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Chapter 1

Basics of Convex Geometry

The goal of this monograph is a introduction to high-dimensional convex ge-

ometry. As a basis we follow a selection of chapters of the excellent textbook

Asymptotic Geometric Analysis, Part 1 by Artstein-Avidan, Giannopolous and Mil-

man [AAGM15]. However, in presentation we try a more geometric rather than

functional-analytic approach. We will avoid working with infinite-dimensional

vector spaces where ever possible. We will also make use of simplified proofs if

available. I am in particular grateful to Victor Reis for proof reading this manuscript.

1.1 Basic Definitions

A set A ⊆ R
n is convex if (1−λ)x +λy ∈ A for all x , y ∈ A and 0 ≤ λ≤ 1. Let B n

2 :=
{x ∈ R

n | ‖x‖2 ≤ 1} be the Euclidean ball of radius 1 around the origin. Moreover,

we define Sn−1 := {x ∈R
n | ‖x‖2 = 1} as the (n−1)-dimensional sphere. More gen-

erally, we define the balls B n
p := {x ∈ R

n | ‖x‖p ≤ 1} where ‖x‖p := (
∑n

i=1
|xi |p )1/p

for 1 ≤ p <∞ and ‖x‖∞ := maxi=1,...,n |xi |. The Minkowski sum of two sets A,B ⊆
R

n is defined by A+B := {a +b | a ∈ A,b ∈ B}.

0

A

0

B

0

A+B

We denote int(K ) := {x ∈ K | ∃ε > 0 : x +εB n
2 ⊆ K } as the interior of K . A convex

body is a convex set that is compact (= closed and bounded) and has a non-empty

interior. We say that K is (centrally) symmetric if K =−K .

7



8 CHAPTER 1. BASICS OF CONVEX GEOMETRY

A function F : Rn →R is convex if

F ((1−λ)x +λy) ≤ (1−λ)F (x)+λF (y) ∀x , y ∈R
n ∀0 ≤λ≤ 1.

In other words for every x and y , the line segment between (x ,F (x)) and (y ,F (y))

lies above the graph. This is equivalent to asking that the epigraph {(x , t ) ∈R
n+1 |

t ≥ F (x)} is convex.

x ∈R
n

t ∈R

epigraph of F

x y

F (x)

The support function for a set K is defined by

hK (a) := sup
x∈K

〈a, x〉

where a ∈R
n . In other words, hK (a) is the minimal value so that 〈a, x〉 ≤ hK (a) is

a valid inequality for K . If a ∈R
n \ {0}, then

wK (a) :=
hK (a)+hK (−a)

‖a‖2
= sup

{ | 〈a, x〉−〈a, y〉 |
‖a‖2

: x , y ∈K

}

is the width of K in direction a. Geometrically speaking, wK (a) is the mini-

mal width of a strip with normal vector a that contains K . Note that for a con-

vex body, the supremum is always attained and in the definitions of hK (a) and

wK (a), we could replace the sup with a max.

K

a

hK (a)+hK (−a)
‖a‖2

= wK (a)

〈a, x〉 ≤ hK (a)

Let Voln(K ) be the n-dimensional volume of a body K . We will study also other

measure for the “largeness” of a set. In particular for a non-empty convex set K
we define the mean width as w(K ) := Ex∼Sn−1 [wK (x)]. Yet, a different measure is

the (standard) Gaussian measure γn which is defined as

γn(K ) :=
∫

K

1

(2π)n/2
·e−‖x‖2

2/2 d x
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By a slight abuse of notation, we will write γn(x) := 1
(2π)n/2 · e−‖x‖2

2/2 as the den-
sity of this distribution. The distribution has many exceptional properties: it is

rotationally symmetric and drawing standard Gaussian x ∼ γn is equivalent to

drawing the coordinate entries x1, . . . , xn ∼ γ1 independently. Without making

the statement formal at this point, the Gaussian measure γn(K ) is approximately

the volume ratio Voln(K ∩
p

nB n
2 )/Voln(B n

2 ). A random vector X = Ax+b is called

a Gaussian random vector if x ∼ γn and A ∈ R
n×n is a matrix and b ∈ R

n . The

Gaussian is centered if E[X ] = b = 0. Gaussians are universal in the sense that

adding independent random vectors together gives a distribution that converges

to the Gaussian with identical expectation and covariance matrix.

Lemma 1.1. The quantity an := Ex∼γn [‖x‖2] satisfies
p

n ·
√

n
n+1

≤ an ≤
p

n.

The upper bound follows from Jensen’s inequality and Ex∼γn [‖x‖2
2] = n — we

skip the lower bound calculations here. We will also later use the Gaussian mean
width

g (K ) := E
a∼γn

[
sup
x∈K

〈a, x〉
]

Note that in contrast to w(K ) this is a “one-sided” notion of width, but g (K ) =
an
2

w(K ) ≈
p

n
2

·w(K ) where the multiplicative error goes to 0 as n →∞.

1.2 Norms, Polarity and dual norms

If V is an R-vector space (most of the time we will simply consider V =R
n), then

a map ‖ ·‖ : Rn →R is called a norm if it satisfies

(i) subadditivity: ‖x + y‖ ≤ ‖x‖+‖y‖ for all x , y ∈V
(ii) homogenity: ‖λx‖ = |λ| · ‖x‖ for λ ∈R and x ∈V

(iii) point-separation: ‖x‖ = 0 ⇒ x = 0

If we have a symmetric convex body K , then Minkowski norm is defined as

‖x‖K := min{λ≥ 0 : x ∈λK }

Indeed, one can check that this is a norm as the convexity of K implies the subad-

ditivity of ‖ · ‖K and the symmetry implies the homogenity. In fact, for any norm

‖·‖ we can set K := {x ∈R
n | ‖x‖ ≤ 1} as the unit ball of that norm, then ‖x‖ = ‖x‖K

for any x . For example one has ‖x‖p = ‖x‖Bn
p

.

For K ⊆ R
n , let span(K ) be the unique minimal subspace with K ⊆ span(K ).

We now come to a very crucial concept in convex geometry:



10 CHAPTER 1. BASICS OF CONVEX GEOMETRY

Definition 1.2. For a convex set K ⊆R
n with 0 ∈K we define the polar as

K ◦ :=
{

y ∈ span(K ) | sup{〈x , y〉 : x ∈K } ≤ 1
}

If K is a convex body with 0 ∈K then the definition simplifies to

K ◦ = {y ∈R
n | 〈x , y〉 ≤ 1 ∀x ∈K }.

Recall that K ⊆ R
n is a polytope if K = conv(S) for a finite set of points S. Equiv-

alently K is a polytope if K is bounded and has a finite number of faces, i.e.

K = {x ∈ R
n : 〈ai , x〉 ≤ bi ∀i = 1, . . . , N }. Any convex body can be arbitrarily well

approximated by a polytope. To gain intuition we discuss polarity for polytopes.

Lemma 1.3. Let K be a polytope with 0 ∈ int(K ).

(a) If K = conv{a1, . . . , aN } then K ◦ = {y ∈R
n | 〈a1, y〉 ≤ 1, . . . ,〈aN , y〉 ≤ 1}.

(b) If K = {x ∈R
n | 〈a1, x〉 ≤ 1, . . . ,〈aN , x〉 ≤ 1}, then K ◦ = conv{a1, . . . , aN }.

Moreover, in both cases K ◦ is again a polytope with 0 ∈ int(K ◦).

Proof. Note that the boundedness of K implies that 0 ∈ int(K ◦).

For (a) we simply use the definition to get

K ◦ =
{

y ∈R
n | 〈y , x〉 ≤ 1 ∀x ∈K

}

=
{

y ∈R
n :

N∑

i=1

λi 〈y , ai 〉 ≤ 1 ∀λ ∈R
N
≥0 :

N∑

i=1

λi = 1
}

=
{

y ∈R
n : 〈y , ai 〉 ≤ 1 ∀i ∈ [N ]

}

Here we have used that any point y that satisfies the N linear constraints will also

satisfy any convex combination of them.

Now consider (b). First we prove C := conv{a1, . . . , aN } ⊆ K ◦. Let λ ∈ R
N
≥0 with∑N

i=1λi = 1 be a convex combination. We have 〈ai , x〉 ≤ 1 ∀x ∈ K by assumption

and so 〈∑N
i=1λi ai , x〉 ≤ 1 for all x ∈ K . This implies

∑N
i=1λi ai ∈ K ◦. If 0 ∉C then by

the Hyperplane Separation Lemma there is a direction x with 〈ai , x〉 ≤ 0 meaning

that K is unbounded in direction x . Hence 0 ∈ C . Now consider a point y ∉ C .

Again by the Hyperplane Separation Lemma, there is a normal vector x ∈R
n with

〈a, x〉 < β < 〈y , x〉 for all a ∈ C . As 0 ∈ C we know that β > 0. So after scaling x

we may assume that 〈ai , x〉 < 1 < 〈y , x〉 for all i ∈ [N ]. Then x ∈ K and this is a

certificate that y ∉ K ◦.

Part (b) also proves that the polar of any bounded polytope with 0 ∈ int(K ) is

bounded, which settles the “moreover” part.
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More intuitively, Lemma 1.3 shows that when moving from K to the polar

K ◦, points turn to inequalities and inequalities turn to points. We would like to

mention that the polar is not invariant under translation.

〈a, x〉 ≤ 1

0

K

K ◦

a

1
‖a‖2

One has the following useful fact:

Theorem 1.4 (Polarity Theorem). For a convex body K ⊆ R
n with 0 ∈ int(K ) one

has (a) (K ◦)◦ = K and (b) if K is also symmetric then ‖x‖K = hK ◦(x) for all x ∈R
n .

Proof. We verify this at least for polytopes. Claim (a) follows from Lemma 1.3.

For (b) we write the polytope in the form K = {x ∈R
n | 〈a1, x〉 ≤ 1, . . . ,〈aN , x〉 ≤ 1}.

Then we observe that

‖x‖K = max{〈ai , x〉 : i = 1, . . . , N }

while

hK ◦(x) = max
{
〈y , x〉 | y ∈ conv{a1, . . . , aN }

}
= max{〈ai , x〉 : i = 1, . . . , N }

For a norm ‖ ·‖ in R
n , we define the dual norm as

‖x‖∗ := sup
{
〈y , x〉 : y ∈R

n with ‖y‖ ≤ 1
}

From the definition we observe the following immediately:

Lemma 1.5. Let K be a symmetric convex body. Then ‖ · ‖K ◦ is the dual norm of

‖ ·‖K .

Proof. It suffices to check that for ‖ ·‖ := ‖·‖K one has

‖x‖∗ ≤ 1 ⇔ 〈y , x〉 ≤ 1 ∀y ∈R
n with ‖y‖K ≤ 1

⇔ 〈y , x〉 ≤ 1 ∀y ∈K

⇔ x ∈K ◦
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Another immediate consequence of the definition of the dual norm:

Lemma 1.6 (Generalized Cauchy-Schwarz). For x , y ∈R
n and any symmetric con-

vex set K one has | 〈x , y〉 | ≤ ‖x‖K · ‖y‖K ◦.

Proof. After scaling we may assume ‖x‖K = 1. Then | 〈x , y〉 | ≤ ‖y‖K ◦ by definition

of dual norm.

Yet another useful observation is the following: For any x ∈R
n and any norm

‖ · ‖K there must be an element y with ‖y‖K ◦ = 1 so that ‖x‖K = 〈x , y〉. In other

words, there is always a y so that the Generalized Cauchy-Schwarz inequality

is tight. Sometimes in proofs one aims at upper bounding ‖x‖K , then it can be

helpful to instead upperbound 〈x , y〉 with ‖y‖K ◦ = 1. We call y the dual element
to x w.r.t. norm ‖ · ‖K . Geometrically, this dual element y is the point in K ◦ that

maximizes the inner product with x .

0

x with ‖x‖K = 1

y with ‖y‖K ◦ = 1 and 〈x , y〉 = 1

K

K ◦

·

Lemma 1.7 (Existence of Dual Element). Let K ⊆R
n be a symmetric convex body.

For any x ∈R
n there is a y ∈R

n with | 〈x , y〉 | = ‖x‖K · ‖y‖K ◦ and ‖y‖K ◦ = 1.

Proof. We know by Theorem 1.4 that ‖x‖K = hK ◦(x) = max{〈x , y〉 : y ∈ K ◦}. The y

attaining this does the job.

The following fact is also useful:

Lemma 1.8. Let K ,Q ⊆ R
n be convex bodies with 0 ∈ int(K ). Then (conv(K ∪

Q))◦ = K ◦∩Q◦.

Proof. Apply Lemma 1.3.(a).

While most of the time we will use polarity for full dimensional convex sets,

we will have one application in Chapter 7 where the sets are lower dimensional.

For a subspace H ⊆R
n we denote the orthogonal projection into H by PH : Rn →
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R
n which is the unique linear map with PH (x + y) = x for x ∈ H and y ∈ H⊥. We

will now see that projection and intersection are operations that are polar to each

other.

Lemma 1.9. Let K ⊆ R
n be a symmetric convex body and let H ⊆ R

n be a sub-

space, then (K ∩H)◦ = PH (K ◦).

K0H

B n
2

K ∩H
K ◦

0H

B n
2

PH (K ◦)

Proof. First note that both objects (K ∩H)◦ and PH (K ◦) are both contained in the

subspace H and 0 is contained in the relative interior. It suffices to verify that the

support functions for directions y ∈ H are identical. First we see that

hPH (K ◦)(y)
y∈H= hK ◦(y)

Thm 1.4= ‖y‖K

as maximizing projection gives the same as maximizing over the original body

K ◦ (this uses y ∈ H). Next, we have

h(K∩H)◦(y)
Thm 1.4= ‖y‖K∩H

y∈H= ‖y‖K

and the claim follows.

For a matrix A and a set K , by a slight abuse of notation we write A(K ) = {Ax :

x ∈ K } as the image of K under the linear map x 7→ Ax . Then it will be useful to

understand how the polar of K changes if we apply a linear transformation to K :

Lemma 1.10. Let K ⊆ R
n be a convex body with 0 ∈ int(K ) and let A ∈ R

n×n be a

regular matrix. Then A(K )◦ = (AT )−1(K ◦) = (A−1)T (K ◦).

Proof. We have

A(K )◦
Def ◦=

{
y ∈R

n | 〈y , x〉 ≤ 1 ∀x ∈ A(K )
}

=
{

y ∈R
n | 〈y , Ax〉 ≤ 1 ∀x ∈K

}

=
{

y ∈R
n | 〈AT y , x〉 ≤ 1 ∀x ∈K

}

=
{
(AT )−1 y | 〈y , x〉 ≤ 1 ∀x ∈ K

} Def ◦= (AT )−1(K ◦)
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The 2nd equation holds because (AT )−1 = (A−1)T .

1.3 Distance measures for convex bodies

Loosely speaking, a distance measure for convex bodies is a quantity d(K ,Q) that

is larger the more different the convex bodies K and Q are. But there are several

meaningful distance measures and which is the “right one” will be application-

dependent.

The Hausdorff Distance

We want to discuss several distance measures on convex bodies.

Definition 1.11. We define the Hausdorff distance of two convex bodies K ,Q ⊆
R

n as

dH (K ,Q) := inf
{
δ≥ 0 |K ⊆Q +δB n

2 and Q ⊆ K +δB n
2

}

= sup
{
|hK (u)−hQ (u)| | u ∈ Sn−1

}

Intuitively, dH is the minimum radius of a ball by which one has to enlarge

K and Q to include each other. Clearly dH (K ,Q) ≥ 0 for all bodies K ,Q. It is not

difficult to check that:

Lemma 1.12. The Hausdorff distance is a metric and in particular dH (A,C ) ≤
dH (A,B)+dH (B ,C ) for convex bodies A,B ,C ⊆R

n .

A

B

dH (A,B)

Finally we have the following useful compactness result:

Theorem 1.13 (Blaschke Selection Theorem). A sequence {K j } j∈N of convex bod-

ies with K j ⊆ r B n
2 for some fixed r has a subsequence that is convergent in the

Hausdorff metric.
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Proof sketch. W.l.o.g. suppose that K j ⊆ [0,1]n for all j . Partition the cube into

an equally-spaced grid so that each cube in the grid has diameter at most ε> 0.

Then (
p

n/ε)n many cubes suffice, but we only need that this is a finite number.

Two convex bodies Ki ,K j that intersect the same set of cells have a Haussdorf

distance of at most ε. Then from an infinite sequence one can iteratively filter

subsequences of bodies whose distance is getting shorter and shorter quite sim-

ilar to the proof of the Bolzano-Weierstrass Theorem.

K

[0,1]n

ε

The geometric distance

The second distance measure that we discuss will allow some transformations to

the convex bodies. Formally, the geometric distance

dG (K ,Q) := min
{

a ·b | ∃x , y ∈R
n :

1

b
(Q + y) ⊆ K +x ⊆ a · (Q + y)

}

is the minimum factor s ≥ 1 so that after translating and scaling with a scalar one

has Q ⊆ K ⊆ sQ. In particular the relative position in space does not matter for

this distance. This is a multiplicative distance measure with dG (K ,Q) ≥ 1 for all

K ,Q.

The Banach Mazur Distance

The Banach-Mazur distance is defined as dBM (K ,Q) := min{dG (A(K ),Q) | A linear map}.

Phrased differently the Banach-Mazur distance is the minimum number s ≥ 1 so

that Q ⊆ A(K ) ⊆ sQ where A : Rn → R
n is an affine map. In Chapter 2 we will see

that by John’s Theorem indeed dBM (K ,B n
2 ) ≤ n for any convex body K . As before,

the Banach-Mazur distance is a multiplicative measure with dBM (K ,Q) ≥ 1 for

all K ,Q. We can visualize the difference between the geometric distance and the

Banach-Mazur distance as follows:
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dG (K ,Q) ·Q

KQ

geometric distance dG

dBM (K ,Q) ·Q

Q

Banach-Mazur distance dBM

A(K )

In most cases we are interested in the Banach-Mazur distance of a body K ⊆ R
n

to the Euclidean ball. Hence we abbreviate dBM (K ) := dBM (K ,B n
2 ). If F ⊆ R

n is a

subspace of dimension k := dim(F ), then K ∩F is a k-dimensional object. In this

case, we define dBM (K ∩F ) := dBM (K ∩F,B k
2 ).

1.4 Useful Inequalities

In this section, we recall several inequalities that are particularly useful when

dealing with convex functions. We begin with one of the “work horses” in the

area:

Theorem 1.14 (Jensen Inequality for Convex Functions). Let X : Ω→ R be a ran-

dom variable and F : R→R be a convex function. Then F (E[X ]) ≤ E[F (X )].

The inequality follows immediately from the definition of convexity.

Example of convex function F and

distribution X over only two values x1, x2

x1 x2E[X ]

F (E[X ])
E[F (X )]

F

If the function F is rather concave then convex, then the inequality holds with

reversed relation:

Theorem 1.15 (Jensen Inequality for Concave Functions). Let X : Ω→R be a ran-

dom variable and F : R→R be a concave function. Then F (E[X ]) ≥ E[F (X )].
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The next inequality is due to Young:

Theorem 1.16 (Young’s Inequality). For x, y ≥ 0 and 0≤λ≤ 1 one has

x · y ≤ (1−λ) ·x1/(1−λ) +λ · y1/λ

Proof. Simply note that

ln
(
(1−λ)x1/(1−λ) +λy1/λ

) Jensen+concavity of ln
≥ (1−λ) ln(x1/(1−λ))+λ ln(y1/λ)

= ln(x)+ ln(y) = ln(x · y)

Another useful inequality is the AMGM inequality:

Theorem 1.17 (Arithmetic Mean vs Geometric Mean). Letα1, . . . ,αn ≥ 0 and x1, . . . , xn ≥
0 and abbreviate β :=

∑n
i=1

αi . Then

α1x1 + . . .+αn xn

β
≥ β

√
xα1

1 · . . . ·xαn
n

Proof. Let X be the random variable with Pr[X = xi ] = αi
β . Then

ln
( n∑

i=1

αi

β
xi

)
= ln(E[X ])

Jensen
≥ E[ln(X )] =

n∑

i=1

αi

β
ln(xi ) = ln

( n∏

i=1

x
αi /β

i

)

as ln is concave.

The inequality of Hölder is basically a generalization of Cauchy-Schwarz to

general ‖ ·‖p -norms:

Theorem 1.18 (Hölder’s Inequality I). Let X ,Y : Ω → R≥0 be jointly distributed

non-negative random variables. Then for all 0 ≤ λ ≤ 1 one has E[X 1−λY λ] ≤
E[X ]1−λ

E[Y ]λ.

Proof. Scaling X by s > 0 scales both sides of the inequality by the same factor

of s1−λ. Hence we may assume w.l.o.g. that E[X ] = 1; similarly assume E[Y ] = 1.

Then applying Young’s Inequality gives

E[X 1−λY λ]
Young
≤ E

[
(1−λ) · (X 1−λ)

1
1−λ +λ · (Y λ)

1
λ

]
= E[(1−λ)X +λY ]

= (1−λ)E[X ]+λE[Y ] = 1= E[X ]1−λ ·E[Y ]λ
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Often, Hölder is stated in a different but equivalent form:

Theorem 1.19 (Hölder’s Inequality II). Let X ,Y : Ω→R be jointly distributed ran-

dom variables. Let p, q ≥ 1 be a pair with 1
p + 1

q = 1. Then E[|X ·Y |] ≤ E[|X |p ]1/p ·
E[|Y |q ]1/q .

We conclude with Minkowsi’s Inequality which in fact provides the proof that

the bodies B n
p are convex.

Lemma 1.20 (Minkowski’s Inequality I). Let 1 ≤ p < ∞ and let X ,Y be jointly

distributed random variables so that E[|X |p ],E[|Y |p ] <∞. Then E[|X +Y |p ]1/p ≤
E[|X |p ]1/p +E[|Y |p ]1/p .

Proof. First note that |x + y |p ≤ 2p · (|x|p +|y |p ) and so E[|X +Y |p ]1/p <∞. Now,

rescale the random variables so that E[|X +Y |p ] = 1. Choose q so that 1
p + 1

q =
1 ⇔ q = p

p−1
. Then

1 = E

[
|X +Y |p

]
= E

[
|X | · |X +Y |p−1

]
+E

[
|Y | · |X +Y |p−1

]

Hölder II
≤

(
E

[
|X |p

]1/p +E

[
|Y |p

]1/p
)
·
(
E

[
|X +Y |q(p−1)

]
︸ ︷︷ ︸

=1

)1/q
= E

[
|X |p

]1/p +E

[
|Y |p

]1/p

as q(p −1) = p.

Lemma 1.21 (Minkowski’s Inequality II). Let 1 ≤ p <∞, let ‖·‖K be a norm and let

X ,Y be jointly distributed random variables on R
n so that E[‖X ‖p

K ],E[‖Y ‖p
K ] <∞.

