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Chapter 1

Introduction

The probabilistic method was spearheaded by Paul Erdős to an extend that it is
sometimes called the “Erdős method”. By now it is one of the standard tech-
niques in combinatorics and other areas of discrete mathematics as well as the-
oretical computer science. Simply phrased, the idea is to prove the statement of
a theorem or prove the existence of an object using probability. The goal of these
lecture notes is to give an introduction into the probabilistic method and the in-
volved techniques, where we have a preference for elegant solutions rather than
intricate calculations. In particular we will rarely care about the exact constants
in order to keep the exposition as clean as possible. Parts of this text will follow
the excellent textbook of Alon and Spencer [AS16], but we will also see applica-
tions found elsewhere.

1.1 Ramsey Graphs

While there have been earlier applications, probably one result by Erdős from
1947 popularized the probabilistic method. The question back in 1947 was whether
there are undirected graphs G = (V ,E) that have neither a large clique, nor a large
anti-clique. Here a clique is a set S ⊆V so that the induced subgraph G[S] is com-
plete, while S is an anti-clique if G[S] contains no edges. Recall that the induced
subgraph G[S] = (S, {{u, v} ∈ E | u, v ∈ S}) is the graph on nodes S that “inherits”
exactly the edges contained in S. Also recall that N (u) := {v ∈V | {u, v} ∈ E } is the
neighborhood of a node u ∈ V . And the “first theorem” of Ramsey Theory shows
that there has to be at least a clique or anti-clique of logarithmic size inany graph.

Lemma 1.1. Any n-node graph contains either a clique or anti-clique of size 1
2 log2(n).

Proof. We prove the following claim by induction over k +ℓ:
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6 CHAPTER 1. INTRODUCTION

Claim. Any graph on n ≥ 2k+ℓ nodes contains either a k-clique or an ℓ-anti-

clique.

Proof of claim. Fix a node v . If |N (v)| ≥ n/2 then G[N (v)] has at least 2(k−1)+ℓ

nodes so it either contains a size-ℓ anti-clique or it contains a (k−1)-clique which
we can extend to a k-clique by adding v . The other case is that |V \({v}∪N (v))| ≥
n/2 in which we can similarly argue that there is either a k clique or an (ℓ− 1)
anti-clique not incident to v .

In particular a 22k -node graph must contain either a k-clique or k-anticlique,
which then gives the claim.

Usually one defines R(k,ℓ) as the minimum integer so that every graph with
at least R(k,ℓ) nodes contains either a k-clique or a ℓ-anti clique. For example
R(3,3) = 6, which is often quoted as the fact that at every party with at least 6
people, there are either 3 people who all know each other or 3 people who all do
not know each other.

Somewhat surprisingly there are indeed graphs without a ω(logn) clique or
anti-clique.

Theorem 1.2. For any n there is a graph without a 2log2(n)+O(1) clique or anti-
clique.

Proof. We pick a graph G = ([n],E) at random where every possible edge {u, v} is
inserted into the graph independently with probability 1/2. Fix k := 2log2(n)+C

for a big constant C . By symmetry it suffices to show that the probability that a k-
clique exists is less than 1/2. And we can bound that probability by the expected
number of k-cliques:

Pr[∃k-clique in G] ≤
∑

S⊆V :|S|=k

Pr[G[S] is complete] ≤
(

n

k

)

·2−(k
2)

≤ nk 2−k2/2+k = 2log2(n)·k−k2/2+k <
1

2

for our choice of k.

The proof was essentially trivial. But it is surprisingly hard to come up with
an inherently different construction of a graph without a large clique or anti-
clique. In fact no non-probabilistic construction of a graph without O(logn)-
clique or anti-clique is known! Apparently this is a deeper problem of construct-
ing a random-like object without the use of randomness. The best explicit con-
struction by Barak, Rao, Shaltiel and Wigderson [BRSW06] provides an n-node

graph without a clique or anti-clique of size 22log1−ε(log(n))
.
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As a second remark, the line of arguments where we set up a random ex-
periment and then reason using the expectation (here the expected number of
cliques/anticliques) is also called the First Moment Method. Often these types of
proofs are the easiest probabilistic proofs.

1.2 Balancing lights

We want to study another application where it will be advantageous to construct
the desired object by a mix ob randomization and deterministic choice. Suppose
we have an n ×n array of lights in some initial state where each light is either
on or off. We have 2n switches, one for each horizontal line and one for each
vertical line that switches the whole line. The question is: given any adversarial
initial state of the lights, how many lights can be guaranteed to be turned on? In
particular how much more than just half the lights can be switched on?

switch

switch

switch

switch

swit. swit. swit. swit.

Lemma 1.3. One can always turn switches so that n2

2 +Θ(n3/2) many lights are
on.

Proof. We can formalize the claim as follows: Given a matrix A ∈ {−1,1}n×n , show
that there are x , y ∈ {−1,1}n so that xT Ay ≥Ω(n3/2). We forget about the signs x

for the moment and pick only y ∈ {−1,1}n uniformly at random. Then the in-
ner product 〈Ai , y〉 is the sum of n uniform random elements from {−1,1}. In
particular E[| 〈Ai , y〉 |] = Θ(

p
n) (we will fill out details in the exercises). Then

∑n
i=1 | 〈Ai , y〉 | =Θ(n3/2). Now we pick xi := sign(〈Ai , y〉) and

xT Ay =
n∑

i=1
xi · 〈Ai , y〉 =Θ(n3/2)

as desired.
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1.3 On the number of disjoint pairs

Suppose that we have a set family F ⊆ 2{1,...,n}. Let

d(F ) := {{F,F ′} | F,F ′ ∈F with F ∩F ′ =;}

be the number of disjoint pairs of sets in F . The question that Daykin and ErdḦ
os where wondering is, how large can |F | be so that still a good fraction of pairs
is disjoint. For example one could let F be all the subsets of {1, . . . , n

2 } plus all the
subsets of { n

2 +1, . . . ,n}. Then at least half the pairs is disjoint and |F | =Θ(1)·2n/2.
But what happens beyond the threshold of 2n/2 many sets? Daykin and Erdős

conjectured that as soon as |F | ≥ 2( 1
2+δ)n for some constant δ> 0 one would have

d(F ) ≤ o(|F |2). And indeed this is true, as was proven by Alon and Frankl.

Theorem 1.4 (Alon, Frank 1985). Let F ⊆ 2[n] be a family of |F | = 2( 1
2+

1
t )n sets

where t ∈N. Then d(F ) ≤ |F |2−Θ(1/t 2).

Proof. We sample independently t +1 members A1, . . . , At+1 ∈F uniformly from
the set family. Then we estimate that

Pr
[

|A1 ∪ . . .∪ At+1| ≤
n

2

] union bound
≤

∑

S⊆[n]:|S|= n
2

Pr[A1, . . . , At+1 ⊆ S] (∗)

independence=
∑

S⊆[n]:|S|= n
2

(

Pr[A1 ⊆ S]
︸ ︷︷ ︸

≤2n/2/|F |

)t+1
≤ 2n ·

( 2n/2

2( 1
2+

1
t )n

)t+1

= 2n·(1− t+1
t ) = 2−n/t

Note that if we only had 2n/2 many sets and they are subsets of either the first n/2
or the second n/2 elements, then this probability would have been only 2−Θ(t ).
Hence we are indeed using the assumption that we have a lot more sets. From
this estimate we can already quickly see that in 2 · (t +1) samples we would very
likely see at least some collisions.

Now we get a more precise analysis. Still, we consider the random experiment
where sets A1, . . . , At+1 ∈F are drawn at random. Moreover, let

Y := |{B ∈F | B ∩ (A1 ∪ . . .∪ At+1) =;}|

be the random variable that gives the number of sets disjoint to all of the t + 1
samples. The correct intuition will be that E[Y ] is going to be a good proxy for
d(F )t+1.



1.4. GRAPHS WITH HIGH CHROMATIC NUMBER AND HIGH GIRTH 9

First of all, the bound in (∗) implies an upper bound on the expected value of
Y :

E[Y ] ≤ Pr
[

|A1 ∪ . . .∪ At+1| ≤
n

2

]

︸ ︷︷ ︸

≤2−n/t

·E
[

Y | |A1 ∪ . . .∪ At+1| ≤
n

2

]

︸ ︷︷ ︸

≤|F |

+E

[

Y | |A1 ∪ . . .∪ At+1| >
n

2

]

︸ ︷︷ ︸

≤2n/2

≤ 2−n/t |F |
︸ ︷︷ ︸

=2n/2

+2n/2 = 2 ·2−n/t · |F |

It will be convenient to also define disj(B) := |{A ∈F | A∩B =;}| as the num-
ber of sets in the family disjoint to B . We can upper bound

E[Y ] =
∑

B∈F

(disj(B)

|F |

)t+1

︸ ︷︷ ︸

Pr[B disj. to A1,...,At+1]

≥ |F | ·
(

1

|F |2

=2d(F )
︷ ︸︸ ︷∑

B∈F
disj(B)

)t+1

=
1

|F |2t+1
· (2d(F ))t+1

using Jensen’s inequality and the convexity of x 7→ x t+1. Combining this we have
shown that

2t+1

|F |2t+1
·d(F )t+1 ≤ E[Y ] ≤ 2 ·2−n/t |F |

which can be rearranged to

d(F ) ≤O(1) ·2−n/(t ·(t+1)) · |F |2

which gives the claimed bound.

This result falls into a large category of applications of the probabilistic method,
where it’s not about the existence of some object that is the outcome of a ran-
dom experiment, but about some inequality of deterministic quantities. Often
inequalities can be proven by doing a random experiment that relate the involved
quantities.

1.4 Graphs with high chromatic number and high girth

For an undirected graph G = (V ,E), a coloring with k colors is a map c : V →
{1, . . . ,k} so that c(i ) 6= c( j ) for all {i , j } ∈ E . We denote χ(G) as the minimum
number o colors that are needed to color G . It’s easy to see that if G contains a Kk

as a subgraph, then χ(G) ≥ k. For example below, we see a 3-coloring of a graph.
Clearly there will not be a 2-coloring as the graph contains a 3-clique.
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1

2

3

3

1

2

In general it is NP-hard to determine χ(G), but one might wonder what other
obstructions for good colorings there might be. In particular, one might believe
that a graph has a coloring with few colors as long as there are no short cycles.
However, it turns out that this is false. But it is quite non-trivial to construct
example graphs showing this. Let girth(G) denote the smallest number of edges
in any cycle in G and let α(G) denote the size of the largest independent set.

Theorem 1.5 (Erdős 1959). For any k ∈ N, there is family of graphs that have
girth(G) > k and χ(G) >Ω(n1/(4k)).

Proof. Let n be large enough, compared to k. Set d := n1/(2k). We pick a random

graph G = (V ,E) on n vertices by inserting each edge independently, say with
probability d

n
. In other words, we a random graph that has about d . In order

to prove that χ(G) ≥
p

d , we show that there is not even an independent set of
size np

d
in such a graph. And in fact we can even do so by counting the expected

number of subsets S with |S| = np
d

that do not include an edge:

Pr
[

α(G) >
n
p

d

]

≤
(

n

n/
p

d

)

·
(

1−
d

n

)(n/
p

d
2 )

≤ nn/
p

d ·exp
(

−
d

n
·

1

4
(n/

p
d)2

)

≤ exp
(

ln(n) ·
n
p

d
−

1

4
·n

)

≤ o(1)

That means χ(G) ≥
p

d = n1/(4k) with probability 1− o(1). Now we would love
to show that G will not contain short cycles. But there is a problem here. For
example there are about Θ(nk ) candidate cycles of length k and each particular
one exists with probability ( d

n
)k . Then the expected number of length-k cycles is

of order Θ(d k ).
That means G will contain a ton of length-k cycles. But there is a way to fix

this. Let X be the number of cycles of length at most k. If we can show that
X ≤ o(n), then we can delete one edge from every cycle and end up with a graph
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with girth(G) > k. Deleting edges might decrease the chromatic number, but
there will be, say n/2 many nodes U that did not have any incident edge deleted.
That subgraph G[U ] will satisfy the claim. Back to our estimates on the number
of cycles:

E[X ] ≤
k∑

ℓ=3

nℓ ·
(d

n

)ℓ
≤ k ·d k = k ·

p
n ≤ o(n)

In particular Pr[X ≥ n
4 ] ≤ o(1) if n ≫ k.

The line of arguments that we have seen here is also called the method of al-

terations where in general one sets up a random experiment that gives an object
that does not quite satisfy the desired requirements. Then one has a 2nd round
in which the object is modified.

1.5 The Rödl Nibble

How many matchings does it take to cover all the vertices in a complete n-node
graph? Trivially ⌈n/2⌉ many. How many triangles does it take to cover all the
edges in a complete graph? This already requires some thoughts. The number
must be at least 1

3 ·
(n

2

)

≈ 1
6 n2, but it is not fully trivial whether this bound can be

achieved.
And in fact, we want to consider this question in more generality. Let Hn,r =

([n],E ) be the complete r -uniform hypergraph, meaning that the hyperedges are
E =

([n]
r

)

. We define

M(n,k,ℓ) := # min edges of Hn,k needed to cover all edges in Hn,ℓ

b

b

b

b

b

b

b

b

Example: size ℓ= 3 edge covered by a size k = 5 edge

Note that Hn,ℓ has
(n
ℓ

)

many edges and every edge of Hn,k can cover at most
(k
ℓ

)

of these, so

M(n,k,ℓ) ≥
(n
ℓ

)

(k
ℓ

)

Erdős and Hanani conjectured in 1963 that this bound can be achieved asymp-
totically. It took two decades until this was proven by Rödl:
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Theorem 1.6 (Rödl 1985). For all 2 ≤ ℓ< k one has

M(n,k,ℓ)
(n
ℓ

)

/
(k
ℓ

)
n→∞−→ 1.

By now there are also algebraic constructions known, but Rödl’s proof tech-
nique is robust and quite useful in other settings. We prove the more general
statement that guarantees the existence of near perfect coverings in a hyper-
graph. Later we will argue how it implies Rödl’s Theorem. For a hypergraph
H = (V ,E ) we denote dH (i ) as the degree of a vertex i ∈V . Moreover, for a pair of
nodes i , j ∈V we let dH (i , j ) be the number of edges containing both nodes. We
will omit the index H if it is clear from context. A cover is a set of edgesF ⊆ E with
⋃

e∈F e = [n]. Rödl proved that under some assumptions a hypergraph contains
an almost perfect cover (here the order of the quantifiers should be understood
as ∀r ∈Z≥2,K ≥ 1,δ> 0 ∃D0,ε):

Theorem 1.7 (Existence of almost perfect covers in hypergraphs). Fix arbitrary
constants r ∈ Z≥2 and K ≥ 1. Let H = ([n],E ) be an r -uniform hypergraph with
n ≥ D ≥ D0 satisfying

1. Every vertex i ∈ [n] but at most εn many of them one has d(i ) = (1±ε) ·D .

2. For all i ∈V one has at least 1 ≤ d(i ) ≤ K ·D .

3. For any distinct nodes i , j ∈ [n] one has d(i , j ) ≤ εD .

Then there is a cover of (1+δ) · n
r

edges where (ε→ 0 and D0 →∞) ⇒ δ→ 0.

We should first convince ourselfs that the naive proof strategy must fail. Sup-
pose we sample each hyper edge of with probability 1

D
so that each node is cov-

ered in expectation once, but the probability of being covered is only at least 1− 1
e

.
The solution is that we only take small “bites” or “nibbles” of hyperedges in the
sense that we only sample a very small fraction of edges. The lemma character-
izing a successful “bite” is as follows (again the order of the quantifiers should be
understood as ∀r ∈Z≥2,K ≥ 1,δ> 0,α> 0 ∃D0,ε):

Lemma 1.8. Fix arbitrary constants r ∈ Z≥2, K ≥ 1 and α > 0. Let H = ([n],E ) be
an r -uniform hypergraph with n ≥ D ≥ D0 satisfying the following:

i) All vertices i ∈V except at most εn of them have d(i ) = (1±ε)D .

ii) For all i ∈ [n] one has d(i ) ≤ K ·D .

iii) Any two vertices i , j satisfy d(i , j ) ≤ εD .
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Then there is a set E ′ ⊆ E of hyperedges so that

(A) |E ′| =α · n
r
· (1±δ).

(B) The set V ′ :=V \
⋃

e∈E ′ e of uncovered nodes has size |V ′| = n ·e−α · (1±δ).

(C) For all uncovered vertices i ∈V ′ except δ|V ′| of them, the degree d ′(i ) in the
induced hypergraph H ′ = (V ′, {e ∈ E : e ⊆V ′}) is d ′(i ) = D ·e−α(r−1) · (1±δ).

Again one has (ε→ 0 and D0 →∞) ⇒ δ→ 0.

It is important that after an application of Lemma 1.8 we can still guarantee
the same regularity for the remaining hypergraph H ′ that we had before so that
Lemma 1.8 can be applied again. We can visualize Lemma 1.8 as follows:

E ′ ∋
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

Nodes covered almost
perfectly by E ′ hypergraph H ′ on nodes V ′

Proof of Lemma 1.8. We pick a random subset E ′ ⊆ E that contains every edge
independently with probability α

D
. In order to keep the notation simple we will

write K = O(1) and we write o(1) instead of introducing a sequence of various
constants depending on ε that all tend to 0. The way to interpret this is that as
we send ε→ 0 and D0 →∞, also the expression hidden by o(1) will go to 0.

Note that the assumptions on uniformity and degree imply that |E | = nD
r

·
(1±o(1)) and hence E[|E ′|] = (1±o(1)) · αn

r
. Then (A) follows from concentration

bounds like Chernov. We call a node i good if it satisfies the degree bound d(i ) =
(1±ε) ·D from i ). Let

Ii :=
{

1 if i ∉
⋃

e∈E ′ e

0 otherwise

be the indicator variable telling whether i is uncovered. In fact, the probability
that i is uncovered is

Pr[Ii = 1] =
(

1−
α

D

)d(i ) if i is good
= e−α · (1±o(1)).

Since most vertices are good anyway, this implies that E[|V ′|] = ne−α(1± o(1)).
However, the expectation will not be enough to control the behavior of |V ′|. We
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will also bound the variance of the random variable |V ′|. First, for distinct nodes
i , j ∈ [n] we have

Cov[Ii , I j ] = E[Ii I j ]−E[Ii ]E[I j ] =
(

1−
α

D

)d(i )+d( j )−d(i , j )
−

(

1−
α

D

)d(i )+d( j )

≤
(

1−
α

D

)−d(i , j )
−1

d(i , j )≤o(D)
≤ o(1)

In particular we have used that E[Ii I j ] is the probability that both nodes are un-
covered, which requires that none of the d(i )+d( j )−d(i , j ) many incident hyper-
edges is sampled. Then we can bound the variance of the number of uncovered
nodes by

Var[|V ′|] =
n∑

i=1
Var[Ii ]
︸ ︷︷ ︸

≤1

+
∑

i , j∈[n]:i 6= j

Cov[Ii , I j ] ≤ n +o(n2) ≤ o(n2)

Then Chebychev’s Inequality1 tells us that |V ′| = (1±o(1))·E[|V ′|] with probability
at least 0.99 and we have (B).

It remains to prove that the degrees of most nodes in V ′ are as claimed in (C ).
Note that the hypergraph H ′ inherits only the hyperedges completely contained
in V ′. First note that all but o(n) many nodes i ∈ [n] satisfy

(I) d(i ) = (1±o(1)) ·D .

(II) All but at most o(D) many edges e ∈ δH (i ) satisfy |{ f ∈ E : i ∉ f , f ∩e 6= ;}| =
(1±o(1)) · (r −1) ·D .

Here (I) is one of the assumptions. For (II) note that (ignoring the outliers) each
of the r − 1 vertices in e \ {i } have degree D · (1± o(1)) and there are only o(D)
many edges containing i and one or more other nodes in e \ {i }. Consider a node
i satisfying (I) and (II). We call an edge e ∈ δH (i ) good if it satisfies the condition
in (II). For such a good edge, the chance that it stays in H ′ is

Pr[e ⊆V ′ | i ∈V ′] =
(

1−
α

D

)(1±o(1))·(r−1)D D large
= e−(1±o(1))·α·(r−1)

The degree of i is mostly controlled by the number of good edges as there are
o(D) bad ones and so

E[d ′(i ) | i ∈V ′] = D ·exp(−(1±o(1)) ·α(r −1))

1Recall that Chebychev’s Inequality says that for any random variable X and any λ > 0 one
has Pr[|X −E[X ]| ≥ λ ·

p
Var[X ]] ≤ 1

λ2 . Also recall that the variance is Var[X ] := E[(X −E[X ])2] =
E[X 2] − E[X ]2. Also it is useful to remember that if X = X1 + . . . + Xn is the sum of (not nec-
essarily independent) random variables, then Var[X ] =

∑n
i=1 Var[Xi ] +

∑

i 6= j Cov[Xi , X j ] where
Cov[Xi , X j ] := E[Xi X j ]−E[Xi ]E[X j ] is the covariance of the pair (Xi , X j ).
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Again, we need to show that d ′(i ) is also close to its expecation with high prob-
ability and again we will estimate the variance for that purpose. Let Ie be the
indicator random variable for the event e ⊆V ′. Then

Var[d ′(i ) | i ∈V ′] ≤ E[d ′(i ) | i ∈V ′]
︸ ︷︷ ︸

≤(1+o(1))·D

+
∑

e, f ∈δH (i )
|e∩ f |>1
︸ ︷︷ ︸

≤o(D2)

Cov[Ie , I f | i ∈V ′]
︸ ︷︷ ︸

≤1

+
∑

e, f ∈δH (i )
e∩ f ={i }

Cov[Ie , I f | i ∈V ′]
︸ ︷︷ ︸

≤o(1) by (∗)

≤ o(D2)

It remains to argue why (∗) holds. Fix two edges e, f ∈ δH (i ) with e ∩ f = {i }. The
events {e ⊆ V ′ | i ∈ V ′} and { f ⊆ V ′ | i ∈ V ′} are not necessarily independent as
there can be edges h that overlap both e and f . Let t (e, f ) := |{h ∈ E | h ∩ e 6=
;,h ∩ f 6= ;, i ∉ h}| be the number of such intersecting edges h.

e f
b b b b b

b b b b b
i

h

The number of such edges is t (e, f ) ≤ (r − 1)2 · o(D) ≤ o(D) and using a simi-
lar estimate as earlier we can write Cov[Ie , I f | i ∈ V ′] ≤ (1− α

D
)−t (e, f ) − 1 ≤ o(1).

Then again Pr[d ′(i ) ∉ (1±o(1)) ·e−α(r−1)] ≤ o(1) and we have proven all necessary
claims.

Now we can show the main Theorem.

Proof of Theorem 1.7. Suppose the goal is a cover of an r -uniform hypergraph
with only (1+δ) n

r
many edges. We apply the previous lemma where the “size of

the bite” is a tiny constant α := δ
2 and we apply Lemma 1.8 t := 1

α
ln( 2r

α
) many

times. We consider r and α as fixed and have ε= o(1) and N ,D →∞. We obtain
a sequence of smaller and smaller hypergraphs Hi = (Vi ,Ei ) with approximate
degree Di . The number of non-covered nodes after t iterations is

|Vt | ≤ |V | · (e−α(1±o(1)))t ≤ n ·
α

2r
· (1±o(1)) <

αn

r

In every of the t iterations, we can compare the number of nodes that are covered
with the number of sampled edges and see that the ratio always satisfies

edges sampled in iteration

nodes covered in iteration
=

α
r
· (1±o(1))

1−e−α(1±o(1))
<

1+α

r
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In particular that means we are sampling (1+α) n
r

many edges in total to cover
n·(1−α

r
) many nodes. We should mention that some number of o(n) nodes in the

original hypergraph might start with degree D · (1±o(1)) and remain uncovered
while the degree does not go down in a controlled way. But the original degree of
D is of the form O(Di ) which is sufficient.

Finally we cover the remaining nodes with one private edge per node. That
provides a cover of size (1+α) n

r
+ α

r
·n = (1+2α) n

r
. This shows the claim.

If the use of the nibble technique is still arcane to the reader, it maybe helpful
that the following sampling method is “morally equivalent”: take the approxi-
mately regular hypergraph H = (V ,E ) and for each hyperedge e ∈ E pick a uni-
form random number se ∈ [0,1]. Now sort the edges E = {e1, . . . ,em} so that 0 <
se1 < se2 < . . . < sem < 1. We create a matching E ′ ⊆ E as follows. Starting with
E ′ := ; and consider the indices i = 1, . . . ,m in increasing order. Add ei to E ′ if
ei does not overlap any edge that was previously added to E ′. Then similarly E ′

should end up being a matching that covers a 1−o(1) fraction of nodes.
Now we can prove the Erdős-Hanani Conjecture:

Theorem 1.9 (Rödl 1985). The complete ℓ-uniform hypergraph Hn,ℓ can be cov-
ered with (1±o(1)) ·

(n
ℓ

)

/
(k
ℓ

)

edges from Hn,k as n →∞.

Proof. We define a hypergraph H = (V ,E) with nodes V :=
([n]
ℓ

)

and edges E =
{
(S
ℓ

)

| S ∈
([n]

k

)

}. Observe that this graph has |V | =
(n
ℓ

)

vertices and is
(k
ℓ

)

-uniform.

The degree of the vertices is D :=
(n−ℓ

k−ℓ
)

as for every ℓ-tuple S1 ∈ V an edge is ob-

tained by picking S2 ∈
([n]\S1

k−ℓ
)

and taking the hyperedge corresponding to subsets

of S1∪̇S2. Two distinct vertices S1,S2 ∈
([n]
ℓ

)

lie in at most
(n−ℓ−1

k−ℓ−1

)

= o(D) many

joint hyperedges as n →∞. Hence there is a cover of H with only (1+o(1)) · |V |
(k
ℓ)

hyperedges.

1.6 Independent Sets in Locally Sparse Graphs

Consider an undirected graph G = (V ,E) with |V | = n nodes and maximum de-
gree d . One might wonder what size of an independent set one can guaran-
tee, only depending on those parameters. It is an easy exercise to find an in-
dependent set of size n

d+1 (even in polynomial time). And this bound is tight
if the graph consists of disjoint unions of (d + 1)-size cliques. But maybe if the
graph is locally sparse one could do better? A result of Ajtai, Komlós and Sze-
merédi [AKS81] showed that in a triangle-free graph, there is always an inde-
pendent set of size Ω( n

d
log(d)). Shearer [She83] later found a simpler and quite
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elegant proof, see also Chapter 6 in the textbook of Tao and Vu [TV10]. From
the proofs it quickly becomes clear that the key property is that neighborhoods
N (v) need to contain large independent sets. We will see here a generalization
of the result by Alon [Alo96], telling that a graph where each neighborhood N (v)
is O(1)-colorable contains an independent set of size Ω( n

d
log(d)). Note that this

is indeed a generalization as a graph is triangle-free if and only if each neighbor-
hood N (v) is 1-colorable.

Theorem 1.10. Let G = (V ,E) be a graph with maximum degree d where each
neighborhood N (v) is r -colorable. Then G contains an independent set of size

Ω( n
d
· log(d)

log(r ) ).

