimum basic solution x^* to (LP)
- (2) Choose vertex cover $U := \{v \mid x_v^* > 0\}$

Theorem

U is a vertex cover of $cost \leq 2 \cdot OPT_f$.

Proof.

Clearly U is feasible. Furthermore

$$\sum_{v \in U} c(v) = \sum_{v \in V} \lceil x_v^* \rceil c(v) \le 2 \sum_{v \in V} x_v^* c(v) = 2 \cdot OPT_f.$$

Inapproximability

Theorem (Khot & Regev '03)

There is no polynomial time $(2 - \varepsilon)$ -apx unless Unique Games Conjecture is false.

Unique Games Conjecture

For all $\varepsilon > 0$, there is a prime $p := p(\varepsilon)$ such that the following problem is **NP**-hard:

- ▶ GIVEN: Equations $x_i \equiv_p a_{ij}x_j$ for some (i, j) pairs
- ► Distinguish:
 - ▶ YES: max satisfiable fraction $\geq 1 \varepsilon$
 - ▶ No: max satisfiable fraction $\leq \varepsilon$

Example:

$$x_1 \equiv_{13} 4 \cdot x_3$$

$$x_2 \equiv_{13} 9 \cdot x_1$$

· · 65 / 292

PART 10 INSERTION: ALGORITHMIC PROBABILITY THEORY

Source: Probability and Computing (Mitzenmacher & Upfal, Cambridge Press)

Probability theory

Definition

A (discrete) probability space consists of

- ightharpoonup A (countable) sample space Ω modelling all possible outcomes of a random process.
- ▶ A probability function $Pr: 2^{\Omega} \to \mathbb{R}$ such that
 - (a) $0 \le \Pr[E] \le 1 \ \forall E \subseteq \Omega$
 - (b) $Pr[\Omega] = 1$
 - (c) For any (countable) sequence of pairwise disjoint events $E_1, E_2, \ldots \subseteq \Omega$

$$\Pr\left[\bigcup_{i>1} E_i\right] = \sum_{i>1} \Pr[E_i]$$

Definition (Random variable)

A function $X: \Omega \to \mathbb{R}$ is called a random variable.

Probability theory (2)

Definition (Expectation)

Let $X:\Omega\to\mathbb{R}$ be a random variable. Then

$$E[X] = \sum_{i} i \cdot \Pr[X = i]$$

Lemma (Linearity of expectation)

Let $X_1, \ldots, X_n : \Omega \to \mathbb{R}$ random variables with finite expectations. Then

$$E\Big[\sum_{i=1}^{n} X_i\Big] = \sum_{i=1}^{n} E[X_i]$$

Probability theory (3)

Lemma (Independence)

Random variables X_1, \ldots, X_n are called independent if

$$\forall I \subseteq \{1, \dots, n\} : \forall x_i : \Pr\left[\bigcap_{i \in I} (X_i = x_i)\right] = \prod_{i \in I} \Pr[X_i = x_i]$$

Lemma

Let X_1, \ldots, X_n <u>independent</u> random variables. Then

$$E\Big[\prod_{i=1}^{n} X_i\Big] = \prod_{i=1}^{n} E[X_i]$$

Probability theory (4)

Lemma (Union bound)

Let $E_1, \ldots, E_n \subseteq \Omega$ be events

$$\Pr\left[\bigcup_{i=1}^{n} E_i\right] \le \sum_{i=1}^{n} \Pr[E_i]$$

Probability theory (5)

Lemma (Markov bound)

Let $X \geq 0$ be a random variable. Then

$$\Pr[X \ge a] \le \frac{E[X]}{a}$$

Proof.

The value E[X] is

$$E[X] = \underbrace{E[X \mid X \ge a]}_{\ge a} \cdot \Pr[X \ge a] + \underbrace{E[X \mid X < a]}_{\ge 0} \cdot \underbrace{\Pr[X < a]}_{\ge 0}$$

$$\ge a \cdot \Pr[X \ge a]$$

Probability theory (6)

Theorem (Chernov bound)

Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $X := X_1 + \ldots + X_n$. For any $\delta > 0$ one has

$$\Pr[X \ge (1+\delta)E[X]] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{E[X]}$$

Let
$$t := \ln(1+\delta) > 0$$
, $p_i := \Pr[X_i = 1]$. Note that $E[X_i] = p_i$.

$$\Pr[X \ge (1+\delta)E[X]] \stackrel{e^{tx} \text{ mon.inc.}}{=} \Pr[e^{tX} \ge e^{t(1+\delta)E[X]}]$$

$$\stackrel{\text{Markov}}{\le} \frac{E[e^{tX}]}{e^{t(1+\delta)E[X]}}$$

$$\le \frac{E[\prod_{i=1}^n e^{tX_i}]}{e^{t(1+\delta)E[X]}}$$

$$X_1, \dots, \underbrace{X_n} \text{ indep} \frac{\prod_{i=1}^n E[e^{tX_i}]}{e^{t(1+\delta)E[X]}}$$

$$\stackrel{(*)}{\le} \frac{\prod_{i=1}^n e^{\delta p_i}}{e^{t(1+\delta)E[X]}}$$

$$= \frac{e^{\delta \sum_{i=1}^n p_i}}{e^{t(1+\delta)E[X]}}$$

$$E[X] = \sum_{i=1}^n p_i \left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{E[X]}$$

$$(*) \quad E[e^{tX_i}] = p_i \cdot \underbrace{e^{t \cdot 1}}_{=1+\delta} + (1 - p_i) \cdot \underbrace{e^{t \cdot 0}}_{=1} = 1 + \delta p_i \le e^{\delta p_i} \quad \Box$$

Probability theory (7)

Theorem (Variants of Chernov bound)

Let $X_1, \ldots, X_n \in \{0, 1\}$ be independent random variables with and $X := X_1 + \ldots + X_n$ and $0 < \delta \le 1$. Then

• Let $\mu \geq E[X]$, then

$$\Pr[X \ge (1+\delta)\mu] \le e^{-\mu \cdot \delta^2/2}$$

• Let $\mu \leq E[X]$, then

$$\Pr[X \le (1 - \delta)\mu] \le e^{-\mu \cdot \delta^2/2}$$

PART 11 MINIMIZING CONGESTION

Source: Randomized rounding: A technique for provably good algorithms and algorithmic proofs (Raghavan, Tompson) http://www.springerlink.com/content/n16347864k45367w/fulltext.pdf

Minimizing Congestion

Problem: MINCONGESTION

- ▶ Given: Directed graph G = (V, E) with demand pairs (s_i, t_i) $s_i, t_i \in V$, i = 1, ..., k
- ▶ Find: s_i - t_i paths P_i that minimize the **congestion**

$$\max_{e \in E} |\{i : e \in P_i\}|$$

Minimizing Congestion

Problem: MINCONGESTION

- ▶ Given: Directed graph G = (V, E) with demand pairs (s_i, t_i) $s_i, t_i \in V$, i = 1, ..., k
- ▶ Find: s_i - t_i paths P_i that minimize the **congestion**

$$\max_{e \in E} |\{i : e \in P_i\}|$$

A flow-based LP formulation of MINCONGESTION

$$\min C \qquad (LP)$$

$$\sum_{e \in \delta^+(v)} f_i(e) - \sum_{e \in \delta^-(v)} f_i(e) = \begin{cases} 1 & v = s_i \\ -1 & v = t_i \\ 0 & \text{otherwise} \end{cases}$$

$$\sum_{i=1}^k f_i(e) \leq C \quad \forall e \in E$$

$$C \geq 1$$

$$f_i(e) \geq 0 \quad \forall i \ \forall e \in E$$

$$f_1(e) = \frac{1}{2} \text{ on red } e$$

$$s_1 \qquad f_1(e) = \frac{1}{2} \qquad t_1$$

$$f_2(e) = \frac{1}{2} \text{ on blue } e$$

$$s_2 \qquad t_2$$

$$f_3(e) = \frac{1}{2} \text{ on green } e$$

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - $(5) f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - $(5) f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - (5) $f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - $(5) f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - (5) $f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - (5) $f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - (5) $f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

- ▶ **Input:** s-t flow $f: E \to \mathbb{Q}_+$ (without directed cycles)
- ▶ Output: Paths p_1, \ldots, p_m with values $v_1, \ldots, v_m \ge 0$
- (1) i := 1
- (2) WHILE $f \neq \mathbf{0}$ DO
 - (3) Let p_i be any s-t path in $\{e \mid f(e) > 0\}$
 - (4) $v_i := \min\{f(e) \mid e \in p_i\}$
 - $(5) f(e) := f(e) v_i \ \forall e \in p_i$
 - (6) i := i + 1

Lemma

The algorithm decomposes the flow in s-t paths p_1, \ldots, p_m with $m \leq |E|$.

$$\sum_{e \in \delta^{+}(s)} f(e) = \sum_{i=1}^{m} v_{i} \quad and \quad \sum_{i: e \in p_{i}} v_{i} = f(e) \ \forall e \in E$$

- \triangleright f remains a flow throughout the algorithm.
- ▶ In each iteration there is an edge, where the flow drops down to 0.

An approximation algorithm for MinCongestion

Algorithm

- (1) Solve $(LP) \to \text{flows } f_1, \dots, f_k \text{ frac. congestion } OPT_f$
- (2) FOR i = 1, ..., k DO
 (3) apply path decomposition to $f_i \to (p_j^i, v_j^i)$ $(\sum_j v_j^i = 1 \ \forall i)$
- (4) Choose P_i among p_j^i 's with $\Pr[P_i = p_j^i] = v_j^i$

Theorem

With probability $\geq 1 - \frac{1}{n}$ the congestion is $\leq O(\frac{\ln n}{\ln \ln n}) \cdot OPT_f$.

- ▶ Consider any edge $e \in E$.
- ▶ Let $X_i^e \in \{0, 1\}$ be the random variable, saying whether the s_i - t_i path uses e. X_1^e , ..., X_k^e are independent!
- ▶ Let $X^e := \sum_{i=1}^k X_i^e$ be the number of paths, crossing e.

▶
$$E[X^e] = \sum_{i=1}^k \underbrace{\Pr[X_i^e]}_{=f_i(e)} = \sum_{i=1}^k f_i(e) \le OPT_f.$$

Proof (2)

 $\Pr\left[X^e > \left(\overbrace{c\frac{\log n}{\log\log n}}^{=:\delta} + 1\right) \overbrace{OPT_f}^{\geq E[X^e]}\right] \leq \left(\frac{e^{\delta}}{\delta^{\delta}}\right)^{2}$

`	,	c
1	/	4

 $\leq \left(\frac{e}{c\frac{\ln n}{\ln \ln n}}\right)^{c\frac{\ln n}{\ln \ln n}}$

 $\stackrel{c \ge 3}{\le} \left(\frac{\ln \ln n}{\ln n}\right)^{c \frac{\ln n}{\ln \ln n}}$

 $\Pr\left[\bigvee\left(X^e > 6\frac{\ln n}{\ln \ln n}OPT_f\right)\right] \le |E| \cdot \frac{1}{n^3} \le \frac{1}{n} \quad \Box$

 $= \left(\exp\left(\ln\ln\ln n - \ln\ln n\right)\right)^{c\frac{\ln n}{\ln\ln n}}$

 $\stackrel{n \text{ big}}{\leq} \exp\left(-\frac{1}{2}\ln\ln n \cdot \frac{c\ln n}{\ln\ln n}\right)$

Inapproximability

Theorem (Andrews & Zhang - JACM'08)

There is no $\log^{1-\varepsilon} n$ -apx unless $\mathbf{NP} \subseteq \mathbf{ZPTIME}(n^{polylog(n)})$.

PART 12 KNAPSACK

Source: Approximation Algorithms (Vazirani, Springer Press)

Knapsack

Problem: KNAPSACK

- ▶ Given: n objects with weight $w_i \in \mathbb{Q}_+$ and profit $p_i \in \mathbb{Q}_+$, size $G \in \mathbb{Q}_+$
- ► <u>Find:</u> Subset of objects, maximizing the profit and not exceeding the weight bound:

$$OPT = \max_{I \subseteq \{1, \dots, n\}} \left\{ \sum_{i \in I} p_i \mid \sum_{i \in I} w_i \le G \right\}$$

A dynamic program for KNAPSACK

Dynamic program:

- (1) Assume restricted profits $p_i \in \{0, \dots, B\}$
- (2) Compute table entries

$$T(i,b) \quad = \quad \min_{I \subseteq \{1,\dots,i\}} \Big\{ \sum_{j \in I} w_j \mid \sum_{j \in I} p_j \ge b \Big\}$$

= minimum weight needed for a subset of the first i objects to obtain a profit of at least b

using dynamic programming

$$T(i,b) = \min \left\{ \underbrace{T(i-1,b)}_{\text{don't take } i}, \underbrace{T(i-1,b-p_i) + w_i}_{\text{take } i} \right\} \, \forall i \, \forall p = 0, \dots, B$$

(3) Reconstruct I leading to $\max\{b \in \mathbb{N}_0 \mid T(n,b) \leq G\}$

Observation

The algorithm finds optimum solutions in time $O(n \cdot B)$.

The FPTAS

Algorithm:

- (1) Scale profits s.t. $p_{\text{max}} = n/\varepsilon$
- (2) Round $p'_i := \lfloor p_i \rfloor$
- (3) Compute and return optimum solution I for weights p_i'

Analysis of FPTAS

Theorem

Let $0 < \varepsilon \le \frac{1}{2}$. The algo gives a $(1 + 2\varepsilon)$ -apx in time $O(n^2/\varepsilon)$.

- ▶ W.l.o.g. $OPT \ge p_{\text{max}} = n/\varepsilon$ (we can delete objects that even alone do not fit into the knapsack)
- ▶ Let I^* be optimum solution for original profits. Let OPT' be optimum value for profits p'. Then

$$OPT' \ge \sum_{i \in I^*} p_i' = \sum_{i \in I^*} \lfloor p_i \rfloor \ge \sum_{i \in I^*} p_i - |I^*| \ge OPT - n$$

$$\ge (1 - \varepsilon)OPT \ge \frac{OPT}{1 + 2\varepsilon}$$

 \blacktriangleright Let I be solution found by dynamic program:

$$\sum_{i \in I} p_i \ge \sum_{i \in I} p_i' = OPT' \ge \frac{OPT}{1 + 2\varepsilon}$$

▶ $B = \max\{p_i'\} \le n/\varepsilon$ hence the running time is $O(n^2/\varepsilon)$

PART 13 MULTI CONSTRAINT KNAPSACK

Source: Folklore

Multi Constraint Knapsack

Problem: Multi Constraint Knapsack (Mck)

- ▶ Given: n objects with profits $p_i \in \mathbb{Q}_+$ and k many budgets B_j . Object i has requirement $a_i^j \in \mathbb{Q}_+$ w.r.t. budget j.
- ► <u>Find:</u> Subset of objects, maximizing the profit and not exceeding any budget:

$$OPT = \max_{I \subseteq \{1,\dots,n\}} \left\{ \sum_{i \in I} p_i \mid \sum_{i \in I} a_i^j \le B_j \ \forall j = 1,\dots,k \right\}$$

▶ For arbitrary k there is no $n^{1-\varepsilon}$ -apx: Take an INDEPENDENT SET instance G = (V, E). For each edge e = (u, v) add an "edge budget constraint" $a_u^e = a_v^e = 1, B_e = 1$. Then $OPT = OPT_{IS}$.

A PTAS for k = O(1)

Algorithm:

- (1) Guess the $\lceil \frac{k}{\varepsilon} \rceil$ items I_{large} in the optimum solution with maximum profit
- (2) Let x^* be optimum basic solution to the following LP

$$\max \sum_{i=1}^{n} x_i p_i$$

$$\sum_{i=1}^{n} a_i^j x_i \leq B_j \quad \forall j = 1, \dots, k$$

$$x_i = 1 \quad \forall i \in I_{\text{large}}$$

$$x_i = 0 \quad \forall i \notin I_{\text{large}} : p_i > \min\{p_j \mid j \in I_{\text{large}}\}$$

$$0 \leq x_i \leq 1 \quad \forall i = 1, \dots, n$$

(3) Output $I := \{i \mid x_i^* = 1\}.$

The Analysis

Theorem

For constant k the algorithm has polynomial running time. Furthermore $APX \geq (1 - \varepsilon)OPT$.