Then E[‖X +Y ‖p
K ]1/p ≤ E[‖X ‖p

K ]1/p +E[‖Y ‖p
K ]1/p .

Proof. We bound E[‖X+Y ‖p
K ]1/p ≤ E[|‖X ‖K +‖Y ‖K |p ]1/p ≤ E[‖X ‖p

K ]1/p+E[‖Y ‖p
K ]1/p

using the triangle inequality for ‖·‖K and Minkowski’s Inequality I (Lem 1.20) for

the random variables ‖X ‖K and ‖Y ‖K .

1.5 The Hahn-Banach Theorem and relatives

A simple, but powerful result is the following:

Theorem 1.22 (Separating Hyperplane Theorem I). Let A,B ⊆R
n non-empty dis-

joint convex sets where both A and B are closed and at least one of them is

bounded. Then there is a vector c ∈R
n and δ ∈R so that

〈c , x〉 > δ> 〈c , y〉 ∀x ∈ A ∀y ∈ B
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Sketch. Let (x∗, y∗) ∈ A ×B be the pair minimizing the distance ‖x∗− y∗‖2 (this

must exist for the following reason: suppose that A is bounded; then A is com-

pact. Then the distance function d(x) := min{‖y−x‖2 | y ∈B} is well-defined and

continuous, hence a minimum is attained on P ). Then the hyperplane through
1
2

(x∗+ y∗) with normal vector c = x∗− y∗ separates A and B .

x∗ y∗

〈c , x〉 = δ

A

B

The statement also holds for unbounded sets — as long as one is willing to

give up the strict separation:

Theorem 1.23 (Separating Hyperplane Theorem II). Let A,B ⊆R
n be non-empty

disjoint convex sets. Then there is a vector c ∈R
n and δ ∈R so that

〈c , x〉 ≥ δ≥ 〈c , y〉 ∀x ∈ A ∀y ∈ B

A Banach space is a pair X = (V ,‖ ·‖), where V is an R-vector space1 and ‖ ·‖ :

V → R≥0 is a norm. Most of the time the vector space is simply V = R
n but in

convex geometry we will find other infinite-dimensional vector spaces occuring.

For example X = (V ,‖ · ‖) with V := { f : [a,b] → R | f continuous} and ‖ f ‖ :=
maxx∈[a,b] | f (x)| is such a vector space.

Theorem 1.24 (Hahn-Banach Theorem). Let (V ,‖ · ‖) be a Banach space and let

U ⊆ V be a subspace. Suppose F : U → R is a linear function with F (x) ≤ ‖x‖ for

all x ∈U . Then there exists a linear function F̃ : V →R so that

• F̃ (x) = F (x) for all x ∈U .

• F̃ (x) ≤ ‖x‖ for all x ∈V .

Sketch. We will only prove the statement for the finite-dimensional case, i.e. V =
R

n . Define K := {x ∈ R
n | ‖x‖ ≤ 1} as the unit ball of the norm ‖ · ‖. Let A := {x ∈

U | F (x) ≤ 1} and B := {x ∈U | F (x) > 1}. Then conv(K ∪ A) and B are convex and

disjoint, hence there exists a separating hyperplane of the form 〈c , x〉 = δ. Scale

this one so that δ= 1 (works as 0 ∈ int(conv(K ∪ A))). Then F̃ (x) := 〈c , x〉 does the

job.

1One can also consider Banach spaces with C-vector spaces, but for the scope of this text we

restrict to to R as the underlying field.
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U

K

A B0

〈c , x〉 = 1

1.6 Steiner symmetrization

There are several cases of inequalities for convex bodies K where the worst case is

attained for Euclidean balls. Then, one standard proof technique is to gradually

transform K into a ball. This is done by the so-called Steiner symmetrization. For

u ∈ R
n we define u⊥ := {x ∈ R

n | 〈x ,u〉 = 0} as the (n −1)-dimensional subspace

that is orthogonal to u.

Definition 1.25. Let K ⊆R
n be a convex body and u ∈ Sn−1 a unit direction. The

Steiner symmetral Su(K ) ⊆ R
n of K in direction u is defined so that for every x ∈

u⊥ one has

Vol1((x +Ru)∩K ) = Vol1((x +Ru)∩Su(K ))

where (x +Ru)∩Su(K ) is an interval centered at x .

The way to interpret this construction is as follows: take a body K and a point

x ∈ u⊥. Then shift the interval (x +Ru)∩K until it is centered around x . The new

body is then called Su(K ). Note that in particular the body Su(K ) is symmetric

w.r.t. the hyperplane u⊥.
x +Ru

u⊥

u

x

Su(K )

K
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The Steiner symmetrization has many useful properties. For example it pre-

serves volume and convexity. In particular:

Theorem 1.26 (Properties of Steiner Symmetrization). For convex bodies K ,T ⊆
R

n and u ∈ Sn−1 one has

1. K convex ⇒ Su(K ) convex.

2. λSu(K ) = Su(λK )

3. Su(K )+Su(T ) ⊆ Su(K +T )

4. Su is continuous w.r.t. Haussdorf distance.

5. Voln(Su(K )) = Voln(K ).

6. ∂(Su(K )) ≤ ∂(K ), where ∂(K ) denotes the surface area of K .

7. diam(Su(K )) ≤ diam(K ).

8. inradius(Su(K )) ≥ inradius(K ) and circumrad(Su(K )) ≤ circumrad(K ).

Here inradius(K ) is the largest r so that c + r B n
2 ⊆ K for some center c . More-

over, circumradius(K ) is the minimum radius r so that there is a c with K ⊆
c + r B n

2 .

To see convexity of the Steiner symmetral, we need to argue that the line seg-

ment between two points in Su(K ) is again included in Su(K ). We can write the

two candidate points as x + s · u and y + t · u with x , y ∈ u⊥ and s, t ∈ R. Let

ℓx := Vol1(K ∩ (x +Ru)) be the length of the interval of K intersected with the

line x +Ru. Then it suffices to check that for 0 < λ< 1 and z = (1−λ)x +λy one

has ℓz ≥ (1−λ)ℓx +λℓy . And indeed this follows from the convexity of K itself.

u⊥

u

Su(K )

K

x z y

The usefulness of the Steiner symmetrization is that we can use it to trans-

form every convex body into a ball. Formally, one can prove:
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Theorem 1.27. Let K ⊆R
n be a convex body and let r be the radius so that Voln(K ) =

Voln(r B n
2 ). Then there exists a sequence of vectors u j ∈ Sn−1 so that the sequence

K j := Su j (K j−1) with K0 := K converges to r B n
2 w.r.t. the Hausdorff metric.

1.6.1 Urysohn’s Inequality

We will now see a quick application of the Steiner symmetrization to prove Urysohn’s
Inequality. Recall that for a convex body K and a vector u ∈R

n with ‖u‖2 = 1, the

support function is hK (u) = max{〈u, x〉 | x ∈ K } and wK (u) = hK (u)+hK (−u) is

the (geometric) width in direction u. Then the mean width is simply w(K ) :=
Eu∼Sn−1 [wK (u)], where u ∼ Sn−1 picks a uniform random unit vector. Now we

will see the very intuitive fact that among all convex bodies of the same volume,

the ball minimizes the mean width.

Theorem 1.28 (Urysohn). Let K ⊆R
n be a convex body. Then

w(K ) ≥ 2 ·
( Voln(K )

Voln(B n
2 )

)1/n

Suppose we scale K so that Voln(K ) = Voln(B n
2 ). We could apply Steiner Sym-

metrization until the body converges to B n
2 — all we need to show is that the

mean width is not increasing:

Lemma 1.29. Let K ⊆R
n be a convex body. Then w(Sθ(K )) ≤ w(K ).

Proof. After rotation we may assume that θ = en meaning that the symmetriza-

tion happens for the last coordinate. We will write (x , t ) ∈ K where x ∈ R
n−1 and

t ∈ R. Observe that ((x , t1) and (x , t2) ∈ K ) ⇔ (x , t1−t2

2
) ∈ Sθ(K ). Then the support

function of the Steiner symmetrization is

hSθ(K )(u) = max
{
〈(x ,

t1 − t2

2
),u)〉 : (x , t1) ∈ K and (x , t2) ∈K

}

≤
1

2
·
(

max{〈(x , t1),u〉 : (x , t1) ∈K }+max{〈(x ,−t2),u〉 : (x , t2) ∈K }
)

=
1

2

(
hK (u)+hK (u′)

)

where we write u′ := (u1, . . . ,un−1,−un) as the vector u with flipped last coordi-

nate. Note that for u ∼ Sn−1 the expectation of hK (u) and hK (u′) is identical.

Hence Eu∼Sn−1[hSθ(K )(u)] ≤ Eu∼Sn−1 [hK (u)] and the claim follows.
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1.6.2 Blaschke-Santaló Inequality

The Blaschke-Santaló inequality is another example where some quantity is max-

imized or mininimized for Euclidean balls.

Theorem 1.30. Let K ⊆R
n be a centrally symmetric convex body. Then

Voln(K ) ·Voln(K ◦) ≤ Voln(B n
2 )2.

The proof works again using Steiner symmetrization. By construction we

have Voln(Sθ(K )) = Voln(K ) for any direction θ ∈ Sn−1. The non-trivial part is

to prove that the volume of the polar does not decrease in one symmetrization

step:

Lemma 1.31. For any symmetric convex body K ⊆ R
n and any θ ∈ Sn−1 one has

Voln(K ◦) ≤ Voln((Sθ(K ))◦).

For a symmetric convex body K ⊆R
n , we define the Mahler product as s(K ) :=

Vol(K ) ·Voln(K ◦). With this lemma we know that s(K ) ≤ s(Sθ(K )) and hence by a

limit argument we can derive that s(K ) ≤ s(B n
2 ), which settles the claim. The

proof of Lemma 1.31 is not too hard but as we will see a structurally stronger

statement in Chapter 8 we skip it here.

1.7 Brunn’s Concavity Principle and Log-Concavity

In this section, we will discuss how the volume of slices of convex bodies be-

have. If U ⊆R
n is a subspace with dimension k = dim(U ) and K ⊆R

n is some set

then we denote Volk (K ∩U ) as the k-dimensional volume of K ∩U that “lives”

inside the subspace U . More formally one could define this quantity by picking

any orthonormal basis u1, . . . ,uk for U and setting Volk (K ∩U ) := Volk({y ∈ R
k |∑k

i=1
yi ui ∈ K }). Analogously, if U is an affine subspace.

For a subspace U ⊆ R
n we write U⊥ := {x ∈ R

n | x ⊥ y ∀y ∈ U } as the (n −
dim(U ))-dimensional subspace that is orthogonal to U .

Theorem 1.32 (Brunn’s Concavity Principle I). Let K ⊆ R
n be a convex body and

let U ⊆ R
n be a k-dimensional subspace. Then the function F : U⊥ → R defined

by

F (x) := Volk (K ∩ (U +x))1/k

is concave on its support.
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U

U⊥

x +U

x

K

Proof. We apply the Steiner Symmetrization for directions u ∈ U and obtain a

limiting convex body K̃ so that K̃ ∩ (U + x) is a k-dimensional ball of some ra-

dius r (x) and the volumes of intersections with translates of U have not changed,

meaning that Volk (K̃ ∩ (U +x)) = Volk (K ∩ (U +x)) for all x ∈U⊥.

K̃

U

U⊥

x

r (x)

Then by convexity of K̃ , r (x) is concave and so is F .

It will be useful to make the observation that the subspace that form the do-

main of F and the subspace used for slicing do not need to be orthogonal.

Theorem 1.33 (Brunn’s Concavity Principle II). Let K ⊆R
n be a convex body and

let U ,W ⊆R
n be subspace. Then the function F : W →R defined by

F (x) := Volk (K ∩ (U +x))1/k

is concave on its support, where k := dim(U ).

W

x

K

U
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A useful inequality for later will be that also the intersection of convex sets

behaves in a log-concave manner:

Lemma 1.34. Let K ,L ⊆ R
n be convex sets. Then the function F : Rn → R≥0 with

F (x) := Voln((x +K )∩L)1/n is concave.

0

x
L

x +K

Proof. We rewrite the function F as

F (x) = Voln
({

y ∈R
n | y −x ∈K and y ∈ L

})1/n

=
1
p

2
Voln

({
(y −x , y) ∈K ×L

})1/n =
1
p

2
Voln

({
(K ×L)∩ (U + (−x ,0))

})1/n

where we define a subspace U := {(y , y) | y ∈ R
n} with dim(U ) = n. By Brunn’s

Concavity principle, such a function is concave on its support.

A function F : Rn → R≥0 is called log concave if F (x) = exp(−G(x)) for some

convex function G : Rn → R∪ {∞}. Equivalently F is log-concave if ln(F (x)) is

concave. A third definition is that

F (λx + (1−λ)y) ≥ F (x)λ ·F (y)1−λ

for all x , y ∈ R
n and 0 ≤ λ ≤ 1. Log concave functions arise very naturally in the

context of convex geometry. For example, the Gaussian density function γn(x) is

log-concave. Log-concavity is actually a weaker property than concavity:

Lemma 1.35. For each function F : Rn →R>0 one has: F concave⇒ F log-concave.

Proof. It suffices to verify this for n = 1 as the definitions are properties for lines.

Suppose that F is concave and w.l.o.g. suppose that F is differentiable. Then

F ′′(x) ≤ 0 for all x. Hence (lnF (x))′′ = F ′′(x)
F (x)

− F ′(x)2

F (x)2 ≤ 0 as well.

For example, we have proven that the function Voln((x+K )∩L)1/n is concave,

and so ln(Voln((x +K )∩L)1/n) = 1
n ln(Voln((x +K )∩L)) is concave. That means

the function Voln((x +K )∩L) is log-concave without the need for the exponent

1/n.
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Corollary 1.36. Let K be a convex set, θ ∈ R
n and define a function G : R→ R≥0

by G(t ) := Voln({x ∈ K | 〈θ, x〉 ≤ t }). Then G(t )1/n is concave on its support and

G(t ) itself is log concave on its support.

Proof. W.l.o.g. suppose ‖θ‖2 = 1. If we set F (x) := Voln
(
K ∩ (x + {y ∈ R

n : 〈y ,θ〉 ≤
0})

)
then by Lemma 1.34, F (x)1/n is concave on its support. Then the same holds

for G(t ) = F (tθ) which is the restriction to a line.

We want to spent a few words on the behavior of log concave functions. For

the sake of simplicity, consider a 1-dimensional log-concave function G : R →
R>0. Then G needs not to be concave. But lnG(t ) is concave. Hence for any fixed

point t∗ ∈R one has

ln(G(t )) ≤ ln(G(t∗))+ (t − t∗) · ln(G(t∗))′ = ln(G(t∗))+ (t − t∗) ·
G ′(t∗)

G(t∗)
∀t ∈R

Now exponentiating this inequality gives the following useful estimate:

Lemma 1.37. Let G : R→R>0 be log concave. Then for t∗ ∈R one has

G(t )≤G(t∗) ·exp
(
(t − t∗) ·

G ′(t∗)

G(t∗)

)

In particular if we have any point t∗ with G ′(t∗) < 0, then the log concave

function must be decaying at least at an exponential rate.

t

G(t )

G(t∗) ·exp((t − t∗) · G ′(t∗)
G(t∗)

)

t∗

Example: G(t ) = 1p
2π

e−t2/2

Grünbaum’s Lemma

We want to show an application of Brunn’s Concavity Principle to prove a beau-

tiful lemma by Grünbaum:
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Any hyperplane through the barycenter of a convex body K ⊆ R
n has

at least a 1
e fraction of the volume on each side.

Recall that the barycenter of a set K is Ex∼K [x] = 1
Voln (K )

∫
K x d x . In particu-

lar the barycenter is 0 if and only if
∫
R

t ·Voln−1({x | 〈x ,θ〉 = t })d t = 0 for every

direction θ ∈ Sn−1.

Lemma 1.38 (Grünbaum). Let K be a convex set with Voln(K ) = 1 and the barycen-

ter at 0. Then for every θ ∈ Sn−1 one has Voln({x ∈K | 〈x ,θ〉 ≤ 0}) ≥ 1
e .

Proof. After scaling we may assume that x ∈ K ⇒ −1 ≤ 〈θ, x〉 ≤ 1. Consider the

function

G(t ) := Voln({x ∈ K | 〈x ,θ〉 ≤ t })

Then by assumption G(−1)= 0 and G(1) = 1. It is not hard to see that the deriva-

tive of that function is G ′(t ) = Voln−1({x ∈ K | 〈x ,θ〉 = t }). Next, we will argue that

the graph of the function G partitions the box [−1,1]×[0,1] into two parts of equal

area. Note that this is due to 0 being the barycenter.

Claim. One has
∫1
−1 G(t )d t = 1.

Proof of claim. As 0 is the barycenter we have

0
barycenter=

∫1

−1
t ·G ′(t )d t

integration by parts= [t ·G(t )]t=−1..1︸ ︷︷ ︸
=1

−
∫1

−1
G(t ) ·1 d t

Rearranging gives the claim.

It remains to show that G(0) ≥ 1
e . The intuition for the proof is that if G(0) was

too small, then the area below the curve could not be as large as 1. By Cor. 1.36,

we know that the function G(t ) is log-concave. We can apply the upper bound

for log-concave functions from Lemma 1.37 for t∗ = 0 to obtain that G(t ) ≤G(0) ·
exp

(
G ′(0)
G(0)

t
)

for all t .

0

−1 1

1−1 0

1
G(t )

t

G(0) ·exp(G ′(0)
G(0)

t )
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Then we upper bound the area below the curve G as

1 =
∫1

−1
G(t )d t ≤

∫1

−1
min

{
exp

(G ′(0)

G(0)
t
)
,1

}
d t =G(0)

∫α

−1
exp

(G ′(0)

G(0)
t
)
d t +

∫1

α
1 d t

︸ ︷︷ ︸
=1−α

≤ G(0) ·
[ G(0)

G ′(0)
exp

(G ′(0)

G(0)
t
)]α

t=−∞
+ (1−α)

=
G(0)2

G ′(0)
exp

(G ′(0)

G(0)
·α

)
+ (1−α)

α:= G(0)
G ′(0)= 1+ (e ·G(0)−1) ·

G(0)

G ′(0)

Rearranging gives the desired claim of G(0)≥ 1
e .

1.8 The Brunn-Minkowski inequality

One of the most often used inequalities in convex geometry is the Brunn-Minkowski
Inequality which gives lower bounds on the volume of the Minkowski sum. In the

most simple form it is as follows:

For any two sets A,B ⊆ R
n with Voln(A) = 1 = Voln(B) and 0 ≤ λ ≤ 1

one has Voln(λA+ (1−λ)B) ≥ 1.

It is remarkable that the inequality makes no restriction to the shape of A and B .

Note that, for example if A = B , then the inequality is tight. On the other hand,

for sets that have a very different shape the volume of the Minkowski sum might

be a lot larger.

If A and B are not of identical volume, one needs to find the right normaliza-

tion. Formally one can state:

Theorem 1.39 (Brunn-Minkowski Inequality I). Let A,B ⊆R
n be non-empty com-

pact sets. Then for 0 <λ< 1 one has

Voln(λA+ (1−λ)B)1/n ≥λ ·Voln(A)1/n + (1−λ) ·Voln(B)1/n .

One can also rewrite the inequality as

Theorem 1.40 (Brunn-Minkowski Inequality II). Let A,B ⊆R
n be non-empty com-

pact sets. Then

Voln(A+B)1/n ≥ Voln(A)1/n +Voln(B)1/n .

Another more multiplicative form is:
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Theorem 1.41 (Brunn-Minkowski Inequality III). Let A,B ⊆ R
n be non-empty

compact sets. Then for 0 <λ< 1 one has

Voln(λA+ (1−λ)B) ≥ Voln(A)λ ·Voln(B)1−λ.

There is also a “fractional” or “functional” version of the Brunn-Minkowski

Inequality which is as follows:

Theorem 1.42 (Prékopa-Leindler Inequality). For 0 < λ< 1, let f , g ,h : Rn → R≥0

be measurable functions so that

h(λx + (1−λ)y) ≥ f (x)λg (y)1−λ ∀x , y ∈R
n

Then ∫

Rn
h(x)d x ≥

(∫

Rn
f (x)d x

)λ
·
(∫

Rn
g (x)d x

)1−λ

It might be worth noting that if the premise holds for a particular value of λ

(even if not for all), then also the conclusion holds for that same value. One can

observe that the Prékopa-Leindler inequality is very similar to the multiplicative

version of Brunn-Minkowski (BM 3).

There is a simple proof for Brunn-Minkowski for the case that the sets A,B
are convex. Also historically, this was the first approach.

Theorem 1.43. Brunn-Minkowski Inequality I holds for convex sets A,B ∈R
n .

Proof. We embed the sets A and B in the two parallel planes xn+1 = 0 and xn+1 =
1 of Rn+1, resp. Then we consider K := conv((A × {0})∪ (B × {1})) and the slices

K (t ) := {x ∈R
n : (x , t ) ∈ K }.

xn+1 = 0 xn+1 = 1−λ xn+1 = 1

A B

Observe that K (0) = A and K (1) = B and more generally K (t ) = (1−t )·A+t ·B . We

know from Brunn’s Concavity Principle that functions of the form t → Voln(K (t ))
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are log-concave. Then

Voln(K (λ ·0+ (1−λ) ·1)︸ ︷︷ ︸
=λA+(1−λ)B

) ≥ Voln(K (0)︸︷︷︸
=A

)λ ·Voln(K (1)︸︷︷︸
=B

)1−λ

and the claim follows.

1.8.1 A proof of Brunn-Minkowski inequality III and Prékopa-

Leindler Inequality

We will now prove the Brunn-Minkowski inequality III and Prékopa-Leindler In-

equality together in several steps. Here we are taking a part of the proof from

Ball’s survey [Bal97].

Claim I. Brunn-Minkowski Inequality I+III holds for n = 1.
Proof of claim. Take compact subsets A,B ⊆R. Translate the sets so that max{x ∈
A} = 0 = min{x ∈ B} and abbreviate C := λA + (1−λ)B . Since 0 ∈ A ∩B , we have

λA ⊆ C and (1−λ)B ⊆ C and both sets λA, (1−λ)B are disjoint (apart from {0}).

Hence

Vol1(C ) ≥ Vol1(λA)+Vol1((1−λ)B) ≥ Vol1(A)λ ·Vol1(B)1−λ

using the inequality for Arithmetic Mean vs Geometric Mean.