Proof. Let I := {S ⊆ V | S is independent set} be the family of all independent
sets in the graph. We consider the random experiment where we draw S ∼ I

uniformly at random. Our goal is to somehow argue that S is large in expectation.
We consider the random variable

Xv := d · |S ∩ {v}|+ |S ∩N (v)|

for each node v ∈ V . The sum over those random variables is a good proxy for
the size of S since

E

[ ∑

v∈V

Xv

]

= d ·E
[ ∑

v∈V

|S ∩ {v}|
︸ ︷︷ ︸

=|S|

]

+E

[ ∑

v∈V

|S ∩N (v)|
︸ ︷︷ ︸

≤d |S|

]

≤ 2d ·E[|S|]

We will prove that indeed E[Xv ] ≥Ω( log(d)
log(r ) ) for each node, which then completes

the claim. The trick is to lower bound E[Xv | ..] where we condition on what hap-
pens outside of v ’s neighborhood.

v

N (v)

J

S2

V \U

Claim I. For v ∈ V , abbreviate U := {v}∪ N (v) and fix any independent set S2 ⊆
V \U . Then

E [Xv | S ∩ (V \U ) = S2] ≥Ω

( logd

logr

)
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Proof of claim. Let J := {u ∈ N (v) | u not incident to S2}. Define I1 := {S1 ⊆ J |
S1 is independent set}. For each S1 ∈ I1 ∪ {v}, also S1∪̇S2 is an independent set
and they have to be sampled with uniform probability. In particular that means
that S ∩U (conditioned on S2) produces a uniform sample from I1 ∪ {v}. Then

E[Xv ] = d ·E[|S ∩ {v}|]
︸ ︷︷ ︸

= 1
|I1|+1

+E[|S ∩N (v)|] =
d

|I1|+1
+

|I1|
|I1|+1
︸ ︷︷ ︸

≥1/2

E
S1∼I1

[|S1|]
︸ ︷︷ ︸

≥Ω(
log(|I1|)

log(r ) ) (∗)

≥
d

|I1|+1
+Ω

( log |I1|
log(r )

) (∗∗)
≥ Ω

( log(d)

log(r )

)

For (**) we use that if |I1| ≤
p

d , then the first terms is already Ω(
p

d) and if |I1| ≥p
d then the 2nd term is large.

It still remains to argue (∗). Let us define a parameter 0 ≤ δ≤ 1 so that |I1| =
2δ·|J |. As N (v) is r -colorable, I1 must contain at least all subsets of a |J |/r -size
independent set. That implies that 2|J |/r ≤ |I1| = 2δ|J | and consequently δ ≥ 1

r
.

Intuitively, this means that I1 is a fairly dense family of subsets of J . In particular
we can use the estimate that we are about to prove as Claim II to get:

E
S1∼I1

[|S1|]
Claim II
≥ Ω

( |J | ·δ
log(1/δ)

) δ≥ 1
r ,|J |δ=log2(I1)

≥ Ω

( log(|I1|)
log(r )

)

that will finish the proof.
Claim II. Let F ⊆ 2[m] be a family of |F | = 2δm many subsets. Then ES∼F [|S|] ≥
Ω( δm

log(1/δ) ).

Proof of claim. Let us define the binary entropy function h : [0,1] → [0,1] by
h(x) := x log2( 1

x
)+ (1−x) log2( 1

1−x
).

0 1
0

1
h(x)

1/2
x

For a random variable X , one defines the entropy as H(X ) =
∑

x Pr[X = x]·log2
1

Pr[X=x]
where the sum ranges over all events. For example h(x) gives the entropy of a
coin that gives head with probability x and tail with probability 1−x. One useful
property of entropy is that it is subadditive. In particular if Y ∈ R

m is a random
vector, then H(Y ) ≤

∑m
i=1 H(Yi ), meaning that the total entropy is at most the

sum of the entropy of the coordinates. Another useful fact is that the uniform
distribution over N elements has entropy log2(N ).
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Now sample a uniform element S ∼F and let Y ∈ {0,1}m be the characteristic
vector of S. We abbreviate α := E[|S|]

m
. Then we can estimate that

δm = log2(|F |) = H(Y )
subadditivity

≤
m∑

i=1
H(Yi ) =

m∑

i=1
h(E[Yi ])

concavity
≤ m ·h

(
E[|S|]

m
︸ ︷︷ ︸

=α

) h(x)≤2x log( 1
x )

≤ 2αm log
( 1

α

)

Here we use Jensen’s inequality with the concavity of h. The inequality can be
rearranged to α≥Θ( δ

log(1/δ) ).

For a better intuition, let us revisit the arguments of the proof for r = Θ(1).
If an adversary picks the set S2 so that there are less than

p
d many indepen-

dent sets in {v}∪N (v), then the chance that v is picked is at least 1p
d

and hence

Xv ≥ Θ(
p

d). On the other hand, suppose S2 is picked so that there are a lot of
independent sets so that v ’s contribution is not enough. Say we have |I1| = d .
But if these are all the independent sets contained in J and J is O(1)-colorable,
then we know that |J | ≤O(logd). In particular the average set from I1 must quite
large, at least |S| ≥Ω(logd).

We also want to comment on the bound behind Claim II. The inequality in-
deed gives the right asymptotics. For example if |F | = 2Θ(m) it is rather intuitive
that the average set in F must have size Θ(m). For the other end of the spectrum

suppose that |F | = poly(m) = 2δ·m with δ= O(logm)
m

and the average size is at least

Θ( δm
log(1/δ) ) =Θ( logm

log(m) ) =Θ(1) as it should be.

1.7 Open problems

The exact range of Ramsey numbers is still unknown. The best estimates are

Θ(k) ·2k/2 ≤ R(k,k) ≤ 22k−Θ(log(k)2/loglogk),

which still leaves a significant gap [CFS15]. As of today also smaller Ramsey num-
bers such as R(5,5) are unknown. A related open problem is the Erdős-Hajnal

Conjecture that for every fixed graph H the following holds: A graph G = (V ,E) on
n-vertices that does not have H as an induced subgraph must have a clique or
independent set of size nc(H), where c(H) > 0 is a constant only depending on H .
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1.8 Exercises

Exercise 1.1. Prove that for all k,r ∈N, there exists a constant N (k,r ) so that the
following holds: Let Kn = ([n],E) be the complete graph on n ≥ N (k,r ) nodes
and let χ : E → {1, . . . ,k} be a coloring of the edges with k colors. Then there is a
monochromatic subgraph with at least r nodes.

Exercise 1.2. Let X = X1+. . .+Xn where X1, . . . , Xn ∈ {−1,1} are independent ran-
dom variables with Pr[Xi = 1] = Pr[Xi =−1] = 1

2 . Prove that E[|X |] =Θ(
p

n).
Remark. There are certainly many ways to prove this fact. Can you come up with
a short elementary argument?

Exercise 1.3. We call a set A ⊆Z\{0} sum-free if there are no distinct a1, a2, a3 ∈ A

so that a1 + a2 = a3. Our goal is to prove that any set B = {b1, . . . ,bn} ⊆ Z \ {0}
contains a subset A ⊆ B that is sum-free and has size |A| ≥ n/3.

i) Pick p = 3k+2 as a large prime so that p > 2|bi | for all i and k ∈N. Consider
the middle third of elements C := {k +1, . . . ,2k +1}. Prove that there is an
r ∈ {1, . . . , p −1} so that |{r ·b mod p | b ∈ B }∩C | ≥ n

3 .

ii) Take the choice of r from i ) and define A := {b ∈ B | (r · b mod p) ∈ C }.
Prove that A is sum-free.

Exercise 1.4 (From Alon & Spencer [AS16]). Let F ⊆ 2[n] be a family of sets that
is inclusion-free meaning that there are no A,B ∈F with A ⊂ B . Prove that |F | ≤
( n
⌊n/2⌋

)

.
Hint. Pick a uniform random permutation π : [n] → [n] and consider the random
variable X := |{i ∈ [n] | {π(1), . . . ,π(i )} ∈F }|.

Exercise 1.5 (From Alon & Spencer [AS16]). Let G = (A∪̇B ,E) be a bipartite graph
with n vertices in total. Each vertex v ∈ A∪̇B has a list S(v) ⊆ {1, . . . ,k} of |S(v)| >
log2(n) many colors. Prove that there is a proper coloring χ : A∪̇B → {1, . . . ,k}
where each node v ∈ A∪̇B receives a color χ(v) ∈ S(v) from its list.

Exercise 1.6. Provide a family of graphs G = (V ,E) which is triangle-free and in
which every node has degree Θ(d). Moreover I := {S ⊆ V | S is independent set}
should satisfy the following properties:

1. There is a node u ∈V so that PrS∼I [u ∈ S] ≤ o( 1
d

) if d →∞.
2. There is a node v ∈V so that ES∼I [|N (v)∩S|] ≤ o(1).

Exercise 1.7. A d-regular graph G = (V ,E) is called a β-expander for β> 0 if

|δ(S)| ≥β ·d · |S| ∀S ⊆V : 1 ≤ |S| ≤
|V |
2
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Pick 3 uniform random perfect matchings M1, M2, M3 on nodes [n] with n even.
Prove that the graph G = ([n], M1 ∪ M2 ∪ M3) is a 3-regular Ω(1)-expander with
good probability (here we count multi-edges with multiplicity).

Exercise 1.8. Recall that for an undirected graph G = (V ,E), a matching M ⊆ E is
a set of edges that do not share any vertices. Also recall that G is d-regular if all
degrees are d . Moreover we consider graphs without multi-edges and self-loops.

i) Prove the following statement: For every ε > 0 there is a d0 ∈ N so that
every d-regular graph G = (V ,E) with d ≥ d0 has a matching with at least
( 1

2 −ε) · |V | many edges.

ii) Prove that at least approximate regularity is needed by providing a graph
G = (V ,E) where all degrees are in {d ,2d} but no matching has more than
|V |/3 many edges.
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Chapter 2

Concentration inequalities

Concentration of measure is a phenomenom that is particularly useful in prob-
abilistic combinatorics. In this chapter, we want to present a variety of powerful
concentration inequalities and theirs proofs. Throughout this chapter we do not
aim to optimize constants but rather focus on a clean exposition of the key ideas.

2.1 Chernov bounds

The most basic case of concentration can be studied for the sum of indepen-
dent random variables. The proof that we will see here follows classical work of
Bernstein and Chernov. The idea is to first estimate the quantity E[exp(t X )] for a
suitable parameter t > 0, and then apply Markov’s inequality.

Theorem 2.1 (Chernov Bound I). Suppose that X1, . . . , Xn are independent ran-
dom variables with E[Xi ] = 0 and |Xi | ≤ ai where a ∈R

n
≥0. Then for any λ≥ 0, the

sum X := X1 + . . .+Xn satisfies Pr[|X | ≥λ‖a‖2] ≤ 2e−λ2/4.

Proof. Let t > 0 be a parameter that we choose later. First suppose that |t ·ai | ≤ 1
for each i . Then

E[exp(t X )]
independence=

n∏

i=1
E[exp(t Xi )]

ex≤1+x+x2∀|x|≤1
≤

n∏

i=1
E

[

1+ t Xi + t 2X 2
i

]

=
n∏

i=1

(

1+ t E[Xi ]
︸ ︷︷ ︸

=0

+t 2
E[X 2

i ]
︸ ︷︷ ︸

≤a2
i

)

≤
n∏

i=1

(

1+ t 2a2
i

) 1+x≤ex

≤ exp(t 2‖a‖2
2)

Note that if we have some indices i where t ai > 1, we can simply replace Xi by

it’s maximum value and get that E[exp(t Xi )] ≤ e t ai ≤ e t 2a2
i . In other words, the

23
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estimate above still remains true. Either way,

Pr[X >λ‖a‖2]
monotonicity

= Pr
[

exp(t X ) > exp(tλ‖a‖2)
] Markov

≤ E[exp(t X )]

exp(tλ‖a‖2)

≤ exp(t 2‖a‖2
2 − tλ‖a‖2)

t := λ
2‖a‖2≤ exp

(

−
1

4
λ2

)

Often one has {0,1}-events and then a different form of Chernov bound is
useful. We will skip the proof that just uses different parameter settings.

Theorem 2.2 (Chernoff Bound II). Let X1, . . . , Xn ∈ {0,1} independent random vari-
ables with X := X1 + . . .+Xn . Then for 0 < δ< 1 one has

E

[

|X −E[X ]| ≥ δE[X ]
]

≤ 2exp
(

−
δ2

3
E[X ]

)

.

An there is one more form that can be useful sometimes:

Theorem 2.3 (Chernoff Bound III). Let X1, . . . , Xn ∈ {0,1} independent random
variables with X := X1 + . . .+Xn . Then for δ> 0 one has

Pr[X > (1+δ)E[X ]] <
( eδ

(1+δ)1+δ

)
E[X ]

This expression is slightly more arcane. For all δ≥ 2 then Chernov Bound III
can be simplified to as

Pr[X > δ ·E[X ]] ≤ exp
(

−
1

4
ln(δ) ·δ ·E[X ]

)

.

2.1.1 Qualitative difference between the inequalities

The difference between the Chernov bounds appears rather cosmetic / technical
on first glance. But we want to point out a crucial qualitative difference. For that
sake, we reparameterize the 2nd Chernov bound. Suppose we have independent

random variables X1, . . . , Xn ∈ {0,1} with Pr[Xi = 1] = σ2

n
. Then it is easy to see that

Var[Xi ] =Θ(σ
2

n
) and hence Var[X ] =Θ(σ2), while also E[X ] = n · σ

2

n
=σ2. Then we

pick 0 <λ<σ so that δ= λ
σ

. Then we can rephrase the Chernov Bound II as

Pr
[

|X −E[X ]| ≥ δ
︸︷︷︸

= λ
σ

E[X ]
︸︷︷︸

=σ2

︸ ︷︷ ︸

=λ·σ

]

≤ 2exp
(

−
1

3
δ2

︸︷︷︸

= λ2

σ2

E[X ]
︸︷︷︸

=σ2

)

= 2exp
(

−
λ2

3

)
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which recovers the 1st Chernov bound (ignoring the different constants). But
strangely, in Chernov II we are restricted to have δ < 1 (or λ < σ), while this was
not needed for Chernov I. On the other hand, if we reparameterize Chernov III,
then we get Pr[X > E[X ]+λσ] ≤ exp(−Θ(ln(λ

σ
)) ·λ ·σ), which gives a weaker expo-

nential decay in λ.
The explanation is that in the setting of Chernov I, the deviation of the indi-

vidual terms Xi is fully controlled by the upper bound of a2
i

on its variance and
even the individual terms themselfs would satisfy a concentration inequality of
the form Pr[|Xi −E[Xi ]| >λ ·

p
Var[Xi ]] ≤ 2exp(−λ2/4) for all λ≥ 0.

Now consider the setting of Chernov II and III — say with Pr[Xi = 1] = pi

being small. Then an individual terms gives a deviation of approximately 1 from
the expectation with probability pi . If the deviation parameter δ (or λ) is small
enough, the the sum X behaves like a Gaussian in terms of concentration (see
Chernov II), but if the parameters δ (or λ) are getting too large then the rather
unpredictable behavior of the individual terms dominates.

2.2 Martingale concentration

The proof of the Chernov bounds from above seemed to crucially use indepen-
dence. But it turns out that a weaker concept suffices to get the same strong
concentration effect. For a more detailed reading we refer to Chapter 7 of [AS16].

Consider a sequence X0, . . . , Xn of real-valued random variables that satisfy
E[Xi | X1, . . . , Xi−1] = Xi−1 for i = 1, . . . ,n. Such a sequence is called a Martingale.
In particular, a random variable Xi is allowed to depend on the outcomes of the
previous random variables X1, . . . , Xi−1, but in expectation Xi needs to coincide
with the previous value Xi−1. In particular E[Xi ] = X0 for all i . A classical ex-
ample is a gambler in a casino that only offers “fair” games in the sense that in
expectation the gambler neither wins nor looses money, no matter how he plays.
The gambler may switch between games depending on whether he has a winning
streak or not. But no matter what strategy he uses, his expectation is always 0 and
the probability to deviate significantly is tiny. The simplest form of a Martingale
concentration result is the following:

Theorem 2.4 (Azuma’s Inequality). Let 0 = X0, . . . , Xn be a Martingale with |X t −
X t−1| ≤ 1 for all t = 1, . . . ,n. Then for any λ≥ 0 one has

Pr[|Xn | >λ
p

n] ≤ 2exp(−λ2/4).

Actually we will even prove a more general result as we explain later. For
the proof, it will be notationally more convenient to work with the increments
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Y1, . . . ,Yn instead of the summands X t = Y1 + . . .+Yt . We will also be lazy and
assume that the sampling space is finite, so that we can talk about probabilities
instead of densities (this does not affect correctness of the concentration results).

We imagine that we sample first Y1 ∼D1, then Y2 ∼D2(Y1) depending on the
previous outcome. Then the t th number is sampled as Yt ∼Dt (Y1, . . . ,Yt−1). As
before, we assume that the distributions are balanced, that means

E
Yt∼Dt (Y1,...,Yt−1)

[Yt ] = 0 ∀Y1, . . . ,Yt−1

We also assume that |Yt | ≤ 1 for any possible outcome of Yt . Our goal will be to
give a concentration result for the sum

∑n
i=1 Yi of those increments.

There is a concrete way to interpret this random process. Consider a tree T =
(V ,E) with a node (Y1, . . . ,Yt ) for each possible outcome and each t ∈ {0, . . . ,n}.
We insert edges between (Y1, . . . ,Yt−1) and (Y1, . . . ,Yt ) that we label with proba-
bility Pr[Dt (Y1, . . . ,Yt−1) = Yt ]. We also label nodes (Y1, . . . ,Yt−1) with the variance
Var[Dt (Y1, . . . ,Yt−1)]. Note that the root corresponds to the empty string ; and
the leafs correspond to “fully determined” vectors (Y1, . . . ,Yn). A path from the
root down to a leaf then corresponds to a sample path. For each node (Y1, . . . ,Yt )
we define V (Y1, . . . ,Yt ) :=

∑t
i=1 Var[Di (Y1, . . . ,Yi−1)] as the sum of the variances

suffered on the sample path from the root down to that node.

Pr[D1 = Y1]

Pr[D2(Y1) = Y2]

Pr[D3(Y1,Y2) = Y3]

root ;

Y1

(Y1,Y2)

(Y1,Y2,Y3)

sampling tree for n = 3

The interesting point about Martingales is that the variance of the random
process may vary a lot for different sample paths.

Theorem 2.5 (Freedman’s Martingale Concentration Inequality). Let 0 = X0, . . . , Xn

be a Martingale with Xi := Y1 + . . .+Yi so that |Yi | ≤ 1. Let V [Y1, . . . ,Yn] be the
sum of the variances on the sample path leading to node (Y1, . . . ,Yn). Then for
any λ≥ 0 and σ≥ 0 one has

Pr
[∣
∣Xn

∣
∣≥λ ·σ and V [Y1, . . . ,Yn] ≤σ2

]

≤ 2exp
(

−
1

8
min

{

λ2,λ ·σ
})
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Proof. We only show the upper bound. Let 0 ≤α≤ 1
2 be a parameter that we de-

termine later.
Claim. Let Φt := exp(αX t −2α2V [Y1, . . . ,Yt ]). Then E[Φt ] ≤ 1 for t ∈ {0, . . . ,n}.
Proof of claim. Note that the claim says that for every level t in the sampling tree,
the average of Φt over nodes in that level is at most 1. Intuitively, Φt is the expo-
nential moment of the Martingale, but we are discounting a factor that is propor-
tional to the suffered variance until that point (and the variance is not necessarily
uniform). The claim is easily proven by inducton. The proof will simply show that
for any node in the tree, if we move to a random child, the expression defining
Φt does not increase in expectation.

Now the formal proof. ClearlyΦ0 = 1. For a general level t ≥ 1, fix any Y1, . . . ,Yt−1

— that means Φt−1 is already determined — and draw Yt ∼Dt (Y1, . . . ,Yt−1). Then

E[Φt | Y1, . . . ,Yt−1] = E
Yt

[

exp
(

α (X t−1 +Yt )
︸ ︷︷ ︸

=X t

−2α2 (V [Y1, . . . ,Yt−1]+Var[Yt ])
︸ ︷︷ ︸

=V [Y1,...,Yt ]

)]

= exp
(

αX t−1 −2α2V (Y1, . . . ,Yt−1)
)

︸ ︷︷ ︸

=Φt−1

· E
Yt

[

exp
(

αYt −2α2Var[Yt ]
)]

≤ Φt−1 ·E
[

1+αE[Yt ]
︸ ︷︷ ︸

=0

+α2
E[Y 2

t ]−
2α2

2
·Var[Yt ]

︸ ︷︷ ︸

=0

]

=Φt−1

Here we use the convenient fact that exp(x− y) ≤ 1+x+x2− y
2 for −1 ≤ x ≤ 1 and

0 ≤ y ≤ 1. Here we crucially use that |Yt | ≤ 1 and Var[Vt ] ≤ 1 and α≤ 1
2 .

Now we can apply the trick of exponentiating and applying Markov’s inequal-
ity that we have used before. Making the choice of α := min{ λ

4σ , 1
2 } then gives

Pr
[

Xn −2αV [Y1, . . . ,Yn] ≥
λσ

2
︸ ︷︷ ︸

(∗∗)

]
(∗∗∗)= Pr

[

exp
(

αXn −2α2V [Y1, . . . ,Yn]
)

︸ ︷︷ ︸

E[..]≤1

≥ exp
(

α
λσ

2

)]

Markov
≤ exp

(

−α
λσ

2

)

=
{

exp(−1
4λ ·σ) if λ≥ 2σ

exp(−1
8λ

2) if λ< 2σ

Here we use monotonicity of x 7→ exp(αx) in (∗∗∗). If the event in (∗∗) does not
occur and additionally V [Y1, . . . ,Yn] ≤σ2, then indeed

Xn ≤
λσ

2
+2 α

︸︷︷︸

≤ λ
4σ

V [Y1, . . . ,Yn]
︸ ︷︷ ︸

≤σ2

≤λσ

as desired.
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2.2.1 An Application to the Size of Independent Sets

We want to demonstrate the power and usefulness of Martingales with an exam-
ple application. Consider an undirected complete graph G = (V ,E) with nodes
|V | = n and suppose every edge e ∈ E is labelled with a probability pe . Indepen-
dently every edge e “materializes” with the given probability pe . Let F ⊆ E be
the obtained random sample of edges. We are interested in the quantity α(F ) :=
max{|S| : S ⊆V is an independent set w.r.t. F }.

pi j

i

j sampling
⇒

F

In particular we want to know whether α(F ) is well concentrated. But there are
several issues; in particular we have no closed formula for E[α(F )]. In fact, even
if pe ∈ {0,1}, determining E[α(F )] within a factor of n1−ε is an NP-hard problem
for any fixed ε > 0. So, how can be show a quantity that we cannot determine is
well concentrated? This is where Martingales game into play:

Lemma 2.6. For any probability vector p ∈ [0,1]E and anyλ≥ 0 one has Pr[|α(F )−
E[α(F )]| >λ

p
n] ≤ 2exp(−λ2/8).

Proof. Let V = {1, . . . ,n} be the vertices in their natural ordering. Let Ek := {(i ,k) ∈
E | i < k} be all the edges between {1, . . . ,k−1} and node k. Clearly E = E1∪̇ . . .∪̇En .
We can also write Fk := Ek ∩F and imagine that we sample the sets F1, . . . ,Fn one
after the other in order to determine F . We abbreviate F≤k := F1 ∪ . . .∪Fk and
similarly we define F≥k := Fk ∪ . . .∪Fn . We define a random variable

Xk := E
F≥k+1

[α(F ) | F1, . . . ,Fk ]

In other words, X0 is deterministically the number E[α(F )] and Xn is equal to the
random variable α(F ). Phrased differently we arrive at the random variable α(F )
by revealing the Fk ’s one after the other.

Now suppose that F1, . . . ,Fk and hence Xk have been decided. Then

E
Fk+1

[Xk+1 | F≤k ]
Def Xk+1= E

Fk+1

[

E
F≥k+2

[

α(F ) | F≤k+1
]

| F≤k

]

= E
F≥k+1

[

α(F ) | F≤k

]

= Xk .

That means X0, . . . , Xk is Martingale. The only thing that remains to be checked
is that the difference of the intermediate random variables is bounded and the
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overall claim will follow:
Claim. One always has |Xk+1 −Xk | ≤ 1.

Proof of claim. We fix any outcome for F1, . . . ,Fk . We can be generous and
even fix Fk+2, . . . ,Fn . Let Smax be the maximum independent set if Fk = ; and
let Smin be the maximum independent set if Fk = Ek . In other words, Smax is
the largest possible outcome and Smin is the smallest possible outcome. But
||Smin| − |Smax|| ≤ 1 which is easy to see as simply dropping node k from Smax

(if it was even in there) gives an independent set even if all edges in Ek material-
ize.

For more applications and background on Martingales we refer to the excel-
lent treatment in Alon and Spencer [AS16].

2.3 Gaussian Concentration

The content of this chapter is largely taken from the lecture notes “Concentra-
tion Inequalities” by Lalley1. Recall that N (0,1) is the 1-dimensional Gaussian

distribution with density 1p
2π

e−x2/2. More generally, N n(0,1) is the Gaussian dis-

tribution over vectors x ∈ R
n with density 1

(2π)n/2 e−‖x‖2
2/2. The Gaussian distribu-

tion has many useful properties (that can be derived straightforwardly from the
density function):

• One can get a sample x ∼ N n(0,1) also by sampling each coordinate xi ∼
N (0,1) independently.

• If a,b ∈R
n are orthogonal unit vectors and x ∼ N n(0,1), then 〈a, x〉 ,〈b, x〉 ∼

N (0,1) are independent random variables.

• For any vector a ∈R
n with ‖a‖2 = 1 and x1, . . . , xn ∼ N (0,1), one has

∑n
i=1 ai xi ∼

N (0,1).

We call a function F : Rn → R Lipschitz if |F (x)− F (y)| ≤ ‖x − y‖2 for all x , y ∈
R

n . A natural Lipschitz function is of course F (x) := ‖x‖2 and we could in fact
use the machinery that we have seen so far to derive a concentration inequality
Pr[‖x‖2 >

p
n +λ] ≤ exp(−Θ(λ2)) by using the fact that ‖x‖2

2 is a sum of inde-
pendent random variables. But it turns out that one can prove such remarkable
concentration inequality even for “unstructured” functions as long as they are
Lipschitz:

1See https://galton.uchicago.edu/~lalley/Courses/386/Concentration.pdf

https://galton.uchicago.edu/~lalley/Courses/386/Concentration.pdf
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Theorem 2.7. For any Lipschitz-function F : Rn →Rwith meanµ := Ex∼N n (0,1)[F (x)]
and any λ≥ 0 one has

Pr
x∼N n (0,1)

[

|F (x)−µ| >λ
]

≤ 2e−λ2/2.

For example if x is a random Gaussian, then ‖x‖2 =
p

n±O(1) with probability
99.99% — that means the standard deviation of the length is only a constant.