- ▶ The produced solution is clearly feasible
- ▶ $LP \ge OPT$ (since we guess elements from OPT)
- ▶ Observation: $|\{i \mid 0 < x_i^* < 1\}| \le k$ since x^* is a basic solution and appart from $0 \le ... \le 1$ there are only k constraints.
- ▶ For i with $0 < x_i^* < 1$ one has $p_i \leq \frac{\varepsilon}{k}OPT$

$$APX \geq \sum_{i=1}^{n} \lfloor x_{i}^{*} \rfloor p_{i} \geq LP - \sum_{\substack{i:0 < x_{i}^{*} < 1 \\ \leq k \cdot \frac{\varepsilon}{k}OPT}} p_{i}$$

$$\geq OPT - k \cdot \frac{\varepsilon}{k}OPT = (1 - \varepsilon)OPT$$

Hardness of MultiConstraintKnapsack

Theorem

There is no FPTAS for MultiConstraintKnapsack even for 2 budgets, unless $\mathbf{NP} = \mathbf{P}$.

Problem: PARTITION

- ▶ Given: Numbers $a_1, \ldots, a_n \in \mathbb{N}$, $S := \sum_{i=1}^n a_i$, $m \in \{1, \ldots, n\}$
- ▶ Find: $I \subseteq \{1, \ldots, n\} : |I| = m, \sum_{i \in I} a_i = S/2$
- ► Recall: PARTITION is **NP**-hard.
- ▶ Define Mck instance with 2 constraints:

$$\max \sum_{i=1}^{n} x_{i} \sum_{i=1}^{n} x_{i} a_{i} \leq S/2 \sum_{i=1}^{n} x_{i} (S - a_{i}) \leq S(m - \frac{1}{2}) x_{i} \in \{0, 1\} \quad \forall i = 1, \dots, n$$

Proof

- ▶ Claim: \exists Partition solution $\Leftrightarrow OPT_{\text{MCK}} \geq m$
- ▶ ⇒ Suppose $\exists I: |I| = m, \sum_{i \in I} a_i = S/2$. Then this is a MCK solution of value m since

$$\sum_{i \in I} (S - a_i) = mS - \sum_{i \in I} a_i = S(m - \frac{1}{2})$$

 $\blacktriangleright \Leftarrow \text{Let } I \text{ be Mck solution of value } \geq m.$

$$|I| \cdot S - \frac{S}{2} \stackrel{\text{1. constr.}}{\leq} |I| \cdot S - \sum_{i \in I} a_i = \sum_{i \in I} (S - a_i) \stackrel{\text{2. const.}}{\leq} m \cdot S - \frac{S}{2}$$

- ▶ Hence |I| = m. Then ineq. holds with "="
- ▶ Thus $\sum_{i \in I} a_i = S/2$.
- Now suppose for contradiction we would have an FPTAS for McK: Then choose $\varepsilon := \frac{1}{n+1}$. Then the FPTAS would give an optimum solution for the instance resulting from the PARTITION reduction.

PART 14 BIN PACKING

Source: Combinatorial Optimization: Theory and Algorithms (Korte, Vygen)

Bin Packing

Problem: BINPACKING

- ▶ Given: Items with sizes $a_1, \ldots, a_n \in [0, 1]$
- ▶ <u>Find:</u> Assign items to minimum number of bins of size 1.

$$OPT = \min \left\{ k \mid \exists I_1 \dot{\cup} \dots \dot{\cup} I_k = \{1, \dots, n\} : \forall j : \sum_{i \in I_j} a_i \le 1 \right\}$$

▶ Define size $(I) = \sum_{i \in I} a_i$

First Fit

First Fit algorithm:

- (1) Start with empty bins
- (2) FOR i = 1, ..., n DO
 - (3) Assign item i to the bin B with least index such that $a_i + \sum_{j \in B} a_j \le 1$

Lemma

Let m be the number of used bins. Then $m \le 2 \sum_{i=1}^{n} a_i + 1 \le 2 \cdot OPT + 1$.

▶ All but m-1 bins must be filled with $\geq \frac{1}{2}$ (otherwise we would not have opened a new bin):

$$\sum_{i=1}^{n} a_i \ge \frac{1}{2}(m-1) \qquad 0.5 - \frac{1}{0}$$

▶ Hence $m \le 2 \sum_{i=1}^{n} a_i + 1$.

Linear Grouping

- ▶ INPUT: Instance $I = (a_1, ..., a_n), k \in \mathbb{N}$
- ▶ OUTPUT: Instance $I' = (a'_1, \ldots, a'_n)$ with $a'_i \ge a_i$ and $\le k$ different item sizes
- (1) Sort $a_1 \leq a_2 \leq \ldots \leq a_n$
- (2) Partition items into k consecutive groups of $\lceil n/k \rceil$ items (the last group might have less items)
- (3) Let a'_i be the size of the largest item in i's group

Linear Grouping (2)

Lemma

$$OPT(I') \le OPT(I) + \lceil n/k \rceil.$$

- ▶ Consider solution OPT(I). Assign item a'_i of group j to a space for item in group j+1
- ▶ Assign largest $\lceil n/k \rceil$ items to their own bin

An asymptotic PTAS

Algorithm of Fernandez de la Vega & Lueker:

- (1) Let $I = \{i \mid a_i > \varepsilon\}$ be set of large items (other items are small)
- (2) Apply linear grouping with $k = 1/\varepsilon^2$ groups to $I \to I'$
- (3) Compute an optimum distribution of I'
- (4) Distribute the small items over the used bins using First Fit

Lemma

The algorithm runs in polynomial time and uses at most $(1+2\varepsilon)OPT+1$ bins.

- ▶ Let $b_1, \ldots, b_{1/\epsilon^2}$ different item sizes in I'.
- ▶ Possible bin configurations $\mathcal{P} = \{p \in \{0, \dots, 1/\varepsilon\}^{1/\varepsilon^2} \mid b^T p \leq 1\}. \mid \mathcal{P} \mid \leq (1/\varepsilon^2)^{1/\varepsilon}.$
- ▶ Solution is described by $(n_p)_{p \in \mathcal{P}}$ $(n_p = \text{how many times shall I pack a bin with configuration } p?), <math>n_p \in \{0, \dots, n\}$
- $ightharpoonup \leq n^{(1/\varepsilon^2)^{1/\varepsilon}}$ possibilities for $(n_p)_{p\in\mathcal{P}}$.

An asymptotic PTAS (2)

- ▶ We need OPT(I') + # of bins additionally opened for the small items
- ▶ Note that

$$\begin{aligned} OPT(I') &\leq OPT(I) + \lceil |I| \cdot \varepsilon^2 \rceil \leq OPT(I) + \lceil \varepsilon \cdot OPT(I) \rceil = (1 + 2\varepsilon) \cdot OPT \\ \text{using } OPT(I) &\geq \sum_{i \in I} a_i \geq \varepsilon \cdot |I| \text{ and } OPT \geq OPT(I). \end{aligned}$$

▶ Suppose we need to open an additional bin for small items. Let m be total number of used bins. Then all but one bin are filled to $\geq 1 - \varepsilon$. Hence

$$OPT \ge \sum_{i=1}^{m} a_i \ge (1 - \varepsilon) \cdot (m - 1)$$

and

$$m \le \frac{OPT}{1-\varepsilon} + 1 \le (1+2\varepsilon)OPT + 1$$

Section 14.1 The algorithm of Karmarkar & Karp

The Algorithm of Karmarkar & Karp

Theorem (Karmarkar, Karp '82)

One can compute a BinPacking solution with $OPT + O(\log^2 n)$ many bins in polynomial time.

Assume $a_i \geq \delta := \frac{1}{n}$ (again one can distribute items that are smaller than $\frac{1}{n}$ after distributing the large items.

The Gilmore-Gomory LP-relaxation

- ▶ Let $b_i \in \mathbb{N}$ now the number of items of size a_i
- \triangleright n = number of different item sizes
- $ightharpoonup m := \sum_{i=1}^n b_i = \text{total number of items}$
- $\triangleright \mathcal{P} = \{ p \in \mathbb{Z}_+^n \mid a^T p \leq 1 \} \text{ set of feasible patterns}$
- ▶ Variable $x_p = \#$ of bins packed with pattern p

Primal

$$\min \mathbf{1}^T x \qquad (P(\mathcal{P}))$$

$$\sum_{p \in \mathcal{P}} x_p p \geq b$$

$$x \geq \mathbf{0}$$

- ▶ # var. exponential
- ▶ # constr. polynomial

Dual

$$\max y^T b \qquad (D(\mathcal{P}))$$

$$p^T y \leq 1 \quad \forall p \in \mathcal{P}$$

$$y \geq \mathbf{0}$$

- ▶ # var. polynomial
- ▶ # constr. exponential

Idea: Solve the dual with Ellipsoid!

Example

- ▶ Item sizes $a_1 = 0.3, a_2 = 0.4$
- \blacktriangleright # of items $b_1 = 31, b_2 = 7$
- Set of patterns $\mathcal{P} = \mathcal{P}$

Primal

 $\{\binom{0}{1}, \binom{0}{2}, \binom{1}{1}, \binom{2}{1}, \binom{1}{0}, \binom{2}{0}, \binom{3}{0}\}$

$$\min \mathbf{1}^{T} x
\begin{pmatrix} 0 & 0 & 1 & 2 & 1 & 2 & 3 \\ 1 & 2 & 1 & 1 & 0 & 0 & 0 \end{pmatrix} x \ge \begin{pmatrix} 31 \\ 7 \end{pmatrix}
x \ge \mathbf{0}$$

▶ Opt basic solution is $x = (0, 0, 0, 7, 0, 0, \frac{17}{3})$

Dual

Weak Separation Problem

 ε -Weak Separation Oracle for $P \subseteq \mathbb{R}^n$, obj.fct. $c \in \mathbb{Q}^n$

Input: Vector $z \in \mathbb{Q}^n$

OUTPUT: One of the following

- Case (A): Vector a with $a^T x \leq a^T z \ \forall x \in P$
- Case (B): Point $y \in P$ with $c^T y \ge c^T z \frac{\varepsilon}{2}$

▶ If $z \in P$, just return $z (\rightarrow case (B))$.

- ▶ INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+$: $B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

- ▶ INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+ : B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case $(A) \to a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \le a^T z_t\}$
 - (6) Case (B) $\rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

- ► INPUT: $c \in \mathbb{Q}^n$, $x_0 \in \mathbb{Q}^n$, ε , r, $R \in \mathbb{Q}_+$: $B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case $(A) \rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) $Case\ (B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

- INPUT: $c \in \mathbb{Q}^n, x_0 \in \mathbb{Q}^n, \varepsilon, r, R \in \mathbb{Q}_+ : B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

Case (B)

- ► INPUT: $c \in \mathbb{Q}^n$, $x_0 \in \mathbb{Q}^n$, ε , r, $R \in \mathbb{Q}_+$: $B(x_0, r) \subseteq P \subseteq B(x_0, R)$
- OUTPUT: $y^* \in P$ with $c^T y^* \ge OPT_f \varepsilon$
- (1) Ellipsod $E_0 := B(x_0, R)$ with center $z_0 := x_0, y^* := x_0$
- (2) FOR $t = 0, \dots, poly$ DO
 - (4) Submit z_t to ε -weak separation oracle
 - (5) Case (A) $\rightarrow a$: Compute $E_{t+1} \supseteq E_t \cap \{x \mid a^T x \leq a^T z_t\}$
 - (6) Case $(B) \rightarrow y \in P$:
 - (7) IF $c^T y > c^T y^*$ THEN $y^* := y$
 - (8) Compute $E_{t+1} \supseteq E_t \cap \{x \mid c^T x \ge c^T z_t\}$

Case (B):

Analysis

Theorem

Let $OPT_f = \max\{c^T x \mid x \in P\}$. The GLS algorithm finds a $y^* \in P$ with $c^T y^* \ge OPT_f - \varepsilon$.

- ▶ Suppose for contradiction this is false.
- ▶ Let $x^* \in P$ be opt. sol.; φ input size.
- ▶ Inequalities from case (A) never cut points from *P*
- ▶ Ineq. from case (B) never cut points better than $OPT_f \frac{\varepsilon}{2}$ (otherwise we would have found a suitable y^*)
- Let $U := \operatorname{conv}\{B(x_0, r), x^*\}$ and $U' = \{x \in U \mid c^T x \geq OPT_f \frac{\varepsilon}{2}\}$. By standard volume bounds: $\operatorname{vol}(U') \geq (\frac{1}{2})^{\operatorname{poly}(\varphi)}$. But $U' \subseteq E_t \ \forall t$. After $\operatorname{poly}(\varphi)$ many it. $\operatorname{vol}(E_t) = (1 \frac{\Theta(1)}{n})^t \cdot \operatorname{vol}(E_0) < \operatorname{vol}(U')$. Contradiction!

A useful observation

Observation

Consider a run of the GLS algorithm for $P \subseteq \mathbb{R}^n$ which yields $y^* \in P$. Let $a_1^T x \leq b_1, \ldots, a_N^T x \leq b_N$ be the inequalities which the oracle are returned for Case (A).

- ▶ Each $a_i^T x \leq b_i$ is feasible for P
- $c^T y^* \ge \max\{c^T x \mid a_i^T x \le b_i \ \forall i = 1, \dots, N\} \varepsilon$

Solving $D(\mathcal{P})$

Lemma

Suppose $a_i \geq \delta$. Then we can find a feasible solution y^* to $D(\mathcal{P})$ of value $\geq OPT_f - 1$ in time polynomial in $n, m, \frac{1}{\delta}$.

▶ Apply GLS algo for $\varepsilon := 1$. Choose $y_0 = (\frac{\delta}{2}, \dots, \frac{\delta}{2})$.

$$B\left(y_0, \frac{\delta}{2}\right) \overset{(\delta, \dots, \delta)^T p \leq 1}{\subseteq} D(\mathcal{P}) \subseteq B(y_0, n)$$

• We use $\sum_{i=1}^{n} p_i \leq \frac{1}{\delta}$ for any feasible pattern $p \in \mathcal{P}$ since $a_i \geq \delta$

Solving $D(\mathcal{P})$ (2)

- We solve ε -weak separation problem for $z \in \mathbb{Q}^n$.
- ▶ If $z_i < 0 \rightarrow \text{Case (A)}$ (inequality $z_i > 0$ violated)
- ▶ If $z_i > 1 \rightarrow \text{Case (A)}$ (inequality $z^T e_i < 1$ violated)
- ▶ Round z down to nearest multiple of $\frac{1}{2m}$ and term this vector y. Solve $p^* = \operatorname{argmax}\{y^T p \mid p \in \mathcal{P}\}$ (Knapsack with profits from $0, 1 \cdot \frac{1}{2m}, 2 \cdot \frac{1}{2m}, \ldots, 1$)

Case $y^{T}p^{*} > 1$:

 $Then z^T p^* \ge y^T p^* > 1$ \rightarrow Case (A).

Case $y^T p^* \le 1$:
Then $y \in D(\mathcal{P})$. And $z^T b - y^T b \le m \cdot \frac{1}{2m} = \frac{1}{2} = \frac{\varepsilon}{2}.$ \rightarrow Case (B)

GLS yields a solution y^* mit $b^T y^* \geq OPT_f - 1$.

Finding a near optimal basic solution for P(P)

Theorem

Suppose $a_i \geq \delta$. Then we can find a basic solution x^* for $P(\mathcal{P})$ of value $\leq OPT_f + 1$ in time polynomial in $n, m, \frac{1}{\delta}$.