Claim II. BM III for n = 1 ⇒ Prékopa-Leindler inequality for n = 1.
Proof of claim. Take function f , g ,h : R→ R≥0 and fix some λ with h(λx + (1−
λ)y) ≥ f (x)λg (y)1−λ for x, y ∈ R. We may assume that the functions are nor-

malized so that f (x), g (x),h(x) ≤ 1. Observe that the assumption implies that

if f (x) ≥ t and g (y) ≥ t , then h(λx+ (1−λ)y)≥ t . In particular the level sets of the

functions satisfy

{x |h(x) ≥ t } ⊇ λ · {x | f (x) ≥ t }+ (1−λ) · {x | g (x) ≥ t } (∗)

for all t . Then

∫

R

h(x)d x =
∫1

0
Vol1({x |h(x) ≥ t })d t

(∗)
≥

∫1

0
Vol1

(
λ · {x | f (x) ≥ t }+ (1−λ) · {x | g (x) ≥ t }

)
d t

BM I
≥

∫1

0

(
λ ·Vol1({x | f (x) ≥ t })+ (1−λ) ·Vol1({x | g (x) ≥ t })

)
d t

= λ ·
(∫

R

f (x)d x
)
+ (1−λ) ·

(∫

R

g (x)d x
)

AMGM
≥

(∫

R

f (x)d x
)λ

·
(∫

R

g (x)d x
)1−λ
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Claim III. The Prékopa-Leindler inequality holds for every dimension n ≥ 2.
Proof of claim. We prove the claim by induction over n. Fix 0 < λ < 1 and

functions f , g ,h : Rn → R≥0 with h(λx + (1−λ)y) ≥ f (x)λg (y)1−λ for all x , y ∈
R

n . We will write x = (x̄ , xn) with x̄ ∈ R
n . We define 1-dimensional functions

F,G , H : R→ R≥0 by letting F (xn) :=
∫
Rn−1 f (x̄ , xn)d x — similarly we define G and

H . Let us also write fxn : Rn−1 → R≥0 as the function with fixed last coordinate,

i.e. fxn (x̄) := f (x̄ , xn). Then the assumption carries over to

hλxn+(1−λ)yn (λx̄ + (1−λ)ȳ) ≥ fxn (x̄)λ ·g yn (ȳ)1−λ ∀xn , yn ∈R ∀x̄ , ȳ ∈R
n−1

Then for a fixed pair (xn , yn) we can apply the (n−1)-dimensional Prékopa-Leindler

inequality to derive that

H(λxn + (1−λ)yn) =
∫

Rn−1
hλxn+(1−λ)yn (x̄)d x̄

(n−1)-dim. PL
≥

(∫

Rn−1
fxn (x̄)d x̄

)λ(∫

Rn−1
g yn (ȳ)d ȳ

)1−λ

= F (xn )λ ·G(yn)1−λ

That means we have satisfied the assumptions to apply the 1-dimensional Prékopa-

Leindler Inequality to the functions F,G , H and

∫

Rn
h(x)d x =

∫

R

H(xn)d xn
1-dim PL

≥
(∫

R

F (xn)d xn

)λ(∫

R

G(xn)d xn

)1−λ

Claim IV. Prékopa-Leindler inequality for dim. n ⇒ BM III for dim. n.
Proof of claim. Let A,B ⊆ R

n be measurable sets and let 0 < λ < 1. We will use

the characteristic functions f := 1A , g := 1B and h := 1λA+(1−λ)B of the involved

sets. Now take x , y ∈R
n . We need to argue that

h(λx + (1−λ)y)
!
≥ f (x)λg (y)1−λ =

{
1 if x ∈ A and y ∈ B

0 otherwise

There is only something to show if the right hand side is 1 — then λx + (1−λ)y ∈
(λA + (1−λ)B) and the left hand side is 1 as well. Either way, we can apply the

Prékopa-Leindler inequality to get

Voln(λA+ (1−λ)B) =
∫

Rn
h(z)d z

PL
≥

(∫

Rn
f (x)d x

)λ(∫

Rn
g (y)d y

)1−λ

= Voln(A)λ ·Voln(B)1−λ

Putting everything together, this proves both, the Brunn-Minkowski Inequal-

ity and the Prékopa-Leindler Inequality.
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1.8.2 The isoperimetric inequality

One of the few facts in convex geometry that are more widely known to non-

mathematicians is that among bodies with identical volumes, the Euclidean ball

minimizes the surface area. We abbreviate d(x , A) := inf{‖x − y‖2 : y ∈ A} as the

distance of a point x to a set A and we denote At := {x ∈ R
n | d(x , A) ≤ t } as its

t-neighborhood. If A is compact, then At = A+ tB n
2 .

Theorem 1.44 (Isoperimetric Inequality). Let A ⊆ R
n be a compact set and let

B := r B n
2 be the Euclidean ball so that Voln(A) = Voln(B). Then Voln(At ) ≥ Voln(Bt )

for any t ≥ 0.

At

A B

Bt

Proof. After rescaling both sets, suppose that B = B n
2 is the unit radius ball. Using

the Brunn-Minkowski inequality we can bound

Voln(At ) = Voln(A+ tB)
BM I
≥

(
Voln(A)1/n + t ·Voln(B)1/n

)n

Voln (A)=Voln (B)= (1+ t )n ·Voln(B) = Voln(Bt )

Then notice that the surface area of a compact set can be defined as

Voln−1(∂A) := lim
ε→0

Voln(A+εB n
2 )−Voln(A)

ε

hence B is the Euclidean ball with Voln(A) = Voln(B), then indeed Voln−1(∂A) ≥
Voln−1(∂B).

1.9 Polar coordinates and the inequality of Rogers and

Shephard

In many settings, it is desirable to have a convex body K that is also symmetric.

For example if we have symmetry, then we know that ‖·‖K is a norm. Also, we will

later see that covering numbers are easier to handle for symmetric bodies. That
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leads to the natural question whether there is a generic procedure of approximat-

ing an asymmetric convex body K with a symmetric body. In the next Chapter

on John’s Theorem we will see that there is always an ellipsoid E that after proper

translation of K satisfies 1
nE ⊆ K ⊆ E . In terms of the volume this guarantees a

bound of Voln(E ) ≤ nn ·Voln(K ). It turns out that there is a better approximation

of K with a symmetric body if we drop the first inclusion requirement.

For a convex body K ⊆R
n we define K −K := {x − y | x , y ∈ K } as the difference

body. Note that by construction K −K is centrally symmetric even if K was not.

Moreover, if 0 ∈K , then K ⊆ K −K .

0
K

K −K

We will next prove the inequality of Rogers and Shephard showing that K −K is

not much bigger than K in the sense that Voln(K −K ) ≤ 22n ·Voln(K ). We should

also remark that by Brunn-Minkowski we also know a lower bound of Voln(K −
K ) = 2n ·Voln( 1

2
K + 1

2
(−K )) ≥ 2n ·Voln(K ) for any convex body K .

Recall that the radial function of a convex set A is defined by

ρA(θ) := max{t ≥ 0 | t ·θ ∈ A}
if A symmetric=

1

‖θ‖A
∀θ ∈ Sn−1

To see the connection between radial function and Minkowski norm, note that if

ρA(θ) = t , then ‖t ·θ‖A = 1 and so ‖θ‖A = 1
t . Geometrically speaking, ρA(θ) is the

distance one has to walk from the origin in direction θ until exiting the body.

0
θ

ρA(θ)
A

We can use the radial function to rewrite an integral to an integral in polar coor-
dinates.

Theorem 1.45 (Integration in polar coordinates). For any integrable function f :

R
n →R and a convex body A ⊆R

n with 0 ∈ A we have
∫

A
f (x)d x = Voln−1(Sn−1) · E

θ∈Sn−1

[∫ρA(θ)

0
f (r ·θ) · r n−1dr

]
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This also implies a convinient formula to express the volume of a body:

Lemma 1.46 (Volume in polar coordinates). For a convex body A ⊆R
n with 0 ∈ A

one has Voln(A) = Voln(B n
2 ) ·Eθ∈Sn−1[ρA(θ)n].

Proof. Integrating the characteristic function of A in polar coordinates gives

Voln(A) =
∫

A
1d x = Voln−1(Sn−1)︸ ︷︷ ︸

=nVoln (Bn
2 )

· E
θ∈Sn−1

[∫ρA(θ)

0
r n−1dr

︸ ︷︷ ︸
= 1

n ρA(θ)n

]
= Voln(B n

2 ) E
θ∈Sn−1

[
ρA(θ)n]

Theorem 1.47 (Rogers-Shephard). Let K ⊆R
n be a convex body. Then

2n ·Voln(K ) ≤ Voln(K −K ) ≤ 22n ·Voln(K ).

Proof. We already argued the lower bound. To keep the calculations short we will

prove a slightly weaker upper bound of 42n/n. More precisely we will prove the

two (in)equalities (I) and (II) in

n

42n
·Voln(K )

(I )
≤ E

x∈K−K

[
Voln(K ∩ (x +K ))

] (I I )=
Voln(K )2

Voln(K −K )
≤

1

2n
Voln(K ) (∗)

Then rearranging gives a bound of Voln(K − K ) ≤ 42n

n ·Voln(K ). We define the

function f : K −K →R≥0 with

f (x) := Voln(K ∩ (x +K ))1/n = Voln
({

y ∈R
n | y ∈ K and y −x ∈K

})1/n
(∗∗)

= Voln

({
y ∈R

n | y −
x

2
∈K and y +

x

2
∈K

})1/n

From the last representation in (∗∗) we can also see that the function is sym-

metric with f (x) = f (−x). Observe that if f (x) > 0 then there is a y with y ∈ K
and y − x ∈ K and hence x = y − (y − x) ∈ K −K . So, indeed the support of f
is contained in K −K with f (x) = 0 for points x on the boundary of K −K . We

know from Lemma 1.34 that the function f is concave. Since f (0) = Voln(K )1/n ,

we can use these insights to define a lower bound function g : K −K → R≥0 with

f (x) ≥ g (x) for all x ∈ K −K by letting g (r ·θ) := Voln(K )1/n · (1− r
ρK−K (θ)

).

f

g

K −K

0 R
n
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Note that geometrically, for a fixed direction θ, the function g is linear in r . Then

using integration in polar coordinates we obtain

∫

K−K
Voln(K ∩ (x +K )) d x

f (x)≥g (x)
≥

∫

K−K
g (x)n d x

Thm. 1.45= nVoln(B n
2 ) · E

θ∈Sn−1

[∫ρK−K (θ)

0
g (rθ)n · r n−1 dr

]

Def g= nVoln(B n
2 ) ·Voln(K ) E

θ∈Sn−1

[∫ρK−K (θ)

0

(
1−

r

ρK−K (θ)

)n
· r n−1dr

]

≥ nVoln(B n
2 ) ·Voln(K ) E

θ∈Sn−1

[∫ 3
4ρK−K (θ)

1
4ρK−K (θ)

(
1−

r

ρK−K (θ)

)n

︸ ︷︷ ︸
≥(1/4)n

· r n−1
︸︷︷︸

≥( 1
4ρK−K (θ))n−1

dr
]

≥ n · (1/4)2n ·Voln(K ) ·Voln(B n
2 ) E

θ∈Sn−1

[
ρK−K (θ)n]

︸ ︷︷ ︸
=Voln (K−K ) by Lem 1.46

This shows (I). To show (II) we can use Fubini’s Theorem to swap the integration

order and get

∫

K−K
Voln(K ∩ (x +K )) d x = Vol2n

({
(x , y) | y ∈K and y −x ∈ K

})
= Voln(K )2

That settles (II) and hence the Theorem.

We will also show an inequality that has a proof-strategy similar to Rogers-

Shephard, even if the statements sound quite different. Recall that for a subspace

F ⊆ R
n , F⊥ is the complementary subspace and PF⊥ : Rn → F⊥ is the orthogo-

nal projection into the orthogonal complement of F . Note that for an arbitrary

k-dimensional subspace F , neither Volk (K ∩F ) nor Voln−k (PF⊥(K )) alone gives

much information on the size of K . But surprisingly it turns out that the prod-
uct of Volk (K ∩F ) and Voln−k (PF⊥(K )) is a very good proxy for Voln(K ). Note that

the factor of 2−n in the following estimate can be improved to
(n

k

)−1
by doing the

calculations more carefully. As usually we prefer to keep the exposition simple.

Lemma 1.48. Let K ⊆ R
n be a symmetric convex body and let F ⊆ R

n be a sub-

space with k := dim(F ). Then

2−n ≤
Voln(K )

Volk (K ∩F ) ·Voln−k (PF⊥(K ))
≤ 1
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K

F

F⊥

K ∩F

PF⊥(K )

Proof. We define the function G(x) := Volk (K ∩ (F +x))1/k . Then by Brunn’s Con-
cavity Principle (Theorem 1.32), we know that G(x) is concave. As K is symmetric

we know that also G is symmetric, meaning that G(−x) =G(x) for all x . From this

it follows that G is maximized for x = 0. Then

Voln(K )
Fubini=

∫

x∈PF⊥ (K )
G(x)k
︸ ︷︷ ︸
≤G(0)k

d x ≤ Voln−k (PF⊥(K )) ·Volk (K ∩F )

which shows the upper bound. For the lower bound, the crucial observation is

that by the concavity of G we know that for every x ∈ 1
2

PF⊥(K ) one has G(x) ≥
1
2

G(0). Then only counting that part of the volume gives

Voln(K ) ≥
∫

x∈ 1
2 PF⊥ (K )

G(x)k d x ≥
∫

x∈ 1
2 PF⊥ (K )

(1

2
G(0)

)k
d x

= (1/2)n−k ·Voln−k (PF⊥(K )) · (1/2)k ·Volk (K ∩F )

This finishes the claim.

1.10 Exercises

Exercise 1.1.

Prove that for any symmetric convex body K ⊆ R
n and any k-dimensional subspace F

one has Voln(K ) ≥
(
1− k

n

)n−k(
k
n

)k
·Volk (K ∩F ) ·Voln−k (PF⊥ (K )).

Exercise 1.2.
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LetK be the set of symmetric convex bodies inR
n and abbreviate∆(K ,Q) := ln(dB M (K ,Q)).

Prove that ∆ is a pseudometric on K.

Exercise 1.3.

Let Sn×n := {A ∈ R
n×n | AT = A} be the vector space of symmetric matrices. Let λi (A) be

the i th Eigenvalue of A. Consider Bn×n
∞ = {A ∈ Sn×n | |λi (A)| ≤ 1 ∀i ∈ [n]} and Bn×n

1 :=
{A ∈ Sn×n |

∑n
i=1 |λi (A)| ≤ 1}. Prove that (Bn×n

∞ )◦ =Bn×n
1 (using 〈A,B〉F :=

∑n
i=1

∑n
j=1 Ai j Bi j

as inner product).

Exercise 1.4.

Recall that the Generalized Cauchy Schwarz inequality says that | 〈x , y〉| ≤ ‖x‖K · ‖y‖K ◦

for a symmetric convex body K ⊆R
n and x , y ∈R

n .

a) Show that for any parameter ρ ≥ 1 there is a symmetric convex body K ⊆ R
2 and

x ∈R
2 so that ρ 〈x , x〉 ≤ ‖x‖K · ‖x‖K ◦ .

b) Show that for any symmetric convex body K ⊆ R
n there exists at least one non-

zero x∗ ∈ K so that ‖x∗‖2
2 = ‖x∗‖K · ‖x∗‖K ◦ .

Exercise 1.5.

Let p, q ∈ [1,∞) with 1
p + 1

q = 1. Prove that (B n
p )◦ = B n

q .

Exercise 1.6.

Prove the following Theorem of Bieberbach from 1915: Let K ⊆ R
n be a compact set.

Then

Voln(K ) ≤ Voln(B n
2 ) ·

diam(K )n

2n

where diam(K ) := max{‖x − y‖2 : x , y ∈ K }.

Hint. Use Steiner symmetrization.

Exercise 1.7.

In this exercise we want to give a proof for Urysohn’s inequality using a different sym-

metrization strategy. You may use the following fact without proof: For every convex body

K and ε> 0 there is an N := N (K ,ε) and orthogonal transformations U1, . . . ,UN : Rn →R
n

so that the body Q := 1
N (U1(K )+ . . .+UN (K )) satisfies (1− ε)RB n

2 ⊆ Q ⊆ (1+ ε)RB n
2 for

some R. Show the following for any convex body K ⊆ R
n (without the help of Steiner’s

symmetrization):

(i) Any body Q as above has w (Q)= w (K ).

(ii) Any body Q as above has Voln(Q) ≥ Voln(K ).

(iii) Any convex body K has w (K )≥ 2( Voln (K )
Voln (B n

2 )
)1/n .
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Comment. One can prove the fact mentioned above by picking independent random

orthogonal transformations U1, . . . ,UN for N large enough. But this is not part of the

exercise.

Exercise 1.8.

Let K ⊆ R
n be a symmetric convex body and consider a strip S := {x ∈ R

n | | 〈x ,θ〉 | ≤ s}

with θ ∈ Sn−1. Prove that Voln(K ∩S)≥ Voln(K ) · 1
n (1− (1− s

hK (θ)
)n).



Chapter 2

John’s Theorem

In this chapter, we will present a tremendously useful result of John with numer-

ous applications.

For any convex body K ⊆R
n , there is an ellipsoid E so that after proper

translation E ⊆ K ⊆ nE .

In terms of the Banach Mazur distance, this means that dBM (K ,B n
2 ) ≤ n for any

convex body K . In many settings, John’s Theorem can give a quick estimate for

the desired quantity. For example, for the inequality of Rogers-Shephard, after

translation we can find an ellipsoid with E ⊆ K ⊆ nE and hence K −K ⊆ 2nE .

Then we can conclude that Voln(K −K ) ≤ Voln(2nE ) ≤ (2n)n ·Voln(K ). We know

that this is not a tight bound, but helpful to understand the ball park of what

might be possible.

John’s Theorem can be sharpened for symmetric sets:

For any symmetric convex body K ⊆ R
n , there is an ellipsoid E so that

E ⊆ K ⊆
p

n ·E .

One consequence of this bound in particular is that for any norm ‖ · ‖K in R
n ,

there is a matrix A so that ‖x‖K ≤ ‖Ax‖2 ≤
p

n · ‖x‖K for all x ∈R
n . The Theorem

of John is excellently described in the wonderful survey of Ball [Bal97] and we

refer to it for more details.

We already mentioned ellipsoids without providing a formal definition so far.

A linear map A : Rn → R
n can be uniquely identified with the underlying matrix.

By a slight abuse of notation we write A ∈ R
n×n as the matrix so that A(x) = Ax .

Then for a bijective linear map A : Rn → R
n we call the set A(B n

2 ) = {Ax | x ∈
R

n with ‖x‖2 ≤ 1} an ellipsoid. Note that in our notation, an ellipsoid is always an

origin-centered convex body.

39
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We want to comment on the matrix representing the ellipsoid. Consider the

singular value decomposition A =
∑n

i=1αi ui v T
i where {u1, . . . ,un} and {v1, . . . , vn}

are two orthonormal bases and α1, . . . ,αn > 0. Then

A(B n
2 ) =

{ n∑

i=1

αi ui 〈vi , x〉 | ‖x‖2 ≤ 1
} symmetry of Bn

2=
{ n∑

i=1

αi ui 〈ui , y〉 | ‖y‖2 ≤ 1
}
= B(B n

2 )

where B :=
∑n

i=1
αi ui uT

i is a symmetric PSD matrix. In other words, the matrix A

with E = {Ax | x ∈B n
2 } is not unique but it can always be chosen to be a symmetric

positive definite matrix. Now suppose that B is indeed the PSD matrix as defined

above. Clearly Voln(E ) = |det(B )| ·Voln(B n
2 ). Moreover,

E =
{

x ∈R
n |

n∑

i=1

〈x ,ui 〉2

α2
i

≤ 1
}
=

{
x ∈R

n | xT B−2x ≤ 1
}
=

{
x ∈R

n | ‖B−1x‖2
2 ≤ 1

}

is an alternative representation that has a clean geometric interpretation: the

vectors u1, . . . ,un are the axes of the ellipsoid and αi is the length of the i th axis.

α1u1

α2u2

0
E

2.1 The most basic John’s Theorem

We will see that indeed the largest volume ellipsoid inside K has the property of

John’s Theorem. For proofs it will be easiest to argue if we apply a linear transfor-

mation so that that ellipsoid is the unit ball B n
2 . For that purpose, we say that a

convex body K is in John position if B n
2 is an ellipsoid of maximum volume con-

tained in K (even if translations are allowed). The concept of a position is also

used in other contexts in convex geometry. The idea is always to apply a linear

transformation to a convex body so that some constraint is satisfied.

Theorem 2.1 (John’s Theorem for Symmetric Bodies [Joh48]). Let K be a centrally

symmetric convex body in John position. Then B n
2 ⊆ K ⊆

p
nB n

2 .

0
B n

2 p
nB n

2

K
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Proof. We have B n
2 ⊆ K by assumption. Now suppose by symmetry reasons that

Re1 ∈ K where R >
p

n. Then by symmetry conv{B n
2 ∪ {±Re1}} ⊆ K . We consider

the ellipsoid

E :=
{

x ∈R
n |

x2
1

a2
+

n∑

i=2

x2
i

b2
≤ 1

}

obtained by stretching the ball by a factor a > 1 in direction e1 and shrinking it

slightly to a factor b < 1 in all other directions. We pick b maximal so that the

ellipsoid just touches the body conv{B n
2 ∪{±Re1}} ⊆ K from the inside. It remains

to determine what constellations of a and b are feasible. Note that by symmetry

it suffices to consider the situation in a 2-dimensional plane spanned by e1 and

one orthogonal vector. First we need a simple fact:

Claim. Suppose that the triangle with (α,0), (0,β), (0,0) ∈R
2
≥0 is touching B 2

2 . Then
β= αp

α2−1
.

Proof of claim. Consider the following figure:

β

α
1

p
α2 −1

√
β2 −1

We derive that the hypothenuse has length
√

α2 +β2 =
p
α2 −1+

√
β2 −1 which

can be rearranged to β= αp
α2−1

.

Now back to John’s Theorem. Consider the following two figures, where the

2nd one is obtained by shrinking the first one by a in the 1st coordinate and b in

the 2nd coordinate.

Re1

1

t

B n
2E 0

a

b

R
a e1

1

t
b

0
1

1
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Using the claim we can infer from the 1st picture that t 2 = R2

R2−1
and from the 2nd

picture we infer that ( t
b )2 = (R/a)2

(R/a)2−1
. Substituting t and rearranging gives

a2 = b2 +R2(1−b2) (∗)

Now suppose that R =
p

n +δ for a fixed δ > 0. If we set b := 1−ε, then we can

rearrange (∗) to a =
√

1+ε ·2 · (R2 −1)+ε2 · (1−R2) = 1 + (n − 1 + δ) · ε−Θ(ε2)

where the O-notation hides factors dependent on n and δ. Moreover, the vol-

ume changes as

Voln(E )

Voln(B n
2 )

= abn−1 = (1+ (n −1+δ)ε−Θ(ε2)) · (1−ε)n−1 = 1+δε±O(ε2)
ε small
> 1

One can check that the bound of
p

n is tight, see for example the cube K =
[−1,1]n that indeed contains B n

2 as largest volume ellipsoid. We will also state

the version of John’s Theorem for non-symmetric bodies. Again the bound will

be tight, see for example the simplex.