2.3.1 Exponential moments of Gaussians

Before we start, we want to discuss a couple of useful facts. First we need a well-
known result about the exponential moment of a Gaussian. This can be easily
obtained by integrating, but our approach might be more intuitive in explaining
why the value is what it is:

Lemma 2.8. For any λ ∈R one has Ex∼N (0,1)[exp(λx)] = exp(λ2/2).

Proof. We will use only one property of Gaussians that we mentioned earlier:
namely that if we generate independent random Gaussians g1, . . . , gk ∼ N (0,1),
then x := 1p

k
(g1 + . . .+ gk ) ∼ N (0,1). Note that the 2nd degree Taylor polynomial

of exp(x) is 1+x+ 1
2 x2, which we use in (∗). Now fix a value λ ∈R. In the following

estimate we will write ≈ when ever we make a lower order error that goes to 0 if
we send k →∞. Then

E[exp(λx)] = E

[

exp
( k∑

i=1

λ
p

k
gi

)]
independence=

k∏

i=1
E

[

exp
( λ
p

k
gi

)]

(∗)≈
k∏

i=1
E

[

1+
λ
p

k
gi +

1

2
·
( λ
p

k
gi

)2]

=
(

1+
λ2/2

k

)k
≈ exp(λ2/2).

In (∗) we make an error of O(( 1p
k

)3) in each factor by using the 2nd degree Taylor

approximation. The claim follows.

By applying the previous lemma with λ′ :=λ‖a‖2 we get:

Lemma 2.9. For any λ ∈ 0 and a ∈R
n one has Ex∼N n (0,1)[exp(λ〈a, x〉)] ≤ e− 1

2λ
2‖a‖2

2 .

Any Lipschitz function can be easily “smoothened” so that it changes by at
most ε and the smoothened function is differentiable everywhere. Moreover, any
differentiable function that is Lipschitz has a gradient that is bounded:
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Lemma 2.10. Suppose F : Rn →R is differentiable and Lipschitz. Then ‖∇F (x)‖2 ≤
1 for all x ∈R

n .

Proof. Fix a point x ∈R
n , then for all vectors h small enough, there is a constant

C > 0 so that |F (x)−F (x +h)| = |〈h,∇F (x)〉 |±C‖h‖2
2. Setting h := ε · ∇F (x) one

can get

1
Lipschitz

≥
|F (x)−F (x +ε∇F (x))|

‖ε∇F (x)‖2
≥

〈ε∇F (x),∇F (x)〉−C‖ε∇F (x)‖2
2

‖ε∇F (x)‖2
= (1−Cε)·‖∇F (x)‖2

Sending ε→ 0 implies that ‖∇F (x)‖2 ≤ 1.

Now we come to the lemma that is also called the dublication trick. We will
bound the exponential moment of the difference of the function value at two in-
dependent Gaussians.

Lemma 2.11. Let F : Rn →R be differentiable and Lipschitz. Then

E
x0,x1∼N n (0,1)

[

exp
(

λF (x1)−λF (x0)
)]

≤ e
π2

8 λ2

Proof. For 0 ≤ t ≤ 1, let us define interpolate between the two samples by defin-
ing

xt := cos
(

t ·
π

2

)

· x0 + sin
(

t ·
π

2

)

· x1.

Note that for every t , the vector xt ∼ N n(0,1) is a standard Gaussian. Similarly for
0 ≤ t ≤ 1, the vector

yt :=−sin
(

t ·
π

2

)

x0 +cos
(

t ·
π

2

)

· x1

is distributed as yt ∼ N n(0,1). Note that for every t , the pair (xt , yt ) is indepen-

dent as cos(π2 ·t )·(−sin(t · π2 ))+sin(t · π2 )·cos(t · π2 ) = 0. Next, consider the derivative
of the interpolation:

d xt

d t
=−

π

2
· sin

(

t ·
π

2

)

x0 +
π

2
·cos

(

t ·
π

2

)

x1 =
π

2
· yt .

The basic idea behind the proof of the main claim is to track the expectation
when one interpolates between x0 and x1. Using the Fundamental Theorem of

Calculus we get:

F (x1)−F (x0) =
∫1

0
〈∇F (xt ),

d xt

d t
〉d t =

π

2

∫1

0
〈∇F (xt ), yt 〉d t (∗)
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Now we can express the expectation as

E[exp(λ(F (x1)−F (x0))]
(∗)= E

[

exp
(

λ
π

2

∫1

0
〈∇F (xt ), yt 〉d t

)]

Jensen+linearity
≤

∫1

0
E

[

exp
(

λ
π

2
〈∇F (xt ), yt 〉

)]

d t

Lem. 2.9
≤

∫1

0
exp

(1

2
·
(

λ
π

2

)2)

d t ≤ exp(
π2

8
λ2).

Here we use that (xt , yt ) are independent and∇F (xt ) is a vector of length ‖∇F (xt )‖2 ≤
1.

We want to give a visualization for the proof at least for dimension n = 1. We
generate two independent Gaussians x0, x1 ∼ N (0,1) by picking two orthogonal
unit vectors e0,e1 ∈ R

2, drawing a Gaussian g ∼ N 2(0,1) and setting xt := 〈g ,et 〉
for t ∈ {0,1}. We also need to be able to interpolate between both random vari-
ables. Hence for 0 ≤ t ≤ 1 we define et := cos(t · π2 )·e1+sin(t · π2 )·e0. Then ‖et‖2 = 1
for all t . We also define another unit vector dt :=−sin(t · π2 )·e0+cos(t · π2 )·e1. Note
that again ‖dt‖2 = 1 and et ⊥ dt for all t .

e0

e1
0

et

dt

Then letting xt := 〈g ,et 〉 and yt := 〈g ,dt 〉 gives two independent Gaussians. This
is used for evaluating F (x1)−F (x0) = π

2

∫1
0 〈∇F (xt ), yt 〉d t as the position xt is in-

dependent from the direction yt .

Proof of main Theorem. We will prove the bound with weaker constants to keep
things simple. With out loss of generality we may assume that Ex∼N n (0,1)[F (x)] =
0. On the one hand, we know that

E[exp(λF (x))] ≥ eλ·10λ ·Pr[F (x) > 10λ]

On the other hand if we draw x , y ∼ N n(0,1) independently, then

10e8λ2/2 previous Lemma
≥ E[exp(λ(F (x)−F (y)))]

indep.= E[exp(λF (x))] ·E[exp(−λF (y))]
Jensen ineq

≥ E[exp[λF (x)] ·exp(E[−λF (y)]
︸ ︷︷ ︸

=0

)

︸ ︷︷ ︸

=1

= E[exp(λF (x))]
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Putting both together, we get

Pr[F (x) > 10λ] ≤ E[exp(λF (x))]

e10λ2 ≤
10e8λ2

e10λ2 ≤ 10e−2λ2

2.4 Talagrand inequality

The Talagrand inequality is a remarkably strong concentration inequality for prod-

uct measures. For example if A is a convex set containing half of hypercube points
{−1,1}n , then Talagrand’s inequality tells us that 99.99% of points have Euclidean
distance O(1) to A. For this chapter, we follow an excellent blog post of Tao2.

A

x ∈ {−1,1}

d(x , A)

In the following, we abbreviate d(x , A) := min{‖x − y‖2 | y ∈ A} as the distance of
x to the set A. Recall that a median of a real-valued random variable Y is a value
M with Pr[Y ≤ M ] ≥ 1

2 and Pr[Y ≥ M ] ≥ 1
2 . Also recall that there can be an interval

of median’s for a random variable.

Theorem 2.12. Let A ⊆ R
n be a convex set with A ∩ {±1}n 6= ; and let X ∼ {±1}n

be a uniform vertex of the hypercube. For M being a median of d(X , A) and t ≥ 0
we have

Pr[d(X , A) > M + t ] ≤ 4exp
(

−
t 2

16

)

Before we come to the proof, we want to recall Hölder’s inequality that can be
phrased as follows:

Lemma 2.13 (Hölder’s Inequality). Let X ,Y ∈R≥0 be jointly distributed non-negative
random variables. For 0 ≤λ≤ 1 one has

E[X 1−λ ·Y λ] ≤ E[X ]1−λ ·E[Y ]λ.

2Seehttps://terrytao.wordpress.com/2009/06/09/talagrands-concentration-inequality/

https://terrytao.wordpress.com/2009/06/09/talagrands-concentration-inequality/
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To get some intuition, we can rephrase the inequality. W.l.o.g. the distribu-
tions X and Y just pick a uniform coordinate in a ∈ R

n
≥0 and b ∈ R

n
≥0. Then the

inequality says that
∑n

i=1 a1−λ
i

bλ
i
≤ (

∑n
i=1 ai )1−λ(

∑n
i=1 bi )λ. In particular for λ= 1

2 ,
this is just the Cauchy-Schwartz inequality.

Similar to previous concentration inequalities, it suffices to give a bound on
the exponential moment3.

Lemma 2.14. Let A ⊆ R
n be convex with A ∩ {±1}n 6= ; and abbreviate µn(A) :=

Pr[X ∈ A] where X ∼ {±1}n is drawn uniformly. Then for a universal constant
c > 0,

E

[

exp
(

c ·d(X , A)2)]≤
1

µn(A)
.

We prove the claim via induction over n. We write X = (X̄ , Xn), where X̄ ∈
{±1}n−1 are the first n −1 coordinates. For t ∈ {−1,1} we consider the two convex
slices At := {x̄ ∈ R

n−1 | (x̄ , t ) ∈ A}. Let Yt ∈ At be the closest point to X̄ in the
slice At . The trick is that we can bound the distance of X to A by the distance
to any convex combination of the points (Y1,1) and (Y−1,−1). Let us abbreviate
the point p(X ) := (1−λ) · (YXn , Xn)+λ · (Y−Xn ,−Xn) which by convexity lies in A.
Here 0 ≤ λ≤ 1 is a parameter that we determine later. Crucially it is allowed that
λ depends on the outcome of Xn .

b

b

b

b

p(X )

X = (X̄ ,1)

A

A1

A−1

(Y1,1)

(Y−1,−1)

visualization for Xn = 1

{−1,1}n ∋

3For the sake of completeness here the argument how to complete Theorem 2.12. First of all
one can make the Lemma work with c = 1

16 . Let A′ := {x ∈ R
n | d(x , A) ≤ M } which is a convex

set as well. By definition of the median µn(A′) = 1
2 . Then Pr[d(X , A) > M + t ] = Pr[d(X , A′) > t ] =

Pr[exp( 1
16 d(X , A)2) > exp( 1

16 t 2)] ≤ E[ 1
16 d(X ,A)2]

exp( 1
16 t 2)

) ≤ 2exp(− 1
16 t 2) by Markov’s inequality
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First we get a useful bound on the distance

d(X , A)2 p(X )∈A
≤

∥
∥p(X )−X

∥
∥2

2

=
∥
∥
∥(1−λ)

(
YXn

Xn

)

+λ

(
Y−Xn

−Xn

)

−
(

X̄

Xn

)∥
∥
∥

2

2

Phytagoras
=

∥
∥(1−λ)(YXn − X̄ )+λ(Y−Xn − X̄ )

∥
∥2

2 + (Xn · ((1−λ)−λ−1))2
︸ ︷︷ ︸

=4λ2

‖·‖2
2 convex
≤ (1−λ) · ‖YXn − X̄ ‖2

2 +λ · ‖Y−Xn − X̄ ‖2
2 +4λ2

Note the asymmetry as AXn is the “same side” as X and A−Xn is the “opposite
side”. Now we apply E[exp(c · ..)] to both sides of the equation and get

E
X

[

exp(−cd(X , A)2)
]

≤ E
X

[

exp
(

c
(

(1−λ)d(X̄ , AXn )2 +λ ·d(X̄ , A−Xn )2 +4λ2))]

= E
Xn

[

e4cλ2
E
X̄

[

exp
(

c ·d(X̄ , AXn )2)1−λ ·exp
(

c ·d(X̄ , A−Xn )2)λ]]

Hölder
≤ E

Xn

[

e4cλ2
E
X̄

[

exp(c ·d(X̄ , AXn )2)
]1−λ

E
X̄

[

exp(c ·d(X̄ , A−Xn )2)
]λ

]

induction
≤ E

Xn

[

e4cλ2 1

µn−1(AXn )1−λ ·
1

µn−1(A−Xn )λ

]

= E
Xn

[

e4cλ2 1

(1+Xn q)1−λ · (1−Xn q)λ

]

︸ ︷︷ ︸

=:(∗)

·
1

µn(A)

where in the last step we write µn−1(A1) = (1+q)µn(A) and µn−1(A−1) = (1−q) ·
µn(A). Let us assume 0 ≤ q ≤ 1 for the sake of symmetry. Then we can continue
bounding (∗) making in particular use of the fact that λ is allowed to depend on
Xn . We will need to distinguish two cases:

• Case q ≥ 4c. In this case A1 ∩ {±1}n−1 has a good fraction more points than
A−1∩{±1}n−1 and a good choice for λ will be to always be on the side of A1.
We can then estimate

(∗)

Xn=1⇒λ=0,
Xn=−1⇒λ=1=

1

2

( 1

1+q
+

e4c

1+q

) q≥4c
≤

1+e4c

2 · (1+4c)

0≤c≤0.3
≤ 1

as can be easily checked.
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• Case 0 ≤ q < 4c. In this case we can use 1
1+x

≤ exp(−x + x2) for |x| ≤ 1/4 to
simplify to

(∗) ≤ E
Xn

[

e4cλ2
(e−Xn q+q2

)1−λ · (e Xn q+q2
)λ

]

= E
Xn

[

exp(4cλ2 +λ ·2Xn q −Xn q +q2)
]

Xn=1⇒λ=0,
Xn=−1⇒λ= q

4c=
1

2

(

exp(−q +q2)+exp
(

−
q2

4c
+q2

︸ ︷︷ ︸

≤−3q2 as c≤ 1
16

+q
)) 0≤q≤1

< 1

The interpretation of this parameter choice is that if Xn = 1, then X lies on
the side of the bigger set A1 we pick p(X ) should be in A1; only if Xn =−1,
then p(X ) will be a true convex combination.

2.4.1 The general form of Talagrand’s inequality

In fact, Talagrand proved his inequality in a much more general form that we
want to outline at least. Let Ω1, . . . ,Ωn be some measurable sets and let D be a
product measure on Ω :=Ω1 × . . .×Ωn . Fix a set A ⊆Ω (that does not need to be
convex). For x , y ∈ Ω we define unequal(x , y) := {i ∈ [n] | xi 6= yi } as the indices
where x and y differ. Recall that for a vector s ∈ R

n , we have supp(s) := {i ∈ [n] |
si 6= 0}. For each x ∈Ω we define

VA(x) := conv{s ∈ {0,1}n | ∃y ∈ A : unequal(x , y) ⊆ supp(s)}

Then we define a distance ρ(x , A) := min{‖s‖2 | s ∈ VA(x)}. Intuitively, a small
distance ρ(x , A) means that there is a convex combination of paths from x to A

where on each path one has to change only few coordinates.

A
b b b

b b b

b b b
x ∈Ω

y1

y2

Ω1

Ω2

Example with A ⊆Ω=Ω1 ×Ω2 where |Ω1| = |Ω2| = 3.

VA(x)

0

ρ(x , A)

unequal(x , y2)

unequal(x , y1)



2.4. TALAGRAND INEQUALITY 37

Then the concentration inequality is as follows:

Theorem 2.15 (General Talagrand Inequality). Let D be a product measure on
Ω=Ω1 × . . .×Ωn . Then for A ⊆Ω and t ≥ 0 one has

Pr
x∼D

[ρ(x , A) > t ] ≤
4exp(−t 2/16)

Prx∼D[x ∈ A]

For a proof of this more general result we refer to [AS16]. A different way of
phrasing Talagrand’s result is the following:

Corollary 2.16. Let µ be a product measure on Ω = Ω1 × . . . ×Ωn and fix a set
A ⊆Ω. For t ≥ 0, define

At :=
{

x ∈Ω | ∃distribution D(x) on A so that

√
n∑

i=1
Pr

y∼D(x)
[yi 6= xi ]2 ≤ t

}

Then µ(At ) ≥ 1− 4exp(−t 2/16)
µ(A) .

In order to demonstrate the power of Talagrand’s general inequality, we show
one application. We want to emphasize that the distribution µ does not have to
be identical for every coordinate. Also there is nothing special about the interval
[−1,1] — any interval works, but the length of the interval goes into the bound.

Lemma 2.17. Let µ be any product measure on [−1,1]n and let f : [−1,1]n →R be
convex and 1-Lipschitz. Let median( f ) be a value with Prx∼µ[ f (x) ≤ median( f )] ≥
1/2 and Prx∼µ[ f (x) ≥ median( f )] ≥ 1/2. Then

Pr
x∼µ

[ f (x) > median( f )+2t ] ≤ 8exp(−t 2/16)

Proof. Let A := {x ∈ [−1,1]n | f (x) ≤ median( f )} so that µ(A) ≥ 1/2 and define At

as before in Cor 2.16. Then by Cor 2.16 we know that µ(At ) ≥ 1−8exp(−t 2/16).
The following claim will then finish the proof:
Claim. Every x ∈ At has f (x) ≤ median( f )+2t .
Proof of claim. By definition of At , there are y 1, . . . , y k ∈ A and convex coeffi-
cients λ1, . . . ,λk ≥ 0 with

∑k
j=1λ j = 1 so that the condition from Cor 2.16 is satis-

fied. By a slight abuse of notation, let us write y ∼λ if y = y j with probability λ j .
Next, consider pi := Pry∼λ[xi 6= yi ] be the probability that the i th coordinate of
y ∼λ differs from x . Then the condition of Cor 2.16 is that

‖p‖2 =

√
√
√
√

n∑

i=1

( k∑

j=1
λ j · 1y

j

i
6=xi

)2
≤ t
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Now, consider the average ȳ :=
∑k

j=1λ j y j = Ey∼λ[y] of the obtained points.

[−1,1]n

A

x
≤ 2t

y 1

y 2

ȳ

By convexity

f (ȳ) ≤
k∑

j=1
λ j f (y j ) ≤ median( f )

Observe that |xi − ȳi | ≤ 2pi since all the points are in [−1,1]n , so

‖x − ȳ‖2 =
( n∑

i=1
|xi − ȳi |2

)1/2
≤ 2

( n∑

i=1
p2

i

)1/2
≤ 2t

Then as the function f is 1-Lipschitz we get f (x) ≤ f (ȳ)+ 2t ≤ median( f )+ 2t

which gives the claim.

2.5 Exercises

Exercise 2.1. Let A ∈R
n×n with |Ai j | ≤ 1 for all i , j = 1, . . . ,n. Give a deterministic

polynomial time algorithm to find an x ∈ {−1,1}n so that Ai x ≤ O(
p

n ln(n)) for
all rows i .
Hint: Consider the potential functionΦk (x) :=

∑n
i=1 exp(λ

∑k
j=1 Ai j x j−2λ2k) where

k ∈ {0, . . . ,n}. Show that there is a deterministic polynomial time algorithm to find
an x ∈ {−1,1}n with Φn(x) ≤ n.

Exercise 2.2 (Balls into bins). Suppose we have n balls and n bins. We throw
the balls so that each ball ends up in a uniform random bin. Show that with high
probability (say≥ 1− 1

n
) the maximum number of balls in any bin does not exceed

O(log(n)/ loglog(n)). Show also that with high probability there is a bin with at
least Ω(log(n)/ loglogn) many balls.

Exercise 2.3. Consider a random graph G = ([n],E) which contains each edge
with probability 1/2. Let X be the random variable that gives the number of tri-
angles in G . Prove that Pr[|X −E[X ]| >λ ·n2] ≤ 2exp(−Θ(λ2)) for all λ≥ 0.

Exercise 2.4. Derive Theorem 2.12 from Theorem 2.15 (possibly with different
constants).
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Exercise 2.5. Let u1, . . . ,um be unit vectors. Draw a random Gaussian x and
consider the random variable Y := max{〈ui , x〉 | i = 1, . . . ,m}. Show that Pr[Y >
median(Y )+ t ] ≤ exp(−Ω(t 2)).

Exercise 2.6. Let u1, . . . ,um be unit vectors. Draw x ∼ [−1,1]n uniformly at ran-
dom and consider the random variable Y := max{〈ui , x〉 | i = 1, . . . ,m}. Show that
Pr[Y > median(Y )+2t ] ≤ 4exp(−t 2/16).

Exercise 2.7. For a matrix M ∈R
n×n , we denote define a function f : [−1,1]n →R

with f (M) := max{〈M , x xT 〉 : x ∈ R
n with ‖x‖2 = 1}. Here, for two matrices M , N

we let 〈M , N 〉 :=
∑n

i=1

∑n
j=1 Mi j Ni j be the Frobenius inner product. Let D be a

product distribution that picks each entry Mi j independently from some distri-
bution over [−1,1]. Let m be a median of f (M) if M is drawn from D. Prove
that

Pr[ f (M) > m +2t ] ≤ 8exp(−t 2/16)

for all t ≥ 0.
Hint. Show that the function f is 1-Lipschitz if you use the Frobenius norm
‖M‖2 := (

∑n
i=1

∑n
j=1 M 2

i j
)1/2. Is the function f convex? Then use a result from

the lecture.

Exercise 2.8. Prove that for infinitely many n ∈N there is a random variable X :=
X1 + . . .+ Xn with E[X j ] = 0 and |X j | ≤ 1 for all j ∈ {1, . . . ,n} and Cov[X j , X j ′] = 0
for j 6= j ′ while Pr[X = n] ≥Ω( 1

n
).

Hint. You may use without proof that there exists a matrix A ∈ {−1,1}2n×n so that
(i)

∑2n
i=1 Ai = 0 and (ii) 〈A j , A j ′〉 = 0 for j 6= j ′ and (iii) A1 is the all-ones-vector.

Here Ai is the i th row and A j is the j th column. Note that such a matrix can be

obtained by taking a Hadamard matrix H and letting A :=
(

H

−H

)

.

Remark. The exercise shows that Chebychev’s inequality is tight and one cannot
derive better concentration only based on 1st and 2nd moment.

Exercise 2.9. Let f : {−1,1}n → R be a function on vertices of the hypercube and
suppose that

| f (y)− f (y1, . . . , yi−1,−yi , yi+1, . . . , yn)| ≤ ai ∀y ∈ {−1,1}n ,

meaning that changing the i th coordinate changes the function value by at most
ai . Let Y ∼ {−1,1}n be a uniform random vertex. Prove that for λ≥ 0 one has

Pr
Y

[| f (Y )−E[ f (Y )]| >λ‖a‖2] ≤ 2exp(−λ2/4).
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Hint. Use may use the following variant of Azuma’s inequality without a proof:
Let X0, . . . , Xn be a Martingale with |X t − X t−1| ≤ at for t = 1, . . . ,n, then for any
λ≥ 0 one has Pr[|Xn −X0| >λ‖a‖2] ≤ 2exp(−λ2/4).



Chapter 3

The Lovász Local Lemma

We want to motivate the next chapter with an application. Suppose we have a
hypergraph H = (V ,E ) with vertices V and hyperedges e ⊆ V and suppose that
that H is k-uniform, which means that |e| = k for all e ∈ E . A coloring is a map
χ : V → {red,blue} that gives each vertex a color. Using terminology that goes
back to Erdős we say that the hypergraph has Property B, if there is a coloring
that leaves no edge monochromatic (meaning that every edge sees both colors).

1

2

2

2

2

Example of a 3-regular hypergraph and a 2-coloring satisfying Property B

∈ E

It is not hard to see that for large enough k there is always a proper coloring:

Lemma 3.1. A k-uniform hypergraph with k ≥ log2(4|E |) has property B .

Proof. Take a uniform random coloring χ. Then for each edge e ∈ E one has

Pr
χ

[e is monochromatic] = 2 ·2−k ≤
1

2|E |

Then the union bound over all hyperedges gives the claim.

On the other hand, this bound does not leave too much room for improve-
ment. For example if the hypergraph H = (V ,E ) has |V | = 2k nodes and contains
all subsets of k vertices as edges, then |E | =

(2k
k

)

= 2Θ(k). However, any coloring
will leave some edge monochromatic.

41
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This discussion brings us to an intermediate case that is less clear. For a ver-
tex v , we define the degree degH (v) := |{e ∈ E | v ∈ E }| as the number of edges
containing v . Suppose that we again have a k-regular hypergraph but instead of
a bound on the size |E | we have a bound on the maximum degree. Let us say for
the sake of concreteness that degH (v) ≤ 2k/2. Is it then possible to find a color-
ing that leaves no edge monochromatic? After a bit of trying one can see that all
the conventional techniques to approach this problem are failing. And indeed it
required a beautiful mathematical theorem to resolve the problem.

3.1 The original Local Lemma

Now we show the Lovász Local Lemma (which actually appeared in the joint pa-
per by Erdős and Lovász [EL75]). The presentation we give here is inspired from
Mitzenmacher and Upfal [MU17]. We also recommend Chapter 5 in [AS16]. Let
G1, . . . ,Gn be events (“good” events that we like to be true). A graph H = ([n],E) is
called a dependency graph if

Pr[Gi ] = Pr
[

Gi |
( ⋂

j∈I0

Ḡ j

)

∩
( ⋂

j∈I1

G j

)]

∀i ∈ [n] ∀I0∪̇I1 ⊆ [n](\N (i )∪ {i })

Phrased differently, each event Gi needs to be independent from all it’s non-
neighbors1. This is even a bit more strict than what is needed, but intuitive. How-
ever, it is important to remember that pairwise independence is not enough.

Theorem 3.2 (Symmetric version of the Lovász Local Lemma). Let G1, . . . ,Gn be a
set of “good” events with Pr[Ḡi ] ≤ p. Suppose that each Gi is independent of all
but at most d events and d ·p ≤ 1

4 . Then Pr[
⋂n

i=1 Gi ] > 0.

Proof. For a subset S ⊆ [n] of events, we denote G(S) :=
⋂

i∈S G(i ) as the case that
all those good events happen at the same time. We need to prove that given our
assumptions, Pr[G([n])] > 0. The main ingredient is to prove that conditioning
on any subset of good events does not more than double the probability of any

1Remark 1. It would have been more intuitive to require an edge {i , j } in the dependency
graph if the events (Gi ,G j ) are dependent. But that is not sufficient. For example consider the
complete graph Kn = ([n],E) and pick a uniform coloring χ : [n] → {−1,1}. For e = {u, v} ∈ E ,
consider the event Ge := “χ(u) 6= χ(v)′′. Then one can check that for any pair of distinct edges
e,e ′ ∈ E one has Pr[Ge ] = Pr[Ge | Ge ′ ] = 1

2 , hence any pair of events is independent. Note that
Pr[

⋂

e∈E Ge ] = 0 for this construction.
Remark 2. It is not true that there is always a unique minimal dependency graph. Consider the

example from Remark 1 for n = 3 and say that E = {e1,e2,e3} are the all edges in K3. Then any two
edges F ⊆ {e1,e2,e3} form a valid dependency graph — but one edge alone is not sufficient.
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bad event.
Claim. For any S ⊆ [n] with Pr[G(S)] > 0 and i ∈ [n] \ S one has Pr[Ḡi |G(S)] ≤ 2p.