- ▶ Run GLS to obtain sol. y^* to $D(\mathcal{P})$ with $b^T y^* \geq OPT_f 1$
- Let $y^T p \leq 1$, $p \in \mathcal{P}'$ be inequalities returned by oracle for case (A). $\mathcal{P}' \subset \mathcal{P}$ has polynomial size and

$$D(\mathcal{P}) \overset{y^* \text{ valid for } D(\mathcal{P})}{\geq} b^T y^* \geq D(\mathcal{P}') - 1 \qquad (1)$$

$$D(\mathcal{P}) \overset{y^* \text{ valid for } D(\mathcal{P})}{\geq} b^T y^* \geq D(\mathcal{P}') - 1 \qquad (1)$$

▶ Compute optimum basic solution x^* for $P(\mathcal{P}')$ in poly-time.

$$\mathbf{1}^T x^* = P(\mathcal{P}') \stackrel{\text{duality}}{=} D(\mathcal{P}') \stackrel{(1)}{\leq} D(\mathcal{P}) + 1 \stackrel{\text{duality}}{=} P(\mathcal{P}) + 1$$

▶ x^* is also a (non-optimal) basic solution for $P(\mathcal{P})$

Geometric Grouping

- ▶ INPUT: Instance $I = (a_1, ..., a_n)$, $size(I) = \sum_{i=1}^n a_i b_i \le n$, $a_i > \delta$
- ▶ OUTPUT: Rounded up instance I' with n/2 diff. item sizes $OPT_f(I') \leq OPT_f(I)$ plus waste of $O(\log \frac{1}{\delta})$
- (1) Sort items w.r.t. sizes $e_1 \leq e_2 \leq \ldots \leq e_m$ (a_i appears b_i times)
- (2) Let $G_1 = \{e_1, \ldots, e_{\ell_1}\}$ be minimal set of items with $\sum_{i \in G_1} e_i \geq 2$, then continue with G_2, \ldots Let $\ell_i := |G_i|$ be number of items in G_i ℓ_1 ℓ_2 ℓ_3 ℓ_4 ℓ_5
- (3) Remove first and last group \rightarrow waste
- (4) From G_i throw away smallest $\ell_i \ell_{i+1}$ items \rightarrow waste
- (5) Round up items in G_i to largest item $\to I'$

Geometric Grouping (2)

Lemma

Size of waste is $O(\log \frac{1}{\delta})$.

- \triangleright Size of 1st and last group is O(1)
- ▶ Consider group G_i . Total size of items in G_i is ≤ 3 .
- ▶ Num of groups is $\leq n/2$. Cleary $\frac{2}{\delta} \geq \ell_1 \geq \ell_2 \geq \ldots$
- ▶ The $n_i := \ell_i \ell_{i+1}$ smallest items in G_i have size $\leq 3 \frac{n_i}{\ell_i}$.

$$\text{waste} \leq 3 \sum_{i} \frac{n_i}{\ell_i} \leq 3 \sum_{j=1}^{\ell_1} \frac{1}{j} \stackrel{\ell_1 \leq 2/\delta}{=} O(\log \frac{1}{\delta})$$

$$\ell_i \text{ items of total size} \leq 3$$

$$G_i$$

The algorithm

Algorithm:

- (1) Compute a basic solution x to $P(\mathcal{P})$ with $\mathbf{1}^T x \leq OPT_f + 1$
- (2) Buy $\lfloor x_p \rfloor$ times pattern p, let I be remaining instance
- (3) Apply geometric grouping to I (with n different item sizes) $\rightarrow I'$ (with n/2 different item sizes)
- (4) Recurse

Theorem

One has $APX \leq OPT_f + O(\log^2 n)$.

- ▶ Since x is basic solution, $|\{p \mid x_p > 0\}| \le n$.
- After (2) $size(I) \le \sum_{p} (x_p \lfloor x_p \rfloor) \le n$.
- ▶ Let x^t be solution x in iteration t. We buy $\sum_p \lfloor x_p^t \rfloor$ bins, but OPT_f decreases by the same quantity.
- ▶ We pay in total OPT_f + total waste. We have $O(\log n)$ recursions; in each recursion we have a waste of $O(\log \frac{1}{\lambda}) = O(\log n)$.

State of the art

▶ Computing OPT exactly is **NP**-hard even if the numbers a_i are unary encoded (i.e. BINPACKING is strongly **NP**-hard).

Open question

One can compute a BIN PACKING solution with $\leq OPT + 1$ bins in poly-time?

Mixed Integer Roundup Conjecture

One has $OPT \leq \lceil OPT_f \rceil + 1$.

PART 15 MINIMUM MAKESPAN SCHEDULING

Source: Approximation Algorithms (Vazirani, Springer Press)

Minimum Makespan

Problem: MINIMUM MAKESPAN SCHEDULING

- ▶ Given: n jobs, job j has processing time p_j . Number m of machines.
- ► <u>Find:</u> Assign jobs to machines to minimize the makespan.

$$OPT = \min_{I_1 \dot{\cup} \dots \dot{\cup} I_m = \{1, \dots, n\}} \left\{ \max_{i=1, \dots, m} \left\{ \sum_{j \in I_i} p_j \right\} \right\}$$

A PTAS for Minimum Makespan Scheduling

Algorithm:

- (1) Guess *OPT*
- (2) Call job with $p_j > \varepsilon \cdot OPT$ large and small otherwise \rightarrow sub-instance I of large jobs
- (3) Round processing times p_j for large jobs down to multiple of $OPT \cdot \varepsilon^2 \to \text{instance } I'$ with processing times p'_j
- (4) Distribute rounded large jobs I' such that makesepan is $\leq OPT$
- (5) Distribute small jobs consecutively on least loaded machine

Analysis

Lemma

The algorithm runs in polynomial time and produces a makespan of at most $(1 + \varepsilon)OPT$.

- ▶ Large jobs with rounded processing times can be distributed optimally in polynomial time since: $1/\varepsilon^2$ different job sizes, at most $1/\varepsilon$ large jobs per machine, hence $O((1/\varepsilon^2)^{1/\varepsilon})$ many ways how to pack a machine, hence $\leq n^{O((1/\varepsilon^2)^{1/\varepsilon})}$ possible solutions.
- ▶ Clearly $OPT(I') \leq OPT(I) \leq OPT$. Let I_i set of jobs on most loaded machine (attaining the makespan).
- ▶ Case: Small jobs don't inc. makespan. No small job in I_i .

$$\sum_{j \in I_i} p_j \leq \sum_{j \in I_i} (p_j' + \varepsilon \cdot \underbrace{\varepsilon OPT}_{\leq p_j'}) \overset{\sum_{j \in I_i} p_j' \leq OPT}{\leq} (1 + \varepsilon) OPT$$

Analysis (2)

- $ightharpoonup OPT \ge \frac{1}{m} \sum_{j=1}^n p_j = \text{average load}$
- ▶ Case: Small jobs do inc. makespan. Then all machines are filled up to makespan $-\varepsilon \cdot OPT \leq OPT$. Hence makespan $\leq (1+\varepsilon)OPT$

Hardness

Lemma

There is no FPTAS for MINIMUM MAKESPAN SCHEDULING unless $\mathbf{NP} = \mathbf{P}$.

- ▶ Recall that given a BINPACKING instance $I = (a_1, ..., a_n), a_i \in \mathbb{N}$ unary encoded and $m, B \in \mathbb{N}$, it is **NP**-hard to decide, whether m bins of size B suffice to pack the items.
- ▶ Suppose there is an FPTAS for MINIMUM MAKESPAN SCHEDULING. Take items as jobs, m as number of machines and $\varepsilon := \frac{1}{\sum_{i=1}^{n} a_i + 1}$. Then the FPTAS would give an exact answer.

opt. makespan $\leq B \Leftrightarrow \exists$ Bin Packing solution with m bins.

PART 16 SCHEDULING ON UNRELATED PARALLEL MACHINES

Source: Approximation Algorithms (Vazirani, Springer Press)

Scheduling on Unrelated Parallel Machines

Problem: Unrelated Machine Scheduling

- ▶ Given: Jobs $J = \{1, ..., n\}$, machines $M = \{1, ..., m\}$. Running job j on machine i takes a processing time p_{ij} .
- ▶ Find: Assign jobs to machine to minimize the makespan.

$$OPT = \min_{I_1 \dot{\cup} ... \dot{\cup} I_m = \{1,...,n\}} \left\{ \max_{i=1,...,m} \left\{ \sum_{j \in I_i} p_{ij} \right\} \right\}$$

How NOT to solve the problem

LP: $\min T$ $\sum_{i \in M} x_{ij} = 1 \quad \forall j \in J$ $\sum_{j \in J} p_{ij} x_{ij} \leq T \quad \forall i \in M$ $x_{ij} \geq 0 \quad \forall i \forall j$

Variables:

$$x_{ij} = \begin{cases} 1 & \text{job } j \text{ is assigned} \\ & \text{to machine } i \\ 0 & \text{otherwise} \end{cases}$$
 $T = \text{makespan}$

Example: 1 job with execution time $p_{i1} = m, \forall i = 1, ..., m$

Fractional solution: $x_{i1} = \frac{1}{m}$ Integer solution: $x_{11} = 1$

▶ Integrality gap of > m

A 2-approximation

Algorithm:

- (1) Guess OPT
- (2) Compute basic solution x^* to

$$\sum_{i \in M} x_{ij} = 1 \quad \forall j \in J$$

$$\sum_{j \in J} p_{ij} x_{ij} \leq OPT \quad \forall i \in M$$

$$x_{ij} = 0 \quad \text{for } i, j \text{ with } p_{ij} > OPT$$

$$x_{ij} \geq 0 \quad \forall i \in M \ \forall j \in J$$

- (3) $x_{ij}^* = 1 \Rightarrow \text{assign job } j \text{ to machine } i$
- (4) For not yet assigned jobs: Assign j to a machine i with $0 < x_{ij}^* < 1$ s.t. every machine receives at most 1 extra job

Analysis

Theorem

The algorithm runs in polynomial time and the makespan is at most $OPT + \max\{p_{ij} \mid x_{ij}^* > 0\} \leq 2 \cdot OPT$.

- ▶ Running time is clearly polynomial: We solve a poly size LP in (2) and solve a maximum matching problem in (4).
- ▶ Let $H = (J \cup M, E)$ with $E := \{(j, i) \mid 0 < x_{ij}^* < 1\}$. For claim on makespan we need to show that E contains a $\{j \text{ not assigned in } (3)\}$ -perfect matching.

Ī

Analysis

Theorem

The algorithm runs in polynomial time and the makespan is at most $OPT + \max\{p_{ij} \mid x_{ij}^* > 0\} \le 2 \cdot OPT$.

- ▶ Running time is clearly polynomial: We solve a poly size LP in (2) and solve a maximum matching problem in (4).
- ▶ Let $H = (J \cup M, E)$ with $E := \{(j, i) \mid 0 < x_{ij}^* < 1\}$. For claim on makespan we need to show that E contains a $\{j \text{ not assigned in } (3)\}$ -perfect matching.

Assigning the fractional jobs (1)

Claim

Consider a connected component $(\bar{J} \cup \bar{M}, \bar{E})$ of H. Then $\bar{x}^* = (x_{ij}^*)_{(j,i)\in\bar{E}}$ is still a basic solution of the subsystem $LP(\bar{E})$.

$$\sum_{i \in \bar{M}} x_{ij} = 1 \quad \forall j \in \bar{J} \quad (LP(\bar{E}))$$

$$\sum_{j \in \bar{J}} p_{ij} x_{ij} \leq T - \sum_{j \notin \bar{J}} p_{ij} x_{ij}^* \quad \forall i \in \bar{M}$$

$$0 \leq x_{ij} \leq 1 \quad \forall (j, i) \in \bar{E}$$

Reason: If $\bar{x}^* \in \text{conv}(\{y^{(1)}, y^{(2)}\})$ then $x^* = (\bar{x}^*, \hat{x}^*) \in \text{conv}(\{(y^{(1)}, \hat{x}^*), (y^{(2)}, \hat{x}^*)\})$. Contradiction.

Assigning the fractional jobs (2)

 $ightharpoonup \bar{x}$ is basic solution, hence

$$|\bar{E}| = |\{(j,i) \mid 0 < \bar{x}_{ij}^* < 1\}| \le |\bar{J}| + |\bar{M}| \le \# \text{nodes in } \bar{E}$$

- ▶ But \bar{E} is connected, thus \bar{E} is a tree + ≤ 1 extra edge.
- ▶ Jobs have degree ≥ 2 , hence leaves must be machines. As long as there are machine-leaves i, assign a j with $x_{ij} > 0$ to i and remove both, i and j.
- ▶ A single even length job-machine cycle (potentially) remains. Extract a matching and we are done.

State of the art

Exercise

There is no $(3/2 - \varepsilon)$ -apx for Unrelated Machine Scheduling unless $\mathbf{NP} = \mathbf{P}$.

Open Problem 1

Is there a 3/2-apx?

Open Problem 2

A $(2 - \varepsilon)$ -apx is still unknown even for the RESTRICTED ASSIGNMENT PROBLEM where $p_{ij} \in \{p_j, \infty\}$.

Theorem (Ebenlendr, Krcal, Sgall '08)

There is a 1.75-apx for the RESTRICTED ASSIGNMENT PROBLEM if each job j is admissible on ≤ 2 machines.

PART 17 MULTIPROCESSOR SCHEDULING WITH PRECEDENCE CONSTRAINTS

Source:

- ▶ Graham (1966): Bounds for certain multiprocessor anomalies (Bell Systems Technical Journal).
- ► Lecture notes of Chandra Chekuri
 http://www.cs.illinois.edu/class/sp09/cs598csc/Lectures/lecture-6.pdf

Multiprocessor Scheduling with Precedence Constraints

Problem: PrecScheduling $(P \mid p_i, \text{prec} \mid C_{\text{max}})$

- ▶ Given: Jobs J_1, \ldots, J_n , job J_i has processing time p_i , precedence relation \prec , # of machines m
- ▶ <u>Find:</u> (Non-preemptive) schedule of the jobs on *m* machines respecting the precedence order and minimizing the makespan
- ▶ $J_i \prec J_\ell$ means that J_i has to be finished, before J_ℓ is allowed to start.

Solution:

The algorithm

Graham's List Scheduling:

- (1) FOR t = 1, ... DO
 - (2) IF a machine $j \in \{1, ..., m\}$ is idle at tAND all predecessors of some (not yet processed) job J_i are already finished THEN schedule J_i on machine j starting from t
 - ▶ In other words: At any time, just start a job whenever possible.

The analysis

Theorem

The makespan of the produced schedule is at most $2 \cdot OPT$

- ▶ Find a sequence (w.l.o.g. after reordering) J_1, \ldots, J_k s.t.
 - \triangleright J_k is the last job of the whole schedule that finishes
 - ▶ $J_1 \prec J_2 \prec \ldots \prec J_k$ (chain in the partial order \prec)
 - ▶ J_i is the predecessor of J_{i+1} that is finished last

- ▶ After J_i finished J_{i+1} is started as soon as a machine is available. Hence between J_i is finished and J_{i+1} begins, all machines must be fully busy.
- ▶ length of all busy periods $\leq OPT$
- ▶ Length of chain J_1, \ldots, J_k is $\leq OPT$
- ▶ Makespan \leq length chain + busy period $\leq 2 \cdot OPT$

Hardness

Theorem (Svensson - STOC'10)

For every fixed $\varepsilon > 0$, there is no $(2 - \varepsilon)$ -apx unless a variant of the Unique Games Conjecture is false.

Open Problem

What is the complexity status of $P3 \mid p_i = 1$, prec $\mid C_{\text{max}}$ (i.e. PrecScheduling with unit processing times and 3 machines)? Known:

- ▶ 4/3-apx.
- ▶ $P2 \mid p_i = 1$, prec $\mid C_{\text{max}}$ is poly-time solvable

PART 18 EUCLIDEAN TSP

Source: Polynomial-time Approximation Schemes for Euclidean TSP and other Geometric Problems (Arora '98, Link)

Euclidean Travelling Salesman Problem

Problem: EUCLIDEANTSP

- ▶ Given: Points $v_1, \ldots, v_n \in \mathbb{Q}^2$ in the plane.
- ► <u>Find:</u> Minimum cost tour visiting all nodes

$$\min_{\text{tour } \pi: V \to V} \left\{ \sum_{i=1}^{n} \|v_i - v_{\pi(i)}\|_2 \right\}$$

Goal: Find a PTAS!

A random bounding box

- ightharpoonup Choose a minimal square S containing all points.
- ▶ W.l.o.g. this square is $[\frac{L}{2}, L]^2$ with $L = n/\varepsilon \in 2^{\mathbb{N}}$ after scaling. Hence $OPT \geq L = n/\varepsilon$.
- ▶ Choose $a, b \in \{1, ..., L/2\}$ randomly.
- ▶ Let $R = [a, a + L] \times [b, b + L] \supseteq S$ be the randomly shifted bounding box.