Theorem 2.2 (John’s Theorem for Asymmetric Bodies). Let K ⊆R
n be any convex

body in John position. Then B n
2 ⊆ K ⊆ nB n

2 .

The proof works similar to the symmetric case — if there is a point Re1 ∈ K
with R > n, then stretch the ball B n

2 into direction e1 and shrink it in all orthog-

onal directions. The only difference is that now we also need to move the center

towards e1. We will skip the formalities here.

The maximum volume ellipsoid is always unique. We sketch the argument

but refrain from a formal proof:

Lemma 2.3. Every convex body K ⊆R
n has a unique maximum volume ellipsoid

E ⊆ K .

Proof. Existence follows from compactness arguments. For uniqueness, sup-

pose that there are two ellipsoids EA = a + A(B n
2 ) and EB = b +B(B n

2 ) contained

in K that have identical volume, say det(A) = det(B ) as we can pick the matrices

to be PSD. If it happens that A = B then we can define an ellipsoid with center
a+b

2
that is slightly stretched in direction a −b and hence has a larger volume. So

suppose that A 6= B . Then one can prove the following general inequality:

Claim. Let A,B ∈R
n×n be positive definite matrices. Then det(A+B )1/n ≥ det(A)1/n+

det(B )1/n . Equality holds iff the matrices are scalars of each other.
We skip the proof which consists of a smart way to integrate plus an application
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of Hölder’s inequality. We can consider the ellipsoid obtained by averaging the

matrices1:

E ′ :=
a +b

2
+

{1

2
(A +B )x | x ∈ B n

2

}

From the definition and convexity we see that E ′ ⊆ 1
2

(EA + EB ) ⊆ K . From the

claim we see that Voln( 1
2

(EA +EB )) > Voln(EA) = Voln(EB ) which then is a contra-

diction.

2.2 Contact points

If we consider a convex body K in John’s position, then it is not hard to see that

some points on the boundary of K must be touching the boundary of the ball B n
2

— otherwise would could have scaled B n
2 to obtain a larger ellipsoid. Formally

we call a point x a contact point of K is ‖x‖2 = ‖x‖K = 1.

0

B n
2

K

contact point

The next observation is that there must be contact points in “all directions” since

otherwise we would have freedom to scale B n
2 orthogonal to the contact points

and again obtain a larger ellipsoid. In fact, we can formalize nicely what it means

that there are contact points in “all directions”:

Theorem 2.4 (John). Let B n
2 be the maximum volume ellipsoid in a symmetric

convex body K ⊆ R
n . Then there are contact points x1, . . . , xm of K and B n

2 for

m ≤
(n+1

2

)
+1 ≤ n2 +1 and scalars c1, . . . ,cm > 0 so that

In =
m∑

j=1

c j x j xT
j (∗)

In particular
∑m

j=1
c j = n.

Proof. The condition
∑m

j=1
c j = n follows by just taking the trace of both sides of

(∗), so we do not need to further discuss it. Let us abbreviate U as all the contact

points. Consider

C :=
{

uuT | u ∈U
}

1It may be pointed out that in general the Minkowski sum of two ellipsoids is NOT an ellipsoid.
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which is the set of outer products of contact points. Suppose for the sake of

contradiction that no proper coefficients c j exist. Then In
n ∉ conv(C) and by

the Hyperplane Separation Theorem (Theorem 1.22), there is a linear function

Φ : Rn×n →R so that

Φ

(
In

n

)
< r ≤Φ(x xT ) ∀x ∈U (∗∗)

for some r ∈ R. Recall that the function will be of the form Φ(X ) = 〈B , X 〉 where

〈·, ·〉 is the Frobenius inner product. In fact, the matrices on both sides of (∗∗)

are symmetric and hence we may also choose B is symmetric. Moreover, the

matrices on both sides of (∗∗) lie all on the hyperplane 〈In , X 〉 = 1 which implies

that one can subtract a multiple of the “normal vector” B to assume that 〈B , In〉 =
0. We summarize that the hyperplane satisfies 〈B , In〉 = 0< 〈B ,uuT 〉 for all u ∈U .

Consider the ellipsoid

Eδ :=
{

x ∈R
n | 〈(In +δB )x , x〉 ≤ 1

}

for some tiny enough δ> 0. Note that the volume of the ellipsoid satisfies

Voln(Eδ)

Voln(B n
2 )

=
1

det(In +δB )1/2
≥

1

( 1
n Tr[In +δB ])n/2

= 1

where we use the inequality of the arithmetic-vs-geometric-mean to obtain det(A)1/n ≤
1
n Tr[A]. We know already that the maximum volume ellipsoid is unique and we

get a contradiction. It remains to show that Eδ ⊆ K for small enough δ> 0.

For a contact point u ∈U we have 〈(In +δB )u,u〉 = ‖u‖2
2 +δ〈B ,uuT 〉 > 1 and

in particular Eδ does not even touch any of the contact points. One can also argue

that every point x ∈ Sn−1 that is very close to a contact point in ‖ · ‖2 distance

still has some slack (we skip the standard calculation here). Then it remains to

consider V := {v ∈ Sn−1 | dist(v ,U ) ≥ ε} where ε := 1
2‖B‖ suffices. Here dist(v ,U ) :=

inf{‖v −u‖2 | u ∈ U } is the Euclidean distance. But V is a compact set with a

positive distance from the boundary of K (the distance does not dependent on

δ). Then it is clear that one can pick a small δ so that Eδ ⊆ K .

K 0

∈UV

Eδ
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To get the bound of m ≤
(n+1

2

)
+1≤ n2+1 note that we need to find the convex

coefficients satisfying

In

n
∈ conv

{
uuT | u ∈U

}

But this is a system in dimension
(n

2

)
+ n =

(n+1
2

)
and the claim follows from

Caratheodory’s Theorem.

We want to introduce a useful view on this result. Suppose that we take the

weights c1, . . . ,cm > 0 so that
∑m

j=1
c j x j xT

j = In . Let µ be a probability distribution

that produces x ∈ {x1, . . . , xm} where Pr[x = x j ] = c j

n . Then Ex∼µ[x xT ] = In
n . Such a

distribution µ is called an isotropic measure.

For the sake of completeness we state the corresponding result for asymmet-

ric bodies. Again we will be skipping the proof.

Theorem 2.5 (John). Let B n
2 be the maximum volume ellipsoid in a convex body

K . Then there are contact points x1, . . . , xm of K and B n
2 for m ≤

(n+1
2

)
+ 1 and

scalars c1, . . . ,cm > 0 so that

m∑

j=1

c j x j = 0 and In =
m∑

j=1

c j x j xT
j (∗)

Note that the condition In =
∑m

j=1 c j x j xT
j is invariant under flipping the sign

of one of the x j ’s. For a symmetric body K , x is a contact point iff −x is a contact

point. But for asymmetric bodies it is clear that the contact points should not all

be on one side of a hyperplane — otherwise one could move the center and scale

the ball. Then
∑m

j=1 c j x j = 0 is equivalent to saying that 0 is in the convex hull of

the contact points.

We should also mention that the condition on the existence of the contact

points is actually equivalent to B n
2 being the maximum volume ellipsoid. In other

words, one can use the contact points to prove that K is already in John position.

We just state the result due to Ball and skip the proof (which is somewhat reverse

to the one we have seen above)

Theorem 2.6 (Ball). Let K ⊇ B n
2 be a centrally symmetric convex body. Suppose

there are c1, . . . ,cm > 0 and points x1, . . . , xm ∈ ∂K ∩ Sn−1 with
∑m

j=1
c j x j xT

j = In .

Then B n
2 is the maximum volume ellipsoid contained in K .
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2.3 Contact points and the Dvoretzky-Rogers Theo-

rem

Suppose now that K is a symmetric convex body in John position. Then we know

by John’s Theorem that for any unit vector x ∈ Sn−1 one has ‖x‖K ≥ 1p
n

. On the

other hand we know that the set of contact points C := ∂K ∩Sn−1 is non-empty

and one has ‖x‖K = 1 for all those points x ∈C . The question that naturally arises

is whether there is an orthonormal basis x1, . . . , xn so that ‖xi‖K ≈ 1. In fact, this

is possible as we will see now. We begin by proving a simple lemma.

Lemma 2.7. Let K ⊇ B n
2 be a symmetric convex body in John’s position. Then for

any matrix A ∈R
n×n , there is a contact point y ∈ ∂K ∩B n

2 so that 〈A, y y T 〉 ≥ Tr[A]
n .

Proof. As K is in John’s position, we know by Theorem 2.4 that there is an isotropic

measure µ on the contact points so that Ey∼µ[y y T ] = In
n . Then Ey∼µ[〈A, y y T 〉] =

〈A,Ey∼µ[y y T ]〉 = Tr[A]
n . Hence in particular there must be one contact point sat-

isfying this inequality.

Now we will prove the Dvoretzky-Rogers Theorem which for a symmetric

body K in John position picks an orthonormal basis z1, . . . , zn so that each ‖zk‖K

is lower bounded. We will pick the vectors iteratively one after the other. In it-

eration k + 1 we will pick that contact point that has the largest projection on

the orthogonal complement of span{z1, . . . , zk }. Then we will see that ‖zk‖K ≥√
1− k−1

n . In particular the first couple of vectors have ‖zk‖K ≈ 1 — later the guar-

antee deteriorates and for the last vector we can merely prove that ‖zn‖K ≥ 1p
n

.

Theorem 2.8 (Dvoretzky-Rogers). Suppose that K ⊆ R
n is a symmetric convex

body in John position. Then there exists an orthonormal basis z1, . . . , zn so that
√

1−
k −1

n
≤ ‖zk‖K ≤ ‖zk‖2 = 1 ∀k = 1, . . . ,n

Proof. We select the vectors iteratively. Suppose we already picked z1, . . . , zk . Let

F := span{z1, . . . , zk} and let F⊥ be the subspace orthogonal to F . Define PF⊥ : R→
F⊥ as the orthogonal projection onto F⊥. In particular for x ∈ F one has PF⊥(x) =
0 and for x ∈ F⊥ one has PF⊥(x) = x . Then considering this as a projection matrix

one knows that Tr[PF⊥ ] = dim(F⊥) ≥ n −k. We use the previous Lemma to find a

contact point y satisfying

‖PF⊥(y)‖2
2

projection= 〈y y T ,PF⊥〉
last lemma

≥
Tr[PF⊥ ]

n
≥ 1−

k

n
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0

z1

z2

y ∈ ∂K ∩Sn−1

F⊥

K

PF⊥(y)

Example for k = 1

Then we normalize the projected contact point to zk+1 := PF⊥ (y )

‖PF⊥ (y )‖2
and estimate

its ‖ ·‖K -norm as

‖zk+1‖K · ‖y‖K ◦︸ ︷︷ ︸
=1

Cauchy-Schwarz
≥ 〈y , zk+1〉

(∗)= ‖PF⊥(y)‖2 ≥

√
1−

k

n

Here in (∗) we use that zk+1 is the vector PF⊥(y) scaled to unit length.

In fact, with a small trick one can even pick an orthonormal basis so that

‖bi‖K =Θ(1) for all i = 1, . . . ,n.

Lemma 2.9. Let K ⊇ B n
2 be a symmetric convex body in John position. Then there

is an orthonormal basis b1, . . . ,bn with 1
4
≤ ‖bi‖K ≤ 1 for i = 1, . . . ,n.

Proof. Consider again the sequence of orthogonal vectors z1, . . . , zn from the pre-

vious lemma so that ‖zi‖K ≥ 1p
2

at least for i = 1, . . . , n
2

. In fact, we can sort the

vectors so that ‖z1‖K ≥ . . . ≥ ‖zn‖K > 0. Now consider a pair (zi , zn+1−i ) where the

2nd vector is too short, say ‖zn+1−i ‖K < 1
4

. Then we can “mix” the pair to a new

pair of orthonormal vectors 1p
2

(zi ± zn+1−i ). Then the ‖ · ‖K -norm can be lower

and upper bounded by the triangle inequality

∥∥∥ 1
p

2

(
zi ± zn+i−1

)∥∥∥
K
≥

1
p

2

( 1
p

2
−

1

4

)
≥

1

4

Overall that proves the claim.

2.4 The Theorem of Kadets and Snobar

We will now see a beautiful application that can be derived from the existence of

contact points. Consider the space R
n equipped with a norm ‖·‖K and let U ⊆R

n



48 CHAPTER 2. JOHN’S THEOREM

be a subspace. We call a linear map P : Rn → R
n a projection onto U , if P (x) ∈U

and P (P (x)) = P (x) for all x ∈R
n . Equivalently, there is another subspace W with

W ∩U = {0} and span(U +W ) =R
n so that P (u +w ) = u for all u ∈U and w ∈ w .

Such a linear map is an operator in the sense that it maps elements from the

space R
n to the space R

n . The operator norm of P with respect to the underlying

norm ‖ ·‖K is the quantity

‖P‖op := sup
{‖P (x)‖K

‖x‖K
| x ∈R

n \ {0}
}

In other words, ‖P‖op gives the maximum “stretch” of any element x in terms the

underlying norm and it is the minimum number so that ‖P (x)‖K ≤ ‖P‖op · ‖x‖K

for all x ∈ R
n . Observe that even in n = 2, the orthogonal projection can have an

arbitrarily large operator norm:

K

U0

x

P (x)

But it turns out that there always exists a projection P so that ‖P‖op is even

bounded by
p

k, where k is the dimension of the space U .

Theorem 2.10 (Kadets-Snobar). Let K ⊆ R
n be a symmetric convex body and let

U ⊆R
n be a subspace with k := dim(U ). Then there exists a projection P : Rn →U

with operator norm ‖P‖op ≤
p

k.

Proof. Applying a linear transformation to K does not change whether or not

such a transformation exists. So, suppose that K ∩U is in John’s position (with

respect to the subspace U ).

Then there are contact points u1, . . . ,um ∈ ∂K ∩U of length ‖ui‖2 = 1 and

coefficients c1, . . . ,cm ≥ 0 with
∑m

j=1
c j = k so that

∑m
j=1

c j u j uT
j = IU , where IU =

(
Ik 0

0 0

)
is the identity matrix for the subspace U . Define the linear function F j :

U → R with F j (x) := 〈u j , x〉 and note that F j (x) = 〈u j , x〉 ≤ ‖x‖K as ‖u j ‖K ◦ = 1.

Then we use the Hahn-Banach Theorem (Theorem 1.24) to extend this linear

function to a linear function F̃ j (x) := 〈ũ j , x〉 with F̃ j (x) ≤ ‖x‖K for all x ∈ R
n .

Geometrically speaking, 〈ũ j , x〉 ≤ 1 is a valid inequality for K going through the

point u j .
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U

0

b

bb

b
u j

K

Then we define a linear map

P (x) :=
m∑

j=1

c j 〈ũ j , x〉u j

Note that one has indeed P : Rn →U and for a point x ∈U one has

P (x) =
m∑

j=1

c j 〈ũ j , x〉︸ ︷︷ ︸
=〈u j ,x〉

u j

︸ ︷︷ ︸
=IU x

= x .

In particular P is a projection onto U . Next, let x∗ ∈ K be the point attain-

ing the operator norm and in the following calculation we denote y∗ ∈ (K ∩U )◦

as the point that is dual to P (x∗) in the sense that ‖P (x∗)‖K = 〈P (x∗), y∗〉, see

Lemma 1.7. Then

‖P‖op = sup
‖x‖K =1

‖P (x)‖K = ‖P (x∗)‖K = 〈P (x∗), y∗〉

Def P=
m∑

j=1

c j 〈ũ j , x∗〉︸ ︷︷ ︸
|·|≤1

· 〈u j , y∗〉

≤
m∑

j=1

c j · | 〈u j , y∗〉 | =
m∑

j=1

√
c j ·

√
c j · | 〈u j , y∗〉 |

Cauchy-Schwarz
≤

( m∑

j=1

c j

︸ ︷︷ ︸
=k

)1/2
·
( m∑

j=1

c j 〈u j , y∗〉2

︸ ︷︷ ︸
=‖y∗‖2

2≤1

)1/2
≤
p

k

where ‖y∗‖2 ≤ 1 follows from (K ∩U )◦ ⊆ B n
2 ∩U . This shows the claim.
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2.5 Auerbach’s Lemma

We want to state and prove a result due to Auerbach that sandwiches a symmetric

convex body between B n
1 and B n

∞ rather than between B n
2 and

p
nB n

2 . Note that

the proof is more related to the one of Lewis’ Lemma that we will see later in

Section 6.2.

Lemma 2.11 (Auerbach’s Lemma — Geometric version). For any symmetric con-

vex body K ⊆R
n , there is a linear map T : Rn →R

n so that B n
1 ⊆ T (K ) ⊆ B n

∞.

T (K )

0

B n
∞

B n
1

Proof. Let a1, . . . , an ∈ K be points maximizing |det(a1, . . . , an)| (those exist due

to compactness). Let T : Rn → R
n be the linear transformation so that T (ai ) =

ei and let K̃ := T (K ) be the transformed body. Then e1, . . . ,en ∈ K̃ and hence

B n
1 ⊆ K̃ by convexity. Also, we can see that e1, . . . ,en ∈ K̃ still form an optimum

solution to the optimization problem max{|det(ã1, . . . , ãn)| : ã1, . . . , ãn ∈ K̃ } (using

that det(T A) = det(T ) ·det(A)). Then by optimality we know that ‖ei‖K̃ = 1 for all

i ∈ [n]. It remains to prove the following:

Claim. One has K̃ ⊆ B n
∞.

Proof of Claim. Suppose for the sake of contradiction that there is a point x ∈ K̃
with 〈ei , x〉 > 1 (the case 〈ei , x〉 <−1 is analogous). Then the vector d := x−ei has

di > 0 and ei +δd ∈ K̃ for all 0 ≤ δ≤ 1 by convexity. Let D := (0, . . . ,0,d ,0, . . . ,0) ∈
R

n×n be the matrix that has the vector d as i th column and all other columns are

0. Then replacing ei by ei +δd increases the objective function by

det(In +δD)−det(In)
up to δ2 terms

≈ δTr[D] = δdi > 0

Hence for δ> 0 small enough, we get a contradiction to optimality.

The result of Auerbach has also a functional-analytic form that can be easily

derived from the geometric statement above:

Lemma 2.12 (Auerbach’s Lemma). Let K ⊆R
n be a symmetric convex body. Then

there are bases {ai }i∈[n] and {bi }i∈[n] of Rn so that ‖ai‖K = 1 and ‖bi‖K ◦ = 1 with

〈ai ,bi 〉 = 1 for all i ∈ [n] and 〈ai ,b j 〉 = 0 for all i 6= j .
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Proof. Let A : Rn → R
n be the linear map so that B n

1 ⊆ A(K ) ⊆ B n
∞. Let ai be

the i th column of A−1 and let bi be the i th row of A. Then ‖ai‖K = ‖(A−1)i‖K =
‖A−1ei‖K = ‖ei‖A(K ) = 1. Moreover ‖bi‖K ◦ = ‖AT ei‖K ◦ = ‖ei‖(AT )−1(K ◦) = ‖ei‖A(K )◦ =
1. Also for any indices i , j ∈ [n] one has 〈bi , a j 〉 = 〈Ai , (A−1) j 〉 = (A A−1)i j = (In)i j

as claimed.

Note that none of the bases {ai }i∈[n] or {bi }i∈[n] has to necessarily be orthog-

onal. The basis {ai }i∈[n] is called an Auerbach basis for the normed vector space

(Rn ,‖ ·‖K ) (note that {ai }i∈[n] uniquely determines the choice of {bi }i∈[n]).

2.6 Exercises

Exercise 2.1.

Let K = {x ∈ R
n | | 〈ai , x〉 | ≤ 1 ∀i ∈ [N ]} be a symmetric polytope and suppose E is the

maximum volume ellipsoid contained in K . Show that there is a subset of indices I ⊆ [N ]

with |I | ≤ n2 +1 so that E is still the largest volume ellipsoid in Q := {x ∈ R
n : | 〈ai , x〉 | ≤

1 ∀i ∈ I }.

Exercise 2.2.

For a matrix M ∈ R
m×n we define a quantity called γ2-norm as γ2(M ) := inf{max{‖Ai‖2 ·

‖B j‖2 : i , j } | M = AB with A ∈ R
m×k ,B ∈ R

k×n for some k} where Ai is the i th row of A

and B j is the j th column of B . Prove that for any matrix M ∈ [−1,1]m×n with k := rank(M )

one has γ2(M )≤
p

k.

Hint. Consider the rank factorization M = AB . Then apply a linear transformation so

that conv{±Ai : i ∈ [m]} is in John position. After this transformation how long can the

vectors Ai and B j be?

Exercise 2.3.

Let K ⊆ R
n be a symmetric convex body and let E be a minimum volume ellipsoid with

K ⊆ E .

(i) Prove that 1p
n
E ⊆K .

(ii) Show that there are points S ⊆ vert(K ) (meaning extreme points of K ) with |S| ≤
n2 +1 so that E is also the minimum volume ellipsoid with conv((−S)∪S)⊆ E .

Hint. Use polarity!

Exercise 2.4.

In this exercise we want to elaborate on an application that is due to Naor (2011).
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(i) Let K ⊆R
n be a symmetric convex body with B n

2 ⊆ K and suppose there are u1, . . . ,um ∈
Sn−1 ∩∂K with In ¹

∑m
i=1 ci ui uT

i ¹ (1+ε)In for ε≥ 0. Prove that K ⊆
p

(1+ε)nB n
2 .

A remarkable spectral sparsification result of Batson, Spielman, Srivastava (2008) says

the following (which you may use without a proof): For any ε> 0 and any vectors v1, . . . , vm ∈
R

n with
∑m

i=1 vi v T
i = In there are coefficients s ∈ R

m
≥0 with |supp(s)| ≤ O(n/ε2) so that

In ¹
∑m

i=1 si vi v T
i ¹ (1+ε)In . Use this to prove the following.

(ii) Let K = {x ∈ R
n | | 〈ai , x〉 | ≤ 1 ∀i ∈ [N ]} be a symmetric polytope that is in John

position. Then there are indices I ⊆ [N ] with |I | ≤ O(n/ε2) so that Q = {x ∈ R
n |

| 〈ai , x〉 | ≤ 1 ∀i ∈ I } satisfies B n
2 ⊆Q ⊆

p
(1+ε)nB n

2 .

Exercise 2.5.

Suppose that K ⊆ R
n is a convex body with the property that (i) ‖(σ1x1, . . . ,σn xn)‖K =

‖x‖K for all x ∈ R
n and all σ ∈ {−1,1}n and ‖(xπ(1), . . . , xπ(n))‖K = ‖x‖K for all x ∈ R

n and

every permutation π : [n] → [n]. Prove that for some r > 0, the body r K is in John posi-

tion.



Chapter 3

Isoperimetric inequalities and

concentration of measure

Concentration of measure is a phenomenon that is tremendously useful in con-

vex geometry as well as other areas such as combinatorics. Here we will give

several inequalities in different settings. We begin with a concentration result

that has a nice geometric proof.