Proof of claim. We show the claim by induction on |S|. If |S| = 0, then Pr[Ḡi |
G(S)] = Pr[Ḡi ] ≤ p by assumption. Now we split S into the events that are inde-
pendent of i and the ones that are dependent. More precisely, we write S = S1∪̇S2

so that S1 := { j | {i , j } ∈ E } are the neighbors and S2 := { j ∈ S | {i , j } ∉ E } are the
non-neighbors in the dependency graph. Then

Pr[Ḡi |G(S)]
S=S1∪̇S2= Pr[Ḡi |G(S1)∩G(S2)]

cond. prob.=
Pr[Ḡi ∩G(S1)∩G(S2)]

Pr[G(S1)∩G(S2)]

cond. prob.=
Pr[Ḡi ∩G(S1)∩G(S2) |G(S2)] ·Pr[G(S2)]

Pr[G(S1)∩G(S2) |G(S2)] ·Pr[G(S2)]

Pr[A∩B |B ]=Pr[A|B ]=
Pr[Ḡi ∩G(S1) |G(S2)]

Pr[G(S1) |G(S2)]

Pr[A∩B ]≤Pr[A]
≤

≤p by indep.
︷ ︸︸ ︷

Pr[Ḡi |G(S2)]

Pr[G(S1) |G(S2)]
︸ ︷︷ ︸

≥1/2 by (∗)

≤ 2p

Note that we have implicitly used that Pr[G(S2)] > 0 so that the cancellation is
well defined. It remains to argue why (∗) is true. If S1 =;, then Pr[G(S1) |G(S2)] =
1. So suppose that |S1| > 0 and hence |S2| < |S|. Then we are allowed to apply
induction to get that

Pr[G(S1) |G(S2)] = 1−Pr
[ ⋃

j∈S1

Ḡ j |G(S2)
] union bound

≥ 1−
∑

j∈S1

Pr[Ḡ j |G(S2)]
︸ ︷︷ ︸

≤2p by induction

≥ 1−2p· |S1|
︸︷︷︸

≤d

≥
1

2

Using the proven claim, we can quickly conclude that

Pr[G([n])] =
n∏

i=1
Pr[G(i ) |G({1, . . . , i −1})]
︸ ︷︷ ︸

≥1−2p by claim

≥ (1−2p)n > 0

Note that the condition d · p ≤ 1
4 can be sharpened to p · (d + 1) ≤ 1

e
, see

e.g. [AS16]. Shearer proved that this bound is tight in the sense that for any ε> 0,
there is a probability space with p · (d +1) · (e +ε) ≤ 1 where Pr[G([n])] = 0.
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A more general version. There is also a more general version of the Lovász Lo-
cal Lemma in which the probabilities of the events do not have to be bounded
by a uniform parameter p. We state the claim for the sake of completeness. The
proof is essentially identical to the one of the symmetric case, only the notation
needs to be adapted. Again, see e.g. [AS16] for details.

Theorem 3.3 (General Version of the Lovász Local Lemma). Let G1, . . . ,Gn be a set
of “good” events and let G = ([n],E) be a dependence graph. Suppose that there
are parameters x1, . . . , xn ∈]0,1[ with

Pr[Ḡ(i )] ≤ xi

∏

j :{i , j }∈E

(1−x j )

Then Pr[
⋂n

i=1 G(i )] ≥
∏n

i=1(1−xi ) > 0.

For example, if one sets xi := 2 ·Pr[Ḡ(i )], then the condition in the theorem is
satisfied if

∑

j∈N (i ) Pr[Ḡ j ] ≤ 1
4 . In other words, the expected number of bad events

happening in a neighborhood should be at most some small enough constant.

Application to hypergraphs. Finally we can resolve our question on hypergraph
colorings:

Theorem 3.4. A k-uniform hypergraph H = (V ,E ) with degH (v) ≤ 2k

8k
for all v ∈V

has property B .

Proof. We consider the random experiment where we pick a uniform random
coloringχ : V → {red,blue}. We have the good events Ge := “e is not monochromatic′′.
Then the bad events have probability Ḡe = 2 ·2−k =: p. For disjoint hyperedges
e,e ′ ∈ E , the events Ge and Ge ′ are independent. In particular, we can define a
dependency graph D = (E ,E) with {e,e ′} ∈ E :⇔ e ∩ e ′ 6= ;. Observe that every

fixed edge e overlaps with at most
∑

v∈e (degH (v)− 1) ≤ k · 2k

8k
= 1

8 · 2k =: d other

edges. Then d ·p = 2 ·2−k · 1
8 ·2

k = 1
4 . Hence by the Symmetric LLL the probability

that all edges are not monochromatic is positive.

3.2 An algorithmic proof

Suppose that we actually wanted to find the coloring from Theorem 3.4 in poly-
nomial time. The success probability that for example the symmetric LLL guar-
antees is only (1−2p)n , which is exponentially small. Hence we cannot simply
re-sample uniform random colorings and hope to quickly find a satifying one.
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Also the proof does not appear to be of any help other than showing a positive
probability. In this section we will describe an algorithm due to Moser and Tar-
dos [MT10] that suffices to make 99% of applications of the LLL algorithmic. The
algorithm will also serve as an alternative proof for the LLL. We will not follow
the original presentation of [MT10] using the notation of Witness Trees, but the
view using Entropy Compression2. We will also be loose in the constants of the
LLL condition for the sake of a cleaner exposition.

The variable model. First one has to discuss how one can model a probability
space in a way that it can be handled algorithmically. We will model the “ran-
domness source” by drawing a uniform random bit string3 x ∼ {0,1}n . We have
m bad events A1, . . . , Am that depend on the bit string x . We write Ai (x) = 1
if the bad event is true under string x (and Ai (x) = 0 otherwise). In general
the events will not depend on all random bits. Let Var(Ai ) ⊆ [n] be the indices
of random bits that Ai depends on. The goal will be to find a string x so that
Ai (x) = 0 for all i = 1, . . . ,m. Naturally we will need to assume that the probabili-
ties Pr[Ai ] = Prx∼{0,1}n [Ai (x) = 1] of the bad events Ai are rather small. To model
the independence relation we write i ∼ j if the variables of those events overlap,
that means if Var(Ai )∩Var(A j ) 6= ;.

x1 x2 . . . xn

Ai A j

Var(Ai )

events with i ∼ j

events:

random bits:

The algorithm. The main result will be the following:

Theorem 3.5 (Moser-Tardos Algorithm). Let C > 0 be a large enough constant.
If

∑

i∈[m]:i∼ j Pr[Ai ] ≤ 2−C for all j ∈ [m], then there is a randomized polynomial
time algorithm to find an x ∈ {0,1}n with A1(x) = . . . = Am(x) = 0.

The algorithm is actually as simple and intuitive as one could hope for. One
starts with any fixed string x . Then most likely some bad events Ai will be true.

2See the blog posts byhttp://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument
andhttp://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument

3The argument can be easily generalized to product distributions. But we use bits to have a
simpler notation and get a better intuition.

http://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument
http://terrytao.wordpress.com/2009/08/05/mosers-entropy-compression-argument
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Then one resamples the variables belonging one bad event. If an overlapping
bad event A j is true (either because it was true from the beginning or flipping
the bits in Var(Ai ) made it true) then we resample also A j and recurse. For an
easier statement and analysis we assume w.l.o.g. that |Var(Ai )| = k for each i . If
fewer bits were needed one can imagine to add some dummy random bits that
are “private” for the event. The formal statement of the algorithm is as follows:

Moser-Tardos Algorithm

(1) Set x := (0, . . . ,0)
(2) WHILE ∃i : Ai (x) = 1 DO

(3) OUTPUT: ROOT+i

(4) FIX(Ai )

(5) RETURN x .

Subroutine FIX(Ai ) :

(6) Resample (x j ) j∈Var(Ai ) ∼ {0,1}k

(7) after T iterations: OUTPUT x1, . . . , xn and FAIL!
(8) WHILE ∃A j : |Var(Ai )∩Var(A j )| > 0 s.t. A j (x) = 1 DO

(9) OUTPUT: RECURSE ON HuffmanAi
(A j ) DUE TO CompressA j

((xℓ)ℓ∈Var(A j ))
(10) FIX(A j )

(11) OUTPUT: BACKTRACK

Note that line (3) will be executed at most m times as FIX(Ai ) only returns
once all touched bad events are false. Also note that we number the iterations as
t = 1, . . . ,T and T is the total number of FIX calls (either recursive or via (3)). Note
that one call of FIX(Ai ) will result in a recursion tree that might look like this:

A1

A2

A3

A4

dependency graph

A3

A2

A1

A4

A3

1

2 3

4

possible recursion tree of
FIX(A1) (edge labels give order)

In particular it can happen that the same event is resampled multiple times.
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Next, note that the algorithm contains several “OUTPUT” lines that are not
doing anything for the functionality. Instead they will be useful for the anal-
ysis and the proof that the algorithm terminates with good enough probabil-
ity. Maybe one can imagine that the algorithm outputs some information into
a “debugging log file”. Also the algorithm outputs bitstrings HuffmanAi

(A j ) and
CompressA j

((xℓ)ℓ∈Var(A j )) which we need to define as well. We recall the follow-
ing classical information-theoretic insight:

Lemma 3.6 (Huffmann Tree). For any values p1, . . . , pN ≥ 0 with
∑N

i=1 pi ≤ 2−C

and C ∈ Z≥0, there is a binary tree with leafs 1, . . . , N where leaf i has at most
distance log2( 1

pi
)−C +1 to the root.

Proof sketch. Round pi down to the nearest power of 2, multiply by 2C and de-
note it by p ′

i
so that now

∑N
i=1 p ′

i
≤ 1. Then by induction we can easily construct

a tree so that a node i with p ′
i
= (1/2)ℓ has distance exactly ℓ to the root (and we

may have some unused leafs).

The obtained tree for C = 0 could look like this:

root

p1 = 1
2 : 0

p2 = 1
4 : 10

p3 = 1
16 : 1100 p4 = 1

16 : 1101 p5 = 1
16 : 1110 ∗ : 1111

Huffman encoding for C = 0 and (p1, p2, p3, p4, p5) = ( 1
2 , 1

4 , 1
16 , 1

16 , 1
16 )

This implies that for each fixed event Ai we can encode the indices j with j ∼ i

with a bitstring HuffmanAi
(A j ) that has length log2( 1

Pr[A j ] )−C +1. In particular,

this means that indices of likely events will be encoded with short strings, while
we can use longer strings for unlikely events. As an unrelated side remark, we
would like to mention that the Huffman Tree also proves that a sequence of in-
dependent samples of a random variable X can be encoded with an expected
number of H(X )+O(1) bits per sample.

To finalize the description of the algorithm consider again step (9) where a
bad event A j is true for the current assignment x and abbreviate y := (xℓ)ℓ∈Var(A j ) ∈
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{0,1}k . The intuition behind CompressA j
(y) is that we want to output the k bits

in a more space-efficient way. Note that at this point we know that A j (y) = 1 and
hence there are at most 2k ·Pr[A j ] many choices for y . Hence CompressA j

(y) can

be chosen as a bitstring of length k − log( 1
Pr[A j ] )+1 that uniquely identifies y .

The analysis of the Moser-Tardos Algorithm. We already did most of the work
to justify why have chosen the log output in step (9) in this particular way. Note
that in the following Θ(1) will denote a constant that has no dependence on C .

Lemma 3.7. In every step of (9) we output at most k +Θ(1)−C bits.

Proof. Whatever index j with j ∼ i is picked, the number of bits is

(

log2

( 1

Pr[A j ]

)

−C +1
)

︸ ︷︷ ︸

Bits for HuffmanAi
(A j )

+
(

k − log2

( 1

Pr[A j ]

)

+1
)

︸ ︷︷ ︸

Bits for Compress

+ O(1)
︸︷︷︸

overhead

≤ k −C +O(1)

Now, let x (t ) be the vector x after the t-th iteration. First we argue that the
states of the algorithm have high entropy:

Lemma 3.8. If the algorithm fails with probability 1− ε, then H(x (0), . . . , x (T )) ≥
T · (1−ε) ·k.

Proof. If the algorithm fails then we will have sampled T ·k independent random
bits.

Lemma 3.9. One has H(x (0), . . . , x (T )) ≤ n +O(m log2(m))+T · (k −C +O(1)).

Proof. We can split the proof into two claims.
Claim I. The length of the output log is at most n+O(m log2(m))+T ·(k−C +O(1))
bit.

Proof of claim. Step (3) is visited at most m times using O(log2(m)) bits each time
to encode the index i ∈ [m]. In each recursive call of FIX(A j ) we spend k−C+O(1)
bits. Additionally, to indicate BACKTRACKING we may spend O(1) bits, but the
total number of backtrackings is also bounded by T .
Claim II. From the output log we can reconstruct x (0), . . . , x (T ).

Proof of claim. Suppose that the algorithm calls FIX(Ai (1)), . . . ,FIX(Ai (T )) in ex-
actly this order. Clearly from the output log we can reconstruct the indices i (1), . . . , i (T ).
Also note that the algorithm outputs the whole assignment x (T ) at the end. We
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will then reconstruct the sequence x (T ), x (T−1), . . . , x (0) in this order. Suppose that
at some point we know x (t+1). From the output we know the indices of the events
Ai (t+1) and Ai (t ) and also the string CompressAi (t )

(x (t )) which tells us the bits in
Var[Ai (t )] before the resampling took place.

x (t ) :

x (t+1) :

Var(Ai (t ))

1 0 1 0 0 0 1 1 0 1

FIX(Ai (t ))

OUTPUT: CompressAi (t )
((x(t )

j
) j∈Var(Ai (t )))

1 0 1 1 1 0 1 1 0 1

Then we can also reconstruct x (t ).
The overall claim follows from the combination of Claim I and Claim II.

Lemma 3.10. The probability that the algorithm terminates with success within
O(n +m log(m)) iterations is at least 1− 1

2k
.

Proof. Choosing C > 0 as a big enough constant and ε := 1
2k

we have

T ·
(

k −
1

2

)

≤ H(x (0), . . . , x (T )) ≤ n +O(m log2(m))+T · (k −1)

This gives a contradiction if we pick T :=Θ(n+m log(m)) with a big enough con-
stant.

3.3 Open problems

A deterministic approach. The algorithm by Moser and Tardos is randomized
and it is a natural question whether there is a deterministic polynomial time al-
gorithm for the LLL. This was somewhat answered by Chandrasekaran, Goyal
and Haeupler [CGH10] where the authors consider the witness tree analysis (that
we have not presented here) which can be seen as the recursion tree of the al-
gorithm. The original work of Moser and Tardos shows that the expected size of
this recursion tree is polynomial. Then [CGH10] show that the expected size can
be computed and one can deterministically make choices so that the remaining
expected size goes down. While this technically answers the question, it does
not provide additional insides into the LLL. Alternatively, one might hope for an
explicit, intuitive potential function (differently from the expected witness tree
size) that can be easily computed and more naturally provides a deterministic
algorithm.
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The Kadison-Singer problem. The Kadison-Singer Conjecture from 1959 was
a problem that somewhat independently appeared in an unusually large num-
ber of subfields of mathematics. Intuitively the question was whether a set of
short vectors in isotropic position could be partitioned into two spectrally similar
parts. It was very recently resolved by Marcus, Spielman and Srivastava [MSS15]
who proved the following:

Theorem 3.11 (Marcus, Spielman and Srivastava 2013). Given vectors v1, . . . , vm ∈
R

n with
∑m

i=1 vi v T
i
= In and ‖vi‖2 ≤ ε, there exists a partition [n] = I1∪̇I2 so that

(1

2
−Θ(ε)

)

· In ¹
∑

i∈I j

vi v T
i ¹

(1

2
+Θ(ε)

)

· In ∀ j ∈ {1,2}.

The proof of this spectacular result uses interlacing polynomials and the re-
sult is non-constructive in the sense that it is currently unknown whether the
partition [n] = I1∪̇I2 can be computed in polynomial time. In fact, it is a chal-
lenging open problem to find such a polynomial time algorithm. However, this
can also be seen as an open problem connected to the Lovász Local Lemma. First
note that the theorem of [MSS15] can be rephrased, as the fact that there is a col-

oring x : [m] → {−1,1} so that

m∑

i=1
xi 〈vi , y〉2 = 〈

m∑

i=1
xi vi v T

i , y y T 〉 ≤O(ε) ∀‖y‖2 = 1

This condition feels like finding a coloring that is good for infinitely many di-
rections or “sets”. For the sake of argument imagine to just take the coloring
x ∼ {−1,1}m uniformly at random. Then the variance in some direction y with
‖y‖2 = 1 is

Var
[ m∑

i=1
xi 〈v j , y〉2

]

=
m∑

i=1
〈vi , y〉4 ≤O(ε2)

m∑

i=1
〈vi , y〉2 =O(ε2)

That means to achieve the MSS Theorem one can only afford a deviation in each
direction of O(1) times the standard deviation. If we are aiming for a weaker
bound and replace the bound of 1

2 ±Θ(ε) with say 1
2 ± 1

4 , then we can afford a
deviation of Θ( 1

ε
) times the standard deviation. While one has infinitely many

vectors, the events in most directions are little correlated. It would be beautiful if
one could reprove the Kadison-Singer question (even in a weaker form) using a
“spectral variant” of the Lovász Local Lemma. This might also give a polynomial
time algorithm.
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3.4 Exercises

Exercise 3.1. Let n ≥ 2k and D ∈ N. Prove that there exists a k-uniform hyper-
graph H = (V ,E ) on n vertices with degree at most D so that the fraction of col-
orings χ : V → {red,blue} that have property B is at most exp(−D ·2−Θ(k)n)).
Hint: A random k-uniform hypergraph will do the job.

Exercise 3.2. Let H = (V ,E ) be a t-uniform hypergraph where degH (v) ≤ t for all
v ∈ V . Prove that there exists a coloring χ : V → {red,blue} so that for every edge
e ∈ E one has

|(#i ∈ e : χ(i ) = red)− (#i ∈ e : χ(i ) = blue)| ≤O(
√

t log(t )).

Exercise 3.3. Fix a α> 0. For a graph G = (V ,E) with |V | = n one defines the edge

expansion as

Φ(E) := min
S⊆V :|S|≤n/2

{ |δ(S)|
|S|

}

Assume that G is r -regular and Φ(E) ≥α · r (which means that the graph G is an
expander graph). Prove that if r is big enough — dependent on α, but not on n

— then there is a partition E = E1∪̇E2 so that 1
3 r ≤ degEi

(v) ≤ 2
3 r and Φ(Ei ) ≥ α

3 r

for both i ∈ {1,2}.
Hint: You will need the general LLL. Consider the family Fv,s := {S ⊆ V | v ∈
S and |S| = s and S is connected}. Follow the following strategy: (i) show that
it suffices to lowerbound |δEi

(S)|/|S| for S so that the induced subgraph G[S]
is connected; (ii) prove that |Fv,s | ≤ (Θ(r ))s−1; (iii) what is the probability for a
fixed S ∈ Fv,s that |δEi

(S)|/|S| < α
3 r ? If we have a bound p|S| on the probability

of the event 1
3αr |S| ≤ |δE1 (S)| ≤ 2

3αr |S| failing, then pick an overestimate of say
xS := p1/10

S
.

Exercise 3.4. We consider the following routing problem: we are given an undi-
rected graph G = (V ,E) with pairs (s1, t1), . . . , (sk , tk ) ∈ V ×V and a parameter
D ∈ N. The goal is to find to find si -ti paths Pi of length at most D so that the
congestion maxe∈E |{i ∈ [k] | e ∈ Pi }| is minimized. Assume that in the optimum
solution the congestion is 1. One can use linear-programming techniques so that
for each pair i we find a collection of si -ti pairs {P 1

i
, . . . ,P N

i
} with small congestion.

In particular the paths will satisfy the length bound of |P j

i
| ≤ D for all i and j and

the average congestion is
|{ j :e∈P

j

i
}|

N
≤ 1 for all i (you do not have to prove these

properties). Let us also assume for the sake of simplicity that N is a power of 2.
Prove that under these assumptions there are si -ti paths so that each edge has
congestion at most O(logD).
Hint. Apply the LLL iteratively to sparsify the collection of paths.
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Exercise 3.5. A function c : R→ {1,2, . . . ,k} is called a k-coloring of the real num-
bers. We say that a subset T ⊆ R is multicolored if c(T ) = {1, . . . ,k}, meaning that
T contains elements of all colors.

Prove that for parameters k,m ∈N with m ≥ 10k ln(10k) the following holds:
for any finite set S ⊆ R with m = |S| elements and any finite X ⊆ R, there is a
k-coloring c : R → {1, . . . ,k} so that the translates4 x + S are multicolored for all
x ∈ X .

4Here x +S is defined as {x + s | s ∈ S}.



Chapter 4

Point line incidences and the

Crossing Number Theorem

The probabilistic method is also a powerful tool in answering geometric ques-
tions. The motivating question for this chapter is the following: suppose we have
a set of lines L and points P ⊆R

2 in the Euclidean plane. Let I(P,L) be the number
of incidences between those lines, meaning it is the number of pairs (ℓ, p) ∈ L×P

so that p lies on ℓ.

∈ L

∈ P

Fig: Example with |P | = 4 points, |L| = 6 lines, I(P,L) = 4 ·3 = 12 incidences

Then the question is: how large can the number of incidences I(P,L) be, depen-

dent on the number |P | of points and the number |L| of lines. And for simpler
notation we will be focusing on the symmetric case with |L| = n = |P |. For this
chapter we will mostly follow the brilliant exposition of Matousek [Mat02].

4.0.1 A lower bound

To get some intuition on what the right answer might be, we want to start with a
lower bound construction.

Lemma 4.1. There are n points and n lines so that I(P,L) ≥Ω(n4/3).

53



54CHAPTER 4. POINT LINE INCIDENCES AND THE CROSSING NUMBER THEOREM

Proof. One can quickly come up with the educated guess that the points should
be arranged in some form of a grid in order to maximize the incidences. So let
P be an n2/3 ×n1/3 size grid. Let ℓa,b be the line going through point (a,1) and
having slope 1

b
. We pick the lines L := {ℓa,b | a ∈ {1, . . . ,n2/3} and b ∈ {1, . . . ,n1/3}}

as our lines.

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

ℓa,b

n1/3

n2/3

a b

Then we claim that there are Ω(n4/3) many incidences. The best way to see this
is by observing that for a ≤ 1

2 n2/3 and b ≤ 1
2 n1/3 the line ℓa,b has exactly n1/3

incidences.

4.0.2 An upper bound based on forbidden subgraphs

Many results in particular in geometric combinatorics are obtained by using for-

bidden subgraph arguments. We say that H = (VH ,EH ) is a subgraph of G = (V ,E)
if there is an injective map f : VH → V so that {u, v} ∈ EH ⇒ { f (u), f (v)} ∈ E . In
particular this gives a monotone relation in the sense that if H is a subgraph of G

then this remains true if we delete edges from H or add more edges to G . Partic-
ularly important classes of subgraphs are Kr — the complete graph on r nodes;
and Kr,s — the complete bipartite graph with r nodes on the left side and s nodes
on the right hand side.

Theorem 4.2. For any points P and lines L in the plane with |P | = n = |L| one has
I(P,L) ≤O(n3/2).

Proof. Define a bipartite graph G = (P∪̇L,E) with an edge {p,ℓ} ∈ E if the point
p lies on ℓ. In particular |E | = I(P,L). Then this graph does not contain a K2,2 as
two lines can only intersect in one point, not more.
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p1

p2

ℓ1

ℓ2

P L

forbidden K2,2

But any graph without a K2,2 subgraph has at most O(n3/2) many edges as we will
see in the next Theorem in more generality.

Theorem 4.3 (Kövari-Sos-Turan Theorem). Let G = (V ,E) be a graph without an
induced Kr,r subgraph. Then |E | ≤O(r ) ·n2−1/r .

Proof. It suffices to prove the bound for a bipartite graph G = (V1∪̇V2,E) with
|V1| = n = |V2|. The reason is that we could partition the original graph G into
two partitions while keeping at least half of the edges. Let N (i ) ⊆ V2 be the set
of neighbors for a node i ∈V1. Basically the proof consists of the following 1-line
estimate that double-counts the number of r -tuples in neighborhoods N (i ):

|E |r

r r nr−1
=

n

r r
·
( 1

n

∑

i∈V1

|N (i )|
︸ ︷︷ ︸

=|E |

)r (2)
≤

1

r r

∑

i∈V1

|N (i )|r ≤
∑

i∈V1

(

|N (i )|
r

)

(1)
≤ (r −1) ·

(

n

r

)

≤ r ·nr

The crucial argument for (1) is the following: consider any set U ⊆ V2 of size
|U | = r . Then there are at most r − 1 many nodes i ∈ V1 so that U ⊆ N (i ) as
otherwise we would have found a Kr,r .

V1 V2

i

N (i )

|U | = r

Then the r -tuple U is counted at most r − 1 times on the left hand side of (1).
In (2) we use Jensen’s inequality with the fact that f (x) = xr is a convex function.
Rearranging the inequality gives |E | ≤ (r · r r ·n2r−1)1/r =O(r ) ·n2−1/r as claimed.



56CHAPTER 4. POINT LINE INCIDENCES AND THE CROSSING NUMBER THEOREM

Note that there are indeed graphs without a K2,2 subgraph that have Θ(n3/2)
many edges. The proof can be slightly extended to obtain that any graph without
a Kr,s subgraph with r ≤ s has at most Or,s(1) ·n2−1/r many edges. In other words:
more or less only the smaller side of the forbidden subgraph counts.

4.1 Crossing numbers

For an undirected graph G = (V ,E), a drawing consists of an injective map f :
V → R

2, mapping points into the plane and continuous injective maps guv :
[0,1] → R

2 for every edge {u, v} ∈ E modelling the arcs. We require that the maps
guv start and end at f (u) and f (v). Moreover, arcs may not run through vertices
other than their own, meaning the interior of the arcs does not contain a node. A
crossing is a point that is common to at least two arcs. The crossing number of a
drawing is the number of crossings, but counting a crossing of k arcs with mul-
tiplicity

(k
2

)

. In other words, one could always perturb the arcs a little so that the
crossing number remains the same but at any point no more than 2 arcs cross.

Obviously a graph can have drawings with many crossings and some with few
crossings. The crossing number cr(G) of a graph G is then the minimum number
of crossings of any drawing. A drawing is planar if the number of crossings is 0
and a graph is planar if it has a planar drawing, i.e. cr(G) = 0.

planar drawing of K4 drawing of K5 with 1 crossing

The question that we will aim to solve now is: what lower bound on the cross-

ing number can one give, depending only on the number of edges? A well known
condition is the following:

Lemma 4.4. Any planar graph G = (V ,E) has |E | ≤ 3n −6.

To see this, we can denote F as the faces of a planar drawing. Then Euler’s

formula says that |E |− |F | = |V |−2. As every face is bounded by at least 3 edges
and every edge is incident to only 2 faces we also have |F | ≤ 2

3 |E |. Putting this
together gives |E | ≤ 3n−6. Note that this inequality can be read as the fact that in
a planar graph, the average degree is slightly below 6. And in fact there are planar
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graphs whose average degree is tend to 6 as n →∞, for example the “grid graph
with diagonals”.

b

b

b

b

b

b

b

b

b

b

b

b

Now we can come to the Crossing Number Theorem and it’s beautiful probabilis-
tic proof. To get some intuition about the quantity note that it says that a graph
with |E | = 5|V | many edges might not have a crossing, but a dense graph with
|E | = Θ(n2) edges will have Θ(n4) many crossings. In other words, for dense
graphs, there is no “good” drawing — all drawings are equally bad up to a con-
stant factor.