Discretization

- ▶ Move all points v to nearest point in \mathbb{Z}^2 .
- ► Changes the cost of any tour by $\leq 2n \leq 2\varepsilon \cdot OPT$ (since $OPT \geq L = n/\varepsilon$)

The dissection

- Divide the L × L bounding box into 4 squares of size \(\frac{L}{2} \times \frac{L}{2}\)
 Divide each \(\frac{L}{2} \times \frac{L}{2}\) square into 4 squares of size \(\frac{L}{4} \times \frac{L}{4}\)
- ▶ Recurse, until unit size squares are reached
- ▶ Size $\frac{L}{2^i} \times \frac{L}{2^i}$ squares are level *i* squares
- ▶ A line segment is on level i, if it is the boundary of a level i square but not of a level i-1 square
- \triangleright A grid line is on level i, if it consists of level i segments

The dissection

- Divide the L × L bounding box into 4 squares of size \(\frac{L}{2} \times \frac{L}{2}\)
 Divide each \(\frac{L}{2} \times \frac{L}{2}\) square into 4 squares of size \(\frac{L}{4} \times \frac{L}{4}\)
- ▶ Recurse, until unit size squares are reached
- ▶ Size $\frac{L}{2^i} \times \frac{L}{2^i}$ squares are level *i* squares
- ▶ A line segment is on level i, if it is the boundary of a level i square but not of a level i-1 square
- \triangleright A grid line is on level i, if it consists of level i segments

The dissection

- ▶ Divide the $L \times L$ bounding box into 4 squares of size $\frac{L}{2} \times \frac{L}{2}$ ▶ Divide each $\frac{L}{2} \times \frac{L}{2}$ squares into 4 squares of size $\frac{L}{2} \times \frac{L}{2}$
- ▶ Divide each $\frac{L}{2} \times \frac{L}{2}$ square into 4 squares of size $\frac{L}{4} \times \frac{L^2}{4}$
- ▶ Recurse, until unit size squares are reached
- ▶ Size $\frac{L}{2^i} \times \frac{L}{2^i}$ squares are level *i* squares
- ▶ A line segment is on level i, if it is the boundary of a level i square but not of a level i-1 square
- \triangleright A grid line is on level i, if it consists of level i segments

Basic idea

- ▶ **Method:** Use dynamic programming.
- ▶ **Idea:** Consider a level *i* square *Q* in the dissection. For all ways how *OPT* can intersect *Q*, compute the cheapest extension inside *Q* that visits all nodes in *Q* (using that we computed similar information already for all smaller squares).

▶ Difficulty: The number of possibilities how *OPT* can

- ▶ **Difficulty:** The number of possibilities how *OPT* can cross *Q* might be exponential/infinite.
- **Solution:** Limit this number.

Basic idea

- ▶ **Method:** Use dynamic programming.
- ▶ **Idea:** Consider a level *i* square *Q* in the dissection. For all ways how *OPT* can intersect *Q*, compute the cheapest extension inside *Q* that visits all nodes in *Q* (using that we computed similar information already for all smaller squares).

▶ Difficulty: The number of possibilities how *OPT* can

cross Q might be exponential/infinite.

Solution: Limit this number.

Portals

- ▶ On any level *i* line segment, place $\frac{1}{\varepsilon} \log L$ many level *i* portals (plus one per corner)
- ▶ Distance of consecutive level *i* portals is $\leq \frac{L}{2^i} \cdot \frac{\log L}{\varepsilon}$

Well rounded tours

Definition

A tour π is called well-rounded tour if:

- ▶ It leaves and enters squares only at portals.
- ► Each square is entered at most $\frac{4}{\varepsilon}$ times.

▶ Each square has $\leq \frac{4}{\varepsilon} \log L + 4$ many portals. The number of times that a well-rounded tour can leave/enter a square is bounded by $\leq (\frac{4}{\varepsilon} \log L + 4)^{O(1/\varepsilon)}$ (which is polynomial).

Theorem (Structure Theorem)

There is always a well-rounded tour of $cost \leq (1 + O(\varepsilon))OPT$.

Well rounded tours

Definition

A tour π is called well-rounded tour if:

- ► It leaves and enters squares only at portals.
- ► Each square is entered at most $\frac{4}{\varepsilon}$ times.

▶ Each square has $\leq \frac{4}{\varepsilon} \log L + 4$ many portals. The number of times that a well-rounded tour can leave/enter a square is bounded by $\leq (\frac{4}{\varepsilon} \log L + 4)^{O(1/\varepsilon)}$ (which is polynomial).

Theorem (Structure Theorem)

There is always a well-rounded tour of $cost \leq (1 + O(\varepsilon))OPT$.

Relation OPT vs. number of crossings

▶ For the optimum tour π and a grid line ℓ , let $t(\pi, \ell)$ be the number of times that π crosses ℓ .

$$\frac{1}{3} \cdot \sum_{\text{grid lines } \ell} t(\pi, \ell) \leq OPT \leq \sqrt{2} \cdot \sum_{\text{grid lines } \ell} t(\pi, \ell)$$

- $ightharpoonup OPT = \Theta(1) \cdot \#crossings$
- ▶ Goal: Turn opt. tour π into a well-rounded tour, such that the expected cost increase is $O(\varepsilon) \cdot \sum_{\ell} t(\pi, \ell)$
- ▶ Alternatively: Average cost increase per crossing must be $O(1) \cdot \varepsilon$

$$t(\pi,\ell) = 4$$

Bending edges through portals

- ▶ Consider a crossing of the optimum tour π at a grid line ℓ
- ▶ Pr[line ℓ is at level i] = $\frac{2^i}{L}$
- ▶ If line ℓ is at level i, we have to bend edge through the nearest portal and loose $\leq \frac{L}{2^i} \cdot \frac{\varepsilon}{\log L}$
- ▶ The expected length increase is

$$\sum_{i=0}^{\log L} \Pr[\ell \text{ at level } i] \cdot \text{portal distance at level } i$$

$$= \sum_{i=0}^{\log L} \frac{2^i}{L} \cdot \frac{L}{2^i} \cdot \frac{\varepsilon}{\log L} \le 2\varepsilon$$

Lemma

Given a TSP tour π , crossing a line segment ℓ of length s an arbitrary number of times. \exists tour π' crossing ℓ at most 2 times which can be obtained by adding segments of length $\leq 6s$.

- ▶ Cut π at ℓ . Let L_1, \ldots, L_t be endpoints on the left side, R_1, \ldots, R_t end points on the right. Imagine their distance to ℓ as 0. Say t is even (other case is similar).
- ▶ Add tours on L_i 's and on R_i 's of cost $\leq 2s$ each.
- ▶ Add matchings $(L_{2i-1}, L_{2i}), (R_{2i-1}, R_{2i})$ for 2i < t and 2 edges $(L_{t-1}, R_{t-1}), (L_t, R_t)$ of total cost $\leq 2s$.
- ▶ Degree of $V \cup \{L_i, R_i \mid i = 1, ..., t\}$ is even. Graph is again connected. Hence there is a tour visiting all nodes (at least once).

Lemma

Given a TSP tour π , crossing a line segment ℓ of length s an arbitrary number of times. \exists tour π' crossing ℓ at most 2 times which can be obtained by adding segments of length $\leq 6s$.

- ▶ Cut π at ℓ . Let L_1, \ldots, L_t be endpoints on the left side, R_1, \ldots, R_t end points on the right. Imagine their distance to ℓ as 0. Say t is even (other case is similar).
- ▶ Add tours on L_i 's and on R_i 's of cost $\leq 2s$ each.
- ▶ Add matchings $(L_{2i-1}, L_{2i}), (R_{2i-1}, R_{2i})$ for 2i < t and 2 edges $(L_{t-1}, R_{t-1}), (L_t, R_t)$ of total cost $\leq 2s$.
- ▶ Degree of $V \cup \{L_i, R_i \mid i = 1, ..., t\}$ is even. Graph is again connected. Hence there is a tour visiting all nodes (at least once).

 R_{t}

Lemma

Given a TSP tour π , crossing a line segment ℓ of length s an arbitrary number of times. \exists tour π' crossing ℓ at most 2 times which can be obtained by adding segments of length $\leq 6s$.

- ▶ Cut π at ℓ . Let L_1, \ldots, L_t be endpoints on the left side, R_1, \ldots, R_t end points on the right. Imagine their distance to ℓ as 0. Say t is even (other case is similar).
- ▶ Add tours on L_i 's and on R_i 's of cost $\leq 2s$ each.
- ▶ Add matchings $(L_{2i-1}, L_{2i}), (R_{2i-1}, R_{2i})$ for 2i < t and 2 edges $(L_{t-1}, R_{t-1}), (L_t, R_t)$ of total cost $\leq 2s$.
- ▶ Degree of $V \cup \{L_i, R_i \mid i = 1, ..., t\}$ is even. Graph is again connected. Hence there is a tour visiting all nodes (at least once).

 R_{t}

Lemma

Given a TSP tour π , crossing a line segment ℓ of length s an arbitrary number of times. \exists tour π' crossing ℓ at most 2 times which can be obtained by adding segments of length $\leq 6s$.

- ▶ Cut π at ℓ . Let L_1, \ldots, L_t be endpoints on the left side, R_1, \ldots, R_t end points on the right. Imagine their distance to ℓ as 0. Say t is even (other case is similar).
- ▶ Add tours on L_i 's and on R_i 's of cost $\leq 2s$ each.
- ▶ Add matchings $(L_{2i-1}, L_{2i}), (R_{2i-1}, R_{2i})$ for 2i < t and 2 edges $(L_{t-1}, R_{t-1}), (L_t, R_t)$ of total cost $\leq 2s$.
- ▶ Degree of $V \cup \{L_i, R_i \mid i = 1, ..., t\}$ is even. Graph is again connected. Hence there is a tour visiting all nodes (at least once).

Reducing the number of crossings (1)

MODIFY Procedure:

- ▶ **Input:** Grid line ℓ on level i
- ▶ Output: Tour π' crossing each segment of ℓ at most $1/\varepsilon$ times
- (1) FOR $j = \log L$ downto i DO
 - (2) FOR all level j segments DO
 - (3) IF segment is crossed > $1/\varepsilon$ times THEN reduce # crossings to 2 via Patching Lemma

Reducing the number of crossings (2)

- Starting from optimum tour, we apply MODIFY to all horizontal and vertical grid lines.
- ▶ Now consider a fixed grid line ℓ . Want to show:

$$E[\text{cost for crossing reduction at } \ell] \leq O(\varepsilon) \cdot t(\pi, \ell)$$

- ▶ Let $c_{\ell,j}$ be number of times that MODIFY is applied to level j segments of grid line ℓ
- ▶ Each application of MODIFY reduces the number of crossings of ℓ by $1/\varepsilon 2 \ge \frac{1}{2\varepsilon}$ (assuming $\varepsilon \le 1/4$). Hence

$$\sum_{j>0} c_{\ell,j} \le \frac{t(\pi,\ell)}{1/(2\varepsilon)} = 2\varepsilon \cdot t(\pi,\ell)$$

- ▶ The cost increase of a single crossing reduction on level j is $\leq 6 \cdot \frac{L}{2i}$ (by Patching Lemma).
- ▶ Thus

$$E[\text{cost increase at } \ell \mid \ell \text{ at level } i] \cdot \leq \sum_{j>i} c_{\ell,j} \cdot 6 \cdot \frac{L}{2^j}$$

Reducing the number of crossings (3)

$$E[\text{cost for crossing reduction at }\ell]$$

$$= \sum_{i \geq 0} \Pr[\ell \text{ at level } i] \cdot E[\text{cost increase at } \ell \mid \ell \text{ at level } i]$$

$$\leq \sum_{i \geq 0} \frac{2^i}{L} \cdot \sum_{j \geq i} c_{\ell,j} \cdot 6 \frac{L}{2^j}$$

$$\stackrel{\text{reordering}}{=} 6 \sum_{j \geq 0} \frac{c_{\ell,j}}{2^j} \cdot \sum_{i \leq j} 2^i$$

$$\leq 12 \cdot \sum_{j \geq 0} c_{\ell,j}$$

$$\leq 12 \cdot \sum_{j \geq 0} c_{\ell,j}$$

$$\leq 24\varepsilon \cdot t(\pi, \ell)$$

 $ightharpoonup \exists$ well-rounded tour of cost $(1 + O(\varepsilon)) \cdot OPT$

168 / 292

The dynamic program (1)

▶ Table entries:

$$A(Q,(s_1,t_1),\ldots,(s_q,t_q))$$

= cost of cheapest extension of q subtours to well-rounded tour visiting all nodes in Q such that subtour i goes from s_i to t_i \forall squares $Q \ \forall q \in \{0, \ldots, 4/\varepsilon\} \ \forall$ portals s_i, t_i of Q

▶ Number of table entries:

- $ightharpoonup O(n \cdot \log L)$ many non-empty squares Q
- There are $O(\frac{1}{\varepsilon} \log n)^{O(1/\varepsilon)}$ many ways to choose $O(1/\varepsilon)$ portals out of $O(\frac{1}{\varepsilon} \log L)$ portals
- ▶ Total number of entries:

$$O(n(\log n)^{O(1/\varepsilon)})$$

The dynamic program (1)

▶ Table entries:

$$A(Q, (s_1, t_1), \ldots, (s_q, t_q))$$

= cost of cheapest extension of q subtours to well-rounded tour visiting all nodes in Q such that subtour i goes from s_i to t_i \forall squares $Q \ \forall q \in \{0, \ldots, 4/\varepsilon\} \ \forall$ portals s_i, t_i of Q

▶ Number of table entries:

- $ightharpoonup O(n \cdot \log L)$ many non-empty squares Q
- There are $O(\frac{1}{\varepsilon} \log n)^{O(1/\varepsilon)}$ many ways to choose $O(1/\varepsilon)$ portals out of $O(\frac{1}{\varepsilon} \log L)$ portals
- ► Total number of entries:

$$O(n(\log n)^{O(1/\varepsilon)})$$

The dynamic program (2)

Lemma

The best well rounded tour can be computed in $O(n(\log n)^{O(1/\varepsilon)})$

- ► Compute table entries bottom-up (starting with smallest squares)
- For entry $A(Q, (s_1, t_1), \ldots, (s_q, t_q))$: Let Q_1, \ldots, Q_4 be the subsquares of Q. Guess (i.e. try out all combinations) the visited portals of Q_1, \ldots, Q_4 and their order $O(\frac{1}{\varepsilon} \log n)^{O(1/\varepsilon)}$ combinations
- ▶ Look up table entries for Q_1, \ldots, Q_4 to determine cost.

The dynamic program (2)

Lemma

The best well rounded tour can be computed in $O(n(\log n)^{O(1/\varepsilon)})$

- ➤ Compute table entries bottom-up (starting with smallest squares)
- For entry $A(Q, (s_1, t_1), \ldots, (s_q, t_q))$: Let Q_1, \ldots, Q_4 be the subsquares of Q. Guess (i.e. try out all combinations) the visited portals of Q_1, \ldots, Q_4 and their order $O(\frac{1}{\varepsilon} \log n)^{O(1/\varepsilon)}$ combinations
- ▶ Look up table entries for Q_1, \ldots, Q_4 to determine cost.

Generalizations

Advantages of this approach:

- ▶ Applicable for many graph optimization problems, when nodes are points in the Euclidean plane (like STEINER TREE, k-MEDIAN, STEINER FOREST, k-TSP, k-MST.
- ▶ Works for general ℓ_p -metrices (like maximums-norm)
- ► Extends to any constant dimension
- (Theoretically) nice dependence on ε

Theorem (Arora '98)

Let $d \in \mathbb{N}$, $\varepsilon > 0$, $p \in \mathbb{N} \cup \{\infty\}$ be fixed constants. Then there is an expected $(1+\varepsilon)$ -apx for TSP if the nodes are points in \mathbb{R}^d and distances are measured as $||v-u||_p := (\sum_{i=1}^d |v_i-u_i|^p)^{1/p}$ in time $n(O(\log n))^{O(\sqrt{d}\cdot 1/\varepsilon)^{d-1}}$. This can be derandomized by increasing the running time by a factor of $O(n/\varepsilon)$.

PART 19 TREE EMBEDDINGS

Source: A tight bound on approximating arbitrary metrics by tree metrics (Fakcharoenphol, Rao, Talwar: Link)

Tree metric

Definition (Tree metric)

Given nodes V, spanning tree T, edge costs $c(e) \forall e \in T$. Then $d^T: V \times V \to \mathbb{Q}_+$ with

$$d^{T}(u, v) := \text{length of } u - v \text{ path in } T$$

is called a tree metric.