3.1 Concentration on the sphere

Recall that Sn−1 := {x ∈ R
n | ‖x‖2 = 1} is the sphere and σ is the uniform measure

on Sn−1. Recall that a function f : Rn →R is L-Lipschitz if | f (x)− f (y)| ≤ L·‖x−y‖2

for all x , y . In case that f : Sn−1 → R is 1-Lipschitz, we will be able to prove that

Prx∈Sn−1[| f (x)−µ| ≤ t ] ≤ exp(−Θ(t 2n)) where µ is the median (and in other set-

tings we will be using the mean). Luckily, there is no need to handle the function

explicitly. Simply define A := {x ∈ Sn−1 | f (x) ≤ µ} — which by definition is a

set with measure σ(A) ≥ 1
2

— and consider the set At := {x ∈ Sn−1 | d(x , A) ≤ t },

where d(x , A) := inf{‖y−x‖2 : y ∈ A} is the Euclidean distance to A. Then the con-

centration inequality immediately follows from the pure geometric statement of

σ(At ) ≥ 1−exp(−Θ(t 2n)). In other words, we need to show that most of the mea-

sure on a sphere cannot be too far from a set of measure 1/2.

We begin with a simple geometric argument for the ball:

Lemma 3.1. Let µ be the uniform measure on the ball B n
2 and let d(A,B) be the

distance between A and B . Then for A,B ⊆ B n
2 , then

min{µ(A),µ(B)} ≤ exp
(
−

n

8
·d(A,B)2

)

53
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Proof. Let us abbreviateα := min{µ(A),µ(B)} and let ρ := d(A,B) be the distance.

A B

ρ

Then for any a ∈ A,b ∈B one has

‖a +b‖2
2 = 2‖a‖2

2︸ ︷︷ ︸
≤1

+2‖b‖2
2︸ ︷︷ ︸

≤1

−‖a −b‖2
2︸ ︷︷ ︸

≥ρ2

≤ 4−ρ2

using the parallelogram law. That means A+B
2

⊆
√

1− 1
4
ρ2 ·B n

2 . Hence

α
Brunn-Minkowski

≤ µ
( A+B

2

)
≤

(
√

1−
ρ2

4

)n
≤ exp

(
−n ·

ρ2

8

)
.

using
p

1−x ≤ e−x/2 for 0≤ x ≤ 1.

One can also rearrange the statement of Lemma 3.1 to

d(A,B) ≤

√
8

n
· ln

(
1

min{µ(A),µ(B)}

)

For example, if A,B ⊆ Sn−1 with µ(A),µ(B) ≥Ω(1), then d(A,B) ≤O( 1p
n

).

We will now prove a measure concentration for the sphere:

Theorem 3.2. Let A ⊆ Sn−1 withσ(A)= 1
2

and abbreviate At := {x ∈ Sn−1 : d(x , A) ≤
t }. Then for t > 0 one has

σ(At ) ≥ 1−2 exp(−Θ(t 2n)).

Proof. Let B := Sn−1 \ At be the points in the sphere that have distance bigger

than t . Define

Ã :=
{
λA |

1

2
≤λ≤ 1

}
and B̃ :=

{
λB |

1

2
≤λ≤ 1

}

Ã̃A B̃
0
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Then the distance of those sets is d(Ã, B̃) ≥ t
2

. By the previous Lemma 3.1 we get

the inequality in (1− 1
2n )σ(B) = µ(B̃) ≤ exp(−Θ(t 2n)). Then we have our upper

bound on σ(B).

For x ∈ Sn−1 we define B(x ,r ) := {y ∈ Sn−1 | ‖x − y‖2 ≤ r } as the geodesic ball
of radius r (also called a spherical cap).

0 x

B(x ,r )

r

Sn−1

It is known that spherical caps minimizes the “measure expansion”. We state

the result without a proof:

Theorem 3.3 (Lévy, Schmidt). For any set A ⊆ Sn−1, take a geodesic ball B(x ,r ) ⊆
Sn−1 with r chosen so that σ(A) =µ(B(x ,r )). Then σ(At ) ≥σ(B(x ,r + t )).

For a function f : Sn−1 →R we abbreviate mean( f ) := E[ f (x)] and median( f )

denotes any median of f (x) under the distribution x ∼ Sn−1. We state two more

results with explicit constants without detailed proof:

Theorem 3.4. Let f : Sn−1 → R be an L-Lipschitz function. Then for any t ≥ 0,

Prx∼Sn−1 [| f (x)−median( f )| > t ·L] ≤ 4e−nt2/2.

See for example [Mat02] for a derivation.

Theorem 3.5. Let f : Sn−1 → R be an L-Lipschitz function. Then for any t ≥ 0,

Prx∼Sn−1 [| f (x)−mean( f )| > t ·L] ≤ 64e−nt2/64.

Proof. After scaling assume L = 1. Then using concentration one can show that

|median( f )−mean( f )| ≤ 12p
n

(see exercises of [Mat02]). First note that the claim

is vacuous if t ≤ 16p
n

as the right hand side is bigger than 1. Then for t ≥ 16p
n

we get

Pr
x∼Sn−1

[| f (x)−mean( f )| > t ] ≤ Pr
x∼Sn−1

[
| f (x)−median( f )| > t −

12
p

n

]

≤ 4 exp
(
−n ·

(
t −

12
p

n

)2
/2

)
≤ 64 exp(−nt 2/64)

as one can verify.
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3.2 Isoperimetric inequality in Gaussian space

Next, we want to prove a concentration result for Gaussians. It turns out that

such a result has a rather short proof using the Prékopa-Leindler Inequality. We

take a small detour in order to spell out where the “magic” in the proof comes

from. For the sake of simplicity let us set λ := 1
2

from here on.

Recall that the Prékopa-Leindler inequality says that for functions f , g ,h :

R
n → R≥0 with h( 1

2
x + 1

2
y) ≥ f (x)1/2g (y)1/2 for all x , y ∈ R

n one obtains a lower

bound on the integral of
∫
Rn h(x)d x ≥ (

∫
Rn f (x)d x)1/2(

∫
Rn g (x)d x)1/2. Now we are

interested in such an inequality for Gaussian space in the form of Ex∼γn [h(x)] ≥
Ex∼γn [ f (x)]1/2

Ex∼γn [g (x)]1/2. Observe that the Gaussian density has the prop-

erty that the density γn( 1
2

x + 1
2

y) is a lot higher than the product of densities

γn(x)1/2 ·γn(y)1/2 if x and y are far apart. One can use this to build in a “discount

factor” in the assumptions.

Lemma 3.6 (Prékopa-Leindler for Gaussian Space). Let f , g ,h : Rn →R≥0 be mea-

surable functions with

h
(1

2
x +

1

2
y
)
≥ exp

(
−
‖x − y‖2

2

8

)
· f (x)1/2g (y)1/2 ∀x , y ∈R

n

Then

E
x∼γn

[h(x)] ≥ E
x∼γn

[ f (x)]1/2 · E
x∼γn

[g (x)]1/2.

Proof. We will apply the original Prékopa-Leindler inequality for the functions

f̃ (x) = γn(x) · f (x) and g̃ (x) = γn(x) ·g (x) and h̃(x) = γn(x) ·h(x)

Then we can verify that

h̃
(1

2
x +

1

2
y
)

=
1

(2π)n/2
exp

(
−

1

2

∥∥∥x + y

2

∥∥∥
2

2

)
·h

(1

2
x +

1

2
y
)

=
1

(2π)n/2

(
e− 1

2‖x‖2
2
)1/2(

e− 1
2‖y‖2

2
)1/2

exp
(‖x − y‖2

2

8

)
·h

(1

2
x +

1

2
y
)

assumption
≥

( 1

(2π)n/2
e− 1

2 ‖x‖2
2 · f (x)

)1/2( 1

(2π)n/2
e− 1

2‖y‖2
2 ·g (y)

)1/2

= f̃ (x)1/2g̃ (x)1/2.

This means we can indeed apply Prékopa-Leindler to the functions f̃ , g̃ , h̃ and

E
x∼γn

[h(x)] =
∫

Rn
h̃(x)d x

PL
≥

(∫

Rn
f̃ (x)d x

)1/2(∫

Rn
g̃ (x)d x

)1/2

= E
x∼γn

[ f (x)]1/2 · E
x∼γn

[g (x)]1/2
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and the lemma is proven.

Now we can prove that the Gaussian measure expands quickly:

Theorem 3.7. Let A ⊆R
n be a non-empty measurable set. Then

E
x∼γn

[
ed(x ,A)2/4

]
≤

1

γn(A)
.

Proof. Define functions

f (x) := exp(d(x , A)2/4) and g (x) := 1A(x) and h(x) := 1

Then we verify that the assumption of Lemma 3.6 is satisfied. For x , y ∈ R
n one

has

f (x)1/2 ·g (y)1/2e−‖x−y‖2
2/8 = ed(x ,A)2/8 ·1A(y)︸ ︷︷ ︸

≤e‖x−y‖2
2

/8

·e−‖x−y‖2
2/8 ≤ 1 = h

(1

2
x +

1

2
y
)

Here we use that for y ∉ A we have 1A(y) = 0 and there is nothing to show, while

for y ∈ A, we have the upper bound of d(x , A) ≤ ‖x − y‖2. Then by the Prékopa-

Leindler inequality for Gaussian space we get

1= E
x∼γn

[h(x)]2 Lem 3.6
≥ E

x∼γn

[ f (x)] · E
x∼γn

[g (x)] = E
x∼γn

[
exp(d(x , A)2/4)

]
· E

x∼γn

[1A(x)]

︸ ︷︷ ︸
=γn (A)

and rearranging gives the claim.

It is actually a rather standard approach in concentration to first obtain an

upper bound on E[exp(distance of x to A)] and then derive that almost all points

x are not too far from A.

Lemma 3.8. Let A ⊆R
n be a set with γn(A) = 1

2
, then γn(At ) ≥ 1−2 exp(−t 2/4).

Proof. Simply write

Pr
x∼γn

[d(x , A) ≥ t ] = Pr
x∼γn

[
ed(x ,A)2/4 ≥ e t2/4

]
Markov
≤ E[ed(x ,A)2/4]

e t2/4

Thm 3.7
≤ 2e−t2/4

We also state the beautiful fact that among all sets of identical Gaussian mea-

sure, a halfspace minimizes the expansion. Again we omit a proof:
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Theorem 3.9 (Gaussian Isoperimetric Inequality - Borell, Sudakov-Tsirelson). Let

A ⊆ R
n be a measurable set and let H = {x ∈ R

n | 〈θ, x〉 ≤ λ} be a halfspace with

γn(A) = γn(H). Then for any t ≥ 0 one has γn(At ) ≥ γn(Ht ).

It is often convinient to state concentration with respect to mean instead of

median. Note that in an exercise we will see that for every 1-Lipschitz function

these differ by at most a constant and one could derive the following claim from

that (possibly with worse constants). Hence we will skip the proof.

Theorem 3.10. Let f : Rn → R be an L-Lipschitz function. Then for any s ≥ 0 one

has Prx∼γn [| f (x)−Ey∼γn [ f (y)]| ≥ s ·L] ≤ 2 exp(−s2/4).

3.3 Talagrand’s inequality

For this section, we follow the exposition from the book The Probabilistic Method
of Alon & Spencer [AS16]. Suppose that Ω=Ω1 × . . .×Ωn is a product space with

a product measure µ, meaning that x ∼ µ is a random vector from Ω and every

coordinate is drawn independently from some distribution. Talagrand’s inequal-

ity gives a concentration inequality for every possible product distribution; in

particular the sets Ωi do not need to come from R. This generality also comes

at a cost — the inequality is a bit hard to parse and to understand. For vectors

x , y ∈Ω, let

unequal(x , y)i :=
{

1 if xi 6= yi

0 if xi = yi

Then for x ∈Ω one defines UA(x) := {s ∈ {0,1}n : s ≥ unequal(x , y) for some y ∈ A}

and

φA(x) := min{‖s‖2 | s ∈ conv(UA(x))}

Note that φA(x) is a distance function that is also called the convex distance in

the literature. For the sake of illustration fix an x ∈ Ω and fix the vector s ∈
conv(UA(x)) attaining the distance. Then the definition provides the existance

of a distribution ν over vectors in A so that for every coordinate i ∈ [n] one has

Pry∼ν[xi 6= yi ] ≤ si .

Theorem 3.11. Let Ω=Ω1 × . . .×Ωn be a product space with a product distribu-

tion µ and let A ⊆Ω with µ(A) > 0. Then

E
x∼µ

[
exp(φA(x)2/4)

]
≤

1

µn(A)



3.3. TALAGRAND’S INEQUALITY 59

Proof. We prove the claim by induction over the dimension n. For n = 1 we have

E
x∼µ

[
exp

(1

4
φA(x)2

)]
= e0 ·µ(A)+ (1−µ(A)) ·e1/4 ≤

1

µ(A)

as one can easily check.

Now we consider an (n+1)-dim vector (x ,ω) ∈ (Ω1 × . . .×Ωn)×Ωn+1. To sim-

plify notation we denoteµ as the product measure in the appropriate dimension.

Let

Aω := {x ∈Ω1 × . . .×Ωn | (x ,ω) ∈ A}

be the slices of A for a given last coordinate. Moreover, let

B := {x ∈Ω1 × . . .×Ωn | ∃ω ∈Ωn+1 : (x ,ω) ∈ A}

be the set that can be reached by changing the last coordinate.

Observe that in order to move from a random point (x ,ω) to conv(UA(x ,ω))

we have two options: (A) change the last coordinate or (B) leave the last coordi-

nate unchanged. We use the fact that

(A) s ∈ conv(UB (x)) ⇒ (s,1) ∈ conv(UA(x ,ω))

(B) t ∈ conv(UAω(x)) ⇒ (t ,0) ∈ conv(UA(x ,ω))

Pick the points s ∈ conv(UB (x)) and t ∈ conv(Aω(x)) minimizing the length ‖ ·‖2.

Note that for (A) we use the monotonicity in the definition of UA(x ,ω) as the

point s ∈ conv(UB (x)) may have a component from Aω.

Then for any 0 ≤λ≤ 1 we have

λ

(
s

1

)
+ (1−λ)

(
t

0

)
=

(
λs + (1−λ)t

λ

)
∈ conv(UA(x ,ω))

(x ,ω) Aω

B

x ∈Ω1 × . . .×Ωn

ω ∈Ωn+1

Fig 1: View in Ω1 × . . .×Ωn+1

conv(UA(x ,ω))

0

(s,1)

(t ,0)

λ ·
(

s

1

)
+ (1−λ) ·

(
t

1

)

Fig 2: View in {0,1}n+1
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Then we can upper bound the distance for a point by

φA(x ,ω)2 ≤
∥∥∥
(
λs + (1−λ)t

λ

)∥∥∥
2

2

Phytagoras= ‖λs + (1−λ)t‖2
2 +λ2 (∗)

convexity
≤ λ‖s‖2

2 + (1−λ)‖t‖2
2 +λ2 choice of s,t= λ ·φB (x)2 + (1−λ) ·φAω(x)2 +λ2

We use the inequality (∗) and average over the sampled point. Here it will be

crucial that we may choose λ dependent on the outcome of ω.

E
(x ,ω)

[
exp

(1

4
φA(x ,ω)2

)]
(∗)
≤ E

ω

[
eλ2/4

E
x

[
exp

(1

4
φB (x)2

)λ
exp

(1

4
φAω(x)2

)1−λ]]

Hölder
≤ E

ω

[
eλ2/4

E
x

[
exp

(1

4
φB (x)2

)]λ
·E

x

[
exp

(1

4
φAω(x)2

)]1−λ]

induction
≤ E

ω

[
eλ2/4

( 1

µ(Aω)

)1−λ( 1

µ(B)

)λ]

(∗∗)
≤ E

ω

[ 1

µ(B)
·
(
2−

µ(Aω)

µ(B)

)]

=
1

µ(B)
·
(
2−

µ(A)

µ(B)

)
=

1

µ(A)
·
µ(A)

µ(B)
·
(
2−

µ(A)

µ(B)

)

︸ ︷︷ ︸
≤1 as 0≤µ(A)

µ(B)≤1

≤
1

µ(A)

Here we can justify (∗∗) as follows. For a fixed ω, set r := µ(Aω)

µ(B)
∈ [0,1] as the ratio

of the measures. Then

eλ2/4
( 1

µ(Aω)

)1−λ( 1

µ(B)

)λ
=

1

µ(B)
·eλ2/4r−(1−λ) ≤

1

µ(B)
· (2− r )

if we choose

λ(r ) :=
{

2 ln( 1
r ) if e−1/2 ≤ r ≤ 1

0 0 ≤ r < e−1/2

This finishes the proof.

If the product spaces is {−1,1}n we can simplify the statement of Talagrand’s

Theorem.

Corollary 3.12 (Talagrand on Hypercube I). Letµbe a product measure on {−1,1}n

and let A ⊆ {−1,1}n . Then Ex∼µ
[

exp( 1
16

d(x ,conv(A))2)
]
≤ 1

µ(A)
.

Note that the extra factor of 1
4

comes from scaling {0,1}n to {−1,1}n which

doubles each distance.
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Corollary 3.13 (Talagrand on Hypercube II). Letµbe a product measure on {−1,1}n

and let A ⊆ {−1,1}n . Then for t ≥ 0 one has Prx∼µ
[
d(x ,conv(A)) ≥ t

]
≤ exp(−t2/16)

µ(A)
.

Proof. Similar to earlier proofs we bound

Pr
x∼µ

[
d(x ,conv(A)) ≥ t

]
= Pr

[
ed(x ,A)2/16 ≥ e t2/16

]
≤

E

[
ed(x ,conv(A))2/16

]

e t2/16
≤

exp(−t 2/16)

µ(A)

An application of Talagrand’s Inequality

Let f : Rn →R be a function and µ be a measure. A number median( f ) is called a

median of f if

Pr
x∼µ

[ f (x) ≥ median( f )] ≥
1

2
and Pr

x∼µ
[ f (x) ≤ median( f )] ≥

1

2

Note that the median does not have to be unique.

We can also give one application that uses Talagrand’s Concentration inequal-

ity:

Theorem 3.14. Let f : Rn →R be a convex 1-Lipschitz function. Then

Pr
x∼{−1,1}n

[| f (x)−median( f )| ≥ t ] ≤ 4e−t2/16

Proof. Let µn be the uniform measure on {−1,1}n . For s ∈R, we define As := {x ∈
R

n | f (x) ≤ s}. Note that the sets As are convex. We prove the following:

Claim. For any s and t ≥ 0 one has µn(As+t ) ≥ 1− 1
µn (As )

e−t2/16.

Proof of claim. We have Prx∈{−1,1}n [d(x ,conv(As∩{−1,1}n)) ≤ t ] ≥ 1− 1
µn (As )

e−t2/16

by Talagrand’s inequality (Cor 3.13). So, fix an x ∈ {−1,1}n satisfying this event. By

definition of the distance function, there is a y ∈ conv(As ∩ {−1,1}n) ⊆ As so that

‖x − y‖2 ≤ t . By the Lipschitz property f (x) ≤ f (y)+‖x − y‖2 ≤ s + t .

We will need the claim twice. Let us assume for the sake of a simpler notation

that indeed µn(Amedian( f )) = 1
2

. First we can get that

µn(Amedian( f )+t )
Claim
≥ 1−

1

µn(Amedian( f ))
·e−t2/16 = 1−2e−t2/16.

Next,
1

2
=µn(Amedian( f ))

Claim
≥ 1−

1

µn(Amedian( f )−t )
e−t2/16

which can be rearranged toµn(Amedian( f )−t ) ≤ 2e−t2/16. It follows thatµn(Amedian( f )+t \

Amedian( f )−t ) ≥ 1−4e−t2/16.
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3.4 The subgaussian norm

Frequently we will deal with random variables that are not necessarily Gaussian

but that have tails that decay at least as quickly as this is the case for Gaussians.

We will now discuss properties of such random variables in detail. For this sec-

tion we follow the exposition in Vershynin [Ver19]. Here we will focus on mean-
zero random variables as this suffices for our purposes (and we do not need to

tediously point out which condition works also for non-centered random vari-

ables and which one does not). First we want to elaborate what exactly we mean

by “tail bound”. Luckily, many possible conditions for tail bounds are actually

equivalent.

Lemma 3.15 (Conditions of Sub-Gaussian tails). Let X ∈ R be a random variable

with E[X ] = 0. The following statements are equivalent in the sense that if condi-

tion i holds with si > 0 then there is an s j ∈ [
si
C ,C si ] so that also condition j holds

where C > 0 is a universal constant.

• Condition 1: One has Pr[|X | ≥ t ] ≤ 2 exp(−t 2/s2
1) for all t ≥ 0.

• Condition 2: One has E[|X |p ]1/p ≤ s2
p

p for all p ≥ 1.

• Condition 3: One has E[exp(X 2/s2
3)] ≤ 2.

• Condition 4: One has E[exp(λX )] ≤ exp(s2
4λ

2) for all λ ∈R.

The proof is a bit lengthy (though not difficult) so we skip it here. See [Ver19]

for details. So we could pick pretty much any parameter si and use it to quantify

the tail bounds of a random variable. We pick Condition 3:

Definition 3.16. Let X ∈ R be a random variable. We define the sub-gaussian
norm as1 as

‖X ‖ψ2 := inf
{

s > 0 : E
[

exp
( X 2

s2

)]
≤ 2

}

Note that for X ∼ N (0,σ2) we indeed have ‖X ‖ψ2 = Θ(σ) as expected. We

summarize a few useful properties — in particular the subgaussian norm is in-

deed a norm on the set of mean-zero random variables.

Lemma 3.17. In the following let X as well as X1, . . . , XN be jointly distributed

mean-zero random variables.

(i) One has E[max{|X1|, . . . , |XN |}] ≤O(
√

log(N )) ·max{‖Xi‖ψ2 : i ∈ [N ]}

1The notation comes from the more general concept of an Orlicz norm.
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(ii) One has ‖t X ‖ψ2 = |t | · ‖X ‖ψ2 for all t ∈R.

(iii) One has ‖X1 +X2‖ψ2 ≤ ‖X1‖ψ2 +‖X2‖ψ2 (even if X1, X2 are dependent).

(iv) If X1, . . . , XN are independent then ‖X1 + . . .+ XN‖ψ2 ≤ C · (
∑N

i=1 ‖Xi‖2
ψ2

)1/2

for a universal constant C > 0.

Proof. We only prove (i) and (iv). For (i), we set σ := max{‖Xi‖ψ2 : i = 1, . . . , N }.