Theorem 4.5 (Crossing Number Theorem). Let G = (V ,E) be an undirected graph.

Then cr(G) ≥ 1
64 ·

|E |3
|V |2 −|V |.

Proof. We begin by proving a rather weak lower bound on the crossing number:
Claim. One has cr(G) ≥ |E |−3|V |.
Proof of claim. Fix the drawing that attains the crossing number and set k :=
cr(G). Remove one edge after the other while each removed edge was involved
in a crossing. That means we can find edges e1, . . . ,ek so that the “inherited”
drawing is crossing free for the edges in E \ {e1, . . . ,ek }. Then |E \ {e1, . . . ,ek }| ≤
3|V |−6 ≤ 3|V | by the previous Lemma. This can be rearranged to k ≥ |E |−3|V |.

The claim gives already the right asymptotic bound if the graph is sparse, i.e.
|E | =Θ(|V |). We can now use a probabilistic argument to reduce the general case
to the sparse case. Take an arbitrary graph G = (V ,E) and let n := |V | and m := |E |.
We may assume that m ≥ 4n otherwise we are done. For a probability p ∈ [0,1],
we pick a subset V ′ ⊆ V at random that contains each node independently with
probability p. Then we obtain a random subgraph G ′ = (V ′,E ′) that inherits an
edge {u, v} ∈ E if both end points are sampled into V ′. Now, for the crossing
number cr(G ′) of the random subgraph we obtain that

p4cr(G)
(∗)
≥ E[cr(G ′)]

Claim+linearity
≥ E[|E ′|]

︸ ︷︷ ︸

=p2m

−3E[|V ′|]
︸ ︷︷ ︸

=pn

= p2m −3pn

In (∗) we use the following observation: consider the optimum drawing for G and
delete all nodes not in V ′ and all edges that do not have both end points in V ′.
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Then a crossing between {u1,u2} and {u3,u4} only remains if u1,u2,u3,u4 ∈ V ′.
That means a crossing only survives with probability1 p4. Hence E[cr(G ′)] ≤ p4 ·
cr(G) (and this is only an upper bound because there is no guarantee that the
inherited drawing is still optimal for G ′). Rearranging and choosing p gives

cr(G) ≥
m

p2
−

3n

p3

p:= 4n
m=

( 1

16
−

3

64

)

·
m3

n2

as desired.

Note that for the choice of p = 4n
m

we have E[|V ′|] = pn =Θ( n2

m
) and E[|E ′|] =

pm2 = Θ( n2

m
). That means we have indeed reduced to the case of sparse graphs

as we have claimed earlier.

4.2 The Szemerédi-Trotter Theorem

Now we come to a tight upper bound on the number of incidences. The simple
proof that we see here is due to Székely.

Theorem 4.6 (Szemerédi-Trotter Theorem). For any set of points P and lines L in
the plane with |P | = |L| = n one has I(P,L) ≤O(n4/3).

Proof. We define a graph G = (P,E) that has a vertex for each of the points in P .
Then we insert an edge {p, p ′} ∈ E , if p and p ′ are consecutive on some line ℓ ∈ L.
Phrased differently, for a line ℓ ∈ L let p1, . . . , pk ∈ P be the points in their natural
order; then {pi , pi+1} ∈ E for all i = 1, . . . ,k −1.

points P and lines L graph G = (P,E)
1Note that the bound of p4 would not hold if there would be a crossing of two edges incident

to the same node u. But one can argue that the optimum drawing would never have arcs coming
from the one node intersect. If there was such an intersection, one could swap the segments
between the first crossing and the common node u and then remove the crossing itself, resulting
in a drawing with lower crossing number.
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Then a line ℓ that contributes k many incidences to I(P,L), contributes exactly
k −1 edges to E . Hence I(P,L) ≤ |E | +n. So it suffices to bound the number of
edges |E |. For this sake, we inspect the crossing number of the constructed graph.
And indeed one has

|E |3

64n2
−n

(∗)
≤ cr(G)

(∗∗)
≤ n2

Here we use the crossing number theorem in (∗). To get the bound on the cross-
ing number in (∗∗), we use the straightline drawing where the arc for an edge
{p, p ′} ∈ E goes along the line ℓ with p, p ′ ∈ ℓ. Then arcs cross only where lines
cross; and there are at most n2 such crossings of lines.

Rearranging the above inequality then gives that |E | ≤O(n4/3) as needed.

4.3 Exercises

Exercise 4.1 (From Matousek [Mat02]). For a set of points P and unit circles C in
the plane, let I(P,C ) be the number of incidences. Show that for |P | = n = |C | one
has I(P,C ) ≤O(n4/3).

Exercise 4.2 (From Matousek [Mat02]). Prove that for any n and C n ≤ m ≤
(n

2

)

,
there is an n-vertex graph with m edges and crossing number at most O(m3/n2),
where C > 0 is a big enough constant.

Exercise 4.3. Fix a prime number p ∈ N. Define A := {a = (a1, a2,1) ∈ Z
3
p } and

B := {b = (b1,b2,1) ∈ Z
3
p }. Consider the bipartite graph G = (A∪̇B ,E) with E =

{(a,b) ∈ A ×B |
∑3

i=1 ai bi ≡p 0}. Prove that G has Θ(n3/2) many edges where n :=
|A| = |B | but does not contain a K2,2.

Exercise 4.4. The Crossing Number Theorem only applies to simple graphs with-
out parallel edges. We will now extend it to graphs having parallel edges. Let
G = (V ,E) be a multi-graph and k be the maximum edge multiplicity (meaning

that an edge {u, v} may exist up to k many times). Prove that cr(G) ≥ Ω( |E |3
k|V | )−

O(k2|V |), where |E | counts each edge with multiplicity.

Exercise 4.5. Use the probabilistic method to prove that for any r,n ∈ N with
2 ≤ r ≤ n, there is a bipartite graph G = (V1∪̇V2,E) with |V1| = |V2| = n that does
not contain a Kr,r subgraph and has |E | ≥Cr ·n2−2/(r+1) many edges. Here Cr > 0
is some constant that may depend on r .
Hint. Use the method of alterations.
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Chapter 5

VC dimension and ε-nets

In the following, we will study the complexity of set systems (X ,F ), where X is
the ground set with |X | = n elements and F ⊆ 2X is the family of subsets. Here we
will follow in part [Mat02] and in part [AS16]. To make it more concrete, consider
a set X ⊆R

2 of n points in the plane and let

F := {|R ∩X | : R is an axis parallel rectangle}

R

∈ X

What can we say about the complexity of this set system? On the one hand, there
are infinitely many rectangles — but the intersection with X can trivially give at
most |F | ≤ 2n many combinations. But it is hard to imagine that all possible
subsets of X could be realized as intersection with a rectangle. In fact, later we
will see that even |F | ≤O(n4).

One can imagine that in many other geometric settings the subsets have a lot
of structure — they are “simpler” than arbitrary set systems. This phenomenon
is brilliantly captured by the concept of VC dimension, named after Vapnik and
Chervonenkis. First, we say that a subset A ⊆ X is shattered by F , if all 2|A| pos-
sible subsets of A can be obtained as intersections of the form A ∩S with S ∈F .
Phrased differently, A can be shattered if F|A = 2A, where F|A = (A, {A∩S : S ∈F })
is the set system induced on A. Then the VC dimension of (X ,F ) is the largest car-
dinality |A| of a subset that can be shattered.

In planar geometry one often assumes that some set of points X ⊆ R
2 is in

general position meaning that the points have no constellation that has a zero
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probability of occurring if the points would have been picked at random from
some continuous distribution. For example if X is in general position, no 3 points
should be on a line and no 2 points should have the same x-coordinate or the
same y-coordinate.

Lemma 5.1. Let X ⊆ R
2 be points in general position and |X | ≥ 4 and let F =

{|R ∩ X | : R is an axis parallel rectangle}. Then the VC dimension of (X ,F ) is at
most 4.

Proof. Suppose for the sake of contradiction that some set A ⊆ X of |A| = 5 points
can be shattered. Take the unique minimal rectancle R containing A. By the
general position assumption, each side of R contains exactly 1 point. So there is
one point x ∈ A in the interior of R. Then there is no set S ∈F with S∩A = A \{x}.

x

R

With some more case distinctions one can also show the claim for points that
are not in general position. Note that in general one will not be able to improve
this bound. For example if there is a rectangle R that has exactly one point of
A on each side, then one can shatter A. To do so, for a subset A′ ⊆ A take the
rectangle R and simply shorten the sides containing points of A \ A′. We will see
more examples in the exercises.

5.1 The Shatter-function

We want to go back to the question of how many different sets are there in a
set system with bounded VC dimension. In our example (X ,F ) of axis parallel
rectangles, we determined that the VC dimension is 4. Also we have seen that
any minimal rectangle is uniquely determined by at most 4 points. Hence we can
argue that at least for axis parallel rectangles we will only have |F | ≤O(n4) many
different sets. From that consideration one might get hopeful that for a general
set system one could prove a O(nd ) bound, where d = dim(F ). And indeed that
is true:
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Lemma 5.2 (Shatter Function Lemma). Define Φd (n) :=
(n

0

)

+
(n

1

)

+ . . .+
(n

d

)

. Then
any set system (X ,F ) with |X | = n elements and VC dimension d = dim(F ) has
|F | ≤Φd (n).

Proof. We will prove that |F | ≤ Φd (n) by induction. Fix an element x ∈ X . We
define

F1 :=F|X \{x} and F2 = {S | S ∈F and S∪̇{x} ∈F }

Then F1 is the set system that we obtain by deleting x. Note that F1 might have
fewer sets than F as any set S ⊆ X \ {x} with S ∈ F and S ∪ {x} ∈ F would be
collapsed to just one set. But these sets are being count in F2. Hence |F | =
|F1| + |F2|. By induction we have |F1| ≤ Φd (n − 1). Next, considering F2 we
observe hat dim(F2) ≤ d −1. The reason is that if A ⊆ X \ {x} was shattered in F2,
then A∪ {x} is shattered by F . Then

|F | = |F1|+ |F2| ≤Φd (n −1)+Φd−1(n −1) =Φd (n)

using the recurrence
(n−1

k

)

+
(n−1

k−1

)

=
(n

k

)

.

We also want to introduce a general notion that is usually used in this context.
We define the Shatter Function of the set system (X ,F ) as

πF (m) := max
Y ⊆X :|Y |=m

|F|Y |

In other words, for every m ∈ {1, . . . ,n}, πF (m) gives the maximum number of
different sets that any induced set system with m elements may have. Then the
previous Lemma is equivalent to πF (m) ≤Φd (m) for all m ∈ {0, . . . ,n}.

5.2 Epsilon-nets

For a set system (X ,F ), a transversal is a set of elements N ⊆ X that intersect
every set, meaning that |N ∩ S| ≥ 1 for all S ∈ F . One might naively wonder
whether set systems with bounded VC dimension have small transversals? But
that is not true. Even for axis-parallel rectangles, one can of course have a rect-
angle R ∩X = {x} for every single element x ∈ X and hence the only transversal is
N = X .

But maybe there are transversals that hit at least the large sets. So we call
N ⊆ X an ε-net, if for all sets S ∈F with |S| ≥ ε|X | one has |N ∩S| ≥ 1. In words:
N has to intersect every set that contains at least an ε-fraction of elements of the
universe.



64 CHAPTER 5. VC DIMENSION AND ε-NETS

For the sake of argument, suppose we are aiming for a 1
r

-net for a set sys-
tem (X ,F ). Then it is an easy exercise to argue that if we sample O(r · log |F |) ≤
O(r d log(n)) elements uniformly at random, then any 1

r
-large set will be hit at

least once. But this leaves us wondering whether a dependence on n is really
needed?

Question. Is it possible to find an ε-net of size f (ε,dim(F ))?

We can also allow to give weights to the elements. So, let µ be a probability

measure on X . Then an ε-net must have the property that (S ∈F with µ(S) ≥ ε) ⇒
|N ∩S| ≥ 1. In fact, the notion of VC dimension and ε-nets then also make sense
if X is an infinite (say compact) set and F is a family (again compact) subsets of
X .

To get some intution we want to study the continuous version of our previous
setting. We set X := [0,1]2 and F := {R ⊆ [0,1]2 | R is axis-parallel rectangle} and
let µ be the uniform measure on [0,1]2. Suppose we are aiming to intersect every
rectangle S of size µ(S) ≥ 1

r
where r ∈ 2N. Here is one possible line of attack. Take

α ∈ 2Z with 1
4
p

r
≤α≤ 4

p
r and partition [0,1]2 into cells of width α

4
p

r
and height

1
α·4

p
r

. Every S ∈F with µ(S) ≥ 1
r

will fully contain one of these cells (for the right

α). Here α gives the right ratio of width over height of the target rectangles that
we try to hit.

S

1
α·4

p
r

α
4
p

r

There are only O(r log(r )) ≤ poly(r ) many such cells. If we now sample N as
O(r log(r )) many points from X at random, then we miss a cell only with prob-
ability 1

poly(r ) and hence are likely to hit every of the cells and hence also every
1
r

-large rectangle. Hence there are indeed 1
r

-nets for axis-parallel rectangles of
size O(r log(r )).

This reasoning obviously uses a lot of the geometry of the set system. But we
will now see the random sampling still works for general set systems of bounded
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VC dimension. We present the beautiful probabilistic proof of the ε-net Theo-
rem. As Matousek [Mat02] writes it: one might be tempted to believe that it works

by some magic.

Theorem 5.3 (ε-Net Theorem). Let (X ,F ) be a set system with VC dimension d

and let µ be a measure on X . Then a uniform sample N of O(dr ln(r )) many
elements is a 1

r
-net with probability at least 1/2.

Proof. We can delete small sets from our set family and hence assume thatµ(S) ≥
1
r

for every S ∈F . Let C be a large enough constant and set s :=C dr ln(r ) be our
target sample size. However, we do the sampling process in a non-intuitive way.
First we sample twice as many points as we actually need. More precisely, we
sample z1, . . . , z2s ∈ X independently and possibly with repetition according to µ

and set A := {z1, . . . , z2s}. Then we pick a uniform sample N ⊆ A of exactly |N | = s;
the remaining elements are denoted by M := A \ N .

A:

N with |N | = s

M with |M | = s

z1 z2 . . . z2s

The expected number of samples for a set S is then E[|S ∩N |] ≥ s
r
= C d ln(r )

(counting elements with multiplicity if they have been sampled several times).
So we set a value of k := s

2r
which is half of the expectation. Now we define two

events that are going to be crucial:

E0 := There is an S ∈F with N ∩S =;
E1 := There is an S ∈F with (N ∩S =; and |M ∩S| ≥ k)

First we show that the probabilities for both events are close:
Claim I. One has 1

2 Pr[E0] ≤ Pr[E1] ≤ Pr[E0].
Proof of claim. The inequality Pr[E1] ≤ Pr[E0] is clear because E1 emerges from
E0 by adding an extra condition. For the 1st inequality it suffices to prove that
Pr[E1 | N ] ≥ 1

2 Pr[E0 | N ] for every fixed sample N . In fact, it suffices to consider
the case where N is not an 1

r
-net as otherwise Pr[E1 | N ] = 0 = Pr[E0 | N ]. Then fix

any set S∗ ∈F with N ∩S∗ =;. Note that even if N is fixed, M is still a uniform
sample of s elements from µ (with repetition). Then Y := |M ∩ S∗| is the sum
of independent 0/1 random variables (again considering M as a multiset) and
E[Y ] ≥ 2k =C d ln(r ). Then using Chernov bound II we get

Pr[E1 | N ] ≥ Pr[|M ∩S∗| ≥ k] ≥ 1−Pr
[

Y <
1

2
E[Y ]

]

≥ 1−exp
(

−
1

8
E[Y ])

)

≥
1

2
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for C large enough.
Claim II. For every fixed choice of A one has Pr[E1 | A] < 1

4 .
Proof of claim. In principle, the proof consists of the usual combination of con-
centration plus union bound. The crucial question though is: what sets do we
need to take into account. Once A is fixed it suffices to consider the induced set
system (A,F|A). This set system still has VC dimension at most d , hence it only
has |F|A| ≤Φd (2s) ≤ ( 12s

d
)d many sets1. Now for every S ∈F|A one has

Pr[N ∩S =; and |M ∩S| ≥ k]
(∗)
≤

(2s−k
s

)

(2s
s

) ≤
(

1−
k

2s

)s
≤ exp(−k/2)

= exp
(

−
C

4
d ln(r )

)

= r−C d/4

In (∗) we use the following reasoning: the probability Pr[N ∩S =; and |M ∩S| ≥
k] can only be non-zero if |A∩S| ≥ k. And in that case to get N ∩S =; it needs to
happen that each of the s samples for N does not come from the A ∩S. Now we
can apply the union bound to get.

Pr[E1 | A] ≤Φd (2s) · r−C d/4 ≤
(6 ·2C dr ln(r )

d

)d
· r−C d/4 ≤ (12C dr 2 · r−C /4)d <

1

4

if we pick C large enough.
Now we can finish the proof. Combining both proven claims we have Pr[E0] ≤

2Pr[E1] < 2 · 1
4 = 1

2 .

We want to briefly mention a notion that is closely related to ε-nets. We say
that a set A ⊆ X is an ε-approximation for a set system if | |A∩S|

|A| −µ(S)| ≤ ε. In
particular a ε

2 -approximation is also an ε-net. One can prove that there is always
a 1

r
-approximation of size O(dr 2 ln(r )).

5.3 Dual set systems

For a set system (X ,F ), the incidence matrix is the matrix A ∈ {0,1}F×X with en-
tries

AS,i =
{

1 if i ∈ S

0 otherwise
∀S ∈F ∀i ∈ X .

1Here can use the following estimate.
Claim. For d ,m ∈N with m ≥ 2d one has Φd (m) ≤ ( 6m

d )d .

Proof. Simply bound Φd (m) =
∑d

i=0

(m
i

)

≤ (d +1) ·
(m

d

)

≤ (d +1) · ( em
d )d ≤ 2d · ( em

d )d ≤ ( 6m
d )d . Here

we use that
(m

i

)

≤
( m

i+1

)

for all i ≤ m/2 as well as the generous bound of d +1 ≤ 2d for d ≥ 1.
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The dual set system (X ∗,F∗) is the system that we obtain by reversing the roles
of elements and set. Formally, we have elements X ∗ :=F and F∗ = {Sx | x ∈ X }
with sets Sx := {S ∈F | x ∈ S}. The incidence matrix of (X ∗,F∗) is the transpose
of the incidence matrix of (X ,F ). The dual shatter function τ∗

F
(m) is the shatter

function of the dual set system. In particular τ∗
F

(m) is the maximum number of
equivalence classes that can be formed by selecting m sets from F .

In our example of (X ,F ) with X = [0,1]2 and F being all axisparallel rectan-
gles we have τ∗

F
(3) = 8 because with 3 rectangles one can indeed get 8 equiva-

lence classes:

1 2 3

4

5

6

7

8

One can prove that the VC dimensions of a dual pair of set systems is related:

Lemma 5.4. The dual set system satisfies dim(F∗) ≤ 2dim(F ).

Proof. Suppose that dim(F∗) ≥ 2d . Then there are sets S1, . . . ,S2d ∈ F whose

Venn diagram has all the 22d
many possible equivalence classes. Let x1, . . . , x

22d ∈
X be points such that we pick one point from each equivalence class.

x jSi

Consider the 2d × 22d
incidence matrix of those elements and sets. Then this

matrix contains all possible 0/1 columns with 2d entries.

x1 x
22d

S1

S2d

0
0
1
1

0
1
0
1

d selected columns

Then in particular it will contain the d many columns that correspond to d shat-
tered elements. Hence dim(F ) ≥ d .
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5.4 Discrepancy of set systems

For set system (X ,F ), we define a coloring as a map χ : X → {−1,1} that “col-
ors” every element with either −1 or +1. The discrepancy of that coloring is the
maximum in-balance of any set, i.e.

disc(F ,χ) := max
S∈F

|χ(S)|

where we abbreviate χ(S) =
∑

j∈S χ( j ). Then the discrepancy of the whole set
system is defined the discrepancy of the best coloring:

disc(F ) := min
χ:X→{−1,1}

max
S∈F

|χ(S)|.

The following is a folklore result:

Lemma 5.5. For a set system (X ,F ) with |X | = n elements and |F | = m sets one
has disc(F ) ≤O(

√

n log(m)).

Proof. Pick a uniform random coloring χ : X → {−1,1}. Then for each set S ∈F

one has Pr[|χ(S)| > λ
p
|S|] ≤ 2exp(−λ2/2) using standard concentration bounds.

Then setting λ :=Θ(
√

logm) and applying the union bound gives the claim.

For example if m = n, this gives a O(
√

n log(n)) bound. On the other hand,
for example for a random set system one can show that disc(F ) ≥Ω(

p
n). It takes

some work to remove the extra
√

logn-term in the upper bound, but this is in-
deed possible as we will see with Spencer’s Theorem in a later chapter.

For now we want to bring our attention back to set systems (X ,F ) with bounded
discrepancy. It turns out that for those one can even improve the exponent of 1

2
to 1

2 −
1

2d
where d is the dual VC dimension.

We say that two elements x, y ∈ X cross a set S, if |{x, y}∩S| = 1.

Lemma 5.6. Let (X ,F ) be a set system with |X | = n, |F | = m and dual VC di-

mension d . Then there is a pair x, y ∈ X that crosses at most O(m · log(n)
n1/d ) many

sets.

Proof. Let crossF (x, y) the number of sets that {x, y} crosses in F . Sample each

set from F independently into F ′ ⊆ F with probability p := min{ n1/d

8m
,1}. The

idea of the proof is to use that crossF ′(x, y) is a good enough approximation to
crossF (x, y) (up to some error). First note that E[|F ′|] = pm ≤ 1

8 n1/d and with

probability at least 1/2 one has |F ′| ≤ 1
4 n1/d . If we consider the Venn diagram

formed by F ′, it will have at most τF∗(|F ′|) ≤ (2|F ′|)d < n many equivalence
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classes2. In particular there have to be two elements x, y ∈ X in the same equiv-
alence class. Note that crossF ′(x, y) = 0. If p = 1, then F ′ =F and we are done.
So, suppose that p = 1

8m
n1/d . We will see that with high probability, any such pair

will satisfy the claim.

∈F ′F ∋
x

y

In fact, consider a pair x, y ∈ X with crossF (x, y) ≥ m 32ln(n)
n1/d many sets in the

original set system F . Let YS ∈ {0,1} be the indicator random variable telling
whether S ∈ F ′. Then we can write let crossF ′(x, y) =

∑

S∈F :|{x,y}∩S|=1 YS . Note

that E[crossF ′(x, y)] ≥ p ·m
log(n)
n1/d = 4ln(n) and hence we have Pr[crossF ′(x, y) =

0] ≤ exp(−E[crossF ′(x, y)]) ≤ 1
n4 . As there are at most n2 many pairs, the pair (x, y)

will have a low crossing number with high probability.

Lemma 5.7. Let (X ,F ) be a set system with |X | = n, and dual VC dimension d ≥ 2.
Then there exists a Hamiltonian cycle C on X that crosses every set S ∈F at most
Od (n1−1/d · log(n)) times.

C

S ∈F
edge crossing S

Proof. First observe that it suffices to find a spanning tree T that crosses every
set at most K := Θd (n1−1/d · log(n)) times. Then we can use the following stan-
dard argument: double the edges of T to obtain a connected subgraph with even
degrees. Then there is an Euler tour visiting every edge exactly once. Then short-
cut that Euler tour by skipping revisited nodes. We obtain a Hamiltonian cycle
that crosses every set at most 2K times. Now to the argument how to find the
spanning tree.

Let F = {S1, . . . ,Sm} be the sets in the set system. We give each set i an initial
weight of wi := 1. We start the subgraph T := (X , {;}), which will be a forest at
any time and finish as a spanning tree. Now we call the previous lemma to ob-

tain a pair {x, y} crossing at most O(m · log(n)
n1/d ) many edges. Actually the lemma

also works if the sets are weighted (as dublicating a set does not change the VC

2Claim. For all m,d ∈N one has Φd (m) ≤ (2m)d . Proof. Φd (m) =
∑d

i=0

(n
d

)

≤
∑d

i=0 ni ≤ (2n)d .
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dimension). So we can always get a pair {x, y} crossing sets of weight at most

O(‖w‖1 ·
log(n)
n1/d ). We add the edge (x, y) to T and double the weight of all the sets

that were crossed by the edge. In the next iteration (and in any further iteration)
we repeat the argument, just that we do not apply the previous Lemma to all
points, but we pick a subset Y ⊆ X that has one point from every connected com-

ponent of T . The total weight of sets increases by at most a factor of 1+ O(log |Y |)
|Y |1/d

per iteration. At the end of this prodedure, we have selected n − 1 pairs and T

is a spanning tree. Let cross(S,T ) := |{{x, y} ∈ T | |S ∩ {x, y}| = 1}| be the num-
ber of times that edges in T cross S and let S∗ ∈ F be the set that maximizes
cross(S∗,T ). If we analyze the final weights wS of all the sets, then3

2cross(S∗,T ) (∗)
≤

∑

S∈F
wS

(∗∗)
≤ |F | ·

n∏

i=1

(

1+
O(logn)

(n − i )1/d

)

≤ |F | ·exp
(

O(logn) ·
n∑

i=1

1

(n − i )1/d

︸ ︷︷ ︸

≤O(n1−1/d ) as d≥2

)

≤ exp
(

Od (log(n))+O(logn) ·n1−1/d
)

Here we use in (∗) that the weight of S∗ was doubled cross(S∗,T ) many. We can

bound |F | ≤ ndim(F ) ≤ n2d = 2Od (log(n)), which only results in a lower order term.

The argument in the proof to maintain weights that increase exponentially
with any violation belongs to a very general technique called multiplicative weight

update method with numerous applications in machine learning and theoretical
computer science.

The trick is that the Hamiltonian path allows us to pick the random coloring
in a smarter way so that the standard deviation per set is a lot smaller than

p
n.

Theorem 5.8. Let (X ,F ) be a set system with |X | = n and dual VC dimension d .
Then disc(F ) ≤Od (n1/2−1/(2d) · log(n)).

Proof. After possibly dropping an element we may assume that n is even. Let
C be the Hamiltonian cycle from the previous Lemma. By picking every 2nd
edge of C , we can get a perfect matching M ⊆ C crossing any set S at most k :=
Θ(n1−1/d log(n)) times. Now we pick again a random coloring χ : X → {−1,1}. But

3Here note that if n is a power of 2, then
∑n

i=1
1

(n−i )1/d ≤
∑log2(n)

k=1
n
2k · ( 1

n/2k )1/d ≤

n1−1/d ∑

k≥1( 21/d

2 )k and the latter sum converges. The general bound can be obtained by round-
ing n up to the nearest power of 2.
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differently from before, we consider each edge {u, v} ∈ M and with probability
1/2 we color χ(u) = 1,χ(v) =−1 and otherwise we color χ(u) =−1,χ(v) = 1.