Motivation

- ▶ **Motivation:** Many optimization problems are easy on trees: Steiner tree, Tsp, k-Tsp, Steiner Forest, ...
- ▶ Question: Can we for any node set V and metric $d: V \times V \to \mathbb{Q}_+$, find a tree metric d^T such that

$$d(u, v) \le d^{T}(u, v) \le \alpha \cdot d(u, v) \quad \forall u, v \in V$$

for a small distortion α ?

▶ Possible approach: For some graph optimization problem, compute tree T. Then solve problem on tree optimally (or get O(1)-apx). Obtain a α -apx (or $O(\alpha)$ -apx) for original problem.

176 / 292

Motivation

- ▶ **Motivation:** Many optimization problems are easy on trees: Steiner tree, Tsp, k-Tsp, Steiner Forest, ...
- ▶ Question: Can we for any node set V and metric $d: V \times V \to \mathbb{Q}_+$, find a tree metric d^T such that

$$d(u, v) \le d^{T}(u, v) \le \alpha \cdot d(u, v) \quad \forall u, v \in V$$

for a small distortion α ?

▶ Possible approach: For some graph optimization problem, compute tree T. Then solve problem on tree optimally (or get O(1)-apx). Obtain a α -apx (or $O(\alpha)$ -apx) for original problem.

177 / 292

One good, one bad news

Bad news:

Theorem (Rabinovitch, Raz '95)

Any tree embedding for an n-cycle must have distortion $\Omega(n)$.

Good news:

- ▶ Delete a random edge.
- For $u, v \in V$ with d(u, v) = k one has $d^T(u, v) = n k$ with probability $\frac{k}{n}$ and $d^T(u, v) = k$ with probability $1 \frac{k}{n}$.
- ▶ Expected distortion is at most 2 since:

$$E[d^{T}(u,v)] = \underbrace{\frac{k}{n}(n-k)}_{\leq k} + \underbrace{\left(1 - \frac{k}{n}\right) \cdot k}_{\leq k} \leq 2 \cdot k$$

The Theorem

Theorem (Fakcharoenphol, Rao, Talwar '03)

Given any metric (V, d), one can find randomly (in time $O(n^2)$) a tree metric $(V \cup U, d^T)$ such that

- $b d(u,v) \le d^T(u,v) \ \forall u,v \in V \ (\textit{i.e.} \ d^T \ dominates \ d)$
- $E[d^T(u,v)] \le O(\log n) \cdot d(u,v) \ \forall u,v \in V$

That means the tree metric has an expected $O(\log n)$ distortion.

Remark: The tree will contain extra nodes U, which were not contained in the original nodeset.

Preliminaries

Assumptions:

- ▶ $2^{\delta} = \max_{u,v \in V} \{d(u,v)\}$ is diameter
- $d(u,v) > 1 \ \forall u \neq v$

Definition

A set system S is called laminar if for every $S_1, S_2 \in S$ one has either $S_1 \cap S_2 = \emptyset$ or $S_1 \subseteq S_2$ or $S_2 \subseteq S_1$.

Idea: Obtain a random laminar family.

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $< 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- $(3) D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $< 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $\leq 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $< 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $\leq 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $\leq 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $< 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

$$D_0:$$

$$\bullet \pi(2)$$

$$\bullet \pi(3)$$

$$\bullet \pi(4)$$

$$\bullet \pi(3)$$

$$\bullet \pi(6)$$

$$\bullet \pi(5)$$

- (1) Choose a random permutation π on nodes V
- (2) Choose $\beta \in [0, 1]$ uniformly at random
- (3) $D_{\delta} := \{V\}$
- (4) FOR $i = \delta 1$ DOWNTO 0 DO
 - (5) Assign every node to first node (w.r.t. order π) that has distance $< 2^{\beta} \cdot 2^{i-1}$
 - (6) All nodes that are assigned to the same node and are in the same cluster (in D_{i+1}) form a new cluster of D_i

Defining the tree metric

- ▶ Each cluster becomes an extra node
- ▶ Insert edge of cost 2^i between $S \in D_i, S' \in D_{i-1}$ if $S' \subseteq S$

Note that in the last iteration (i = 0) we assign each node to a cluster center at distance $\leq 2^{\beta} \cdot 2^{0-1} \leq 1$. Hence the clusters of D_0 are indeed singletons (since $d(u, v) > 1 \ \forall u \neq v$).

d^T dominates d

Lemma

The tree metric d^T dominates d, i.e. $d(u, v) \leq d^T(u, v) \forall u, v \in V$

- ▶ Suppose u, v are in the same D_i cluster, but separated by D_{i-1}
- ▶ Cluster in D_i have diameter $\leq 2 \cdot 2^{\beta} \cdot 2^{i-1} < 2^{i+1}$
- On the other hand $d^T(u, v) \geq 2 \cdot 2^i$.

Proof of $O(\log n)$ average distortion

Lemma

For any $u, v \in V$: $E[d^T(u, v)] = O(\log n) \cdot d(u, v)$

- ▶ If only one of the nodes u, v is assigned to center w in an iteration i, then we say w cuts edge (u, v) at level i.
- We want to charge the u-v distance to that cluster center that cuts the u-v edge

$$d_w^T(u,v) := \sum_{i: w \text{ cuts } (u,v) \text{ at level } i} 2^{i+2}$$

► Then

$$d^{T}(u,v) \le \sum_{w \in V} d_{w}^{T}(u,v)$$

since: Suppose u, v are separated by D_i (i.e. they are in the same D_{i+1} cluster). Then $d^T(u, v) \leq \sum_{j=0}^{i+1} 2 \cdot 2^j \leq 2 \cdot 2^{i+2}$. But in iteration i, we find 2 cluster centers w, w' that cut edge (u, v), for both $d_w^T(u, v), d_{w'}^T(u, v) > 2^{i+2}$.

Proof of $O(\log n)$ average distortion (2)

- ▶ Assume w.l.o.g. that $d(u, w_s) < d(v, w_s)$.
- ▶ Let w_1, w_2, \ldots be nodes in increasing distance from u
- $\blacktriangleright w_s$ can cut (u, v) only if
 - ▶ (A) \exists level i, where $d(u, w_s) \leq 2^{\beta} \cdot 2^{i-1} < d(v, w_s)$
 - ▶ (B) u is assigned to w_s

Proof of $O(\log n)$ average distortion (3)

- ▶ Assume for a second: $\exists i : 2^{i-1} \leq d(u, w_s) < d(v, w_s) < 2^i$.
- ▶ Then there is only one level i at which w_s might cut (u, v)
- ▶ By triangle inequality, the length of the interval $[d(u, w_s), d(v, w_s)]$ is

$$d(v, w_s) - d(u, w_s) \le d(u, v).$$

▶ Logscale length of interval is at most $\log_2\left(\frac{2^{i-1}+d(u,v)}{2^{i-1}}\right)$.

$$\Pr[(A)] \le \log_2 \left(\frac{2^{i-1} + d(u, v)}{2^{i-1}} \right) \stackrel{\log_2(1+x) \le 2x}{\le} 2 \cdot \frac{d(u, v)}{2^{i-1}}$$

Logscale:

Proof of $O(\log n)$ average distortion (3)

- Assume for a second: $\exists i: 2^{i-1} \leq d(u, w_s) < d(v, w_s) < 2^i$.
- ▶ Then there is only one level i at which w_s might cut (u, v)
- ▶ By triangle inequality, the length of the interval $[d(u, w_s), d(v, w_s)]$ is

$$d(v, w_s) - d(u, w_s) \le d(u, v).$$

▶ Logscale length of interval is at most $\log_2\left(\frac{2^{i-1}+d(u,v)}{2^{i-1}}\right)$.

$$\Pr[(A)] \le \log_2 \left(\frac{2^{i-1} + d(u, v)}{2^{i-1}}\right) \stackrel{\log_2(1+x) \le 2x}{\le} 2 \cdot \frac{d(u, v)}{2^{i-1}}$$

Proof of $O(\log n)$ average distortion (4)

ightharpoonup Next, condition on (A).

$$\Pr[u \text{ assigned to } w_s|(A)] \leq \Pr[w_s \text{ 1st of } w_1, \dots, w_s \text{ w.r.t. } \pi] = \frac{1}{s}$$

- ▶ If (A) & (B) happen, this incurs cost of 2^{i+2} .
- ▶ Hence

$$E[d_{w_s}^T(u,v)] \le 2^{i+2} \cdot 2 \cdot \frac{d(u,v)}{2^{i-1}} \cdot \frac{1}{s} = O(\frac{d(u,v)}{s})$$

- ▶ For general case: Let δ_i be length of $[d(u, w_s), d(v, w_s)] \cap [2^{i-1}, 2^i]$ Then applying the arguments for each δ_i : $E[d_{w_s}^T(u, v)] \leq \sum_i \delta_i \cdot O(\frac{1}{s}) \leq O(\frac{d(u, v)}{s})$.
- ► Then

$$E[d^{T}(u,v)] \leq \sum_{s=1}^{n-2} E[d_{w_{s}}^{T}(u,v)] = \sum_{s=1}^{n-2} O\left(\frac{d(u,v)}{s}\right) = O(\log n) \cdot d(u,v)$$

Distortion must be $\Omega(\log n)$

Definition (Expander graph)

An undirected graph G=(V,E) is called an (n,d,α) -expander graph if

- |V| = n
- ▶ constant degree: $deg(v) = d \ \forall v \in V$
- ▶ edge expansion

$$\alpha = \min_{1 \le |S| \le n/2} \frac{|\delta(S)|}{|S|}$$

- \triangleright Random d-regular graphs are good expanders w.h.p.
- ▶ The diameter of expanders is $\Theta(\log n)$.

Theorem (Bartal '96)

A randomized tree embedding of any (n, d, α) -expander graph $(d, \alpha \text{ constants})$ must have an edge with expected distortion of $\Omega(\log n)$.

Steiner nodes are not really necessary

Theorem (Gupta '01)

Given a weighted tree T = (V, E, c), where the node set $V = R \dot{\cup} S$ consists of required vertices R and Steiner nodes S. Then in linear time, one can find a weighted tree $T^* = (R, E^*, c^*)$ such that

$$d^{T}(u,v) \le d^{T^*}(u,v) \le 8 \cdot d^{T}(u,v)$$

where d^T and d^{T^*} are the induced tree metrices.

Derandomization

Theorem $(\underline{FRT} + \underline{Gupta} + \underline{Charikar\ et\ al.})$

Given a complete graph G=(V,E) with metric cost function $c:E\to\mathbb{Q}_+$. One can find deterministically, in polynomial time: spanning trees T_1,\ldots,T_q on V, costs $d_i:T_i\to\mathbb{Q}_+$ and probabilities $\lambda_i>0,\ \lambda_1+\ldots+\lambda_q=1$ where $q=\operatorname{poly}(n)$. Then

- ▶ For $u, v \in V$ and i = 1, ..., q one has $c(u, v) \leq d^{T_i}(u, v)$
- $For \ any \ u, v \in V \ one \ has$

$$\sum_{i=1}^q \lambda_i \cdot d^{T_i}(u,v) \le O(\log n) \cdot c(u,v).$$

Here $d^{T_i}: V \times V \to \mathbb{Q}_+$ is the tree metric induced by T_i and d_i .

PART 20 INTRODUCTION INTO PRIMAL DUAL ALGORITHMS

Source: Approximation Algorithms (Vazirani, Springer Press)

A generic problem

Situation: We want to approximate a problem, which (in many cases) is of the form

$$\min \sum_{j=1}^{n} c_j x_j$$

$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \ \forall i = 1, \dots, m$$

$$x_j \in \{0, 1\} \quad \forall j = 1, \dots, n$$

Examples so far: Set Cover, Steiner tree, Vertex Cover,...

A primal-dual pair

Primal "covering" LP:

$$\min \sum_{j=1}^{n} c_j x_j \qquad (P)$$

$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \quad \forall i = 1, \dots, m$$

$$x_j \geq 0 \quad \forall j = 1, \dots, n$$

Dual "packing" LP:

$$\max \sum_{i=1}^{m} b_i y_i \qquad (D)$$

$$\sum_{i=1}^{m} a_{ij} y_i \leq c_j \quad \forall j = 1, \dots, n$$

$$y_i \geq 0 \quad \forall i = 1, \dots, m$$

A generic Approximation algorithm

Generic primal-dual algorithm:

- (1) x := 0, y = 0
- (2) WHILE x not feasible DO
 - (3) Increase dual variables in a suitable way until some dual constraint j becomes tight
 - (4) Set $x_j := 1$
- (5) RETURN x

Generic analysis:

- \triangleright Show: At the end x is integer and feasible for primal
- \triangleright Show: At the end y is feasible for dual
- Show: $\sum_{j=1}^{n} c_j x_j \leq \alpha \cdot \sum_{i=1}^{m} b_i y_i$ (α is the apx factor) dual solutions primal solutions

Relaxed complementary slackness

Lemma

Let $\alpha, \beta \geq 1$. Let x, y be primal/dual feasible solutions obtained by the algorithm. If

- (A) Relaxed primal compl. slack: $x_j > 0 \Rightarrow c_j \leq \alpha \sum_{i=1}^m a_{ij} y_i$
- (B) Relaxed dual compl. slack.: $y_i > 0 \Rightarrow \sum_{j=1}^n a_{ij} x_j \leq \beta \cdot b_i$ Then $APX < \alpha \cdot \beta \cdot OPT_f$.
 - \blacktriangleright Let APX be the cost of the produced solution. Then

$$APX = \sum_{j=1}^{n} c_{j} x_{j} \overset{(A)}{\leq} \sum_{j=1}^{n} x_{j} \left(\alpha \sum_{i=1}^{m} a_{ij} y_{i} \right) = \alpha \sum_{i=1}^{m} y_{i} \sum_{j=1}^{n} a_{ij} x_{j}$$

$$\overset{(B)}{\leq} \alpha \beta \sum_{i=1}^{m} y_{i} b_{i} \overset{y \text{ dual feasible}}{\leq} \alpha \beta \cdot OPT_{f} \quad \square$$

Part 21 Steiner Forest

Source: Approximation Algorithms (Vazirani, Springer Press)

Steiner Forest

Problem: Steiner Forest

- ▶ Given: Undirected graph G = (V, E), edge cost $c: E \to \mathbb{Q}_+$, terminal pairs $(s_1, t_1), \ldots, (s_k, t_k)$
- Find: Minimum cost subgraph F connecting all terminal pairs:

$$OPT = \min_{F \subseteq E} \left\{ \sum_{e \in F} c(e) \mid \forall i = 1, \dots, k : F \text{ connects } s_i \text{ and } t_i \right\}$$

Steiner Forest

Problem: Steiner Forest

- ▶ Given: Undirected graph G = (V, E), edge cost $c: E \to \mathbb{Q}_+$, terminal pairs $(s_1, t_1), \ldots, (s_k, t_k)$
- Find: Minimum cost subgraph F connecting all terminal pairs:

$$OPT = \min_{F \subseteq E} \left\{ \sum_{e \in F} c(e) \mid \forall i = 1, \dots, k : F \text{ connects } s_i \text{ and } t_i \right\}$$

The LP relaxation

▶ For any $S \subseteq V$ define cut requirement

$$f(S) = \begin{cases} 1 & \text{if } \exists i : |S \cap \{s_i, t_i\}| = 1\\ 0 & \text{otherwise} \end{cases}$$

Primal LP relaxation:

$$\min \sum_{e \in E} c_e x_e \qquad (P)$$

$$\sum_{e \in \delta(S)} x_e \geq f(S) \quad \forall S \subseteq V$$

$$x_e \geq 0 \quad \forall e \in E$$

Dual LP:

$$\max \sum_{S \subseteq V} f(S)y_S \qquad (D)$$

$$\sum_{S: e \in \delta(S)} y_S \leq c_e \quad \forall e \in E$$

$$y_S \geq 0 \quad \forall S \subseteq V$$

Preliminaries

- ► For $F \subseteq E, S \subseteq V$: $\delta_F(S) = \{\{u, v\} \in F \mid u \in S, v \notin S\}$
- ▶ A cut $S \subseteq V$ is violated by $F \subseteq E$, if there is a terminal pair (s_i, t_i) with $|\{s_i, t_i\} \cap S| = 1$ but $\delta_F(S) = \emptyset$
- ▶ A cut S is active w.r.t. F, if S is violated and minimal (i.e. there is no subset $S' \subset S$ that is also violated).
- ▶ An edge e is tight w.r.t. a dual solution $(y_S)_S$ if $\sum_{S:e \in \delta(S)} y_S = c_e$ (i.e. if the dual constraint of c_e satisfied with equality).