Then some constant C0 > 0 and all s ≥ 1 one has

Pr
[
∃i ∈ [N ] : |Xi | ≥C0sσ

√
log(N )

]
≤ N ·e−2s2 log(N) = N 1−2s2

Then

E

[
max |Xi |

]
≤ C0σ

√
log(N )+

∑
s∈Z≥1

(1+ s)C0σ
√

log(N ) ·Pr
[
∃i ∈ [N ] : Xi ≥C0sσ

√
log(N )

]

≤ C0σ
√

log(N ) ·
(
1+

∑
s∈Z≥1

(1+ s)N 1−2s2

︸ ︷︷ ︸
≤constant

)
≤C1σ

√
log(N )

for some constant C1 > 0. Note that this upper bound indeed does not require

independence2.

For (iv) we abbreviate σi := Θ(‖Xi‖ψ2 ) as the value so that for λ ∈ R one has

E[eλXi ] ≤ eσ2
i λ

2

. Then one has

E

[
exp

(
λ

N∑

i=1

Xi

)]
=

N∏

i=1

E[exp(λXi )] ≤
N∏

i=1

exp(σ2
i λ

2) = exp(‖σ‖2
2λ

2)

which gives that ‖X1 + . . .+Xn‖ψ2 ≤O(‖σ‖2).

3.5 Khintchine’s Inequality

Consider independent random variables x1, . . . , xn ∈ {−1,1} with Pr[xi = +1] =
Pr[x1 =−1] = 1

2
for all i . Such random variables are also called Rademacher ran-

dom variables. Now, take a vector a ∈R
n — say for the sake of simplicity normal-

ized so that ‖a‖2 = 1 — and consider the outcome of the sum 〈a, x〉 :=
∑n

i=1 ai xi .

2A 2nd popular way of deriving the same bound is as follows: Let Y := (X1, . . . , XN ) ∈ R
N

and p := log2(N ) and recall the useful estimate that ‖Y ‖p ≤ ‖Y ‖∞ ≤ 2‖Y ‖p . Then E[‖Y ‖∞] ≤
2E[‖Y ‖p ] = 2E[(

∑N
i=1 |Xi |p )1/p ] ≤ 2(

∑N
i=1 E[|Xi |p ])1/p ≤ 2(N · C2

p
p)1/p ≤ C3

√
log(N ) using

Lemma 3.15.(II) and Hölders Inequality in the form E[Z 1/p ] = E[11−1/p Z 1/p ]≤ E[1]1−1/p
E[Z ]1/p =

E[Z ]1/p for any non-negative random variable Z .
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Clearly E[〈a, x〉] = 0 and Var[〈a, x〉] = 1. We are wondering for fixed p > 0, how

the pth moment E[| 〈a, x〉 |p ]1/p of that random variable is going to behave. If

p =Θ(1), then also that moment will be constant. But if p is large, this puts higher

weight on outliers and if the ai ’s are tiny we might get a deviation as we know it

from a Gaussian. On the other hand, if a1 = 1 and ai = 0 for i 6= 1, then the pth

moment is just 1. In fact, the Inequality of Khintchine provides us with upper

bounds and lower bounds on E[| 〈a, x〉 |p ]1/p . This is a useful tool at numerous

places.

Theorem 3.18 (Khintchine). For n ≥ 1 and p > 0 and a ∈R
n one has

{
1 if p ≥ 2

C ′ if 0 < p ≤ 2

}
· ‖a‖2 ≤ E

x∈{−1,1}n

[
| 〈a, x〉 |p

]1/p
≤ ‖a‖2 ·

{
C
p

p if p ≥ 2

1 if 0< p ≤ 2

}

where C ,C ′> 0 are universal constants.

Proof. W.l.o.g. one can scale the coefficients so that ‖a‖2 = 1 and consider the

sum X :=
∑n

i=1 ai xi . Note that E[X ] = E[〈a, x〉] = 0 and E[X 2] = E[〈a, x〉2] = 1 and

X satisfies Gaussian tail bounds. That will be all we need. We distinguish several

cases.

Upperbound for p ≥ 2. By Lemma 3.17.(ii)+(iv) we have ‖X ‖ψ2 ≤C1(
∑n

i=1 a2
i ‖xi‖2

ψ2
)1/2 ≤

C2‖a‖2
2 = C2 for some constants C1,C2 > 0. We conclude by Lemma 3.15 that

E[|X |p ]1/p ≤C
p

p for some other constant C > 0.

Lower bound for p ≥ 2. Then we use Jensen’s inequality with the fact that x 7→ xp/2

is convex as p/2 ≥ 1 to get E[|X |p ] = E[(|X |2)p/2] ≥ (E[|X |]2)p/2 = 1.

Upper Bound for 0 < p ≤ 2. Now the function x 7→ xp/2 is concave for 0 ≤ x <∞
and so E[|X |p ] = E[(X 2)p/2] ≤ E[X 2]p/2 = 1 by using again Jensen’s inequality.

Lower bound for 1 ≤ p ≤ 2. We use Hölder’s inequality to obtain

1= E[X 2] = E

[
|X |2/3 · (|X |4)1/3

]
≤ E

[
|X |

]2/3 ·E
[
|X |4

]1/3 ≤ E

[
|X |

]2/3 · ((C
p

4)4)1/3

This can be rearranged to obtain E[|X |p ] ≥ E[|X |] ≥ C ′ > 0 for some universal

constant.

Lower bound for 0 < p < 1. Similar to the last case.

3.6 Kahane’s Inequality

Suppose we consider a1, . . . , an ∈ R
m and we consider the random vector X :=∑n

i=1 xi ai where x ∼ {−1,1}n is drawn uniformly at random. Then what can we

say about the value of E[‖X ‖p
K ]1/p compared to E[‖X ‖K ], where ‖ · ‖K is an arbi-

trary norm? Clearly, for p ≥ 1, an extra factor of O(
p

p) will be needed even if the

ai ’s are identical. And this turns out that this is the worst case.
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Theorem 3.19 (Kahane). Let K ⊆R
m be a symmetric convex body. Then for p ≥ 1

and a1, . . . , an ∈R
m one has

E
x∈{−1,1}n

[∥∥∥
n∑

i=1

xi ai

∥∥∥
p

K

]1/p
≤O(

p
p) · E

x∈{−1,1}n

[∥∥∥
n∑

i=1

xi ai

∥∥∥
K

]

Proof. We abbreviate X :=
∑n

i=1
xi ai as the produced random vector. Then the

quantity σ2 := max{
∑n

i=1
〈ai ,b〉2 | b ∈ K ◦} will be a good proxy for the variance of

‖X ‖K . Note that σ2 would be in particular large if the ai are co-linear.

Claim I. The function f (x) := ‖
∑n

i=1
xi ai‖K is convex and σ-Lipschitz.

Proof of Claim. Convexity follows from ‖ · ‖K being a norm. Next, take vec-

tors x , y ∈ R
n and let z be the dual element to

∑n
i=1

yi ai , i.e. ‖
∑n

i=1
yi ai‖K =

〈
∑n

i=1 yi ai , z〉 with ‖z‖K ◦ = 1 (see again Lemma 1.7). Then

| f (x + y)− f (x)| =
∣∣∣
∥∥∥

n∑

i=1

(xi + yi )ai

∥∥∥
K
−

∥∥∥
n∑

i=1

xi ai

∥∥∥
K

∣∣∣
Reverse
triangle
≤

∥∥∥
n∑

i=1

yi ai

∥∥∥
K

≤
∣∣∣〈

n∑

i=1

yi ai , z〉
∣∣∣≤

n∑

i=1

|yi | · | 〈ai , z〉|
Cauchy-S.

≤ ‖y‖2 ·
( n∑

i=1

〈ai , z〉2
)1/2

︸ ︷︷ ︸
≤σ

We will also need an upperbound on the quantity σ:

Claim II. One has σ≤C ·E[‖X ‖K ] for some constant C > 0.
Let b ∈K ◦ be the element attaining the maximum that defines σ. Then

σ =
( n∑

i=1

〈ai ,b〉2
)1/2 Khintchine

≤ C · E
x∈{−1,1}n

[∣∣∣
n∑

i=1

xi 〈ai ,b〉
∣∣∣
]

= C ·E[| 〈X ,b〉 |]
Cauchy-S.

≤ C ·E
[
‖X ‖K · ‖b‖K ◦︸ ︷︷ ︸

=1

]

The function f is convex and σ-Lipschitz. Moreover by Markov’s inequality we

can get the rather crude bound of median( f ) ≤ 2E[‖X ‖K ]. Then by Talagrand’s

inequality (see Theorem 3.14) we obtain concentration of the form Pr[|‖X ‖K −
median( f )| > tσ] ≤ 4e−t2/16. Then using a calculation analogous to Khintchine’s

inequality we obtain

E

[
‖X ‖p

K

]1/p ≤ median( f )+O(
p

p ·σ)
Claim II
≤ O(

p
p) ·E[‖X ‖K ]

That shows the claim.
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3.7 Log-concave measures

Recall that a function f : Rn →R is log-concave if

f ((1−λ)x +λy) ≥ f (x)1−λ f (y)λ ∀0 <λ< 1 ∀x , y ∈R
n

Similarly a probability measure µ on R
n is called log-concave if

µ
(
(1−λ)A+λB

)
≥µ(A)1−λ ·µ(B)λ

for all 0 < λ < 1 and all measurable sets A,B ⊆ R
n . In fact, these notions are

connected:

Lemma 3.20. If the density function µ(x) of a measure is log-concave, then also

the measure µ itself is log-concave.

The proof is a straightforward application of the Prékopa-Leindler Inequality.

Again, we have somewhat abused notation and used the same symbol µ for the

measure and the density of the measure. One consequence is that the Gaussian

measure γn is log-concave. Moreover any convex body induces a natural log-

concave measure:

Lemma 3.21. Let K ⊆ R
n be a convex body. Then the measure µ defined by

µ(A) := Voln (A∩K )
Voln (K )

is log-concave.

Proof. By Brunn-Minkowski III (Theorem 1.41) we have Voln(λ ·(A∩K )+ (1−λ) ·
(B ∩K )) ≥ Voln(A∩K )λ ·Voln(B ∩K )1−λ.

We have observed earlier that log-concave functions have an exponential de-

cay. That leads to the suspicion that log-concave measures satisfy some form of

concentration. And indeed we can prove a rather general result (where we are a

bit loose with constants in order to simplify the exposition):

Lemma 3.22 (Borell). Let µ be a log-concave measure and let A ⊆ R
n be a sym-

metric convex set with µ(A) ≥ 3
4

. Then µ(t · A) ≥ 1−2−t/2 for t ≥ 4.

Proof. First observe that
(2

t
· (Rn \ t A)+

(
1−

2

t

)
· A

)
=

(
(Rn \ 2A)+

(
1−

2

t

)

︸ ︷︷ ︸
<1

A)
)
⊆R

n \ A (∗)

using the Reverse Triangle Inequality and that ‖ ·‖A is a norm. Then

1

4
≥µ(Rn \ A)

(∗)
≥ µ

(2

t
(Rn \ t A)+

(
1−

2

t

)
· A

) log concavity
≥ µ(Rn \ t A)2/t µ(A)1−2/t

︸ ︷︷ ︸
≥(3/4)1/2
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which can be rearranged to µ(Rn \ t A) ≤ ( 1
4
· ( 4

3
)1/2)t/2 ≤ (1/2)t/2.

3.8 Exercises

Exercise 3.1.

Find a 1-Lipschitz function f : Rn →R so that Prx∼{−1,1}n [| f (x)−median( f )| ≥ c1n1/4] ≥ c2

where c1,c2 > 0 are constants, n ∈N is arbitrary and median( f ) denotes the median w.r.t.

the distribution x ∼ {−1,1}n .

Hint. You may use the following fact without proof: For some small enough constants

c ′,c ′′ > 0 one has Prx∼{−1,1}n [
∑n

i=1 xi ≥ c ′
p

n] ≥ c ′′.

Remark. This exercise shows that the convexity assumption in Talagrand’s Theorem can-

not be dropped.

Exercise 3.2.

Let X :Ω→Rbe a random variable with the property Pr[|X−median(X )| ≥ t ] ≤ c1 exp(−c2t 2)

for all t ≥ 0 where c1,c2 > 0 are constants. Prove that |median(X )− E[X ]| ≤ c3 where

c3 := c3(c1,c2) is a constant only dependent on c1 and c2.

Exercise 3.3.

Let H ⊆R
n be a subspace with k := dim(H ) and let d (x , H ) := min{‖x−y‖2 : y ∈ H } be the

Euclidean distance to H .

(i) Prove that Ex∼{−1,1}n [d (x , H )2] = n −k .

(ii) Prove that Ex∼{−1,1}n [d (x , H )]≤
p

n −k.

(iii) Prove that Prx∼{−1,1}n [|d (x , H ) −
p

n −k| ≥ t ] ≤ c1 exp(−c2t 2) for some universal

constants c1,c2 > 0 and any t > 0.

Hint. You may use without proof the fact that for a R-valued random variable X one has

|median(X )−mean(X )| ≤ C‖X ‖ψ2
for some constant C > 0. You may also use without

proof that for an R-valued random variable X with E[X ] = 0 and any values u ∈ R, s > 0

and D1 > 0 one has

(
Pr[|X −u| ≥ t ]≤ D1 exp(−t 2/s2) ∀t ≥ 0

)
=⇒ ‖X ‖ψ2

≤ D2 · s

where D2 > 0 is a constant that only depends on D1.

Exercise 3.4.

Let µ be a log concave measure on R and let X ∼ µ be a random variable distributed

according to µ.
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1. Prove that there is a C :=C (µ) > 0 so that Pr[|X | ≥ t ] ≤ 2−t /2 for all t ≥C .

2. Find a log concave measure µ so that indeed Pr[|X | ≥ t ] ≥ 2−c1t for all t ≥ c2 for

some constants c1,c2 > 0.



Chapter 4

Covering numbers

For two convex bodies A,B ⊆ R
n we define the covering number N (A,B) as the

minimum number of translates of B necessary to cover A. In other words, the

covering number is the minimum number N so that there are points x1, . . . , xN ∈
R

n with A ⊆⋃N
i=1

(xi +B).

A

xi +B

There is a natural relation between covering numbers and the volume of the in-

volved sets. In particular it is a simple observation that N (A,B)≥ Voln(A)/Voln(B)

and this inequality could only be tight if A could be partitioned into disjoint

copies of B . But most of the time the shapes of A and B do not allow such an

efficient covering. For example one can have Voln(A) = Voln(B), but still N (A,B)

can be arbitrarily large if A and B are “long and skinny” in very different direc-

tions. Nevertheless, one of the main insights of this chapter will be that for any

two convex bodies A,B ⊆R
n one has

4−n Voln(A−B)

Voln(B)
≤ N (A,B) ≤ 4n Voln(A−B)

Voln(B)

This is a surprisingly tight inequality showing that the relative shapes of A and B
matter very little.

69
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4.1 A few basic results in covering numbers

We start discussing a couple of basic, but useful facts. Note that in the definition

of the covering number N (A,B), the centers xi might not be inside A. Hence,

a variant is N̄ (A,B) := min{N ∈ N | ∃x1, . . . , xN ∈ A : A ⊆ ⋃N
i=1

(xi +B)} where the

centers of the translations have to lie inside of A. For some bodies B one can

have N̄ (A,B) > N (A,B), but for example if B is a Euclidean ball the numbers are

identical.

There are a couple of facts:

Lemma 4.1. The following holds:

(1) For convex bodies A,B ⊆R
n one has N̄ (A,B −B) ≤ N (A,B) ≤ N̄ (A,B).

(2) For a convex body A and r > 0 one has N (A,r B n
2 ) = N̄ (A,r B n

2 ).

(3) For convex bodies A,B ⊆ R
n and an invertible linear map T : Rn → R

n one

has N (A,B) = N (T (A),T (B)).

(4) For convex bodies A,B ,C one has N (A,B) ≤ N (A,C ) ·N (C ,B).

(5) For convex bodies A,B ⊆R
n one has N (A, (A− A)∩ (B −B)) ≤ N (A,B).

Proof. The claims (1)-(4) are very straightforward to show. But we will prove (5),

which an interesting claim as the set (A − A)∩ (B −B) is a symmetric convex set

that is potentially a lot smaller than B . W.l.o.g. assume that 0 ∈ A and 0 ∈ B so

that A− A ⊇ A and B −B ⊇ B . So, suppose that A ⊆⋃N
i=1

(xi +B). For a fixed index

i pick an element yi ∈ (xi +B)∩ A (which should exist, otherwise that translate

was redundant). For z ∈ A∩ (xi +B) one can now see that ‖z − yi‖A−A ≤ 1 as well

as ‖z − yi‖B−B ≤ 1. Then A ⊆⋃N
i=1

(yi + ((A− A)∩ (B −B))).

xi

xi +B yi

z

A

Next, we will see that for ellipsoids, the reverse covering number equals the

covering number of the polars:

Lemma 4.2. For ellipsoids E1,E2 one has N (E1,E2) = N (E◦
2 ,E◦

1 ).
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Proof. After a linear transformation that does not affect the statement, we may

assume that E2 = B n
2 . In other words, it suffices to prove that N (E ,B n

2 ) = N (B n
2 ,E◦)

for an ellipsoid E . Let T be the invertible linear map with E = T (B n
2 ) and choose

orthonormal vectors v1, . . . , vn and λi > 0 so that T (ei ) = λi vi . Consider a cov-

ering y1 +B n
2 , . . . , yN +B n

2 of E with N := N (E ,B n
2 ) many translates. Consider the

inverse map T −1 with T −1(ei ) = 1
λi

vi . Then we can cover T −1(E ) = B n
2 with trans-

lates T −1(yi +B n
2 ) = T −1(yi )+E◦.

Eb b

b b

bb

yi +B n
2

T −1

⇒
b b

b b

bb

B n
2

T −1(yi )+E◦

We will now show a first relation between covering numbers and volume —

the big caveat is that the 2nd body T needs to be symmetric:

Lemma 4.3. If K is convex and T is convex and symmetric, then

Voln(K )

Voln(T )
≤ N (K ,T ) ≤ 2n

Voln(K + T
2

)

Voln(T )

The first inequality also holds without the symmetry assumption.

Proof. The first bound is trivial and clearly holds even if T is not symmetric. For

the second inequality, select a maximum number of points x1, . . . , xN ∈ K so that

the translates xi+ T
2

are disjoint. Then K ⊆
⋃N

i=1
(xi+T ) since otherwise one could

have added one more translate. Next, observe that xi + T
2
⊆ K + T

2
and hence

N (K ,T ) ≤ N
disjointness

≤
Voln(K + T

2
)

Voln( T
2

)
= 2n

Voln(K + T
2

)

Voln(T )

b

b

b

K

K + T
2

xi

xi + T
2
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4.2 The Milman-Pajor Theorem

In this section, we will finally prove that indeed N (A,B) ≈ Voln (A−B)
Voln (B)

for all convex

bodies. We begin with an estimate dealing with averages of log-concave func-

tions. Let A ⊆ R
n be a measurable set (not necessarily convex), then the bary

center is bary(A) = Ex∼A [x] = 1
Voln (A)

∫
Rn x ·1A(x)d x . Similarly if F : Rn → R≥0 is

just a non-negative function we can define a barycenter as

bary(F ) :=
1∫

Rn F (x)d x

∫

Rn
x ·F (x)d x

Note that in this notation bary(A) = bary(1A) as one would expect. For example

if the log-concave function is the density of the Gaussian restricted to A then the

picture might look as follows:

A

0

bary(γn ·1A)

Now suppose one is interested in the average value of a log concave function

F over some set A. By concavity one would hope that this average might be

bounded by the function value at the barycenter of F on A. And indeed, this

is true.

We will translate the set and the function so that the barycenter is the origin

(which simplifies the exposition).

Lemma 4.4. Let A ⊆ R
n be a measurable set and let F : Rn → R≥0 be log concave

on A. Then

E
x∼A

[x ·F (x)] = 0 ⇒ E
x∼A

[F (x)] ≤ F (0)

Proof 1. Let M := Ex∼A [F (x)] be the quantity that we try to upperbound. More-

over, let µ be the distribution with density 1A(x)
Voln (A)

· F (x)
M . Note that indeed this is a

density as
∫
Rn µ(x)d x = 1

Voln (A)·M
∫

A F (x)d x = 1. Also Ex∼µ[x] = Ex∼A[x · F (x)
M ] = 0
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by assumption. Then

ln(F (0)) = ln
(
F

( =0︷ ︸︸ ︷
E

x∼µ
[x]

))

Jensen on µ with ln(F ) concave
≥ E

x∼µ
[ln(F (x))]

Def µ= E
x∼A

[F (x)

M
ln(F (x))

]

=
1

M
E

x∼A
[F (x) · ln(F (x))]

Jensen on A with t 7→t ln(t) convex
≥

1

M
E

x∼A
[F (x)]

︸ ︷︷ ︸
=M

· ln
(

E
x∼A

[F (x)]

︸ ︷︷ ︸
=M

)
= ln(M)

Rearranging gives the claimed bound of F (0) ≥ M = Ex∼A [F (x)].

For two convex sets K ,L it can happen that the intersection K∩L is very small.

In that case one can prove that K −L has to be quite large assuming they share

the barycenter.

barycenter

K

L

Theorem 4.5 (Milman-Pajor). Let K ,L ⊆R
n be convex bodies with the same barycen-

ter. Then

Voln(K ) ·Voln(L) ≤ Voln(K −L) ·Voln(K ∩L)

Proof. After translating both sets K and L by the same vector we may assume

that bary(K ) = 0 = bary(L). For a vector v ∈R
n we define

Cv := (
p

2K −v)∩ (
p

2L+v) =
{

u ∈R
n | u +v ∈

p
2K and u −v ∈

p
2L

}

as the shifted and scaled intersection.
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0

K

L 0 v
−v

p
2K −v

p
2L+v

Cv

Note that there is a linear bijective map between pairs (x , y) and (u, v) which is

of the form

u =
x + y
p

2
, v =

x − y
p

2
⇔ x =

u +v
p

2
, y =

u −v
p

2

The determinant of this map is 1, which leads to a simple change of variables in

an integration while preserving the value of the integral.