M

R

If we now consider the discrepancy χ(S), then every edge completely inside
of S or completely outside of S contributes 0 to the discrepancy. Still E[χ(S)] = 0.
The crucial observation is that the standard deviation of χ(S) is now bounded byp

k instead of
p
|S| which could be up to

p
n. Then Pr[|χ(S)| > 10

√

log(m)
p

k] ≤
1

2m
by the Chernov bound and via the union bound we can conclude that

disc(F ) ≤O
(√

k logm
)

≤O
(p

d
√

log(n) ·n1/2−1/(2d)
√

log(n)
)

which gives the claimed bound. Here we plug in the bound on k and m ≤Φd (n) ≤
O(nd ).

5.5 Exercises

Exercise 5.1. Let (X ,F ) be a set system with |X | = n elements and VC dimen-
sion d . We have seen in the ε-net theorem that there is a 1

r
-net whose size only

depends on r and d and we know that a Od ,r (logn) bound is simple. Now we
wan to give a intermediate argument without the epsilon-net theorem that gives
a Od ,r (loglogn) size 1

r
-net.

(i) Sample O(r d log(n)) elements Y ⊆ X uniformly (with repetition). Show
that with high probability any 1

2r
-net for the induced set system (Y ,F|Y )

is a 1
r

-net for F .

(ii) Show that there is a O(r d log(|Y |))-size 1
2r

-net for F|Y .

Exercise 5.2. Let (X ,F ) be the set system with X = [0,1]2 and F = {R ⊆ [0,1]2 |
R is axis-parallel rectangle}. Prove without using Lemma 5.4 that the dual shatter
function satisfies τF∗(m) ≤ O(m2) and the dual VC dimension is bounded by
dim(F∗) ≤O(1).

Exercise 5.3. Prove that there exists a set system with n elements and n sets so
that the VC dimension is Θ(logn). Solve the problem in the spirit of this class!
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Exercise 5.4. For k ∈N, let P be the family of full-dimensional convex polytopes
in R

2 with at most k vertices. Prove that P has a VC-dimension that is bounded
by a function of k.



Chapter 6

The Regularity Lemma

We start again with an example application. Suppose that G = (V ,E) is an undi-
rected graph and we want to test a property like “Does G contain a triangle”? The
only access that we have for the graph is that we can sample a constant-size sub-
set U and inspect the induced subgraph G[U ]. Clearly we are asking for a too
strong property — the graph G might only contain a single triangle and that one
triangle will likely not be contained in G[U ].

But let us say that graphs G and H are ε-far if they differ in εn2 many edges.
Maybe there exists a tester that samples constantly many nodes and at least dis-
tinguishes the following cases:

• G is triangle-free
• G is ε-far from any triangle-free graph

It still is not clear whether or not this distinction can be made with Oε(1)-many
samples.

Let us first show an algorithm for a particular type of random graphs. Sup-
pose we generate G = (V ,E) from a distribution D as follows: we have a partition
V = V1∪̇ . . .∪̇Vk for 1

ε
≪ k ≤ f (ε) with |V1| = . . . = |Vk |. For each pair of blocks

i , j ∈ [k] we have a probability pi j . Then every edge (u, v) with u ∈ Vi and v ∈ V j

materializes independently with probability pi j .

pi j
Vi V j

73
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Could we test triangle-freeness for such random graphs? We can make a crucial
observation: if there is a triangle in the graph H = ([k],E(H)) with (i , j ) ∈ E(H) :⇔
pi j ≥ ε/2, then with high probability G will contain Ωε(n3) many triangles. On
the other hand if there is no triangle in H , then we can destroy all triangles in G

by deleting all edges coming from the low density pairs Vi -V j with pi j < ε/2. Note
that the number of such edges will likely not exceed εn2. In particular if there are
Ωε(n3) many triangles, it suffices to sample Oε(1) many nodes for a positive test.

It appears that this line of arguments only works for random graphs that
come from a “density template”. The amazingly powerful result that we will see
now shows: Every dense graph has such a density template!

6.1 The Szemerédi Regularity Lemma

We will now see the statement and proof of the Regularity Lemma, proven by
Szemerédi with the motivation of resolving questions in combinatorial number
theory (we will see one such application in the exercises). We closely follow the
excellent exposition in Alon and Spencer [AS16] and refer to the textbook for any
further details. First we have to discuss how the definition of the “template” that
we promised earlier. Fix an undirected graph G = (V ,E) and for disjoint subsets
A,B ⊆V , let e(A,B) := |{e ∈ E : |e ∩ A| = |e ∈ B | = 1}| be the number of edges going
between A and B . The density of the pair is the quantity

d(A,B) :=
e(A,B)

|A| · |B |

That means 0 ≤ d(A,B) ≤ 1 is the fraction of all possible edges between A and B

that exist in G . For a constant ε> 0, we say that the pair (A,B) is ε-regular if

|d(A,B)−d(X ,Y )| ≤ ε ∀X ⊆ A,Y ⊆ B with |X | ≥ ε|A| and |Y | ≥ ε|B |.

In words: for a regular pair, the edge density should be approximately the same
for every subsets X ⊆ A and Y ⊆ B of a constant fraction of nodes.

A B

X Y |Y | ≥ ε|B ||X | ≥ ε|A|

We can now come to the crucial definition:
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Definition 1. We call a partition V =V0∪̇V1∪̇ . . .∪̇Vk an equipartition if |V1| = . . . =
|Vk |. Here V0 is called the exceptional set. We call an equipartition ε-regular, if all
pairs (Vi ,V j ) except at most εk2 are ε-regular and the size of the exceptional set
is bounded by |V0| ≤ ε|V |.

Then the main theorem for this chapter is the following:

Theorem 6.1 (Regularity Lemma, Szemerédi 1978). For every ε> 0, there is a con-
stant T = T (ε) so that every graph with |V | ≥ T vertices has an ε-regular partition
P = (V0, . . . ,Vk ) with 1

ε
≤ k ≤ T .

The proof idea is simple: we start with any partition P with k := 1
ε

blocks.
Then we find a refinement P ′ that is more regular. A refinement P ′ of P is a par-
tition so that every block of P is the disjoint union of some blocks of P ′. Here we
are interpreting V0 as |V0| many separate blocks of singleton nodes. In particular
that means in order to obtain a refinement, we can always move a small number
of nodes into the exceptional set V ′

0.

V0

. . .V1

Vk

V2

partition P

refinement
⇒ V ′

0

refined partition P ′

V ′
1

The crucial ingredient is how to measure the regularity so that it can be mono-
tonically improved. For disjoint sets U ,W ⊆ V in an n-node graph we define a
quantity

q(U ,W ) :=
|U | · |W |

n2
·d(U ,W )2

If U is a partition of U and W is a partition of W , then we denote

q(U ,W ) :=
∑

U ′∈U
W ′∈W

q(U ′,W ′)

as the weighted average squared density. It will be useful to introduce a ran-
dom variable Z ∼ D(U ,W ) as follows: pick uniform random elements u ∈ U

and w ∈ W . Then set Z := d(U ′,W ′) where u ∈ U ′ ∈ U and w ∈ W ′ ∈ W . In
other words, Z gives the average density between blocks of U ,W where blocks
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are picked proportional to their number of nodes. The usefulness of this random
variable is that

q(U ,W ) =
|U | · |W |

n2
·E[Z 2] (∗) (6.1)

Next, if P = (V0,V1, . . . ,Vk ) is a partition with an exceptional set V0, then we
define q(P ) :=

∑

blocks U ,W of P q(U ,W ), where the sum is over the
(k+|V0|

2

)

many
unordered pairs of blocks, counting each singleton in V0 as one block. The quan-
tity q(P ) is called the index of the partition. Again, q(P ) can be seen as the
weighted average of squared densities of its partitions. As the densities are in
[0,1] and the sum of the weights is at most 1/2 one has 0 ≤ q(P ) ≤ 1

2 . In fact, as
long as the partition is not regular, we will be able to find refinements that in-
crease q(P ). We need a crucial lemma that shows the following: (i) refining can
only increase the value q(P ); (ii) an irregular pair can be used to get a refinement
that strictly increases q(P ). The improvement comes from the strict convexity of
the function x 7→ x2,

Lemma 6.2. The following holds:

i) Let U ,W ⊆ V be disjoint. Let U and W be partitions of U and W . Then
q(U ,W ) ≥ q(U ,W ).

ii) If P ′ is a refinement of P , then q(P ′) ≥ q(P ).

iii) Suppose a disjoint pair (U ,W ) is not ε-regular due to (U1,W1) with U1 ⊆U

and W1 ⊆ W . Then the partition U := {U1,U \U1} and W := {W1,W \ W1}
satisfies q(U ,W ) > q(U ,W )+ε4 · |U |·|W |

n2 .

Proof. We prove the items separately:

i) We study the random variable Z ∼D(U ,W ) that gives the density of a ran-
dom pair (U ′,W ′) of the partitions. Note that E[Z ] = d(U ,W ) is just the
overall edge density. Then

n2

|U ||W |
q(U ,W )

(6.1)= E[Z 2]
Jensen
≥ E[Z ]2 = d(U ,W )2 Def q(U ,W )

=
n2

|U | · |W |
q(U ,W )

ii) Follows from i ).

iii) Recall that

Var[Z ] = E[Z 2]−E[Z ]2 =
n2

|U | · |W |
(q(U ,W )−q(U ,W )),
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hence to show the claim we only need to lower bound the variance of Z .
But if we pick the irregular pair (U1,W1), then we get a density that is dif-
ferent from E[Z ] = d(U ,W ). Hence

Var[Z ] = E

[

(Z−E[Z ])2]= Pr
u∼U ,w∼W

[u ∈U1, w ∈W1]
︸ ︷︷ ︸

≥ε2

· (d(U1,W1)−d(U ,W ))2
︸ ︷︷ ︸

≥ε2

≥ ε4

Combining this, we get the claim.

Now we can come to the central part of the proof for the Regularity Lemma
in which we show that if the current partition is not ε-regular, then we can find a
refinement P ′ with q(P ′) ≥ q(P )+ 1

2ε
5. Here the size of the exceptional set only

increases marginally:

Lemma 6.3. Let 0 < ε≤ 1
4 . Suppose P = {V0, . . . ,Vk } is an equipartition with |V0| ≤

εn that is not ε-regular. Then there exists a refinement P ′ = {V ′
0, . . . ,V ′

ℓ
} that is

an equipartition with k ≤ ℓ ≤ k4k parts satisfying |V ′
0| ≤ |V0| + n

2k and q(P ′) ≥
q(P )+ 1

2ε
5.

Proof. Consider a pair (Vi ,V j ) with 1 ≤ i < j ≤ k. If this is a regular pair, then we
set Vi j := {Vi } and V j i := {V j }. If the pair is not regular and U ⊆ Vi and W ⊆ V j

is the irregular part, then we set Vi := {U ,Vi \U } and V j i := {W,V j \ W }. Now, let
Vi be the joint refinement of the partitions {Vi j } j∈[k]\{i } that have 1 or 2 parts. In
other words Vi is the Venn diagram consisting of at most 2k−1 parts.

Vi 1 Vi 2 Vi 3

joint refinement
⇒

Vi

Let P̃ be the partition containing V1, . . . ,Vk together with the exceptional set V0.
As P was not ε-regular, there will be εk2 many pairs that are irregular and by
Lemma 6.2.iii), each one will increase the function q . We can estimate that

q(P̃) ≥ q(P )+
∑

(i , j ) irregular
︸ ︷︷ ︸

εk2 pairs

ε4 |Vi | · |V j |
n2

|Vi |≥ 3
4

n
k≥ q(P )+ε4 ·εk2 ·

3

4

1

k2
≥ q(P )+

1

2
ε5.
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Here we use |Vi | = n−|V0|
k

≥ 3
4

n
k

.

The regularity of P̃ has increased as desired, but P̃ is not yet an equipartition.
Suppose that s := |V1| = . . . = |Vk | was the original size of the blocks in P . Then
we split each part of P̃ into blocks of size s

4k , moving leftover pieces into the

exceptional set. Then we end up with k ·4k many non-exceptional parts and the
new exceptional set has size |V ′

0| ≤ |V0|+k2k−1 · s
4k ≤ |V0|+ n

2k .

Proof of Regularity Lemma. We begin with an arbitrary partition of the n vertices
into k0 := 1

ε
many equal size blocks, requiring to move at most 1

ε
≪ 1

2εn many
nodes into the exceptional set. In the i th iteration, as long as the current par-
tition is not ε-regular, we employ Lemma 6.3 and the number of partitions in-
creases from ki to ki+1 ≤ ki 4ki . As q(P ) increases by at least 1

2ε
5, we terminate

after at most 2
ε5 many calls. In each call the size of the exceptional set increases by

n

2ki
, but as ki ≥ 1

ε
, the total increase in size is generously bounded by 1

2εn. The ar-
gument will work as long as n stays bigger than the bound on ki . That concludes
the proof.

The reader may have noticed that pessimistically it could happen that for
Θ( 1

ε5 ) times the number of partitions increases exponentially. In particular our

bound on T (ε) is a tower of exponents of height Θ(1/ε5). Surprisingly, there is a
complementary result of Gowers that in some graphs every ε-regular partition
requires a number of partitions that is a tower of height polynomial in 1/ε.

If the analysis is still arcane to the reader, maybe a simplifying thought ex-
periment helps. Suppose we have numbers x1, . . . , xn ∈ [0,1] that are partitioned
into blocks S1 ∪ . . .∪Sk . Consider the following random variable Z : pick i ∈ [n]
uniformly and let j be the index with i ∈ S j . then Z is the average of numbers
in S j which is Eℓ∼S j

[xℓ]. By Jensen’s inequality, E[Z 2] would be non-decreasing
if we would split one of the sets S j into multiple sets. Moreover, if in a constant
fraction of sets (weighted by size), a constant fraction of pairs of numbers differ
by a constant amount, then the sets can be split into two parts so that the value
E[Z ]2 increases by a constant.

6.2 Application to testing triangle-freeness

We want to come back to our initial application where we wanted to be able to
distinguish a triangle-free graph from a graph that is ε-far from being triangle
free. It turns out that we can simply test for Oε(1) many random triples of nodes
whether they form a triangle:
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Lemma 6.4. Let G = (V ,E) be a graph so that for every H ⊆ E with |H | ≤ εn2,
(V ,E \ H) still contains at least one triangle. Then G itself contains δn3 many
triangle with δ := δ(ε) > 0.

Proof. For the sake of a cleaner notation suppose the assumption is that at least
Cεn2 can be deleted without destroying all triangles, where C > 0 is a large con-
stant. We invoke the Regularity Lemma and consider the partitionP = (V0, . . . ,Vk )
that is ε-regular. We delete the following edges:

• All edges incident to the exceptional set V0.
• All edges inside some block Vi .
• All edges between irregular pairs (Vi ,V j ).
• All edges between regular pairs (Vi ,V j ) where the density is d(Vi ,V j ) < 2ε.

V0

. . .
V j Vi

edges incident

to except. set

edges between(Vi ,V j ) :
d(Vi ,V j ) < 2ε

edges inside Vi

edges between
irregular pairs

visualization of deleted edges

It is not hard to see that in each of the 4 categories, we delete at most O(εn2) many
edges. By assumption the remaining graph still has at least one single triangle.
By construction, this triangle is running between partitions say V1,V2,V3 where
all pairs (Vi ,V j ) are regular and the densities are d(Vi ,V j ) ≥ 2ε for 1 ≤ i < j ≤ 3.
Recall that |V1| = |V2| = |V3| =: s ≥ 3

4 ·
n
k

. For i ∈ {2,3}, let Xi := {u ∈V1 : |N (u)∩Vi | ≤
ε|Vi |} be nodes with rather few neighbors. If |Xi | ≥ ε|V1|, then (Xi ,Vi ) was an ε-
irregular part of (V1,Vi ). We call nodes u ∈ V1 \ (X2 ∪ X3) typical. By regularity
we know that the density between neighbors of a typical node u ∈V1 is d(N (u)∩
V2, N (u)∩V3) ≥ 2ε−ε= ε. But every edge between N (u)∩V2 and N (u)∩V3 forms
a triangle together with u.
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X2

X3

u
N (u)

N (u)

V1

V2

V3

Overall the number of triangles between V1,V2,V3 is at least (1−2ε)|V1| ·ε ·ε|V2| ·
ε|V3| =Ω(ε3 n3

k3 ) = δ(ε) ·n3.

6.3 Exercises

Exercise 6.1 (From Alon & Spencer [AS16]). Prove that the following is true. Fix
ε > 0 and r ∈ N. Suppose that G = (V ,E) is a graph with n = |V | for which one
needs to delete more than ε2n edges to destroy all copies of Kr . Then G contains
C (ε,r ) ·nr many copies of Kr .

Exercise 6.2 (From Alon & Spencer [AS16]). Prove that the following is true. Fix
ε> 0 and a graph H . Suppose that G = (V ,E) is a graph with n = |V | for which one
needs to delete more than ε2n edges to destroy all copies of H . Then G contains
C (ε, H) ·n|V (H)| many copies of H .
Hint. The number of copies of H in G is the number of injective maps f : V (H) →
V (G) with {u, v} ∈ E(H) ⇒ { f (u), f (v)} ∈ E(G). You can sort of follow the solution
of the previous exercise, but note that some vertices of the remaining copy of H

may end up in the same block Vi .

Exercise 6.3 (From Alon & Spencer [AS16]). Prove that for every ε> 0 there is an
n0 := n0(ε) so that every set A ⊆ {1, . . . ,n} with |A| ≥ εn and n ≥ n0 contains a 3-
term arithmetic progression.
Hint. A 3-term arithmetic progression means that {a, a+b, a+2b}⊆ A for integers
a,b ∈N. Analyze the triangles in the following graph G = (V1 ∪V2 ∪V3,E) where
V1,V2,V3 are copies of [n]:
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x

y

z

if y −x ∈ A

if z − y ∈ A
if z −x ∈ 2A

V1 = [n]

V2 = [n]

V3 = [n]

Exercise 6.4. A corner in Z
2 are three points (x, y), (x +h, y), (x, y +h).

b b b b

b b b b

b b b b

b b b b

(x, y)
(x +h, y)

(x, y +h)

Prove that for every ε> 0, there is an n big enough so that any subset A ⊆ {1, . . . ,n}×
{1, . . . ,n} with |A| ≥ εn2 contains a corner.
Hint. Analyze the graph G = (LH ∪LV ∪LD ,E) where LH are the horizontal lines,
LV are the vertical ones and LD are the diagonal ones and we have an edge in E

if the crossing of the two lines is in A.
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Chapter 7

Dependent Random Choice

The method of dependent random choice is a smart and slick probabilistic ar-
gument to find a small very well connected subgraph in a large graph with high
enough average degee. In this chapter we follows the excellent exposition by
Alon and Spencer [AS16]. For additional applications see the survey of Fox and
Sudakov [FS11].

For U ⊆ V , we denote N∗(U ) :=
⋂

v∈U N (v) as the common neighborhood of
U .

Theorem 7.1. Let a,b,n,r ∈N and let G = (V ,E) be a graph with |V | = n vertices
and average degree d := 2|E |/n. If

d r

nr−1
≥ br +a

then G contains a subset A ⊆V of size |A| ≥ a so that every R ∈
(A

r

)

has |N∗(R)| ≥
b.

The visualization of the claim is as follows:

A

a r bR

N∗(R)

Proof. Let T ⊆ V be a multi-set of r vertices, picked uniformly at random with
repetition. We set A := {v ∈V | T ⊆ N (v)} = N∗(T ). Then it is not hard to see that

83
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the expected size satisfies

E[|A|] =
∑

v∈V

( |N (v)|
n

)r
=

1

nr−1

∑

v∈V

|N (v)|r

n

Jensen
≥

1

nr−1

( 1

n

∑

v∈V

|N (v)|
︸ ︷︷ ︸

=d

)r
=

d r

nr−1
.

For the sampled set A we know by construction that it has at least r common
neighbors (namely the nodes in T ). But we require b many common neighbors
at least for all r -tuples and in general we will have b ≫ r . So, let Y := |{R ∈

(A
r

)

:
|N∗(R)| < b}| be the number of r tuples in our sample that have too few common
neighbors. For the expected number of such tuples we know that

E[Y ] =
∑

R⊆V :|R|=r and |N∗(R)|<b

Pr[T ⊆ N∗(R)]
︸ ︷︷ ︸

=(|N∗(R)|/n)r

≤
(

n

r

)

·
(b

n

)r
≤ br

We use the assumption and conclude that E[|A|−Y ] ≥ a. In particular we can take
the set A and for each tuple R ∈

(A
r

)

with |N∗(R)| < b, we can drop one element.
We will still be left with a set A′ of size E[|A′|] ≥ a. This proves the claim.

Note that the theorem requires that d ≥ n1−1/r , otherwise the statement is
vacuous. In reverse if d ≥C (a,b,r ) ·n1−1/r then indeed a set A ⊆V of size |A| ≥ a

exists where the common neighborhood is at least b for every r -tuple.
As a second remark, consider the case that the graph G consists of two cliques

of size n/2. With probability 1−Θ(1)·2−r , the sample T contains nodes from each
of the two cliques and hence the set A will be empty. In other words, the random
variable |A| is not at all well concentrated.

7.1 Turan numbers of bipartite graphs

One classical question in extremal graph theory is the following: One is given
some “small” graph H . The question is how many edges can a “larger” graph
G = (V ,E) on n vertices have if H is forbidden to appear as a subgraph. We denote
this number by ex(n, H). Note that formally H appears as a subgraph if there is
an injective map f : V (H) →V (G) so that {u, v} ∈ E(H) ⇒ { f (u), f (v)} ∈ E(G). For
example, we seen the Kövari-Sos-Turan Theorem in Chapter 4.0.2 which shows
that a forbidden Kr -subgraph limits the number of edges to cr ·n2−1/r . In the
new notation that means ex(n,Kr ) ≤ cr ·n2−1/r . However, this does not fully an-
swer the question for non-complete graphs. For example consider the case of
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the k-cycle denoted by Ck . Then forbidding the Kk also forbids the Ck and hence
ex(n,Ck ) ≤ ck ·n2−1/k . But with the dependent random choice theorem we will
be able to prove a better bound!

But first, we need a fairly useful embedding theorem:

Lemma 7.2. Let H = (A∪̇B ,F ) be a bipartite graph with |A|, |B | ≤ k and deg(b) ≤
r ∀b ∈ B . If G = (V ,E) contains |U | = 2k vertices so that for all S ⊆U with |S| = r

one has |N∗(S)| ≥ 2k, then G contains H as a subgraph.

Proof. W.l.o.g. suppose that A = {a1, . . . , ak } and B = {b1, . . . ,bk }. We pick a map f :
A∪B →V defining the embedding. We can indeed embedd the left hand side A

arbitrarily. We then embedd the vertices b1, . . . ,bk of B one by one. Suppose that
the embedding for b1, . . . ,bi has already been chosen. Then for bi+1, consider
the at most r nodes S := f (NH (bi+1)). These have at least 2k common neighbors
in G . We pick any one as f (bi+1) that has not been used so far to embed A or
b1, . . . ,bi . The embedding can look as follows:

S := f (NH (bi+1))
|S| ≤ r

f (a1)

f (ak )

f (b1)

f (bi )
f (bi+1)

N∗(S)
|N∗(S)| ≥ 2k

Theorem 7.3. Let H = (A∪̇B ,F ) be a bipartite graph with |A|, |B | ≤ k and deg(b) ≤
r∀b ∈ B . Then ex(n, H) ≤ ck n2−1/r .

Proof. Suppose that we have a graph G where the average degree is d = cn1−1/r

where we can make c as large as needed. Then d r

nr−1 = cr . If for example c ≥ 4k,

then Theorem 7.1 gives us a set A of size 2k so that S ∈
(A

r

)

has |N∗(S)| ≥ 2k. Then
the Embedding Lemma shows that H can be embedded into A.

In particular this shows that for even k, one has ex(n,Ck ) ≤ ck n3/2. Recall that
in an earlier chapter we have seen in an exercise that indeed ex(n,C4) =Θ(n3/2).
Now we have seen that forbidding a 1000-cycle instead of a 4-cycle leads to the
same asymptotic upper bound on the number of edges.

7.2 Exercises

Exercise 7.1. Suppose k is odd. How large can ex(n,Ck ) be?
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Chapter 8

Existence of Rigid Structures: The

Kuperberg-Lovett-Peled Theorem

For a motivating example, note that many algorithms used in theoretical com-
puter science are randomized, that means they draw some random bit string
x ∼ {0,1}n that is used for the computation. Then the correctness (and possi-
bly the running time) depend on that random string. For example, if we want
to find a cut S ⊆ V in a graph G = (V ,E) with |δ(S)| ≥ |E |/2, then a random cut
that includes each node independently with probability 1/2 will be enough in
expectation. However, it is more desirable to have a deterministic algorithm that
always terminates with the correct answer. One trivial way of derandomizing the
algorithm is by trying out all 2n possible random strings. Obviously this is ter-
ribly wasteful. Often, the randomized algorithm does not actually need n many
independent random bits. They might already work if the bits are pairwise in-

dependent or t-wise independent for some t > 2. In our example of MaxCut, it
actually suffices if bits are pairwise independent.

This is our motivation to define an orthogonal array of strength t as a subset
T ⊆ {0,1}n of 0/1 strings with the property that for all 1 ≤ i1 < . . . < it ≤ n and all
a1, . . . , at ∈ {0,1} one has

Pr
x∼T

[xi1 = a1, . . . , xit = at ] = 2−t . (∗)

In other words, if we draw x ∼ T , then this gives us a t-wise independent random
vector. For example T = {(0, . . . ,0), (1, . . . ,1)} is a strength-1 orthogonal array, but
it does not have strength-2.

In fact one can prove that an orthogonal array of strength t has size |T | ≥
Ωt (nt/2) for larger t . For the other direction it seems highly non-trivial to find a
construction giving a strength-t orthogonal array of size, say nO(t ). If one picks
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the set T randomly from {0,1}n , then with concentration arguments one can only
reason that the condition (∗) is approximately satisfied. But satisfying it exactly
seems hard. Note that there are many related applications where one is looking
for a rigid structure; for example one can ask for a subset T of permutations so
that the distribution of any t indices (π(i1), . . . ,π(it )) looks exactly uniform if we
draw π ∼ T . A conventional approach for such applications is to look for a suit-
able algebraic construction. But if these are not known to exist or the parameters
are not optimal, then until very recently there was no plan B. In this chapter, we
want to discuss a more systematic probabilistic technique of Kuperberg, Lovett
and Peled [KLP17] to show the existence of such rigid structures. We will show-
case the technique to prove the following result:

Theorem 8.1. For any n, t ∈ N, there exists a strength-t orthogonal array T ⊆
{0,1}n of size |T | ≤ ( cn

t
)ct for some constant c > 0.

We would like to remark that for our setting there is indeed an alternative
algebraic construction for a strength-t orthogonal array T ⊆ {0,1}n of size nO(t ),
but that construction provides suboptimal bounds for the slight generalization
of T ⊆ {0, . . . , q−1}n , while the probabilistic proof that we present here gives tight
bounds for all q . However, we restrict our attention to q = 2 to keep the notation
simple.