The algorithm

- (1) $F := \emptyset, y := \mathbf{0}$
- (2) WHILE ∃ violated cut DO
 - (3) Increase simultaneously y_S for all active cuts S, until some edge e gets tight
 - (4) Add the tight edge e to F
- (5) Compute an arbitrary minimal feasible solution $F' \subseteq F$

The active cuts

Lemma

The active cuts w.r.t. $F \subseteq E$ are connected components of F.

- ▶ Consider active cut S (S minimal, f(S) = 1, $\delta_F(S) = \emptyset$).
- ▶ $\delta_F(S) = \emptyset \Rightarrow$ connected components of F are either fully contained in S or fully outside
- ▶ S is violated, hence there is a pair $|\{s_i, t_i\} \cap S| = 1$
- ▶ The connected component of F inside S that contains s_i is also violated. Hence, S is a single connected component (or we would have a contradiction).

F at the end of WHILE loop

Solution F'

Feasibility

Lemma

F' is a feasible solution.

- \blacktriangleright Let F be the solution at the end of the WHILE loop.
- \triangleright F is feasible, because there is no violated cut.
- We do not delete necessary edges, hence F' is also feasible.

Lemma

y is dual feasible, i.e. $\sum_{S:e \in \delta(S)} y_S \leq c_e$ for all $e \in E$.

- ► Each time that an edge e gets tight (i.e. $\sum_{S:e\in\delta(S)}y_S=c_e$), we add it to F.
- ▶ We increase y_S only for violated cuts not for cuts containing edges of F.

Lemma

Let y be the dual solution at the end of the algorithm. Then

$$APX = \sum_{e \in F'} c_e \le 2 \sum_{S \subset V} y_S \le 2 \cdot OPT_f.$$

$$\sum_{e \in F'} c_e \stackrel{e \text{ tight}}{=} \sum_{e \in F'} \left(\sum_{S: e \in \delta(S)} y_S \right) = \sum_{S \subseteq V} |\delta_{F'}(S)| \cdot y_S \stackrel{(*)}{\leq} \sum_{S \subseteq V} 2y_S$$

▶ Consider any iteration *i*. Let α be the amount by which the dual variables y_S were increased. We show (*) by proving

$$\alpha \cdot \sum_{S \text{ active in it.} i} |\delta_{F'}(S)| \leq 2 \cdot \alpha \cdot \# \text{active sets in it.} i$$

- \triangleright Consider an intermediate iteration *i* with intermediate *F*.
- ▶ Remark: $F' \setminus F$ might contain edges that are added later $F \setminus F'$ might contain edges that are deleted at the end.
- ▶ Claim:

$$\sum_{S \text{ active in it}, i} |\delta_{F'}(S)| \leq 2 \cdot \#\text{active sets in iteration } i$$

▶ Shrink connected components of $F \to H'$ (S becomes node v_S). Nodes v_S steming from active cuts S are active nodes, others are inactive nodes

 \blacktriangleright H' is a forest. Degrees are preserved.

- \triangleright Consider an intermediate iteration *i* with intermediate *F*.
- ▶ Remark: $F' \setminus F$ might contain edges that are added later $F \setminus F'$ might contain edges that are deleted at the end.
- ▶ Claim:

$$\sum_{S \text{ active in it.} i} |\delta_{F'}(S)| \leq 2 \cdot \#\text{active sets in iteration } i$$

▶ Shrink connected components of $F \to H'$ (S becomes node v_S). Nodes v_S steming from active cuts S are active nodes, others are inactive nodes

 \blacktriangleright H' is a forest. Degrees are preserved.

- \triangleright Consider an intermediate iteration *i* with intermediate *F*.
- ▶ Remark: $F' \setminus F$ might contain edges that are added later $F \setminus F'$ might contain edges that are deleted at the end.
- ► <u>Claim:</u>

$$\sum_{S \text{ active in it}, i} |\delta_{F'}(S)| \leq 2 \cdot \#\text{active sets in iteration } i$$

▶ Shrink connected components of $F \to H'$ (S becomes node v_S). Nodes v_S steming from active cuts S are active nodes, others are inactive nodes

ightharpoonup H' is a forest. Degrees are preserved.

- ▶ Consider non-singleton leaf v_S . Edge to v_S was not deleted. Hence f(S) = 1. But then S was active (since S is a connected component of F at iteration i).
- ▶ Average degree over all nodes in a forest is ≤ 2 (since # edges \leq # nodes) and each edge contributes at most 2 to the degrees.
- ▶ Inactive nodes are inner nodes of degree ≥ 2, hence average degree of active nodes ≤ average degree ≤ 2. □

Deleting redundant edges is crucial

Observation: Without the pruning step at the end of the algorithm, the solution would cost n + 4 instead of 4.

Conclusion

Theorem

The primal dual algorithm produces a 2-approximation in time $O(n^2 \log n)$.

Remark: The algorithm works whenever the requirement function $f: 2^V \to \{0, 1\}$ is proper, that means

- ▶ f(V) = 0
- $f(S) = f(V \backslash S)$ (symmetry)
- ▶ If $A, B \subseteq V$ are disjoint and $f(A \cup B) = 1$ then f(A) = 1 or f(B) = 1.

Note: Function f for STEINER FOREST is proper.

State of the art

- There is no $\frac{96}{95}$ -approximation algorithm unless $\mathbf{NP} = \mathbf{P}$ (same ratio as for the special case of STEINER TREE).
- ▶ There is still no better than 2-approximation known.
- ► The integrality gap of the considered LP is in fact exactly 2.
- ▶ There is also no other LP formulation known, which might have a smaller gap.

PART 22 FACILITY LOCATION

Source: Approximation Algorithms (Vazirani, Springer Press)

Facility Location

Problem: FACILITY LOCATION

- ▶ Given: Facilities F, cities C, opening cost f_i for every facility i. Metric cost c_{ij} for connecting city j to facility i.
- ▶ Find: Set of facilities I and an assignment $\phi: C \to I$ of cities to opened facilities, minimizing the total cost:

$$OPT = \min_{I \subseteq F, \phi: C \to I} \left\{ \sum_{i \in I} f_i + \sum_{j \in C} c_{\phi(j), j} \right\}$$

- ▶ **Remark:** Without the metric assumption, the problem becomes $\Theta(\log n)$ -hard.
- ▶ We assume w.l.o.g. $c_{ij}, f_i \in \mathbb{Z}_+$

Facility Location

Problem: FACILITY LOCATION

- ▶ Given: Facilities F, cities C, opening cost f_i for every facility i. Metric cost c_{ij} for connecting city j to facility i.
- ▶ Find: Set of facilities I and an assignment $\phi: C \to I$ of cities to opened facilities, minimizing the total cost:

$$OPT = \min_{I \subseteq F, \phi: C \to I} \left\{ \sum_{i \in I} f_i + \sum_{j \in C} c_{\phi(j), j} \right\}$$

- ▶ **Remark:** Without the metric assumption, the problem becomes $\Theta(\log n)$ -hard.
- ▶ We assume w.l.o.g. $c_{ij}, f_i \in \mathbb{Z}_+$

The primal dual pair

$$\min \sum_{i,j} c_{ij} x_{ij} + \sum_{i \in F} f_i y_i$$

$$\sum_{i \in F} x_{ij} \geq 1 \quad \forall j \in C$$

$$x_{ij} \leq y_i \quad \forall i \in F \ \forall j \in C$$

$$x_{ij} \geq 0 \quad \forall i \in F \ \forall j \in C$$

$$y_i \geq 0 \quad \forall i \in F$$

y_i

Dual LP:

$$\max \sum_{j \in C} \alpha_j$$

$$\begin{array}{ccccc} \alpha_{j} & \leq & c_{ij} + \beta_{ij} & \forall i \in F \ \forall j \in C \\ \sum_{j \in C} \beta_{ij} & \leq & f_{i} & \forall i \in F \\ \alpha_{j} & \geq & 0 & \forall j \in C \\ \beta_{ij} & \geq & 0 & \forall i \in F \ \forall j \in C \end{array}$$

Intuition:

- $\triangleright \alpha_j$ is the amount that city j "pays" in total.
- \triangleright β_{ij} is what city j "pays" to open facility i.

The algorithm - Phase 1:

- (1) Initially all cities are unconnected
- (2) $\alpha := \mathbf{0}, \beta := \mathbf{0}, F_t := \emptyset$
- (3) WHILE not all cities are connected DO
- (4) FOR ALL unconnected cities j DO
- (5) Increase α_i (by 1 per time unit)
- (6) For tight edges $\alpha_j = c_{ij} + \beta_{ij}$ increase also β_{ij}
- (7) IF $\sum_{j} \beta_{ij} = f_i$ (new) THEN (8) open facility i temporarily $(F_t := F_t \cup \{i\})$
- (9) FOR ALL cities j where edge (i, j) is tight DO
- (10) connect city to facility i(11) facility i is connection witness of j: w(j) := i

Phase 2:

- (1) Let $H = (F_t, E')$ with $(i, i') \in E'$ if $\exists j \in C : \beta_{ij}, \beta_{i'j} > 0$
- (2) Open a maximal independent set $I \subseteq F_t$
- (3) FOR ALL $j \in C$ DO
- (4) IF $\exists j \in I : \beta_{ij} > 0$ THEN $\varphi(j) := i$ (j directly conn.)
- (5) ELSE IF $w(j) \in I$ THEN $\varphi(j) := w(j)$ (j directly conn.)
- (6) ELSE $\varphi(j) := \text{a neighbour of } w(j) \text{ in } H \text{ } (j \text{ indir. conn.})_{231/292}$

Phase 1 - Time: 0

Phase 2: Graph ${\cal H}$

Phase 2: The solution

Analysis

Theorem

One has
$$\sum_{j \in C} c_{\varphi(j),j} + \sum_{i \in I} f_i \leq 3 \sum_{j \in C} \alpha_j$$
.

We account the dual "payments"

$$\alpha_j^f := \text{payment for opening} \quad := \quad \begin{cases} \beta_{\varphi(j),j} & \text{if j directly connected} \\ 0 & \text{if j is indirectly conn.} \end{cases}$$

$$\alpha_j^c := \text{payment for connection} \quad := \quad \begin{cases} c_{\varphi(j),j} & \text{if j directly connected} \\ \alpha_j & \text{if j is indirectly conn.} \end{cases}$$

Claim:
$$\alpha_j = \alpha_j^f + \alpha_j^c$$
.

- ▶ For indirectly connected cities: clear
- ▶ For directly connected cities: $\alpha_j = c_{\varphi(j),j} + \beta_{\varphi(j),j}$ because edge $(\phi(j), j)$ was tight.

Bounding the opening costs

Lemma

The dual prices pay for the opening cost, i.e.

$$\sum_{i \in I} f_i = \sum_{j \in C} \alpha_j^f.$$

- ▶ A facility $i \in I$ was temporarily opened because $\sum_{i} \beta_{ij} = f_i$
- ▶ All j with $\beta_{ij} > 0$ must be directly connected to i because: We opened an independent set in H in Phase 2, hence any $i' \in F_t$ with $\beta_{i'j} > 0$ is not in I
- ▶ Thus all j with $\beta_{ij} > 0$

$$\sum_{j:\phi(j)=i} \alpha_j^f = \sum_{j:\beta_{ij}>0} \beta_{ij} \stackrel{i \text{ temp opened}}{=} f_i$$

▶ The claim follows from

$$\sum_{j \in C} \alpha_j^f = \sum_{i \in I} \sum_{j: \phi(j) = i} \alpha_j^f = \sum_{i \in I} f_i \quad \Box$$

Bounding the connection cost

Lemma

For any city $j \in C$ one has $c_{\varphi(j),j} \leq 3\alpha_j^c$.

- ▶ If j directly connected, then even $\alpha_j^c = c_{\varphi(j),j}$. Next, suppose j is indirectly connected.
- ▶ Then there is an edge $(w(j), \phi(j)) \in H$ (since j was indirectly connected).
- ▶ This edge implies that there is a $j' \in C$ with $\beta_{\varphi(j),j'} > 0$, $\beta_{w(j),j'} > 0$.

Bounding the connection cost (2)

- ► Event $\beta_{w(j),j} > 0$ only happened if $\alpha_j \geq c_{w(j),j}$. For the same reason: $\alpha_{j'} \geq c_{w(j),j'}$ and $\alpha_{j'} \geq c_{\phi(j),j'}$.
- $j \quad \text{tight: } \alpha_j \ge c_{w(j),j}$ $j' \quad w(j) \notin H$ $\beta_{\phi(i),j'} > 0 \quad \phi(j) \in I$
- ▶ Claim $\alpha_j \geq \alpha_{j'}$: Consider the time t, when w(j) was temporarily opened. Since w(j) is connection witness of j, $\alpha_j \geq t$. At this time t, it was $\beta_{w(j),j'} > 0$ (since if $\beta_{w(j),j'} = 0$ at that time, then $\beta_{w(j),j'} = 0$ forever). At the latest at this time t, also j' was connected and $\alpha_{j'}$ stopped growing. Hence $\alpha_j \geq t \geq \alpha_{j'}$.
- ▶ Then

$$c_{\phi(j),j} \stackrel{\text{metric ineq.}}{\leq} \underbrace{c_{w(j),j}}_{\leq \alpha_j} + \underbrace{c_{w(j),j'}}_{\leq \alpha_{j'} \leq \alpha_j} + \underbrace{c_{\phi(j),j'}}_{\leq \alpha_{j'} \leq \alpha_j} \leq 3\alpha_j = 3\alpha_j^c$$

Conclusion

Theorem

The algorithm produces a 3-approximation in time $O(m \cdot \log(m))$, where $m = |C| \cdot |F|$ is the number of edges.

State of the art:

Theorem (Byrka '07)

There is a 1.499-apx for Facility Location.

► The integrality gap for the considered LP lies in [1.463, 1.499].

Theorem

There is no polynomial time 1.463-apx for Facility Location unless $\mathbf{NP} \subseteq \mathbf{DTIME}(n^{O(\log \log n)})$.

PART 23 INSERTION: SEMIDEFINITE PROGRAMMING

Source: Approximation Algorithms (Vazirani, Springer Press)

Positive definite matrices

Definition (positive semidefinite Matrix)

A matrix $A \in \mathbb{R}^{n \times n}$ is called positive semi-definite if

$$\forall x \in \mathbb{R}^n : x^T A x \ge 0.$$

Theorem (Diagonalization)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric (i.e. $a_{ij} = a_{ji}$), then A is diagonalizable, i.e. one can write

$$A = \underbrace{\begin{pmatrix} \vdots \\ v_1 \\ \vdots \end{pmatrix} \dots \begin{pmatrix} \vdots \\ v_n \\ \vdots \end{pmatrix}}_{=L} \cdot \underbrace{\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & \lambda_n \end{pmatrix}}_{=D} \cdot \underbrace{\begin{pmatrix} \dots & v_1 & \dots \\ \vdots & & & \vdots \\ \dots & v_n & \dots \end{pmatrix}}_{=L^T}$$

where $v_i \in \mathbb{R}^n$ is orthonormal Eigenvector for Eigenvalue λ_i , i.e $Av_i = \lambda_i v_i$, $||v_i||_2 = 1$, $v_i^T v_j = 0 \ \forall i \neq j$.