We use this observation to rewrite the integral over a function f : Rn →R as

I ( f ) :=
∫

K×L
f
(x − y
p

2

)
d xd y

u:= x+yp
2

,v := x−yp
2=

∫

Rn
f (v) ·Voln

({
u ∈R

n |
u +v
p

2
∈ K and

u −v
p

2
∈ L

})
d v

=
∫

Rn
f (v) ·Voln(Cv )d v (∗)

where in the 2nd step we made a simple change of variables. We choose set

Q := K−Lp
2

as the scaled Minkowski difference of both sets. The crucial part of

the proof is to understand the function F (v) := Voln(Cv ). Next, we prove that the

barycenter of the function F restricted to Q lies at the origin. For this same, we

apply (∗) with the function f (v) := v · 1Q (v) (note that the formula in (∗) also

holds for vector-valued functions):
∫

Rn
v ·1Q (v) ·Voln(Cv )d v

apply (∗)=
∫

K×L

(x − y
p

2

)
·1Q

(x − y
p

2

)
d xd y

=
1
p

2

∫

K
x ·

(∫

L
1Q

(x − y
p

2

)
d y

)
d x −

1
p

2

∫

L
y ·

(∫

K
1Q

(x − y
p

2

)
d x

)
d y

=
1
p

2

∫

K
x ·Voln

({
y ∈ L :

x − y
p

2
∈

K −L
p

2

})

︸ ︷︷ ︸
=Voln (L)

d x

︸ ︷︷ ︸
=0

−
1
p

2

∫

L
y ·Voln

({
x ∈K :

x − y
p

2
∈

K −L
p

2

})

︸ ︷︷ ︸
=Voln (K )

d y

︸ ︷︷ ︸
=0
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We conclude that indeed bary(1Q ·F ) = 0. Now we apply (∗) again — this time

for the function f (v) := 1Q (v). Then

Voln(K ) ·Voln(L) ≤
∫

K×L

=1 if x∈K and y∈L︷ ︸︸ ︷
1Q

(x − y
p

2

)
d xd y

apply (∗) with f :=1=
∫

Rn
1Q (v) ·Voln(Cv )d v = Voln(Q) · E

v∼Q

[
Voln(Cv )

]

Lem 4.4
≤ Voln(Q) ·Voln(C0) = Voln

(K −L
p

2

)
·Voln

(p
2 · (K ∩L)

)

= Voln(K −L) ·Voln(K ∩L).

Here we use that the function F (v) := Voln(Cv ) is log concave by Lemma 1.34.

A useful consequence is the following:

Corollary 4.6. Let K ⊆ R
n be a convex body with bary(K ) = 0. Then Voln(K ∩

(−K )) ≥ 2−nVoln(K ).

0 K−K

Proof. Applying the last Lemma with K and L :=−K gives

Voln(K )·Voln(−K )
(∗∗)
≤ Voln(K − (−K ))︸ ︷︷ ︸

=Voln (2K )

·Voln(K∩(−K ))= 2n ·Voln(K )·Voln(K∩(−K ))

where we can apply Theorem 4.5 in (∗∗) as bary(K ) = bary(−K ).

In particular, the corollary shows that any convex set K contains a symmetric
convex body as a subset that has at least a 2−Θ(n) fraction of the volume.

With Theorem 4.5 we can finally prove one of the main results of this Chapter:

Theorem 4.7. Let K ,L ⊆R
n be convex bodies. Then

4−n Voln(K −L)

Voln(L)
≤ N (K ,L) ≤ 4n Voln(K −L)

Voln(L)
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Proof. Translate L so that the barycenter of L is at the origin. The lower bound

on the covering number

N (K ,L)
Rogers-Shephard

≥
≤N(K ,L)︷ ︸︸ ︷

N (K −L,L−L) ·

≤1︷ ︸︸ ︷
4−n ·

Voln(L−L)

Voln(L)

Lem 4.3
≥ 4−n Voln(K −L)

Voln(L−L)
·

Voln(L−L)

Voln(L)
= 4−n Voln(K −L)

Voln(L)

Here for the 1st inequality we use the Rogers-Shephard Inequality (Theorem 1.47)

as well as the following observation: If K ⊆⋃N
i=1

(xi +L) is an covering of K , then

also K −L ⊆⋃N
i=1

(xi + (L−L)).

For the upper bound we simply use the best covering using the “symmetrizer”

S := L∩ (−L). Then

N (K ,L) ≤ N (K ,S)
Lem 4.3
≤

Voln(K + 1
2

S)

Voln( 1
2

S)

(∗)
≤ 2n ·2n Voln(K −L)

Voln(L)

where we use in (∗) that (−1
2

)S ⊆ L and Voln(S) ≥ 2−nVoln(L).

We also provide a useful estimate for the covering numbers between a convex

body K and its “symmetrizers” K ∩ (−K ) and K −K .

Lemma 4.8. Let K ⊆ R
n be a convex body with bary(K ) = 0. Then N (K −K ,K ∩

(−K )) ≤ 25n and hence N (K −K ,K ) ≤ 25n and N (K ,K ∩ (−K )) ≤ 25n .

Proof. It suffices to estimate that

N (K −K ,K ∩ (−K ))
Lem 4.3
≤ 2n

Voln

(
(K −K )+ 1

2
(K ∩ (−K ))

)

Voln(K ∩ (−K ))

≤ 2n2n Voln(K −K )

Voln(K ∩ (−K ))

Thm. 1.47,
Cor. 4.6≤ 2n2n 22nVoln(K )

2−nVoln(K )
= 25n

4.3 The Primal and Dual Sudakov Inequality

Recall that the mean width of a convex body K is w(K ) := Ea∼Sn−1 [wK (a)], where

the width of K in direction a ∈ Sn−1 is denoted as wK (a) := max{| 〈a, x〉−〈a, y〉 | :

x , y ∈K }. The Sudakov Inequality relates the covering number to the mean width

of the body. To be more precise, we will see the “primal” Sudakov inequality
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which upperbounds N (K ,B n
2 ) and the Dual Sudakov Inequality which upper bounds

N (B n
2 ,K ). Our proof strategy is to first prove the dual Sudakov Inequality (which

is actually due to Pajor and Tomczak) and then transfer the result to the pri-

mal setting. The statements assume that K is convex and symmetric, but at

least for the Primal Sudakov Inequality this is really without loss of generality

as w(conv(K )) = w(K ) and w(K −K ) = 2w(K ).

We begin with a well-known estimate how the Gaussian measure of a sym-

metric body behaves under translation.

Lemma 4.9. Let K ⊆R
n be a symmetric convex body. Then for any vector z ∈ R

n

one has γn(K + z)≥ e−‖z‖2
2/2 ·γn(K ).

Proof. We simply write

γn(K + z) =
1

(2π)n/2

∫

K
exp

(
−

1

2
‖x + z‖2

2

)
d x

symmetry=
1

(2π)n/2

∫

K
E

σ∈{−1,1}

[
exp

(
−

1

2
‖σx + z‖2

2

)]
d x

Jensen
≥

1

(2π)n/2

∫

K
exp

(
−

1

2
E

σ∈{−1,1}

[∥∥σx + z
∥∥2

2

]

︸ ︷︷ ︸
=‖x‖2

2+‖z‖2
2

)
d x

= exp
(
−
‖z‖2

2

2

)
·γn(K )

using Jensen’s inequality with the fact that f (y) = exp(−1
2

y) is convex.

Theorem 4.10 (Dual Sudakov Inequality - Pajor-Tomczak). Let K ⊆ R
n be cen-

trally symmetric convex body. Then for any t > 0 one has

N (B n
2 , tK ) ≤ exp

(
O(n) ·

( w(K ◦)

t

)2)

Proof. We can scale K and t simultaneously until t = 1. Pick a maximal set of

points x1, . . . , xN ∈B n
2 so that the translates xi+ 1

2
K are disjoint. Then by maximal-

ity, this indeed provides a covering of the ball in the sense that B n
2 ⊆

⋃N
i=1

(xi +K ).

In other words, N (B n
2 ,K ) ≤ N .
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xi

xi + 1
2

K
B n

2

It remains to bound the number N . For a parameter λ ≥ 0 that we determine

later, the Gaussian measure of these translates satisfies

1
measure

≥ γn

( N⋃
i=1

λ ·
(

xi +
1

2
K

)) disjointness
≥

N∑

i=1

γn

(
λxi +

λ

2
K

)

Lem 4.9
≥

N∑

i=1

e−λ2‖xi ‖2
2/2 ·γn

(λ
2

K
) ‖xi ‖2≤1

≥ N ·e−λ2/2 ·γn

(λ
2

K
)

(∗)

This provides us with an upper bound of N ≤ exp(λ2/2)

γn (λ2 K )
on the number of trans-

lates.

Next, we need to relate the Gaussian measure of K to w(K ◦). We write

E
x∼γn

[‖x‖K ] = E
x∼γn

[‖x‖2] · E
θ∼Sn−1

[ ‖θ‖K︸ ︷︷ ︸
=hK ◦ (θ)

] ≤
p

n

2
·w(K ◦), (∗∗)

see Lemma 1.1 and Lemma 1.4 (note that this is essentially an equality). Then ap-

plying Markov’s inequality to (∗∗) gives Prx∼γn [‖x‖K ≥ λ
2

] ≤ Ex∼γn [‖x‖K ]

λ/2
≤

p
n
λ w(K ◦)

and so for a choice of λ := 2
p

n ·w(K ◦), we get γn(λ
2

K ) ≥ 1
2

. Then for this choice

of λ we get

N (B n
2 ,K ) ≤ N ≤

exp(λ2/2)

γn(λ
2

K )
≤ exp(Θ(n) ·w(K ◦)2)

as claimed.

We note that the translates choosen in the proof have their centers in B n
2 ,

hence we have actually proven the stronger claim of N̄(B n
2 , tK ) ≤ exp

(
O(n)·

(w(K ◦)
t

)2)
.

In order to derive the “primal” Sudakov Inequality we need to have a rela-

tion between covering numbers N (K ,B n
2 ) and N (B n

2 ,K ◦). Note that we anyway

have N (2tB n
2 , tB n

2 ) ≤ 2O(n) and hence N (K , tB n
2 ) ≤ 2O(n)N (K ,2tB n

2 ). However the

following lemma gives us a finer control where we might not have to pay that

exponential factor.
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Lemma 4.11. Let K ⊆R
n be a centrally symmetric convex body. Then

N (K , tB n
2 ) ≤ N (K ,2tB n

2 ) ·N
(
B n

2 ,
t

8
K ◦

)

Proof. The claim is invariant under scaling, so it suffices to prove the claim for

t = 1, i.e. we show N (K ,B n
2 ) ≤ N (K ,2B n

2 ) ·N (B n
2 , 1

8
K ◦). First observe that 2K ∩

1
2

K ◦ ⊆ B n
2 as for x ∈ (2K ∩ 1

2
K ◦) one has ‖x‖2

2 = 〈x , x〉 ≤ ‖x‖K · ‖x‖K ◦ ≤ 2 · 1
2
= 1.

Then

N (K ,B n
2 )

2K∩ 1
2 K ◦⊆Bn

2≤ N
(
K ,

1

2
K ◦∩2K

)
(∗)
≤ N

(
K ,

1

4
K ◦

)
≤ N (K ,2B n

2 ) ·N
(
2B n

2 ,
1

4
K ◦

)

︸ ︷︷ ︸
=N(Bn

2 , 1
8 K ◦)

Here we use in (∗) that by Lemma 4.1.(5), for two symmetric convex sets A,B ⊆R
n

one has N (A,2(A∩B)) ≤ N (A,B).

Now we can prove Sudakov’s inequality. Note that this inequality works also

for non-symmetric bodies:

Theorem 4.12 (Sudakov Inequality). Let K ⊆R
n be a convex body. Then for t > 0

one has

N (K , tB n
2 ) ≤ exp

(
Θ(n) ·

( w(K )

t

)2)

Proof. Translate K so that 0 ∈ K . Note that K ⊆ K −K and K −K is a centrally

symmetric convex body with w(K −K ) = 2w(K ). Hence it suffices to prove the

inequality for the symmetric case. So suppose that K is symmetric. First we ob-

tain that

N (K , tB n
2 )

Lem 4.11
≤ N (K ,2tB n

2 ) ·N
(
B n

2 ,
t

8
K ◦

)
Thm 4.10

≤ N (K ,2tB n
2 ) ·eCnw(K )2/t2

(∗)

by applying the Theorem of Pajor-Tomjak to the body K ◦ and using that (K ◦)◦ =
K . Let A := supt>0{t 2 ln N (K , tB n

2 )}. Note that this is the minimal quantity so that

N (K , tB n
2 ) ≤ exp(A/t 2) for all t > 01. For the sake of simplicity suppose this sup is

attained. Then for this t one has

A = t 2 ln N (K , tB n
2 )

(∗)
≤ t 2 ·

(
ln N (K ,2tB n

2 )+
C n ·w(K )2

t 2

)

=
1

4
(2t )2 ln N (K ,2t ·B n

2 )︸ ︷︷ ︸
≤A

+C n ·w(K )2 ≤
A

4
+C n ·w(K )2

1To see that this supremum is finite consider the following: Let r be the radius of K . Then for

t ≥ r we have N (K , tBn
2 ) = 1 ≤ exp(A/t 2) no matter what A ≥ 0 is. On the other hand, for t < r we

can use N (K ,Bn
2 ) ≤ N (K ,r Bn

2 ) ·N (r Bn
2 , tBn

2 )≤ exp(n Cr
t ).
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which can be rearranged to A ≤ 4
3

C n ·w(K )2. This shows the claim.

We should point out that Sudakov’s Inequality is only interesting for some

specific regimes. For example by volume arguments we know that for s ≥ 1 one

has N (sB n
2 ,B n

2 ) ≤ O(s)n . On the other hand, Sudakov’s Inequality provides us

with a rather disappointing bound of N (sB n
2 ,B n

2 ) ≤ exp(O(ns2)).

4.4 Additional estimates on covering numbers

We want to discuss several other estimates on volumes and covering numbers

that will in particular useful in later chapters. First we show that covering conv(K∪
L) takes basically N (L,K ) many translates of K , times a linear factor.

Lemma 4.13. Let K ,L ⊆R
n be convex bodies where K is symmetric and L ⊆β ·K

for some β≥ 1. Then N (conv(K ∪L), (1+ 1
n ) ·K ) ≤ 2βn ·N (L,K ).

Proof. Suppose that L ⊆
⋃N

i=1
(xi +K ) is the minimal covering of L with translates

of K . We may assume that L∩ (xi +K ) 6= ; and hence xi ∈ L+K ⊆ 2βK . Then

conv(L∪K ) ⊆
⋃

i∈[N],
0≤λ≤1

(λ(xi +K )+(1−λ)K ) =
⋃

i∈[N],
0≤λ≤1

(λxi +K ) ⊆
⋃

i∈[N],
0≤λ≤1,

λ∈ N

2βn

(
λxi +

(
1+

1

n

)
K

)

0 xi

⋃
0≤λ≤1

(λxi +K )

0 xi

⋃

0≤λ≤1,λ∈ N

2βn

(
λxi +

(
1+

1

n

)
K

)

Here we use for the last inclusion that for |λ−λ′| ≤ 1
2βn one has ‖λxi −λ′xi‖K ≤

1
n .

We can easily turn the last estimate into a volume bound. Here it also be-

comes more clear that we were satisfied with the (1 + 1
n )-blowup of K as this

means only a constant factor blowup of the volume.

Lemma 4.14. Let L,K ⊆ R
n be a convex bodies where K is also symmetric. Sup-

pose that L ⊆βK for some β≥ 1. Then

Voln(conv(K ∪L)) ≤ 6βn ·N (L,K ) ·Voln(K ).
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Proof. Using Lemma 4.13 we conclude that

Voln(conv(K ∪L)) ≤ N
(
conv(K ∪L), (1+ 1

n )K
)

︸ ︷︷ ︸
≤2βn·N(L,K )

·Voln

(
(1+ 1

n )K
)

︸ ︷︷ ︸
≤3·Voln (K )

We also prove two Lemmas that we need in particular in Chapter 8.

Lemma 4.15. For symmetric convex bodies K ,P ⊆R
n one has

Voln(K +P ) ≤ Voln((r B n
2 ∩K )+P ) ·N (K ,r B n

2 )

Proof. After scaling we may assume r = 1. Consider the set T (x) := ((x +B n
2 )∩

K )+P and notice that by the symmetry and convexity of K ,P,B n
2 we have 1

2
T (x)+

1
2

T (−x) ⊆ T (0). Then by the Brunn-Minkowski Inequality, one has Voln(T (x)) ≤
Voln(T (0)). Set N := N (K ,B n

2 ) and consider the covering K ⊆⋃N
i=1

((xi +B n
2 )∩K ).

Then clearly

K +P ⊆
N⋃

i=1

((xi +B n
2 )∩K )+P

hence Voln(K +P ) ≤
∑N

i=1 Voln(T (xi )) ≤ N ·T (0) which gives the claim.

We will also need an extension of Lemma 4.14 for Chapter 8:

Lemma 4.16. Let K ,P ⊆R
n be symmetric convex bodies with r B n

2 ⊆βK for some

β≥ 1 and r > 0, then

Voln
(
conv(K ∪ r B n

2 )+P
)
≤ 6βn ·N (r B n

2 ,K ) ·Voln(K +P ).

Proof. After scaling, r = 1. We have seen in Lemma 4.13 that there are is a cov-

ering with N ≤ 2βn ·N (B n
2 ,K ) points so that conv(K ∪B n

2 ) ⊆⋃N
i=1

(xi + (1+ 1
n )K ).

Taking the volume of the Minkowski sum with P on both sides gives

Voln(conv(K ∪B n
2 )+P ) ≤

N∑

i=1

Voln

((
xi +

(
1+

1

n

)
K

)
+P

)
≤

(
1+

1

n

)n

︸ ︷︷ ︸
≤3

·N ·Voln(K +P )

Finally we state a rather deep result without proof. It says that the covering

numbers N (K ,B n
2 ) and N (B n

2 ,K ◦) are approximately equal:

Theorem 4.17 (Duality of Covering Numbers - Artstein-Milman-Szarek). For any

symmetric convex body K ⊆R
n one has N (B n

2 ,128K ◦)1/10 ≤ N (K ,B n
2 ) ≤ N

(
B n

2 , 1
128

K ◦)10
.

In fact, in Chapter 7 we will give a full proof for a similar relation that holds

even if B n
2 is replaced by an arbitrary symmetric convex set and its dual.
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4.5 Exercises

Exercise 4.1.

Prove the non-trivial part of Lemma 4.1.(1): For any convex bodies A,B ⊆ R
n one has

N̄ (A,B −B ) ≤ N (A,B ).

Exercise 4.2.

Prove Lemma 4.1.(2): For any convex body A ⊆R
n and r > 0 one has N̄ (A,r B n

2 ) ≤ N (A,r B n
2 ).

Exercise 4.3.

Let A,B ⊆ R
n be convex bodies where at least B is symmetric. Let x1, . . . , xN ∈ A be any

maximal set of points so that the translates x1 + B , . . . , xN +B are disjoint. Prove that

N (A,2B )≤ N ≤ N (A,B ).

Exercise 4.4.

Prove that any symmetric convex bodies A,B ⊆R
n satisfy N (A,B )≤ (C n)n ·N (B◦, A◦) for

a universal constant C > 0.

Exercise 4.5.

Let K ⊆R
n be any convex body. Prove that N (K −K ,K )≤C n for some universal constant

C > 0.

Exercise 4.6.

Let t > 0. What estimate does the Dual Sudakov Inequality provide for the quantity

N (B n
2 , t B n

∞)?



Chapter 5

Almost Euclidean Subspaces of finite

dimensional normed spaces

In this chapter we discuss a remarkable Theorem of Dvoretzky [Dvo59, Dvo61]

where the quantitative bound that we present is due to Milman [Mil71]:

For every symmetric convex body K ⊆R
n there is a subspace V ⊆R

n of

dimension Ω( ε2

log(1/ε)
log(n)) so that ‖x‖K = (1±ε)·R ·‖x‖2 for all x ∈V

where R ∈R>0 is a suitable radius.

For example the cube [−1,1]3 intersected with a hyperplane already looks a little

more spherical:

We introduce some notation that we use later in the chapter. The M-value of

a symmetric convex body K ⊆R
n is

M(K ) := E
x∼Sn−1

[‖x‖K ]

Note that the bigger K is, the smaller is M(K ). Also we should point out that this

is not actually a new quantity as 2M(K ) = w(K ◦) by Theorem 1.4. But for the

purpose of this chapter, it will be more natural to use M(K ) than w(K ◦).

83
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5.1 Dvoretzky’s Theorem

The overall strategy to prove Dvoretzky’s Theorem will be to take a random sub-

space V ⊆ R
n of dimension k =Θε(logn) and then argue that V ∩K is close to a

ball in every direction. In general, we say that a a symmetric convex body K ⊆R
n

is (1+ ε)-spherical if 1
1+ε‖x‖2 ≤ ‖x‖K ≤ (1+ ε)‖x‖2 for all x ∈ R

n . Moreover, we

say that a symmetric convex body K is (1+ ε)-ellipsoidal if there is an ellipsoid

E ⊆ R
n with 1

1+ε‖x‖E ≤ ‖x‖K ≤ (1+ ε)‖x‖E for all x ∈ R
n . Then our goal can be

rephrased to finding a subspace V so that V ∩K is (1+ε)-spherical with respect

to the ambient space V .

The first ingredient that we need for the proof of Dvoretzky’s Theorem is the

existence of small ε-nets. Here, we say that N is a ε-net for Sn−1 if N ⊆ Sn−1 and

for every point x ∈ Sn−1 there exists a point y ∈ N so that ‖x − y‖2 < ε.

0 b

bb

b

b b

∈ N

Sn−1

Lemma 5.1. For any 0 < ε≤ 1 there is a ε-net N ⊆ Sn−1 of size |N | ≤ ( 4
ε

)n .

Proof. Pick any maximal set of points N ⊆ Sn−1 that have ‖·‖2-distance at least ε

to each other. Then N is a ε-net. Moreover the balls x+ ε
2

B n
2 are disjoint for x ∈ N

and contained in (1+ ε
2

)B n
2 . Hence

|N | ≤
Voln((1+ ε

2
) ·B n

2 )

Voln(ε
2
·B n

2 )
≤

(4

ε

)n

The next observation is that a body K is (1+O(ε))-spherical as soon as the

condition 1
1+ε‖x‖2 ≤ ‖x‖K ≤ (1+ε)‖x‖2 is satisfied for all vectors in an ε-net.

Lemma 5.2. Let ‖ · ‖K be a norm and let N be an ε-net for ε ≤ 1
4

. Suppose that

(1−ε) ·R ≤ ‖y‖K ≤ (1+ε) ·R for every y ∈ N . Then ‖x‖K ∈ [1−3ε,1+3ε] ·R for all

x ∈ Sn−1.
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Proof. Let x∗ ∈ Sn−1 be the point maximizing ‖ · ‖K . Let y∗ ∈ N be a point in the

net with ‖x∗− y∗‖2 ≤ ε. Then

‖x∗‖K ≤ ‖y∗‖K +‖x∗− y∗‖K︸ ︷︷ ︸
≤ε‖x∗‖K

≤ R(1+ε)+ε‖x∗‖K

where we use that ‖v‖K ≤ ‖v‖2 ·‖x∗‖K for any v , by the choice of x∗. Rearranging

gives ‖x∗‖K ≤ R · 1+ε
1−ε ≤ R · (1+3ε).

0 b

bb

b

b b

y∗

x∗

x∗−y∗

‖x∗−y∗‖2

For the lower bound let x∗∗ ∈ Sn−1 be the vector minimizing ‖·‖K and let y∗∗ ∈ N
be a point with ‖x∗∗− y∗∗‖2 ≤ ε. Then very similarly

‖x∗∗‖K ≥ ‖y∗∗‖K −‖x∗∗− y∗∗‖K︸ ︷︷ ︸
≤ε‖x∗‖K

≥ R · (1−ε)−εR(1+3ε) ≥ R · (1−3ε)

Next, we should discuss how one can actually generate a random subspace.