8.1 A matrix view on orthogonal arrays

We want to rephrase the problem of finding an orthogonal array as a matrix prob-
lem. Let B := {0,1}n be the set of all 0/1 strings and define A := {(I , a) | I ∈

([n]
t

)

, a ∈
{0,1}I } as all combinations of t-tuples equipped with bits. We define a matrix
M ∈ {0,1}B×A by letting

Mx ,(I ,a) :=
{

1 if xi = ai ∀i ∈ I

0 otherwise
∀x ∈ B = {0,1}n ∀(I , a) ∈ A.

Then a subset T ⊆ B of rows is a strength-t orthogonal array if and only if it has
the same row average as the set of all rows, that means

E
b∼T

[Mb] = E
b∼B

[Mb].

Note that the “constraints” — in this case having all events on t coordinates uni-
form — are encoded as columns of M . A natural idea is to sample T at random.
We fix a large enough parameter N ∈N that is our target size for T and set p := N

|B | .
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Now sample a subset T ⊆ B by including each row independently with probabil-
ity p. If we abbreviate X :=

∑

b∈T Mb as the sum of the sampled rows, then

E[X ] = E
T

[ ∑

b∈T

Mb

]

=
N

|B |
∑

b∈B

Mb and E
T

[|T |] = p|B | = N .

What we need to show is that indeed

Pr
[

X = E[X ] and |T | = N
]

> 0, (∗∗)

meaning that it is indeed possible to hit the expectation. Observe that the above
probability will be exponentially small, which does not leave many candidate
tools for the analysis. In the following we will give a specialized version of the
central limit theorem that proves (∗∗). This chapter is organized that we first
prove a general statement for any matrix M that satisfies certain properties. In
Section 8.4 we will then argue that the matrix M stemming from orthogonal ar-
rays indeed satisfies these properties. Starring at the definition of the matrix M

for orthogonal arrays, we can see already some properties that must be useful:
(i) we have |B | ≫ |A|, that means we have a lot more rows than columns; (ii) the
matrix is highly symmetric, meaning that there is no row that has a particular im-
portance. In the next section, we formally extract the properties that are needed.

8.2 The Kuperberg-Lovett-Peled Theorem

We will now explain the matrix properties needed for the KLP-Theorem. We
should remark that we state the Theorem slightly less general compared to the
original paper to keep things more “concrete”. Consider an arbitrary matrix M ∈
{0,1}B×A. We denote B as the row indices and A as the column indices. More-
over, Mb with b ∈ B will denote a row vector and M a with a ∈ A will denote a
column vector. Our random experiment is to fix a large enough number N ∈ N

and a probability p := N
|B | and sample each row independently into a subset T ⊆ B

with that probability p. For later reference, let Tb ∈ {0,1} be the indicator variable
telling whether row b was sampled and let X :=

∑

b∈B Tb Mb be the sum of the
sampled rows.

Let V := span{M a | a ∈ A} ⊆ R
B be the span of the column vectors. Note

that typically |A| ≪ |B |, hence the vector space V has a rather small dimension
compared to its ambient space. Later, the orthogonal space V ⊥ := {x ∈ R

B | x ⊥
x ′ ∀x ′ ∈V } will also play a role. Let

L(M) :=
{ ∑

b∈B

λb Mb |λb ∈Z

}

⊆Z
A
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be the lattice generated by the row vectors of M . We can visualize the formats as
follows:

M =

0
0
1
0
1
1
0
0
0
1
0
0

∗ ∗ ∗ ∗ ∗ ∗X =

∗ ∗ ∗ ∗ ∗ ∗L(M) =

A

B

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

V

=

∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗
∗

V ⊥

=

Divisibility. In the end, we want to guarantee that there is a subset T ⊆ B of size
|T | = N so that 1

N

∑

b∈T Mb = 1
|B |

∑

b∈B Mb holds. A relaxed condition is certainly
that

E[X ] =
N

|B |
∑

b∈B

Mb
!
∈L(M)

The set of N ’s that satisfy this, must be of the form N ∈ {c,2c,3c, . . .} for some
c > 0. That particular value c is what we call the divisibility constant.

Symmetry. The symmetry condition basically says that “all rows of M have to
look the same”. More formally, a symmetry of the matrix M is a permutation π :
B → B on the rows so that (Mπ(b),a)b∈B ∈ V . In other words, after permuting the
row indices according to π, each vector is still in the column space. Note that this
is actually more of a property of the vector space V and replacing M by a matrix
with the same column space V would not change the set of symmetries.

Lemma 8.2. Suppose that the column vectors of M are linearly independent.
Then π : B → B is a symmetry if and only if there exists a bijective linear map
τ : RA →R

A with
Mπ(b) = τ(Mb) ∀b ∈ B

Proof. Well, if that linear function τ exists, then it means that there is an invert-
ible matrix S ∈R

A×A with Mπ(b) = MbS (considering Mb and Mπ(b) indeed as 1×A
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dimensional row vectors). Then in matrix form we can write (Mπ(b))b∈B = MS.
For the column index a ∈ A means that (Mπ(b),a)b∈B =

∑

a′∈A Sa,a′M a′ ∈ V which
is the desired linear combination. One can also reverse the argument to get the
other direction.

In particular, we will use that symmetries π preserve linear dependencies.
More precisely, for a vector y ∈R

B one has

∑

b∈B

yb Mb = 0 ⇒ 0 = τ
( ∑

b∈B

yb Mb

)

=
∑

b∈B

ybτ(Mb) =
∑

b∈B

yb Mπ(b).

As condition for the KLP-Theorem, we will require that for all rows b1,b2 ∈ B ,
there exists a symmetry π of V so that π(b1) = b2.

8.2.1 The theorem

Now we can formally state the KLP-Theorem1:

Theorem 8.3 (KLP-Theorem). Let M ∈ {0,1}B×A be a matrix with V := span{M a |
a ∈ A} and let K ≥ |A| be a parameter that is at least a large enough constant.
Assume that M has the following properties:

• (I) Divisibility: c is the divisibility constant of V .

• (II) Local Decodability: There is an integer m ∈ {1, . . . ,K } so that for each
column a ∈ A there is a vector y a ∈Z

B with ‖y a‖1 ≤ K and (y a)T M = m ·ea .

• (III) Symmetry: for any row indices b1,b2 ∈ B , there is a symmetry π : B → B

of V so that π(b1) = b2.

• (IV) Constant column vectors: The all-ones-vector 1 ∈R
B lies in V .

If N is a multiple of c and K 10 ≤ N ≤ |B |
2 , then one can sample each row with

probability p := N
|B | and

Pr[X = E[X ], |T | = N ] > 0.

Note that if X = E[X ], then for any linear combination of columns we also
have

∑

a∈A ya Xa = E[
∑

a∈A ya Xa]. By the property (IV) in the KLP-Theorem, there
is a linear combination y ∈R

A with
∑

a∈A M a ya = 1 ∈R
B , and hence we know that

X = E[X ] ⇒|T | = N . Then it suffices to prove that Pr[X = E[X ]] > 0.

1The KLP paper also requires the “boundedness condition”, which asks that V is spanned by
short integer vectors, more precisely that V = span{x ∈ V ∩Z

B : ‖x‖∞ ≤ c2}. But if the entries of
M are in {0,1} and V = span{M a | a ∈ A}, then this is automatically satisfied for c2 = 1.
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Actually dropping columns that are linearly dependent does not change the
probability of the event X = E[X ] or affect (I I I ) and it can only loosen the con-
ditions (I I ), hence we may assume w.l.o.g. for the proof that all column vectors
M a are linearly independent and dim(V ) = |A|. This also implies that the lattice
L(M) has full rank, that means span(L(M)) =R

A.
Note that in the proof, the value K will be our running parameter and most

bounds that we see are going to be some polynomial in K . However, we make no
effort in optimizing the exponents of those polynomials.

8.2.2 An overview over the proof

We will now give an outline of the proof of the KLP Theorem and fill in details for
definitions and proofs later.

(1) Fourier analysis. The proof is based on Fourier analysis argument. In par-
ticular we study the Fourier transform X̂ (θ) := E[exp(2πi 〈X ,θ〉)] of the ran-
dom variable X , where θ ∈ R

A. Then the Fourier inversion formula tells us
that

Pr[X = E[X ]] = det(L) ·
∫

D∗
X̂ (θ) ·e−2πi 〈E[X ],θ〉dθ

Here D∗ will denote the Voronoi cell of the lattice L∗ which is the dual lat-
tice to L. Then the overall strategy is to prove that the latter integral evalu-
ates to > 0.

(2) Well-behaved Fourier coefficients. We then prove that the Fourier coeffi-
cients X̂ (θ) are well behaved. In particular it is not possible that 〈Mb ,θ〉 is
large for one row b and close to 0 for all others. More concretely one can use
the symmetry condition to argue that maxb∈B | 〈Mb ,θ〉 | ≤ K 3·Eb∈B [〈Mb ,θ〉2]1/2

and maxb∈B {〈Mb ,θ〉} ≤ K 3
Eb∈B [{〈Mb ,θ〉}2]1/2 for all θ ∈ R

A, where {·} gives
the distance to the nearest integer.

We will outline the first bound. Fix a θ and suppose for some row e ∈ B we
want to bound | 〈Me ,θ〉 | in comparison to the averageβ := Eb∼B [〈Mb ,θ〉2]1/2.

Let E ⊆ B be the rows b where | 〈Mb ,θ〉 | > Kβ. By Markov’s inequality
|E | ≤ |B |/K 2. Now suppose that e ∈ E since otherwise we are done. Pick a
random subset S ⊆ B \E of rows of size |S| = K 2. Using the pigeonhole prin-

ciple one can show that there is a vector y ∈ {−1,0,1}A with y T M = 0 while
supp(y) ⊆ S and |supp(y)| ≥ |S|/4. That means for at least a quarter of rows
b0 in S there is a linear dependence of the form Mb0 = ±

∑

b∈S\{b0} yb Mb .
Let πb0 : B → B be the symmetry with πb0 (b0) = e. As symmetries preserve
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linear dependence we have

Me = Mπ(b0) =±
∑

b∈S/{b0}

yb Mπ(b)

Next, observe that even conditioning on the row b0, the indices πb0 (S \{b0})
are a uniform random subset of B \πb0 (b0) and in particular the probability
that the indices of πb0 (S \{b0}) intersect E is bounded by (|S|−1)·|E |

|B |−1 ≤ 1
8 . Then

with probability at least 1
4 −

1
8 = 1

4 the experiment is successful and hence
we can write Me as a short linear combination of rows not from E , i.e.

| 〈Me ,θ〉 | ≤
∣
∣
∣

∑

b∈S\{b0}

yb 〈Mb ,b〉
∣
∣
∣≤ ‖y‖1 ·K ·β≤ K 3β.

(3) Fourier coefficients close to 0. A convenient norm to use will be ‖θ‖R :=
Eb∈B [〈Mb ,θ〉2]1/2. Using (2) one can show that for ‖θ‖R ≤ 1

8K 3 one has

X̂ (θ) = exp
(

2πi 〈E[X ],θ〉−2π2
θ

T
Σ[X ]θ±O(K 3N‖θ‖3

R )
)

where Σ[X ] := p · (1− p) · M T M is the covariance matrix of M . What this
means is that for ‖θ‖R small enough, the Fourier coefficient X̂ (θ) is very
close to the Fourier coefficient of a Gaussian with the same expectation
and covariance matrix and in particular it is positive. This fact itself is true
for any sum of independent random variables (that’s how the Central Limit
Theorem is proven), but in our setting we can use (2) to argue that the
threshold on the length of ‖θ‖R can be chosen more generously.

(4) Geometry of vectorspace V . We can use the Local Decodability property
to show that Zn \V have a ‖ ·‖∞-distance of at least 1

K 3 to the subspace V .

(5) Fourier coefficients far from the dual lattice. Consider a Fourier coeffi-
cient θ ∈ D∗ that is so far from the dual lattice that we cannot apply (3). We
the main inequality will be that (and there is an overlap in the cases)

|X̂ (θ)| ≤ exp
(

−Θ( 1
K 12 N )

)

∀θ ∈ D∗ with ‖θ‖R ≥
1

4K 6

The outline of the argument is as follows. Fix a θ ∈ D∗ with ‖θ‖R ≥ ε :=
1

4K 6 and write Mθ = n + r where nb = ⌊〈Mb ,θ〉⌉ ∈ Z and rb = ±{〈Mb ,θ〉}. A

straightforward estimate shows that |X̂ (θ)| ≤ exp(−Θ(N ·Eb∈B [r 2
b

])), which
means that suffices to Eb∈B [r 2

b
] is large. In other words we need to prove

an implication of the form: θ far from L∗ ⇒ Mθ far from Z
B . Suppose for
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the sake of contradiction that Eb∈B [r 2
b

]1/2 ≤ 1
4·K 6 . From (2) we know that

‖r ‖∞ ≤ K 3 ·Eb∈B [r 2
b

]1/2 ≤ 1
4K 3 . As Mθ = n + r ∈ V and ‖r ‖∞ < 1

K 3 we know
that indeed n lies in the vectorspace V . Then we can write n = Mα for
some α ∈R

A. Finally

E
b∈B

[r 2
b ]1/2 Mθ=Mα+r= E

b∈B
[〈Mb ,θ−α〉2]1/2 = ‖θ−α‖R

θ∈ Voronoi cell
≥ ‖θ‖R ≥ ε=

1

4K 6

and we have a contradiction.

(6) Estimating Pr[X = E[X ]]. The final step involves a lot of estimates but now
new ideas per se. If Y ∈ R

A is the Gaussian random variable with identical
expectation E[Y ] = E[X ] and identical covariance matrix Σ[Y ] = Σ[X ]. If
fY is the density function of that Gaussian, then we can estimate that for a
proper choice of ε := poly(K ) · ln(N )/

p
N one has

Pr[X = E[X ]]

det(L)
≥ fY (E[X ])

︸ ︷︷ ︸

(∗)

−
∫

‖θ‖R≤ε
|X̂ (θ)− Ŷ (θ)|dθ

︸ ︷︷ ︸

small by (3)

−
∫

θ∈D∗:‖θ‖R>ε
|X̂ (θ)|dθ

︸ ︷︷ ︸

small by (5)

−
∫

‖θ‖R>ε
|Ŷ (θ)|dθ

︸ ︷︷ ︸

small by (∗)

> 0

In (∗) we use standard estimates for Gaussians. This proves the KLP-Theorem.

8.3 Proof of the KLP-Theorem

The main idea behind the proof is to design a variant of the central limit theorem

that provides super-fast convergence based on the properties of M , in particular
the symmmetry and the fact that |B |≫ |A|. The Fourier transform of the random
variable X is the function

X̂ : RA →C with X̂ (θ) := E

[

exp(2πi 〈X ,θ〉)
]

We abbreviate L :=L(M) as the lattice spanned by row vectors of M and denote

L
∗ :=

{

y ∈R
A | 〈y , z〉 ∈Z ∀z ∈L

}

.

as the dual lattice2. We assumed that M has rank |A|, hence both L and L∗ are
full rank lattices and det(L) ·det(L∗) = 1. For any dual lattice vector y ∈ L∗ we

2In the KLP paper the dual lattice is denoted by L.
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have 〈Mb , y〉 ∈ Z and hence 〈X , y〉 ∈ Z for any outcome of X . That implies that
e2πi〈X ,y〉 = 1 and the Fourier transform X̂ is L∗-periodic, meaning that

X̂ (θ+ y) = X̂ (θ) ∀θ ∈R
A ∀y ∈L∗

Actually we will have X ∈L at any time. To understand the convergence of X , it
will be crucial to consider its covariance matrix Σ[X ] ∈R

A×A which is given by

Σ[X ] := E

[(

X −E[X ]
)T (

X −E[X ]
)]

independence=
∑

b∈B

(

E[(Tb Mb)T (Tb Mb)]−E[Tb Mb]T
E[Tb Mb]

)

=
∑

b∈B

(p −p2)M T
b Mb = p(1−p) M T M

︸ ︷︷ ︸

=:R

.

We can use the scalar R of the covariance matrix to define a useful norm

‖θ‖R :=
( 1

|B |
·θT Rθ

)1/2
=

(

E
b∼B

[〈Mb ,θ〉2]
)1/2

We define the corresponding norm ball

BR (ε) :=
{

θ ∈R
A | ‖θ‖R ≤ ε

}

Moreover, let

D∗ :=
{

θ ∈R
A | ‖θ‖R < ‖θ− y‖R y ∈L∗ \ {0}

}

be the Voronoi cell of the dual lattice with respect to the norm ‖·‖R . Recall that the
Voronoi cell contains all points that are closer to 0 than to any other L∗-lattice
point in terms of ‖ ·‖R -distance.

b b b

b b b

b b b

0

visualization of L∗ and D∗

D∗

An important property is that D∗ induces a tiling of the whole space, meaning
that D∗+ y for y ∈L∗ partitions the space (apart from the set of measure 0 that
belongs to the boundary between translates).

Next, we recall the reason why the Fourier transform is useful when talking
about probabilities — the reason is that with the Inverse Fourier Transform, the
probabilities can be recovered from the Fourier coefficients:
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Lemma 8.4 (Fourier inversion formula). For any λ ∈L one has

Pr[X =λ] = det(L) ·
∫

D∗
X̂ (θ) ·e−2πi 〈λ,θ〉 dθ

Proof. We apply the usual “swap-and-cancel trick” in Fourier analysis to obtain
∫

D∗
X̂ (θ) ·exp(−2πi 〈λ,θ〉) dθ =

∫

D∗
E
X

[

exp(2πi 〈X ,θ〉)
]

·exp(−2πi 〈λ,θ〉) dθ

= E
X

[∫

D∗
exp

(

2πi 〈X −λ,θ〉
)

dθ

︸ ︷︷ ︸

=0 if X−λ∈L\{0}

]

= Pr[X =λ] ·
∫

D∗
exp(2πi ·0)
︸ ︷︷ ︸

=1

dθ

︸ ︷︷ ︸

=det(L∗)

=
1

det(L)
·Pr[X =λ].

using that voln(D∗) = det(L∗) = 1
det(L) for any full rank dual lattice. Here we use

the following:
Claim. Let s ∈L/{0}. Then

∫

D∗ e2πi 〈s,θ〉dθ = 0.
Proof of claim. As mentioned earlier, L∗ + D∗ gives a tiling of Rn . If P ⊆ R

n

is another region so that L∗+P is a tiling, then the integral of any L∗-periodic
function over D∗ and P will give the same value. Let u1, . . . ,u|A| ∈L∗ be a basis of
the lattice L∗ and suppose we picked indices so that 〈s,u1〉 6= 0. Our choice for
a region is the fundamental parallelepiped P := {

∑|A|
i=1 zi ui | 0 ≤ zi < 1}. We will

write z = (z1, z̄). Then
∫

D∗
e2πi 〈s,θ〉dθ =

∫

P
e2πi 〈s,θ〉dθ = det(L∗)

∫

[0,1[n
e2πi〈∑|A|

i=1 zi ui ,s〉d z

= det(L∗)
∫1

0
e2πi z1〈u1,s〉d z1

︸ ︷︷ ︸

=0

·
(∫

z̄∈[0,1[n−1
e2πi〈∑|A|

i=2 zi ui ,s〉d z̄
)

Here the crucial observation is that
∫1

0 e2πi z1〈u1,s〉d z = 0 since we integrate exactly
| 〈u1, s〉 | ∈N times over the complex unit circle and antipodal values cancel each
other out.

We sampled rows independently, which we can use to get an explicit expres-
sion for the Fourier coefficients:

Lemma 8.5. For any θ ∈R
A one has

X̂ (θ) =
∏

b∈B

(

1−p +p ·exp
(

2πi 〈Mb ,θ〉
))
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Proof. We use the independence of the random variables Tb to write

X̂ (θ) = E

[

exp
(

2πi 〈
∑

b∈B

Tb Mb ,θ〉
)]

=
∏

b∈B

E

[

exp
(

2πi ·Tb · 〈Mb ,θ〉
)]

Tb∈{0,1}=
∏

b∈B

(

(1−p) ·1+p ·exp(2πi 〈Mb ,θ〉)
)

,

which gives the claim.

From the formula in Lemma 8.5 we can already obtain an important obser-
vation for later: If for a fixed coefficient vector θ we have a non trivial fraction of
b ∈ B satisfy that 〈Mb ,θ〉 has a significant distance from the nearest integer, then
the size |X̂ (θ)| will be negligibly small.

8.3.1 A basis for V ⊥

Reall that V ⊥ ⊆R
A is the space that is orthogonal to the space V that is spanned

by the column vectors M a . For later, we will need a “short” basis of V ⊥:

Lemma 8.6. The space V ⊥ has a basis of integer vectors of ‖ · ‖1-length at most
K 3.

Proof. By a slight abuse of notation, we denote ea ∈R
A as a unit vector in R

A and
eb ∈ R

B as a unit vector in R
B . By property (II), we know that there are vectors

y a ∈Z
B with m ·ea = (y a)T M so that 1 ≤ m ≤ K and ‖y a‖1 ≤ K . Now consider the

vectors
ub :=

(

m ·eb −
∑

a′∈A

Mba′ y a′)

∈R
B ∀b ∈ B.

We claim that {ub}b∈B ⊆V ⊥ as for any column vector M a one has

〈M a ,ub〉 = m · 〈eb , M a〉
︸ ︷︷ ︸

=Mba

−
∑

a′∈A

Mba′ · 〈y a′
, M a〉

︸ ︷︷ ︸

=m if a=a′,0 o.w.

= 0.

The length of the vectors is

‖ub‖1 ≤ m
︸︷︷︸

≤K

·‖eb‖1
︸ ︷︷ ︸

≤1

+
∑

a′∈A

|Mba′ |
︸ ︷︷ ︸

≤1

·‖y a′
‖1

︸ ︷︷ ︸

≤K

≤ K +K 2 ≤ K 3

As dim(span{eb | b ∈ B}) = |B | and dim(span{y a | a ∈ A}) ≤ |A|, we clearly have
dim(span{ub | b ∈ B}) ≥ |B |− |A|. Then any maximally linear independent subset
of {ub}b∈B is a suitable basis of V ⊥.
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8.3.2 Rows as linear combinations of few other rows

We start with a small auxiliary lemma. In the following, for an index set S ⊆ B , we
denote MS as the submatrix of M that contains only the rows in S.

Lemma 8.7. For any subset S ⊆ B of |S| ≥ Θ(K log(K )) rows, there is a non-zero
vector y ∈ {−1,0,1}S satisfying y T MS = 0 and |supp(y)| ≥ |S|

4 .

Proof. The proof is a pigeonhole principle argument. First, note that for y ∈ {0,1}S

one has ‖y T MS‖∞ ≤ |S| and hence there are only (|S|+1)|A| many outcomes for
2|S| many assignments y 7→ y T MS . It is not hard to check that if |S| ≥O(|A| log |A|)
with a large enough hidden constant, then 2|S| ≥ 20.99|S| · (|S| + 1)|A| and there
will even be 20.99|S| many y ’s with y T MS being identical. Then another sim-
ple calculation shows that there must be y , ỹ ∈ {0,1}S with ‖y − ỹ‖1 ≥ |S|

4 and
y T MS = ỹ T MS . Then y − ỹ satisfies the claim.

As we will see, any row Me can be written as an integer combination of a few
other rows, even if some not too large subset of rows is forbidden. The proof uses
the vector y with y T M = 0 from the last Lemma 8.7. Then we can use the sym-
metry assumption to embed the set S randomly. Then with positive probability
one will have ye 6= 1 and supp(y)∩ (E \ {e}) =;.

Lemma 8.8. For any subset E ⊆ B of at least |E | ≤ |B |
K 2 many rows and any e ∈ E ,

there is a y ∈Z
B with Me = y T M , supp(y) ⊆ B \ E and ‖y‖1 ≤ K 2.

A poor visualization might be as follows:

y

supp(y)

E

A

BM =
Me

Proof. Set s :=Θ(K log(K )) as the bound from the previous lemma. Fix a set E ⊆ B

with |E | ≤ |B |
8s

and e ∈ E and note that 8s ≤ K 2 as we may assume that K is at least
a big enough constant. We know that for every row b ∈ B there is a symmetry

πb : B → B with πb(b) = e. We pick a subset S ⊆ B of fixed size |S| = s uniformly
at random and denote y S ∈ {−1,0,1}B as the non-zero vector with y S M = 0 and
supp(y S) ⊆ S that exists by the previous Lemma 8.7. Now pick b0 ∈ S uniformly
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at random. Then

Pr
S,b0

[yS
b0

6= 0] ≥
1

4

as b0 is picked uniformly from S. But even conditioning on a fixed b0 we have

Pr
S

[

πb0

(

S \ {b0}
)

︸ ︷︷ ︸

unif. from B/{b0}

∩E 6= ; | b0
]

≤
s|E |
|B |

≤
1

8
.

Then by the union bound PrS,b0 [yS
b0

6= 0 and πb0 (S)∩E = {e}] ≥ 1
4 −

1
8 > 0. Let us

fix an outcome of (S,b0) and y := y S attaining this event — wl.o.g. with yb0 = 1.
Then

Mb0 =
∑

b∈S\{b0}

(−yb)Mb

and applying the symmetry permutation to the rows gives

Me = Mπ(b0) =
∑

b∈S\{b0}

(−yb) ·Mπ(b)

which means we can write Me as a short integer combination of rows with indices
π(b) ∉ E .

8.3.3 Well behaved Fourier coefficients

We need a technical lemma that tells us that the inner product 〈Mb ,θ〉 for a par-
ticular row b is always bounded in terms of the inner product for the average row.
Basically this is where symmetry as well as the other properties come into play.
In the following, for a number α ∈ R, let {α} := minz∈Z |α− z| be the distance to
the nearest integer.

Lemma 8.9. The following holds for every θ ∈R
A:

(i) One has maxb∈B | 〈Mb ,θ〉 | ≤ K 3 · (E[〈Mb ,θ〉2])1/2 = K 3 · ‖θ‖R .

(i) Write rb := {〈Mb ,θ〉} as the distance to the nearest integer. Then maxb∈B |rb | ≤
K 3 ·

(

Eb∈B [r 2
b

]
)1/2.

Proof. For a fixed vector θ ∈ R
A, set β := (Eb∼B [〈Mb ,θ〉2])1/2 as a sort of a “geo-

metric average”. Consider the set of indices E := {b ∈ B | | 〈Mb ,θ〉 | ≥ Kβ} where
the inner product | 〈Mb ,θ〉 | is significantly above that average. Then β ≥ ( 1

|B | ·
|E | · (Kβ)2)1/2 ⇒ |E | ≤ |B |

K 2 . Fix any e ∈ E (if there is none, we are done with (i )).
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Then by Lemma 8.8, there is a vector y with support disjoint to E so that Me =
∑

b∈B\E yb Mb and ‖y‖1 ≤ K 2. Then we can bound the inner product as

| 〈Me ,θ〉 | ≤
∑

b∈B\E

|yb |
︸ ︷︷ ︸

≤K 2

· | 〈Mb ,θ〉 |
︸ ︷︷ ︸

≤Kβ

≤ K 3β

and the claim (i ) is true.
The proof for (i i ) is quite similar. Set β := Eb∼B [r 2

b
]1/2 as the “geometric av-

erage” of the remainders of inner products. Again, let E := {b ∈ B | |rb | ≥ Kβ}
be the rows where the remainder significantly exceeds the remainder. As be-
fore, we conclude that |E | ≤ |B |

K 2 and fix a row e ∈ E . Again, take a y ∈ Z
B with

Me =
∑

b∈E\B yb Mb and supp(y)∩E =;. Then

〈Me ,θ〉 =
∑

b∈B\E

yb 〈Mb ,θ〉

holds and taking the remainders on both sides, we obtain

|re | ≤
∑

b∈B\E

|yb |
︸ ︷︷ ︸

≤K 2

· |rb |
︸︷︷︸

≤Kβ

≤ K 3β

as claimed.