Some useful results

Lemma

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric matrix $(v_i \text{ orthonormal } Eigenvector \text{ for } \lambda_i)$. Then the following statements are equivalent

- $(1) \ \forall x \in \mathbb{R}^n : x^T A x \ge 0$
- (2) $\lambda_i \geq 0 \ \forall i$
- (3) There is $W \in \mathbb{R}^{n \times n}$ with $A = W^T W$

$$(1) \Rightarrow (2). \ 0 \le v_i^T A v_i = v_i^T (\lambda_i v_i) = \lambda_i \underbrace{v_i^T v_i}_{1} = \lambda_i$$

$$(2) \Rightarrow (3). \ A = LDL^T = L\sqrt{D}\sqrt{D}L^T = (\sqrt{D}L^T)^T \underbrace{(\sqrt{D}L^T)}_{}$$

▶ $(3) \Rightarrow (1)$. For any $x \in \mathbb{R}^n$:

$$x^T A x = x^T (W^T W) x = (W x)^T \cdot (W x) \ge 0$$

Remark: Matrix W can be found by Cholesky decomposition in $O(n^3)$ arithmetic operations (if $\sqrt{\ }$ counts as 1 operation). $_{246/292}$

The semidefinite cone

- ▶ **Def.:** Write $Y \succeq 0$ if Y is positive semidefinite.
- ▶ Fact: The set

$$\{Y \in \mathbb{R}^{n \times n} \mid Y \succeq 0, Y \text{ symmetric}\} = \operatorname{cone}\{xx^T \mid x \in \mathbb{R}^n\}$$
 is a convex, non-polyhedral cone.

A semidefinite program

Given:

- ▶ Obj. function vector $C = (c_{ij})_{1 \le i,j \le n} \in \mathbb{Q}^{n \times n}$
- ▶ Linear constraints $A_k = (a_{ij}^k)_{1 \leq i,j \leq n} \in \mathbb{Q}^{n \times n}, b_k \in \mathbb{Q}$

$$\max \sum_{i,j} c_{ij} y_{ij}$$

$$\sum_{i,j} a_{ij}^k y_{ij} \leq b_k \quad \forall k = 1, \dots, m$$

$$Y \qquad \text{symmetric}$$

$$Y \geq 0$$

▶ Frobenius inner product: $C \bullet Y := \sum_{i=1}^n \sum_{j=1}^n c_{ij} \cdot y_{ij}$

A semidefinite program

Given:

- ▶ Obj. function vector $C = (c_{ij})_{1 \le i,j \le n} \in \mathbb{Q}^{n \times n}$
- ▶ Linear constraints $A_k = (a_{ij}^k)_{1 \leq i,j \leq n} \in \mathbb{Q}^{n \times n}, \ b_k \in \mathbb{Q}$

$$\begin{array}{rcl} \max C \bullet Y \\ A_k \bullet Y & \leq & b_k & \forall k = 1, \dots, m \\ Y & & \text{symmetric} \\ Y & \succeq & 0 \end{array}$$

▶ Frobenius inner product: $C \bullet Y := \sum_{i=1}^{n} \sum_{j=1}^{n} c_{ij} \cdot y_{ij}$

Pathological situations

▶ Case: All solutions might be irrational. $x = \sqrt{2}$ is the unique solution of

$$\begin{pmatrix} 1 & x & 0 & 0 \\ x & 2 & 0 & 0 \\ 0 & 0 & 2x & 2 \\ 0 & 0 & 2 & x \end{pmatrix} \succeq 0 \qquad \begin{array}{c} 4 \\ 3 \\ 2 \\ 1 \\ 0 \\ -1 \\ -2 \end{array}$$

▶ Case: All sol. might have exponential encoding length. Let $Q_1(x) = x_1 - 2$, $Q_i(x) := \begin{pmatrix} 1 & x_{i-1} \\ x_{i-1} & x_i \end{pmatrix}$. Then

$$Q(x) := \begin{pmatrix} Q_1(x) & 0 & \dots & 0 \\ 0 & Q_2(x) & \dots & 0 \\ \dots & \dots & \ddots & \vdots \\ 0 & 0 & \dots & Q_n(x) \end{pmatrix} \succeq 0$$

if and only if $Q_1(x), \ldots, Q_n(x) \succeq 0$. I.e. $x_1 - 2 \geq 0$ and $x_i > x_{i-1}^2$, hence $x_n > 2^{2^n - 1}$.

Solvability of Semidefinite Programs

Theorem

Given rational input $A_1, \ldots, A_m, b_1, \ldots, b_m, C, R$ and $\varepsilon > 0$, suppose

$$SDP = \max\{C \bullet Y \mid A_k \bullet Y \leq b_k \ \forall k; \ Y \ symmetric; \ Y \succeq 0\}$$

is feasible and all feasible points are contained in $B(\mathbf{0},R)$. Then one can find a Y^* with

$$A_k \bullet Y^* \leq b_k + \varepsilon, \ Y^* \ symmetric, \ Y^* \succeq 0$$

such that $C \bullet Y^* \geq SDP - \varepsilon$. The running time is polynomial in the input length, $\log(R)$ and $\log(1/\varepsilon)$ (in the Turing machine model).

Solving the separation problem

- ▶ **Remark:** We show that we can solve the separation problem, ignore numerical inaccuracies.
- ▶ Let infeasible Y be given, we have to find a separating hyperplane.
- (1) Case $A_k \bullet Y < b_k$: return " $A_k \bullet Y \ge b_k$ violated"
- (2) Case Y not symmetric: Find the i, j with $y_{ij} < y_{ji}$. Return " $y_{ij} \ge y_{ji}$ violated".
- (3) Case Y not positive semidefinite. Find eigenvector v with Eigenvalue $\lambda < 0$, i.e. $Yv = \lambda v$. Then

$$\sum_{i,j} v_i^T v_j \cdot y_{ij} = v^T Y v < 0$$

hence return " $\sum_{i,j} v_i^T v_j \cdot y_{ij} \ge 0$ violated".

Vectorprograms

Idea:

$$Y \text{ symmetric and } Y \succeq 0$$

$$\Leftrightarrow \exists W = (v_1, \dots, v_n) \in \mathbb{R}^{n \times n} : W^T W = Y$$

$$\Leftrightarrow \exists v_1, \dots, v_n \in \mathbb{R}^n : y_{ij} = v_i^T v_j$$

SDP:

SDP:
$$\max \sum_{i,j} c_{ij} y_{ij} \qquad \max \sum_{i,j} c_{ij} v_i^T v_j$$

$$\sum_{i,j} a_{ij}^k \cdot y_{ij} \leq b_k \quad \forall k$$

$$\sum_{i,j} a_{ij}^k \cdot v_i^T v_j \leq b_k \quad \forall k$$

$$Y \quad \text{sym.}$$

$$Y \geq 0$$

$$v_i \in \mathbb{R}^n \quad \forall i$$

Observation

The SDP and the vector program are equivalent.

PART 24 MAXCUT

SOURCE:

- ▶ Approximation Algorithms (Vazirani, Springer Press)
- ► Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming (Goemans, Williamson) (<u>link</u>)

Problem definition

Problem: MAXCUT

- ▶ Given: Complete undirected graph G = (V, E), edge weights $w : E \to \mathbb{Q}_+$
- ▶ Find: Cut maximizing the weight of separated edges

$$OPT = \max_{S \subseteq V} \left\{ \sum_{e \in \delta(S)} w(e) \right\}$$

A vector program

▶ Choose decision variable for any node $i \in V$:

$$v_i = \begin{cases} (1, 0, \dots, 0) & i \in S \\ (-1, 0, \dots, 0) & i \notin S \end{cases}$$

► An exact MaxCut vector program:

$$\max \sum_{(i,j)\in E} \frac{w_{ij}}{2} (1 - v_i^T v_j)$$

$$v_i^T v_i = 1 \quad \forall i = 1, \dots, n$$

$$v_i \in \mathbb{R}^n \quad \forall i = 1, \dots, n$$

$$v_i = (\pm 1, 0, \dots, 0) \quad \forall i = 1, \dots, n$$

Then

$$\sum_{\substack{(i,j)\in E}} w_{ij} \cdot \underbrace{\frac{1}{2} (1 - \underbrace{v_i^T v_j}_{\text{+1 o.w.}})}_{=-1 \text{ if } (i,j)\in \delta(S)} = \sum_{\substack{(i,j)\in \delta(S) \\ \text{+1 o.w.}}} w_{ij}$$

A vector program (2)

The relaxed vector program:

$$\max \sum_{(i,j)\in E} \frac{w_{ij}}{2} (1 - v_i^T v_j)$$

$$v_i^T v_i = 1 \quad \forall i = 1, \dots, n$$

$$v_i \in \mathbb{R}^n \quad \forall i = 1, \dots, n$$

A physical interpretation

- \triangleright n vectors on n-dim unit ball.
- ▶ Repulsion force of w_{ij} between v_i and v_j

Example:

- OPT = 4
- ▶ For SDP solution, place v_1, \ldots, v_5 equidistantly on 2-dim. subspace. $SDP = 5 \cdot \frac{1}{2} (1 \cos(\frac{4}{5}\pi)) \approx 4.52$
- \blacktriangleright Hence integrality gap > 1.13.

The algorithm

Algorithm:

- (1) Solve MAXCUT vector program $\to v_1, \ldots, v_n \in \mathbb{Q}^n$ (More precisely: Solve the equivalent SDP, obtain a matrix $Y \in \mathbb{Q}^{n \times n}$. Apply Cholesky decomposition to Y to obtain v_1, \ldots, v_n)
- (2) Choose randomly a vector r from n-dimensional unit ball
- (3) Choose cut $S := \{i \mid v_i \cdot r \ge 0\}$

Theorem

 $E[\sum_{(i,j)\in\delta(S)} w_{ij}] \geq 0.87 \cdot OPT$ (i.e. the algorithm gives an expected 1.13-apx).

Proof

- Consider 2 vectors v_i, v_j with angle $\theta \in [0, \pi]$. Let $\mathbb{R} \cdot a$ be the 1-dim. intersection of the n-1-dim. hyperplane $x \cdot r = 0$ with the plane spanned by v_i, v_j
- \triangleright a has a random direction
- ▶ v_i, v_j are separated \Leftrightarrow they lie on different sides of line $a\mathbb{R}$ \Leftrightarrow a lies in one of the 2 gray arcs of angle θ
- ▶ $\Pr[v_i \text{ and } v_j \text{ separated}] = 2 \cdot \frac{\theta}{2\pi} = \frac{\theta}{\pi}$
- Expected contribution to APX is $w_{ij} \cdot \frac{\theta}{\pi}$

 $a\mathbb{R}$

Proof (2)

- ► Expected contribution of edge (i, j) to APX is $w_{ij} \cdot \frac{\theta}{\pi}$
- ▶ Contribution of edge (i, j) to SDP is $w_{ij} \cdot \frac{1}{2}(1 \cos(\theta))$

$$\frac{E[APX]}{SDP} \ge \min_{0 \le \theta \le \pi} \frac{\theta/\pi}{\frac{1}{2}(1 - \cos(\theta))} \approx 0.878. \quad \Box$$

State of the art

Theorem (Khot, Kindler, Mossel, O'Donnell '05)

There is no polynomial time < 1.138-approximation algorithm (unless the Unique Games Conjecture is false).

▶ That means the presented approximation is the best possible.

PART 25 MAX2SAT

Source: Approximation Algorithms (Vazirani, Springer Press)

Problem definition

Problem: MAX2SAT

- ▶ Given: SAT formula $\bigwedge_{C \in \mathcal{C}} C$ on variables x_1, \ldots, x_n . Each clause C contains at most 2 literals.
- ► <u>Find:</u> Truth assignment maximizing the number of satisfied clauses

$$OPT = \max_{a = (a_1, \dots, a_n) \in \{0,1\}^n} \left| \left\{ C \in \mathcal{C} \mid C \text{ true for assignment } a \right\} \right.$$

▶ Example:

$$\underbrace{(\bar{x}_1 \vee x_2)}_{\text{clause}} \wedge (x_1 \vee x_2) \wedge (x_1 \vee \bar{x}_2) \wedge (x_1 \vee x_2) \wedge \bar{x}_1$$

Optimal assignment: a = (0, 1) with 4 satisfied clauses.

▶ **Remark:** Problem is **NP**-hard though testing wether *all* clauses can be satisfied is easy.

A quadratic program

▶ Goal: Write MAX2SAT as quadratic program

$$\max \sum_{i,j} a_{ij} (1 + y_i y_j) + b_{ij} (1 - y_i y_j)$$
$$y_i^2 = 1$$
$$y_i \in \mathbb{Z}$$

for suitable coefficients a_{ij}, b_{ij} .

- ▶ Here $y_i = 1 \equiv x_i$ true, $y_i = -1 \equiv x_i$ false
- ▶ Let $y_0 := 1$ be auxiliary variable.
- ▶ Write

$$v(C) = \begin{cases} 1 & \text{if clause } C \text{ true for } y \\ 0 & \text{otherwise} \end{cases}$$

▶ For clauses with 1 literal

$$v(x_i) = \frac{1 + y_0 y_i}{2}, v(\bar{x}_i) = \frac{1 - y_0 y_i}{2}$$

A quadratic program (2)

▶ For clause $x_i \lor x_j$

$$v(x_i \lor x_j) = 1 - v(\bar{x}_i) \cdot v(\bar{x}_j) = 1 - \frac{1 - y_0 y_i}{2} \cdot \frac{1 - y_0 y_j}{2}$$

$$= \frac{1}{4} (3 + y_0 y_i + y_0 y_j - y_0^2) y_i y_j$$

$$= \frac{1 + y_0 y_i}{4} + \frac{1 + y_0 y_j}{4} + \frac{1 - y_i y_j}{4}$$

- ▶ Similar for $\bar{x}_i \vee x_j$ and $\bar{x}_i \vee \bar{x}_j$.
- ▶ We obtain promised coefficients a_{ij}, b_{ij} by summing up $\sum_{C \in \mathcal{C}} v(C)$.
- ▶ Now: Relax the quadratic program to a (solvable) vector program.

The algorithm

Algorithm:

(1) Solve MAXCUT vector program

$$\max \sum_{0 \le i < j \le n} \left(a_{ij} (1 + v_i v_j) + b_{ij} (1 - v_i v_j) \right)$$
$$v_i^2 = 1 \ \forall i = 0, \dots, n$$
$$v_i \in \mathbb{R}^{n+1}$$

- (2) Choose randomly a vector r from n-dimensional unit ball
- (3) Let $y_i := 1$ for all i that are on the same side of the hyperplane $x \cdot r = 0$ as v_0 (the "truth" vector)

Theorem

Let $APX := \#satisfied\ clauses$. Then $E[APX] \ge 0.87 \cdot SDP$.

Analysis

Case: Term $b_{ij}(1-v_iv_j)$ with angle θ between v_i, v_j

- ► Contribution to E[APX]: $2b_{ij} \cdot \Pr[y_i \neq y_j] = 2b_{ij} \frac{\theta}{\pi}$
- ▶ Contribution to Vector program: $b_{ij}(1 \cos(\theta))$
- Gap: $\min_{0 \le \theta \le \pi} \frac{2\theta/\pi}{1-\cos(\theta)} \approx 0.878$

Case: Term $a_{ij}(1 + v_i v_j)$ with angle θ between v_i, v_j

- Contribution to E[APX]: $2a_{ij} \cdot \Pr[y_i = y_j] = 2a_{ij}(1 \frac{\theta}{\pi})$
- ► Contribution to Vector program: $a_{ij}(1 + \cos(\theta))$
- ► Gap: $\min_{0 \le \theta \le \pi} \frac{2(1-\theta/\pi)}{1+\cos(\theta)} \approx 0.878$

State of the art

Theorem (Feige, Goemans '95)

There is a 1.0741-apx for MAX2SAT.

Theorem (Lewin, Livnat, Zwick '02)

There is a 1.064-apx for Max2Sat.

Theorem (<u>Hastad '97</u>)

There is no 1.0476-apx for MAX2SAT (unless NP = P).

Theorem (Khot, Kindler, Mossel, O'Donnell '05)

There is no polynomial time 1.063-apx for MAX2SAT (unless the Unique Games Conjecture is false).