8.3.4 The Fourier Transform near the origin

The next step is to show that the Fourier coefficients X̂ (θ) close to the origin can
be very well approximated by a Gaussian with same expectation and covariance
matrix as X . Here, “close” will mean that θ ∈BR (ε) with a choice of

ε :=
poly(K ) · ln(N )

p
N

,

but we keep the following lemmas general.
b b b

b b b

b b b

0

visualization of L∗ and D∗

D∗

BR (ε)

“far” coefficients θ

“close” coefficients θ
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Lemma 8.10. For all 0 < ε≤ 1
8K 3 and all θ ∈BR (ε) one has

X̂ (θ) = exp
(

2πi · 〈E[X ],θ〉−2π2
θ

T
Σ[X ]θ+δ

)

,

where |δ| ≤O(K 3 · ‖θ‖3
R N ).

Proof. First note that the radius of the ball is chosen small enough so that all the
inner products can be bounded by

max
b∈B

| 〈Mb ,θ〉 |
Lemma 8.9

≤ K 3 · ‖θ‖R
︸ ︷︷ ︸

≤ 1
8K 3

≤
1

8
(∗)

Let us abbreviate xb := 2π〈Mb ,θ〉 as the “number of rotations” for the Fourier
coefficient, that means |xb | ≤ 2π

8 = π
4 . We can now get a more handy expression

for X̂ (θ). Here we use the standard estimates of exp(z) = 1+ z + 1
2 z2+O(|z|3) and

1+ z = exp(z − 1
2 z2 +O(|z|3)) for z ∈C for |z| ≤ 1.

X̂ (θ)
Lem 8.5=

∏

b∈B

(

1+p · (e i ·xb −1)
)

=
∏

b∈B

exp
(

p · (e i ·xb −1)−
1

2
p2 (e i ·xb −1)2

︸ ︷︷ ︸

=−x2
b
+O(|x4

b
|)

+p3 ·O(|e i ·xb −1|3)
︸ ︷︷ ︸

O(|xb |3)

)

=
∏

b∈B

exp
(

p ·
(

i · xb +
1

2
(i · xb)2 +O(|xb |3)

)

+
1

2
p2x2

b +O(p2|xb |3)
)

= exp
(

i p
∑

b∈B

xb −
1

2
p(1−p)

∑

b∈B

x2
b +O

(

p
∑

b∈B

|xb |3
))

= exp
(

2πi ·p
∑

b∈B

〈Mb ,θ〉
︸ ︷︷ ︸

=〈E[X ],θ〉

−2π2 p(1−p)
∑

b∈B

〈Mb ,θ〉2

︸ ︷︷ ︸

=θTΣ[X ]θ

+O
(

p
∑

b∈B

|xb |3
))

This already corresponds to the claimed expression for X̂ (θ), just that we need to
justify the bound on the error term. In fact,

p
∑

b∈B

|xb |3 ≤ 8π3p ·max{| 〈Mb ,θ〉 | | b ∈ B }
︸ ︷︷ ︸

≤K 3‖θ‖R by (∗)

·
∑

b∈B

〈Mb ,θ〉2

︸ ︷︷ ︸

=|B |·‖θ‖2
R

≤ 8π3 p|B |
︸︷︷︸

=N

·K 3 · ‖θ‖3
R .
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8.3.5 The Fourier Transform far from L∗

The next step is to show that the Fourier coefficients |X̂ (θ)| decay rapidly when
moving away from the dual lattice. First, a technical lemma. Recall that V =
span{M a | a ∈ A} is the span of the columns of M . Then for any θ ∈R

A, the vector
(〈Mb ,θ〉)b∈B = Mθ lies by definition in V . Now suppose that Mθ lies very close to
an integer vector n. Then it is not apriori clear that also n lies in V (for a general
matrix, it might not). However, our matrix M is nicely behaved, so that integer
vectors are separated from V :

Lemma 8.11. Any vector n ∈Z
B \V and θ ∈R

A one has ‖n −Mθ‖∞ ≥ 1
K 3 .

b b b b b b

b b b b b b

b b b b b b

b b b b b b

0

1
K 3

V

n
V ⊥

R
B

Proof. Fix n ∈ Z
B \ V and let n + r ∈ V be the vector that minimizes ‖r ‖∞. We

know from Lemma 8.6 that V ⊥ has a basis of short integer vectors of ‖ ·‖1-length
at most K 3. Let u ∈ V ⊥∩Z

B be such a basis vector that is not orthogonal to n

(and hence not to r ). Then

1 ≤ |〈u,n + r 〉
︸ ︷︷ ︸

=0

−〈u,n〉
︸ ︷︷ ︸

∈Z\{0}

| = |〈u,r 〉 | ≤ ‖u‖1
︸ ︷︷ ︸

≤K 3

·‖r ‖∞

and rearranging gives ‖r ‖∞ ≥ 1
K 3 .

Now we can show that the Fourier coefficients |X̂ (θ)| decay exponentially fast
when moving away from dual lattice points. We want to give the proof intuition
first. For a vector θ ∈ D∗ that is far enough from the origin, let rb := {〈Mb ,θ〉} be
the remainder. We know that if one rb is large, then the average of rb ’s is some-
what large and it is not hard to then calculate that |X̂ (θ)| ≤ exp(−Θ(N )·Eb∼B [r 2

b
]).

So suppose for the sake of contradiction that rb ≈ 0 for all b ∈ B . In matrix no-
tation, that means the vector Mθ is very close to Z

B . By the previous Lemma,
close lattice point will be in V and hence can be written in the form Mα ∈ Z

B

with α ∈ R
A. In other words 〈Mb ,α〉 ∈ Z for each b and hence α ∈ L∗ lies in the
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dual lattice. Then their distance ‖θ−α‖2
R = Eb∼B [r 2

b
] is large by assumption and

we have a contradiction.
b b

b b b

b b

0α

visualization of L∗ ⊆R
A

θ

‖ ·‖R large

b b b b b

b b b b b

b b b b b

b b b b b

0

V

Mα

Mθ

visualization of V ⊆R
B and Z

B

Lemma 8.12. For 0 < ε< 1
4K 6 and θ ∈ D∗ \BR (ε) one has |X̂ (θ)| ≤ exp(−ε2

2 N ).

Proof. Let us write 〈Mb ,θ〉 = nb + rb with nb ∈Z and |rb | ≤ 1
2 .

Claim. Eb∈B [r 2
b

]1/2 ≥ ε.
Proof of Claim. Written in matrix-vector notation, we have Mθ = (n+r ) ∈V . We
know by Lemma 8.9 that

E
b∈B

[r 2
b ]1/2 ≥

‖r ‖∞
K 3

,

hence we are done if ‖r ‖∞ ≥ K 3ε. So suppose for the sake of contradiction that
this is not the case and ‖r ‖∞ ≤ K 3ε≤ 1

4K 3 . However, for that case we know from
Lemma 8.11 that close enough integer vectors are indeed in the subspace, that
means n ∈ V . By linear independence of M ’s columns, there is a unique α ∈ R

A

with Mα= n. Note that α ∈L∗ since otherwise there had to be a generator Mb of
the primal latticeLwith nb = 〈Mb ,α〉 ∉Z. From the properties of the Voronoi cell
D∗ of the dual lattice and the assumption θ ∈ D∗, we know that ‖θ−α‖R ≥ ‖θ‖R .
Then

E
b∈B

[r 2
b ]1/2 Mθ=Mα+r=

1

|B |
∑

b∈B

〈Mb ,θ−α〉2 = ‖θ−α‖R ≥ ‖θ‖R ≥ ε.

Now, bounding the Fourier coefficient is fairly straightforward:

|X̂ (θ)| =
∣
∣
∣

∏

b∈B

(

1−p +p ·e2πi 〈Mb ,θ〉
)∣
∣
∣

cyclicity of exp
=

∣
∣
∣

∏

b∈B

(

1+p · (e2πi ·rb −1)
)∣
∣
∣

≤
∏

b∈B

(

1+p ·Re(e2πi rb −1)
︸ ︷︷ ︸

≤−r 2
b

) 1−x≤e−x/2∀0≤x≤ 1
2≤

∏

b∈B

exp
(

−
p

2
r 2

b

)

= exp
(

−
1

2
p|B |
︸︷︷︸

=N

E
b∈B

[r 2
b ]

︸ ︷︷ ︸

≥ε2

)
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Here we have used that Re(e2πi ·x) = 1−Θ(x2) for small x.

10

e2πi ·x

2πx Re

Im

8.3.6 The main proof

First we need to show a quick lemma that says that we can put some sizable ball
in the Voronoi cell:

Lemma 8.13. One has BR ( 1
2K 3 ) ⊆ D∗.

Proof. We will show that any dual lattice point θ ∈L∗ \ {0} has a length of ‖θ‖R ≥
1

K 3 . Then every point with ‖ · ‖R -norm less than 1
2K 3 must be closer to the origin

than to any other lattice point. For every dual lattice point θ there must be a
generator Mb of the lattice that is not orthogonal and has

1 ≤ |〈Mb ,θ〉 |
Lem. 8.9

≤ K 3 · ‖θ‖R

Rearranging for ‖θ‖R gives the claim.

Now we discuss the remaining main proof. Consider a second random vector
Y ∈ R

A that is a random Gaussian with expectation E[X ] and covariance matrix
Σ[X ]. Note that the density function of that Gaussian will be

fY (x) =
1

(2π)|A|/2
p

det(Σ[X ])
·exp

(

−
1

2
(x −E[X ])T

Σ[X ]−1(x −E[X ])
)

A well known fact that we leave as exercise is that the Fourier transform of that
Gaussian is

Ŷ (θ) = E

[

exp
(

2πi 〈Y ,θ〉)
]

= exp
(

2πi 〈E[X ],θ〉−2π2
θ

T
Σ[X ]θ

)

∀θ ∈R
A

The continuous version of the Fourier inversion formula tells us that

fY (x) =
∫

RA
Ŷ (θ) ·exp

(

−2πi 〈x ,θ〉
)

dθ ∀x ∈R
A
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is the recovery of the density function from the Fourier coefficients (again, we
skip a proof of this fact known from your probability 101 course). We know that
the density of the Gaussian is significant around the expectation, in this case
fY (E[X ]) = 1

(2π)|A|/2
p

det(Σ[X ])
. In particular we can relate Pr[X = E[X ]] to that value.

More generally,

∣
∣
∣Pr[X =λ]−det(L) · fY (λ)

∣
∣
∣

≤ det(L) ·
[∫

BR (ε)
|X̂ (θ)− Ŷ (θ)|dθ

︸ ︷︷ ︸

=I1

+
∫

D∗\BR (ε)
|X̂ (θ)|dθ

︸ ︷︷ ︸

=I2

+
∫

RA\BR (ε)
|Ŷ (θ)|dθ

︸ ︷︷ ︸

=I3

]

It remains to bound the integrals I1, I2, I3 and hope that the error is less than
det(L) · fY (E[X ]).

Bounding I2. First, we already learned in Lemma 8.12 that Fourier coefficients
|X̂ (θ)| decay exponentially outside of BR (ε) (but inside of the Voronoi cell).

Lemma 8.14 (Bounding I2). If 0 < ε < 1
4K 6 , then one has

∫

D∗\BR (ε) |X̂ (θ)|dθ ≤
exp(− ε2

2 N )
det(L) .

Proof. We use the bound on the Fourier coefficient |X̂ (θ)| from Lemma 8.12 to
get

∫

D∗\BR (ε)
|X̂ (θ)|
︸ ︷︷ ︸

≤exp(− ε2
2 N )

dθ ≤ exp
(

−
ε2

2
N

)

· voln(D∗)
︸ ︷︷ ︸

=det(L∗)= 1
det(L)

≤
exp(−ε2

2 N )

det(L)

Bounding I3. We will use a short auxiliary lemma to bound exponentially de-
caying integrals:

Lemma 8.15. Let S ∈ R
A×A be a symmetric, positive semidefinite matrix. Then

for r ≥ 10
p
|A|

∫

{x∈RA |xT Sx≥r 2}
exp(−xT Sx)d x ≤ exp(−Θ(r 2))
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Proof. We use the integral transformation formula3

∫

{x∈RA |xT Sx≥r 2}
exp(−xT Sx)d x =

1
p

det(2S)

∫

‖x‖2≥
p

2r
exp(−‖x‖2

2/2)

=
(2π)|A|/2

p
det(2S)

Pr
x∼NA(0,1)

[

‖x‖2 ≥
p

2r
︸︷︷︸

≥E[‖x‖2]+r

]

≤ 2 ·
(2π)|A|/2

p
det(2S)

exp(−r 2/2) ≤
exp(−Θ(r 2))
p

det(S)

where NA(0,1) is the distribution of standard Gaussian in R
A.

The next step is to bound the Fourier coefficients of the Gaussian outside or
BR (ε), which quickly follows from integrating:

Lemma 8.16 (Bounding I3). If ε≥C
p

Kp
N

for a large enough constant C > 0, then

∫

RA\BR (ε)
|Ŷ (θ)|dθ ≤

exp(−Θ(ε2N ))
p

det(Σ[X ])

Proof. First recall that the covariance matrix is

Σ[X ] = p(1−p) ·R º
N

2|B |
R

and hence ‖θ‖2
R = 1

|B | ·θ
T Rθ ≤ 2

N
·θT

Σ[X ]θ which we use in (∗). We can write

∫

RA\BR (ε)
|Ŷ (θ)|dθ =

∫

RA\BR (ε)

∣
∣
∣exp

(

2πi 〈E[X ],θ〉−2π2
θ

T
Σ[X ]θ

)∣
∣
∣ dθ

|e2πiα|≤1 & (∗)
≤

∫

RA\{θ|θTΣ[X ]θ≥ 1
2ε

2N }
exp(−2π2

θ
T
Σ[X ]θ) dθ

Lem. 8.15
≤

exp(−Θ(ε2N ))
p

det(Σ[X ]))

where the last inequality uses that indeed ε2N ≥Θ(|A|).

3Recall that the transformation formula is
∫

Rn f (Qx)d x = 1
det(Q)

∫

Rn f (x)d x where Q is a regular

square matrix and we apply it with Q :=
p

2 ·S1/2 and f (x) = 1‖x‖2≥
p

2r ·exp(−‖x‖2
2/2).
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Bounding I1. Again, a short lemma:

Lemma 8.17. For any positive semidefinite matrix S ∈R
A×A one has

∫

RA
exp(−xT Sx) · |xT Sx |3/2d x ≤

(2π)|A|/2

p
det(2S)

·O(|A|3/2)

Proof. We have
∫

RA
exp(−xT Sx) · |xT Sx |3/2d x

transformation=
O(1)

p
det(2S)

∫

RA
exp(−‖x‖2

2/2) · ‖x‖3
2d x

=
O(1) · (2π)|A|/2

p
det(2S)

E
x∼NA(0,1)

[‖x‖3
2]

︸ ︷︷ ︸

O(|A|3/2)

Finally, we bound the difference between X and the Gaussian Y that comes
from the Fourier coefficients close to the origin. While we will be able to make
the error terms I2, I3 exponentially small compared to the Gaussian density, the

error I1 will actually be of the form poly(K )p
N

times the Gaussian density. Hence this

is the only significant error term.

Lemma 8.18 (Bounding I1). One has
∫

BR (ε)
|X̂ (θ)− Ŷ (θ)|dθ ≤O

( K 4.5

p
N · (2π)|A|/2

p
det(Σ[X ])

)

Proof. First note that by Lemma 8.10, for an individual θ ∈BR (ε) there is a δ with
|δ| ≤O(K 3‖θ‖3

R N ) so that

|X̂ (θ)− Ŷ (θ)| =
∣
∣
∣exp

(

2πi 〈E[X ],θ〉−2π2
θ

T
Σ[X ]θ+δ

)

−exp
(

2πi 〈E[X ],θ〉−2π2
θ

T
Σ[X ]θ

)∣
∣
∣

≤ |eδ−1|
︸ ︷︷ ︸

≤2|δ|

·exp
(

−2π2
θ

T
Σ[X ]θ

)

· |exp(2πi 〈E[X ],θ〉)|
︸ ︷︷ ︸

≤1

Then plugging this in, we get
∫

BR (ε)
|X̂ (θ)− Ŷ (θ)|dθ ≤ O(K 3N ) ·

∫

RA
‖θ‖3

R ·exp(−2π2
θ

T
Σ[X ]θ)dθ

(∗)= O
(K 3N

N 3/2

)

·
∫

RA
|θT

Σ[X ]θ|3/2 exp(−2π2
θ

T
Σ[X ]θ)dθ

Lemma 8.17
≤ O

( K 3

p
N

)

·
(2π)|A|/2

√

det(4π2Σ[X ])
·O(|A|3/2)

≤
O(K 4.5)

p
N · (2π)|A|/2

p
det(Σ[X ])
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applying Lemma 8.17 with S := 2π2
Σ[X ]. Note that we also have been using that

‖θ‖R =
( 1

|B |
θ

T Rθ

)1/2
=Θ(1) ·

( 1

p|B |
θ

T
Σ[X ]θ

)1/2
=Θ(1) ·

( 1

N
θ

T
Σ[X ]θ

)1/2
(∗)

Finishing the main proof

First note that we assume that M ∈ {0,1}B×A and hence Σ[X ] ∈ Z
A×A and thus

det(Σ[X ]) ≥ 1 using that M has full column rank. On the other hand entries in the
covariance matrix are bounded by ‖Σ[X ]‖∞ = p(1−p) ·maxa,a′∈A | 〈M a , M a′〉 | ≤
p|B | = N and then by Hadamard’s inequality generously we get det(Σ[X ]) ≤ (K N )K .
For the lattice L it will suffice that det(L) ≥ 1 by integrality. Then

Pr[X = E[X ]]

det(L)
≥ fY (E[X ])− I1 − I2 − I3

≥
1

(2π)|A|/2
p

det(Σ[X ])
−

O(K 4.5)
p

N · (2π)|A|/2
p

det(Σ[X ])
︸ ︷︷ ︸

small if N≥K 10

−
exp(−ε2

2 N )

det(L)
︸ ︷︷ ︸

small if ε≥ 4Kp
N

ln(K N )

−
exp(−Θ(ε2N ))
p

det(Σ[X ])
︸ ︷︷ ︸

small if ε≥ Kp
N

> 0

For the estimate of I2, note that exp(−ε2

2 N ) ≪
p

det(Σ[X ]) as long ε2N ≥ 4K ln(K N ).

Overall, a choice of ε := 8Kp
N

ln(N ) and N ≥ K 10 works.

8.4 Application to orthogonal arrays

Now we will fill-in the formal details, how to apply the Kuperberg-Lovett-Peled
Theorem to show existence of t-wise orthogonal arrays. We fix n and t . Again,
let B := {0,1}n be the set of all 0/1 strings as row vectors. Similar to before, for an
index set I ⊆ [n] and assignments z ∈ {0,1}I we define a column vector M (I ,z) ∈
{0,1}B with

M(I ,z),x :=
{

1 xi = zi ∀i ∈ I

0 otherwise.
∀x ∈ B

Recall that we had previously used the columns A := {(I , z) | |I | = t , z ∈ {0,1}I } and
the matrix M := (M a)a∈A. It will be convenient to study in parallel the alternative
set of column indices Ã := {(I ,1) | |I | ≤ t } inducing a matrix M̃ := (M a)a∈Ã. Both
choices are actually equivalent as x ∼ T is going to be a uniform distribution on
all subsets of t variables if and only if Prx∼T [

∧

i∈I (xi = 1)] = 2−|I | for all |I | ≤ t . We
could in principle use either matrix M or M̃ , but some properties will be easier to
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justify for M and other easier for M̃ — and this is admissible as the space spanned
by their columns is the same.

Lemma 8.19. One has V := span{M a | a ∈ A} = span{M a | a ∈ Ã}.

Proof. For |I | ≤ t one can fix any I ⊆ J ⊆ [n] with |J | = t and simply sum up over
the matching atomic events to get M (I ,1) =

∑

z∈{0,1}J :zi=1∀i∈I M (J ,z). In reverse, for
(I , z) ∈ A one can abbreviate I0 := {i ∈ I | zi = 0} and I1 := {i ∈ I | zi = 1} and use
the inclusion-exclusion formula to get

M (I ,z) =
∑

J⊆I0

(−1)|J |M (I1∪J ,1)

That means every column in M and M̃ , resp., can be written as a linear combi-
nation of rows of the other matrix. The claim follows.

All-ones function. First of all, note that the matrix M̃ also includes the all-ones
column vector M (;,;), which satisfies the last condition of the KLP-Theorem.

Local decodability. This is the only part for orthogonal arrays that need some
insight:

Lemma 8.20. For each a ∈ Ã, there is a y ∈Z
B with ea = y T M and ‖y‖1 ≤ 2t .

Proof. For convenience reasons, we index the columns by |I | ≤ t . By a slight
abuse of notation, we can also denote M J := M1J ∈ {0,1}Ã as the row induced by
the characteristic vector of J . We fix an index set I with |I | ≤ t and claim that there
is a short integer vector y so that e I =

∑

J⊆I y J M J , where e I ∈ {0,1}Ã is the target
unit vector. Note that all those rows M J with J ⊆ I are 0 on columns indexed by
non-subsets of I .



110 CHAPTER 8. THE KUPERBERG-LOVETT-PELED THEOREM

; 1 2 1,2

M;

M{1}

M{2}

M{1,2}

subsets of I

J 6⊆ I

0

Example: rows M J with J ⊆ I for t = 2

1 0 0 0

1 1 0 0

1 0 1 0

1 1 1 1

0 0 0 1 0 0 0 0

Ã

target: e I

Then the inclusion exclusion formula gives

e I =
∑

J⊆I

(−1)|I \J |
︸ ︷︷ ︸

=:y J

M J

and clearly ‖y‖1 ≤ 2|I | ≤ 2t .

Divisibility. First a quick consequence of the previous lemma:

Corollary 1. One has L(M̃) =Z
Ã.

Proof. Lemma 8.20 implies in particular that ea ∈ L(M̃). Then indeed, integer
combinations of the rows of M̃ must give the whole Z

Ã.

Note that in each column M (I ,1) exactly a 2−|I | fraction of entries are 1’s. That
means as long as N is an integer multiple of 2t we can be sure that N

|B |
∑

b∈B M (I ,1)
b

∈
Z. Then M̃ satisfies the divisibility condition with constant 2t .

Symmetry. Now we come to the symmetry condition:

Lemma 8.21. For every b1,b2 ∈ B , there is permutation π : B → B so that π(b1) =
b2 and (Mπ(b),a)b∈B ∈V for all a ∈ A.

Proof. For a vector x ∈ {0,1}n we define a permutation on the row indices

πx : B → B with πx(b) = b ⊕x for b ∈ B = {0,1}n

where ⊕ is the addition modulo 2. Then πb1⊕b2 (b1) = b2, that means the set of
permutations (πx)x∈{0,1}n can shuffle any row index to any other row index. Next,
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note that if we apply the permutation πx to the entries of a column vector we
obtain

(Mπx (b),(I ,z))b∈B = (Mx⊕b,(I ,z))b∈B
(∗)= (Mb,(I ,z⊕x))b∈B = M (I ,z⊕x) ∈V

Note that this vector is again a column vector of M and hence also in the vector
space V . Here we have used in (∗) that xi ⊕bi = zi ⇔ bi = zi ⊕xi .

Summary. Finally, we can apply the KLP-Theorem with matrix M̃ and parame-
ter K := max{dim(V ),2t } = nΘ(t ).

8.5 Open problems

The KLP-Theorem is purely existential in the sense that it does not provide an
algorithm that could find the set T in time polynomial in the size of M . It is an
interesting open problem, whether there is a polynomial time algorithm (possi-
bly randomized) for the same task.

To understand, what properties of a matrix are needed to make the presented
arguments work, consider the following result of Alon and Vu [AV97]: There is a
0/1 matrix M with nΘ(n) rows and n columns that all have the same number of
1-entries. Still no proper subset T will have the same row average as the whole
matrix.

It would be interesting whether there is a simpler form of the KLP-Theorem
with fewer assumptions or assumptions that are easier to verify.

8.6 Exercises

Exercise 8.1. Fix m ∈ N and an even integer n with n ≥ C ·mC where C > 0 is
a large enough constant. Consider a random matrix A ∈ {−1,1}m×n where each
entry is picked uniformly and independently drawn from {−1,1}. In this exercise
we want to give a Fourier analysis proof for the fact that with high probability
there is an x ∈ {−1,1}n with Ax = 0. For this sake, draw x ∈ {−1,1}n uniformly
at random and abbreviate X := Ax ∈ Z

m . We will study the Fourier coefficients
X̂ (θ) = Ex [exp(2πi 〈X ,θ〉)] where θ ∈R

m .

(a) Show that Prx [X = 0] = 2m
∫

[− 1
4 , 1

4 [m X̂ (θ)dθ.

(b) Show that X̂ (θ) =
∏n

j=1 cos(2π〈A j ,θ〉) for all θ ∈R
m .
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(c) Show that for every outcome of A and every ‖θ‖2 ≤ 1
8
p

m
one has X̂ (θ) =

exp(−2π2
θ

T (A AT )θ+δ(θ)) with an error term of |δ(θ)| ≤O(
∑n

j=1 〈A j ,θ〉4
).

(d) Show that for every outcome of A and every ‖θ‖2 ≤ 1
8
p

m
one has X̂ (θ) ≥

exp(−Θ(nm) · ‖θ‖2
2) > 0.

(e) Prove that for every fixedθ ∈ [−1
4 , 1

4 [m one has PrA[|X̂ (θ)| ≤ exp(−Θ( n
poly(m) )·

‖θ‖2
2)] ≥ 1−exp(−n/poly(m)).

(f) Prove that PrA[|X̂ (θ)| ≤ exp(−Θ( n
poly(m) )·‖θ‖2

2) ∀θ ∈ [ 1
4 , 1

4 [m] ≥ 1−exp(−n/poly(m)).

(g) Show that with high probability over the choice of A one has
∫

θ∈D+ X̂ (θ)dθ >
( 1

poly(m,n) )m and
∫

θ∈D− |X̂ (θ)|dθ ≤ exp(−n/poly(m)) where D+ := {θ ∈ [−1
4 , 1

4 [m :

X̂ (θ) ≥ 0} and D− := {θ ∈ [−1
4 , 1

4 [m : X̂ (θ) < 0}.

(h) Prove that with high probability over the choice of A one has Prx [X = 0] > 0.

Hint. You may use the inequality exp(−1
2 z2 − z4) ≤ cos(z) ≤ exp(−1

2 z2 + z4) for
|z| ≤ 1

8 without proving it.
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