PART 26 BUDGETED SPANNING TREE

Source: The Constrained Minimum Spanning Tree Problem (Goemans, Ravi) (<u>link</u>)

The Budgeted Spanning Tree problem

Problem: BUDGETED SPANNING TREE

- ▶ Given: Undirected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}_+$ and edge lengths $\ell: E \to \mathbb{Q}_+$. Budget B.
- ightharpoonup Find: Spanning tree T minimizing the cost, while not exceeding the budget

$$OPT = \max_{\text{spanning tree } T} \left| \left\{ \sum_{e \in T} c_e \mid \sum_{e \in T} \ell_e \le B \right\} \right|$$

The Budgeted Spanning Tree problem

Problem: BUDGETED SPANNING TREE

- ▶ Given: Undirected graph G = (V, E) with edge costs $c: E \to \mathbb{Q}_+$ and edge lengths $\ell: E \to \mathbb{Q}_+$. Budget B.
- ightharpoonup Find: Spanning tree T minimizing the cost, while not exceeding the budget

$$OPT = \max_{\text{spanning tree } T} \left| \left\{ \sum_{e \in T} c_e \mid \sum_{e \in T} \ell_e \le B \right\} \right|$$

BUDGETED SPANNING TREE is NP-hard

Recall that Partition is (weakly) **NP**-hard:

Problem: Partition

- ▶ Given: Numbers $a_1, \ldots, a_n \in \mathbb{N}, S := \sum_{i=1}^n a_i$
- $\underline{\text{Find:}} \ I \subseteq \{1,\ldots,n\} : \sum_{i\in I} a_i = S/2$

Reduction to Budgeted Spanning Tree:

- ▶ Budget B := S/2. There is a feasible tree T of cost $c(T) \leq B, \ell(T) \leq B$ if and only if there is a PARTITION solution.
- ▶ Problem also **NP**-hard for simple graphs (our algorithm will also work for multigraphs).
- ► Recall: The SPANNING TREE problem without a budget is easy.

Lagrangian Relaxation

Original problem:

Lagrangian Relaxation:

 $\begin{aligned} & \min_{T} \ c(T) \\ & T \ \text{spanning tree} \\ & \ell(T) \leq B \end{aligned}$

$$\min_{T} c(T) + z \cdot (\ell(T) - B)$$
T spanning tree

$$:= OPT$$

$$:= OPT_{LR}(z)$$

Lemma

For any Lagrange multiplier $z \geq 0$: $OPT_{LR}(z) \leq OPT$.

Let T be the optimum solution: $c(T) = OPT, \ell(T) \leq B$. Then

$$OPT = c(T) \ge c(T) + \underbrace{z}_{\ge 0} \cdot \underbrace{\ell(T) - B}_{\le 0} \ge OPT_{LR}(z) \quad \Box$$

Solving the Lagrangian relaxation

Lemma

A sol. z^*, T_1, T_2 can be computed in poly-time where $OPT_{LR} =$ $OPT_{LR}(z^*)$ is attained by $T_1, T_2, \ell(T_1) > B > \ell(T_2)$.

- Assume w.l.o.g. $c(e), \ell(e) \in \mathbb{Z}$. $a_{\max} := \max\{c(e), \ell(e)\}$
- ▶ For any spanning tree T, let $g_T(z) := c(T) + z \cdot (\ell(T) B)$
- $ightharpoonup OPT_{LR}(z) = \min_T \{g_T(z)\}.$ Hence $OPT_{LR}(z)$ is concave.

Solving the Lagrangian relaxation (2)

▶ For a given z, choose $c'(e) := c(e) + z \cdot \ell(e)$, then

$$OPT_{LR}(z) = \min_{\text{sp.tree } T} \{c(T) + z \cdot (\ell(T) - B)\} = \min_{\text{sp.tree } T} \{c'(T)\} - z \cdot B$$

- $ightharpoonup OPT_{LR}(0) \ge OPT_{LR}(z)$
- ▶ $OPT_{LR}(n \cdot a_{\max}) \leq 0$ (if there is no tree with budget < B, then MST w.r.t. $c'(e) := \ell(e) + \frac{1}{n \cdot a_{\max}} c(e)$ is optimal).
- ▶ Perform binary search (needs $O(\log(n \cdot a_{\max}))$ iterations):
 - (1) $L := 0, R := n \cdot a_{\text{max}}$
 - (2) WHILE $|L R| \ge \frac{1}{4n^2a_{---}^2}$ DO
 - (3) $z := \frac{L+R}{2}$
 - (4) $T := \overline{M}ST$ for cost function $c'(e) := c(e) + z \cdot \ell(e)$
 - (5) IF $\ell(T) > B$ THEN L := z ELSE R := z
 - (6) $z^* := \text{rational number in } [L, R] \text{ with min. denominator}$
 - (7) $T_1 := \operatorname{argmin}_T \{ g_T(z^* \varepsilon) \}$
 - (8) $T_2 := \operatorname{argmin}_T \{g_T(z^* + \varepsilon)\}\ (\varepsilon := \frac{1}{8n^2 \cdot a^2} \text{ should suffice})$
- ▶ Use: $z^* \in \frac{\mathbb{Z}}{q}$ for some $q \in \{1, \dots, 4n^2 a_{\max}^2\}$

An example

▶ In this example $OPT = \frac{3}{2}$, $OPT_{LR} = 1$

Obtaining 2 trees differing in 2 edges

Lemma

One can find opt. Lagrange solutions T_1, T_2 with $\ell(T_1) \geq B, \ell(T_2) \leq B$ which differ in exactly 2 edges.

- Let S_0, S_k the trees returned by the algorithm with $\ell(S_0) \geq B, \ell(S_k) \leq B$ that differ in $|S_k \Delta S_0| := |S_k \backslash S_0| + |S_0 \backslash S_k| = 2k$ edges
- S_0 e_0 e_1
- Let $e_0 \in S_0$ be edge maximizing $c'(e) := c(e) + \overline{z^*} \cdot \ell(e)$. There is an edge $e_1 \in S_k \setminus S_0$ such that $S_1 := S_0 \setminus \{e_0\} \cup \{e_1\}$ is a spanning tree. Since $c'(S_0) = c'(S_k)$, $c'(e_0) \geq c'(e_1)$. On the other hand $c'(S_1) \geq c'(S_0)$ since S_0 has minimal c'-cost. Hence $c'(S_1) = c'(S_0)$ and $|S_1 \Delta S_0| = 2(k-1)$.
- We iterate this to obtain S_0, \ldots, S_k with $c'(S_0) = c'(S_1) = \ldots = c'(S_k)$ and $|S_i \Delta S_{i+1}| = 2 \ \forall i$.
- ▶ Since $\ell(S_0) \ge B$, $\ell(S_k) \le B$ there must be a pair $(T_1, T_2) := (S_i, S_{i+1})$ with $\ell(S_i) > B$, $\ell(S_{i+1}) < B$.

T_2 is not that bad

Lemma

Let z^*, T_1, T_2 be opt. Lagrange solutions, $\ell(T_1) \geq B, \ell(T_2) \leq B$ s.t. $|T_1 \Delta T_2| = 2$. Then $c(T_2) \leq OPT + c_{\max}$.

▶ Recall that

$$c(T_1) \le c(T_1) + \overbrace{z^* \cdot (\ell(T_1) - B)}^{\ge 0} = OPT_{LR}(z^*) \le OPT$$

▶ Let e_1, e_2 be edges with $T_2 = (T_1 \setminus \{e_1\}) \cup \{e_2\}$. Then

$$c(T_2) = \underbrace{c(T_1)}_{\leq OPT} - \underbrace{c(e_1)}_{\geq 0} + \underbrace{c(e_2)}_{\leq c_{\max}} \leq OPT + c_{\max} \quad \Box$$

A PTAS

Lemma

There is a PTAS for BUDGETED SPANNING TREE.

- ▶ Guess the $1/\varepsilon$ many edges of maximum cost in the optimum solution.
- ▶ Contract them. Now $c_{\max} \leq \varepsilon \cdot OPT$ in the remaining instance.

State of the art:

- ► It is not know, whether there is an FPTAS for BUDGETED SPANNING TREE.
- ▶ [Hong et al.] can find a tree T with $c(T) \leq (1+\varepsilon)OPT$, $\ell(T) \leq (1+\varepsilon)B$ in $poly(n, 1/\varepsilon)$ (i.e. a bicriteria FPTAS).

Part 27 k-Median

Source: Approximation Algorithms (Vazirani, Springer Press)

k-Median

Problem: k-MEDIAN

- ▶ Given: Facilities F, cities C, parameter $k \in \mathbb{N}$. Metric cost c_{ij} for connecting city j to facility i.
- ▶ <u>Find:</u> Set of at most k facilities I and an assignment $\phi: C \to I$ of cities to opened facilities, minimizing the connection cost:

$$OPT := \min_{I \subseteq F, |I| \leq k, \phi: C \rightarrow I} \sum_{i \in I} c_{\phi(j),i}$$

k-Median

Problem: k-MEDIAN

- ▶ Given: Facilities F, cities C, parameter $k \in \mathbb{N}$. Metric cost c_{ij} for connecting city j to facility i.
- ▶ <u>Find:</u> Set of at most k facilities I and an assignment $\phi: C \to I$ of cities to opened facilities, minimizing the connection cost:

$$OPT := \min_{I \subseteq F, |I| \le k, \phi: C \to I} \sum_{i \in I} c_{\phi(j),i}$$

Integer program:

$$\min \sum_{i \in F} \sum_{j \in C} x_{ij} c_{ij}$$

$$\sum_{i \in F} x_{ij} = 1 \quad \forall j \in C$$

$$x_{ij} \leq y_i \quad \forall i \in F \ \forall j \in C$$

$$\sum_{i \in F} y_i \leq k$$

$$y_i, x_{ij} \in \{0, 1\} \quad \forall i \in F \ \forall j \in C$$

= OPT

Lagrangian Relaxation $(z \ge 0)$:

$$\min \sum_{i \in F} \sum_{j \in C} x_{ij} c_{ij} + z \cdot \left(\sum_{i \in F} y_i - k \right)
\sum_{i \in F} x_{ij} = 1 \quad \forall j \in C
 x_{ij} \leq y_i \quad \forall i \in F \ \forall j \in C
 y_i, x_{ij} \in \{0, 1\} \quad \forall i \in F \ \forall j \in C$$

optimum facility location value for instance with $f_i := z$

$$=: OPT_{FL}(z)$$

 $=: OPT_{LR}(z)$

Approximating the Lagrangean Relaxation (1)

Recall the previous result:

Theorem

One can compute a Facility Location solution in poly-time, with

connection $cost + 3 \cdot facility \ cost \leq 3 \cdot OPT_{FL}$.

- ▶ Let $FL(z) \subseteq F$ be the set of facilities, opened by approximation algorithm if $f_i := z$ for all facilities $i \in F$.
- ▶ For $F' \subseteq F$ and $j \in C$ let $c(F', j) := \min_{i \in F'} \{c_{ij}\}$ be the distance of city j to nearest facility in F'
- ▶ Let $c(F') := \sum_{j \in C} c(F', j)$ be the connection cost of a FACILITY LOCATION or k-MEDIAN solution F'.

Approximating the Lagrangean Relaxation (2)

- $|FL(0)| = |F| \ge k$, $\lim_{z \to \infty} |FL(z)| = 1 \le k$
- ▶ By binary search in the interval $[0, |C| \cdot \max_{i,j} \{c_{ij}\}]$, find $z^* \geq 0$, where $|FL(z^*)| \geq k \geq |FL(z^* + \varepsilon)|$
- Let $F_1 := FL(z^* + \varepsilon)$, $F_2 := FL(z^*)$ be the obtained approximate solutions (we ignore the ε -term from now on, since it can be made exponentially small).

Bounding the cost of F_1, F_2

Lemma

Choose
$$0 \le \lambda \le 1$$
 with $\lambda |F_1| + (1 - \lambda)|F_2| = k$. Then

$$\lambda \cdot c(F_1) + (1 - \lambda) \cdot c(F_2) \le 3 \cdot OPT.$$

 \triangleright Since we use a (3,1)-apx algo for Facility Location:

$$c(F_1) + 3z \cdot |F_1| \leq 3 \cdot OPT_{FL}(z)$$

$$c(F_2) + 3z \cdot |F_2| \leq 3 \cdot OPT_{FL}(z)$$

▶ Adding both inequalities with coefficient λ and $1 - \lambda$, resp.:

$$\lambda c(F_1) + (1 - \lambda)c(F_2) + 3z \cdot \underbrace{(\lambda |F_1| + (1 - \lambda)|F_2|)}_{=k}$$

$$< 3 \cdot OPT_{FL}(z) = 3 \cdot OPT_{LR}(z) + 3z \cdot k$$

ightharpoonup The 3zk term cancels out and

$$\lambda c(F_1) + (1 - \lambda)c(F_2) \le 3 \cdot OPT_{LR}(z) \le 3 \cdot OPT$$

Combining F_1 and F_2 (1)

Lemma

We can randomly choose a subset $I \subseteq F_1 \cup F_2$ of size $|I| \le k$ of $cost \ E[c(I)] \le 6 \cdot OPT$.

 \blacktriangleright We want to choose I s.t.

$$E[c(I,j)] \leq 2 \cdot (\lambda \cdot c(F_1,j) + (1-\lambda) \cdot c(F_2,j)).$$

Then

$$E[c(I)] = \sum_{j \in C} E[c(I,j)] \le \sum_{j \in C} 2\left(\lambda \cdot c(F_1,j) + (1-\lambda) \cdot c(F_2,j)\right)$$

$$\le 2 \cdot \underbrace{\left(\lambda \cdot c(F_1) + (1-\lambda) \cdot c(F_2)\right)}_{\le 3 \cdot OPT} \le 6 \cdot OPT$$

Combining F_1 and F_2 (2)

Case (1): With prob $1 - \lambda$:

- ► Choose $F'_2 \subseteq F_2$ with $|F_1| \prec$ $|F'_2| = |F_1|$ so that for any facility $i_1 \in F_1$, also the facility $i_2 \in F_2$ minimizing c_{i_1,i_2} is in F'_2
 - ▶ Choose $F_2'' \subseteq F_2 \setminus F_2'$ with $|F_2''| = k |F_1|$ uniformly at random. Open $I := F_2' \cup F_2''$.
 - ▶ Let $i_1 \in F_1$ and $i_3 \in F_2$ be nearest facilities to j. Suppose $i_3 \notin F'_2$ (other case later).
 - ▶ Note that $\Pr[i_3 \in I] = \frac{k |F_1|}{|F_2| |F_1|} = 1 \lambda$. Hence

$$E[c(I,j)] \leq \underbrace{\Pr[i_3 \in I]}_{=1-\lambda} \cdot \underbrace{c(i_3,j)}_{\leq c(F_2,j)} + \underbrace{\Pr[i_3 \notin I]}_{=\lambda} \cdot \underbrace{c(i_2,j)}_{\leq 2c(F_1,j)+c(F_2,j)}$$

$$\leq (1-\lambda+\lambda) \cdot c(F_2,j) + 2\lambda \cdot c(F_1,j)$$

$$< c(F_2,j) + 2\lambda \cdot c(F_1,j)$$

 $< c(i_1, i_3)$

 $c(F_1,j)$

Combining F_1 and F_2 (2)

Case (2): With prob λ :

- ▶ Then

$$E[c(I,j)] \leq \underbrace{\Pr[i_3 \in I]}_{=1-\lambda} \cdot \underbrace{c(i_3,j)}_{\leq c(F_2,j)} + \underbrace{\Pr[i_3 \notin I]}_{=\lambda} \cdot \underbrace{c(i_1,j)}_{\leq c(F_1,j)}$$
$$\leq \lambda c(F_1,j) + (1-\lambda)c(F_2,j)$$

Combining F_1 and F_2 (3)

▶ Overall:

$$E[c(I,j)] \le \underbrace{\Pr[\operatorname{case}\ (1)]}_{=1-\lambda} \cdot \underbrace{E[c(I,j)\ \operatorname{in}\ (1)]}_{2\lambda c(F_1,j)+c(F_2,j)} + \underbrace{\Pr[\operatorname{case}\ (2)]}_{=\lambda} \cdot \underbrace{E[c(I,j)\ \operatorname{in}\ (2)]}_{\leq \lambda c(F_1,j)+(1-\lambda)c(F_2,j)}$$

$$\le \lambda \cdot \underbrace{(\lambda + 2(1-\lambda))}_{\leq 2} \cdot c(F_1,j) + (1-\lambda) \cdot \underbrace{(1+\lambda)}_{\leq 2} \cdot c(F_2,j) \quad \square$$

• (For case $i_3 \in F_2'$: $E[c(I,j)] \le \lambda c(F_1,j) + (1-\lambda)c(F_2,j)$).

The main result

Theorem

There is an expected 6-approximation for k-MEDIAN in polynomial time (which can be easily derandomized).

State of the art:

Theorem (Arya et al.)

One can obtain a $(3+\varepsilon)$ -apx in time $O(n^{2/\varepsilon})$.

- ▶ Algorithm uses local search.
- ▶ The natural LP relaxation has an integrality gap of 3, but no algorithm is known that achieves this value.