Recall that a matrix U ∈ R
n×n is called orthogonal if the column vectors are or-

thogonal unit vectors and the row vectors are orthogonal unit vectors. More-

over, recall that O(n) := {U ∈ R
n×n |U is orthogonal} is the set of orthogonal ma-

trices, also called the orthogonal group. We write U ∼ O(n) if we draw an or-

thogonal matrix uniform at random. Note that, if x ∈ Sn−1 is any fixed unit vec-

tor and U ∼ O(n), then U x ∼ Sn−1 is uniformly distributed. More generally, if

e1, . . . ,ek ∈ R
n are the first k standard basis vectors, then for U ∼ O(n) we know

that span{U e1, . . . ,U ek } is a uniform random k-dimensional subspace. Recall

that M(K ) = Ex∼Sn−1 [‖x‖K ]. We also want to remind the reader of a concentration

result from Chapter 3, see Lemma 3.5. If f : Sn−1 →R is a Lipschitz function, then

Prx∼Sn−1 [| f (x)−µ| > t ] ≤ 64 exp(−nt 2/64) for any t ≥ 0 where µ := Ex∼Sn−1 [ f (x)].

Theorem 5.3. Let K ⊆ R
n be a convex symmetric body with B n

2 ⊆ K and let c > 0

be a small enough constant and abbreviate M := M(K ). Let V ⊆R
n be a uniform

random subspace with dim(V ) = k where k ≤ c ε2

ln( 1
ε )

nM2. Then

Pr
V

[
(1−ε) ·M · ‖x‖2 ≤ ‖x‖K ≤ (1+ε) ·M · ‖x‖2 ∀x ∈V

]
≥

1

2
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Proof. Consider the function f : Sn−1 → R≥0 with f (x) := ‖x‖K . We can show the

following:

Claim. One has Prx∼Sn−1 [| f (x)−M | > ε
3

M] ≤ 64 exp(−nε2M2/600).

Proof of claim. Recall that Ex∼Sn−1 [ f (x)] = M . Next, we have B n
2 ⊆ K and hence

f is 1-Lipschitz as one can easily verify: | f (x)− f (y)| ≤ ‖x − y‖K ≤ ‖x − y‖2. By

concentration (see Lemma 3.5)

Pr
x∼Sn−1

[
| f (x)−M | >

ε

3
M

]
≤ 64 exp

(
−n ·

(εM

3

)2
/64

)

Now, fix a dimension k. Let N be an ε
3

-net forRk with |N | ≤ (12/ε)k by Lemma 5.1.

We write N = {y1, . . . , y|N |} where yi ∈ span{e1, . . . ,ek } and ei ∈ R
n is one of the

standard basis vectors. Let U ∈ O(n) be a random orthogonal matrix. Then

we can sample the random k-dimensional subspace as V := span{U e1, . . . ,U ek }.

Then for each yi ∈ N we know that U yi is a uniform choice from Sn−1 and hence

using the union bound

Pr
[(

1−
ε

3

)
M ≤ f (U y)≤

(
1+

ε

3

)
M ∀y ∈ N

︸ ︷︷ ︸
event (∗)

] Claim
≥ 1−|N | ·64 exp

(
−n ·ε2M2/600

)

= 1− (12/ε)k ·64 exp
(
−n ·ε2M2/600

)

= 1−64 exp
(
k ln

(12

ε

)
−n ·

ε2M2

600

)
≥

1

2

where the last inequality holds for k ≤ c ε2

ln( 1
ε )

nM2 for a small enough constant

c > 0. If event (∗) happens, then by Lemma 5.2 we have that (1−ε)M ≤ ‖x‖K ≤
(1+ε)M for all x ∈V ∩Sn−1, which then gives the result.

We should check what we can infer from the last estimate. Take a symmetric

convex body K and assume that it is in John’s position. Then B n
2 ⊆ K ⊆

p
nB n

2

and hence M(K ) ≥ 1p
n

. Then even if we are satisfied with a modest choice of

ε=Θ(1), the condition from the last Lemma only works up to k =Θ(ε2 ln(1/ε)) =
Θ(1) which is a rather vacuous statement. The weakpoint in that argument is

that we used the simple estimate M(K ) ≥ 1p
n

. If that inequality was tight (say up

to constant factors), then this would mean that for a body K in John’s position

one might have Prx∈Sn−1 [ρK (x) ≥Ω(
p

n)] ≥Ω(1) where ρK (x) is again the radius

of K in direction x . Indeed we can prove that this pathological situation cannot

occur:

Theorem 5.4. Let K ⊆ R
n be a symmetric convex body in John’s position. Then

one has M(K ) ≥Ω

(√
log(n)

n

)
.
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Proof. We apply the Dvoretzky-Rogers Theorem (Lemma 2.9) to obtain an or-

thonormal basis x1, . . . , xn so that 1
4
≤ ‖xi‖K ≤ 1. Then

M(K ) = E
a∼Sn−1

[‖a‖K ] = E
a∼Sn−1

[∥∥∥
n∑

i=1

ai xi

∥∥∥
K

]
= E

a∼Sn−1

[
E

ε∼{−1,1}n

[∥∥∥
n∑

i=1

εi ai xi

∥∥∥
K

]

︸ ︷︷ ︸
≥‖a j x j ‖K ∀ j

]

(∗∗∗)
≥ E

a∼Sn−1

[
max

j=1,...,n

∥∥a j x j

∥∥
K

] ‖x j ‖K ≥Ω(1)

≥ E
a∼Sn−1

[‖a‖∞]

= Θ

( 1
p

n

)
E

g∼γn

[‖g‖∞]

︸ ︷︷ ︸
=Θ(

p
log(n)

≥Ω

(
√

log(n)

n

)

where we use that randomly flipping signs of a ∼ Sn−1 is not changing the distri-

bution. We need to justify (∗∗∗). First note that Eσ∈{−1,1}[‖y +σx‖K ] ≥ ‖x‖K for

all x , y ∈R
n . To see this inequality write

‖x‖K =
∥∥∥1

2
(y +x)−

1

2
(y −x)

∥∥∥
K
≤

1

2
‖y +x‖K +

1

2
‖y −x‖K = E

σ∈{−1,1}
[‖y +σx‖K ]

using the triangle inequality. To then finish (∗∗∗), fix an outcome for a ∈ Sn−1

and the index j ∈ [n] that maximizes ‖a j x j ‖K . Moreover fix the signs ε1, . . . ,ε j−1,ε j+1, . . . ,εn

and set y :=
∑

i 6= j ai xi and x := a j x j . Finally we used that the maximum of a stan-

dard Gaussian in n dimensions is Θ(
√

logn). We take this as given for now and

will prove it in a later Chapter.

In particular this implies that if K is a symmetric convex body in John’s posi-

tion, then a random subspace of dimension k =Θ( ε2

ln(1/ε)
log(n)) is (1+ε)-spherical

with high probability. Of course we also want to obtain almost-spherical sub-

spaces for bodies that are not in John’s position. Obviously we can apply a linear

transformation T to bring any body K into John’s position, but then a spherical

section of T (K ) only translates back to an ellipsoidal section of the original body

K . But there is an elegant way around this issue.

Recall that we can write any ellipsoid in the form E = {x ∈R
n |

∑n
i=1

〈ui ,x〉2

λ2
i

≤ 1}

where u1, . . . ,un ∈ R
n are orthonormal and λ1, . . . ,λn > 0 are the axis lengths. We

will now see a surprising argument that any ellipsoid E ⊆ R
n contains a slice of

dimension n/2 where E is exactly a ball. Consider for example a 2-dimensional

ellipsoid E = {x ∈ R
2 | x2

1

λ2
1

+ x2
2

λ2
2

≤ 1} with λ1 < 1 < λ2. Then one can easily get a

1-dimensional slice that is a ball of radius 1.
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λ1

λ2

x1

√
1
λ2

1

−1= x2

√
1− 1

λ2
2

E

B n
2

Now the more general argument:

Lemma 5.5. For any (2k − 1)-dimensional ellipsoid E , there is a k-dimensional

subspace L so that E ∩L is a Euclidean ball.

Proof. After translating, rotating and scaling we may assume that the ellipsoid

is E = {x ∈ R
2k−1 |

∑2k−1
i=1 x2

i /λ2
i ≤ 1} and the axis are sorted so that 0 < λ1 ≤ λ2 ≤

. . . ≤ λ2k−1 where the middle axis length is λk = 1. In order to generalize the 2-

dimensional argument we form pairs of a long axis and a short axis, for example

we can pair coordinate i with coordinate 2k − i , so that λi ≤ 1 ≤ λ2k−i . So we

define a subspace

L :=
{

x ∈R
2k−1 | xi

√
1
λ2

i

−1 = x2k−i

√
1− 1

λ2
2k−i

∀i = 1, . . . ,k −1
}

Squaring and rearranging the i th constraint in the definition of L will provide

x2
i

λ2
i

+
x2

2k−i

λ2
2k−i

= x2
i +x2

2k−i

Hence any point x ∈ L that lies on the boundary of E will have ‖x‖2
2 = 1.

Theorem 5.6. Let K ⊆ R
n be a symmetric convex body and let 0 < ε ≤ 1

2
. Then

there exists a subspace V of dimension k :=Θ( ε2

log(1/ε)
log(n)) so that K ∩V is (1+

ε)-spherical.

Proof. Let T be a linear map so that T (K ) is in John’s position. We know by com-

bining Theorem 5.3 and Theorem 5.4 that for a random subspace V of dimension

K , the section T (K )∩V is (1+ε)-spherical with good probability. Then K ∩T −1(V )

is (1+ε)-ellipsoidal. Now use Lemma 5.5 to extract a subspace of half the dimen-

sion that is spherical.
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5.2 The critical dimension k(K )

For a convex symmetric body K ⊆ R
n and 0 < p < 1we define the critical dimen-

sion kp (K ) as the maximum value so that

Pr
V ⊆Rn :

dim(V )=kp (K )

[1

2
‖x‖2 ·M(K ) ≤ ‖x‖K ≤ 2‖x‖2 ·M(K ) ∀x ∈V

]
≥ p

where V is a uniformly chosen subspace of dimension kp (K ). We also abbreviate

k(K ) := k1/2(K ). In other words, k(K ) is the maximum dimension so that most

k(K )-dimensional subspaces are 2-spherical. We should add that in principle a

section of a body could be spherical with respect to a different radius R , but as

this has to hold for most subspaces V , we know that R = (1±o(1)) ·M(K ) anyway.

Also note that the definition of critical dimension does not contain the error

parameter ε — but this is also not necessary. There is always a Θ( ε2

log(1/ε)
·k(K ))-

dimensional section of K that is (1+ε)-spherical. To see this, obtain first a k(K )-

dimensional space V so that K ∩V is 2-spherical. Then apply Theorem 5.3 again

with parameter ε, using that M(K ∩V ) =Θ(1).

Reinspecting the proof for Theorem 5.3 for ε := 1
2

we see that we actually have

a success probability of at least 1/2 and so:

Theorem 5.7 (Dvoretzky-Milman). If K ⊆ R
n is centrally symmetric with b ·B n

2 ⊆
K . Then k(K ) ≥Ω(n · (M(K ) ·b)2).

In particular every symmetric convex body K in John position has k(K ) ≥
Θ(logn).

Somewhat surprisingly one can also prove that this is a tight bound for every
symmetric body. In particular the critical dimension is also upper bounded in

terms of M(K ) (where we need a little slack for the proof).

Theorem 5.8. Let K ⊆R
n be a symmetric convex body so that B n

2 is the largest ball

inside K . Then the critical dimension is kp (K ) ≤O(n ·M(K )2) where p := 1− 1
2n .

Proof. We abbreviate k := kp (K ) and M := M(K ) and assume for the sake of sim-

plicity that n is a integer multiple of k. Fix any orthogonal subspaces E 1, . . . ,E n/k ⊆
R

n with dim(E i ) = k. Sample a random orthogonal transformation U ∈O(n) and

consider the obtained random k-dimensional subspaces U (E 1), . . . ,U (E n/k ). By

the union bound and the definition of kp (K ) we know that with probability at

least 1/2, each section K ∩U (E i ) is 2-spherical, meaning that 1
2

M ·‖x‖2 ≤ ‖x‖K ≤
2‖x‖2 ·M for all x ∈ U (E i ) and all i . Next, fix one transformation U where this

event happened.
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As B n
2 is the biggest ball inside K , there is a contact point x with ‖x‖2 = ‖x‖K =

1.

0

x

B n
2

K

We can write x ∈ R
n as x =

∑n/k
i=1

xi with xi ∈U (E i ). For this particular vector we

have

‖x‖2 = ‖x‖K

triangle inequality
≤

n/k∑

i=1

‖xi‖K︸ ︷︷ ︸
≤2M‖xi ‖2

≤ 2M
n/k∑

i=1

‖xi‖2

︸ ︷︷ ︸
≤
p

n/k‖x‖2

≤ 2M

√
n

k
‖x‖2

which can be rearranged to k ≤ 4M2n.

There is a useful corollary:

Corollary 5.9. Let K ⊆ R
n be a symmetric convex body so that B n

2 is the largest

ball inside K . Then M(K ) ≥Θ( 1p
n

).

Proof. The Corollary follows from Theorem 5.8 by rearranging 1 ≤ kp (K ) ≤Θ(n ·
M(K )2). However, one can also give a short self-contained argument. Take a

vector y with ‖y‖K = 1 = ‖y‖2. Note that 1 = 〈y , y〉 ≤ ‖y‖K · ‖y‖K ◦ = ‖y‖K ◦ by

Cauchy-Schwarz. But as K ◦ ⊆ B n
2 , the inequality must be tight and indeed the

polar is touching K at y , i.e. ‖y‖K ◦ = 1.

0

y

K ◦
B n

2
K

So we can lower bound

M(K ) = E
x∼Sn−1

[‖x‖K ]
Cauchy-Schwarz

≥ E
x∼Sn−1

[| 〈x , y〉 |] ≥Ω

( 1
p

n

)
.
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The statement can be rephrased as follows:

Corollary 5.10. Every symmetric convex body K ⊆R
n contains Θ( 1p

n·M(K )
) ·B n

2 .

Even if a symmetric convex body K is in John position, the largest 2-spherical

subspace we can guarantee has dimension Θ(logn). Quite surprisingly, one can

prove that either K or the polar K ◦ will have critical dimension Ω(
p

n).

Theorem 5.11 (Figiel-Lindenstrauss-Milman [FLM77]). Let K ⊆R
n be a symmet-

ric convex body in John position. Then k(K ) ·k(K ◦) ≥Ω(n).

Proof. Note that by assumption we have B n
2 ⊆ K ⊆

p
nB n

2 . Next, the product of

the M-values of K and its polar can be lower bounded as

M(K ) ·M(K ◦) = E
x∈Sn−1

[‖x‖K ] · E
x∈Sn−1

[‖x‖K ◦]
(∗)
≥ E

x∈Sn−1

[√
‖x‖K · ‖x‖K ◦︸ ︷︷ ︸
≥‖x‖2=1

]2 (∗∗)
≥ 1

Here we use Hölder’s Inequality in (∗) which says that for non-negative random

variables X ,Y one has E[X ]E[Y ] ≥ E[
p

X Y ]2 (see Theorem 1.18 with λ := 1
2

). In

(∗∗) we use Generalized Cauchy Schwarz in the form | 〈x , x〉 | ≤ ‖x‖K · ‖x‖K ◦. As

1 ·B n
2 ⊆ K and 1p

n
·B n

2 ⊆ K ◦ we obtain

k(K ) ·k(K ◦) ≥Ω(n2) ·
(
M(K ) ·1

)2
·
(
M(K ◦) ·

1
p

n

)2
≥Ω(n)

using the Dvoretzky-Milman Theorem (Theorem 5.7).

5.3 Number of Faces and Vertices of Symmetric Poly-

topes.

Now we come to an application in combinatorics. For a polytope P ⊆R
n let f (P )

be the number of facets and let v(P ) be the number of vertices. It turns out that

almost spherical polytopes need to have a large number of facets. For example,

if B n
2 ⊆ P ⊆ n1/2−ε ·B n

2 then the number of facets needs to be superpolynomial.

Lemma 5.12. Let P ⊆R
n be a polytope with m facets so that B n

2 ⊆ P ⊆ a ·B n
2 . Then

m ≥ 1
4

exp( n
4a2 ).

Proof. W.l.o.g. push the inequalities defining P inwards until they touch B n
2 .

Then we can we write P = {x ∈ R
n | 〈vi , x〉 ≤ 1 ∀i ∈ [m]} for some vectors vi ∈ R

n

with ‖vi‖2 = 1.
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P

B n
2

a ·B n
2

0

vi
aSi

Let Si := {x ∈ Sn−1 | 〈x , vi 〉 ≥ 1
a }. As P ⊆ a ·B n

2 , the union of the “arcs” S1, . . . ,Sm has

to cover the sphere Sn−1. But by measure concentration, we know that the mea-

sure of each such cap is only Prx∼Sn−1 [〈vi , x〉 ≥ 1
a ] ≤ 4 exp(− n

4a2 ), see e.g. Lemma 3.4.

Hence the claim follows.

Now we can show that the critical dimension is at most logarithmic in the

dimension. For example this implies that any polytope P with nO(1) any facets

has a critical dimension of k(P ) ≤O(logn).

Lemma 5.13. For any polytope P ⊆R
n one has k(P ) ≤O(ln( f (P ))).

Proof. For k := k(P ), consider a subspace U ⊆ R
n so that P ∩U is 2-spherical.

Then by the previous Lemma and the fact that any facet in P ∩U corresponds to

a facet in P we get f (P ) ≥ f (P ∩U )≥ exp(Θ(k)). Taking logarithms then gives the

claim.

Now we can prove that any n-dimensional centrally symmetric polytope needs

to have either 2Ω(
p

n) many vertices or facets. Note that this claim does not holds

for asymmetric polytopes — for example the simplex has n +1 facets and n +1

vertices.

Theorem 5.14 (Figiel-Lindenstrauss-Milman [FLM77]). Let P ⊆R
n be a centrally

symmetric polytope. Then

ln( f (P )) · ln(v(P )) ≥Ω(n).

Proof. We can bring P into John position without changing the number of facets

and vertices. Then

ln( f (P )) · ln(v(P ))
polarity= ln( f (P )) · ln( f (P◦))

Lem. 5.13
≥ Ω(k(P ) ·k(P◦))

Thm. 5.11
≥ Ω(n)
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5.4 The M-value for random subspaces

We would also like to discuss a result that is particularly useful in Chapter 7. First

of all, if F ⊆R
n is a proper subspace, then clearly Ex∼Sn−1 [‖x‖K∩F ] =∞. Hence the

right definition of the M-value for a subspace is M(K ∩F ) := Ex∼Sn−1∩F [‖x‖K∩F ].

Note that as we intersect K with a subspace F , it is not trivial how the quantity

M(K ∩F ) = Ex∼Sn−1∩F [‖x‖K∩F ] relates to M(K ). Of course ‖x‖K∩F = ‖x‖K for ev-

ery individual point x ∈ F , but as we are averaging over a different set, the value

M(K ∩F ) might be either larger or smaller than M(K ).

K

0

F1 : M(K ∩F1) < M(K )

F2 : M(K ∩F2) > M(K )

However we can prove that M(K ∩F ) is unlikely to increase more than a con-

stant factor:

Lemma 5.15. Let K ⊆R
n be a symmetric convex set and let k ∈ {1, . . . ,n}. Then

Pr[M(K ∩F ) ≥C ·M(K )] ≤ e−Ω(k)

where F ⊆ R
n is a uniform random k-dimensional subspace and C is a large

enough constant.

Proof. We sample a uniform random k-dimensional subspace F ⊆R
n , by picking

vectorsθ1, . . . ,θk ∼ Sn−1 independently at random and letting F := span{θ1, . . . ,θk }.

It will be useful to abbreviate the random variable X := 1
k

∑k
i=1

‖θi‖K . Recall that

we always have the rather weak concentration bound:

Claim I. For any ε> 0 one has Prθ∼Sn−1 [‖θ‖K > (1+ε)M(K )] ≤ e−Θ(ε2).

Proof of Claim. After scaling we may assume that B n
2 ⊆ K is the largest ball in-

side K . Then ‖ ·‖K is 1-Lipschitz and in Cor 5.9 we have seen that M(K ) ≥Ω( 1p
n

).

The claim then follows from the usual concentration of 1-Lipschitz functions of

Sn−1.

This concentration is being amplified as the subspace F is spanned by k vec-

tors:

Claim II. One has Prθ1,...,θk∼Sn−1[X > C ·M(K )] ≤ e−100k if C is a large enough
constant.
Proof of claim. We abbreviate Xi := ‖θi‖K −M(K ) where θi ∼ Sn−1 so that E[Xi ] =
0. Note that X − M(K ) = 1

k

∑k
i=1 Xi is also a mean-zero random variable. Com-

bining Claim I and Lemma 3.15 we see that ‖Xi‖ψ2 ≤ O(1) · M(K ). Hence by
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Lemma 3.17 we have ‖X−M(K )‖ψ2 ≤O( 1
k )·(

∑k
i=1‖Xi‖2

ψ2
)1/2 ≤O( 1p

k
)·M(K ). Then

again applying Lemma 3.15 and choosing C > 0 large enough we have

Pr[X −M(K ) >C ·M(K )] ≤ e−100k

which then gives the claim.

Claim III. For fixed F one has pF := Prθ1,...,θk∼Sn−1∩F [X > 1
2

M(K ∩F )] ≥Ω( 1p
k

).

Proof of claim. We can derive from Cor 5.9 also that for any θ ∈ Sn−1 ∩F one has

0 ≤ ‖θ‖K∩F ≤ C
p

kM(K ∩F ) — simply scale K until B n
2 ∩F and K ∩F touch in

which case 0 ≤ ‖θ‖K∩F ≤ 1≤C
p

k ·M(K ∩F ). Next, observe that

M(K ∩F ) = E
θ∼Sn−1∩F

[‖θ‖K ] = E

[1

k

k∑

i=1

‖θi‖K

]
= E[X | F ]

Since we see that 0 ≤ X ≤ O(
p

k) · M(K ∩ F ), by a Markov-type inequality one

needs to have Pr[X ≥ 1
2

M(K ∩F )] ≥Ω( 1p
k

).

Now we can put everything together. Recall that for arbitrary eventsA,B one

has the bound Pr[A] = Pr[A∩B]
Pr[B|A]

≤ Pr[B]
Pr[B|A]

. Hence

Pr[M(K ∩F ) ≥ 2C ·M(K )]
cond.prob

≤
Pr[X ≥C ·M(K )]

Pr[X ≥C ·M(K ) | M(K ∩F ) ≥ 2C ·M(K )]

Claim II+III
≤

e−100k

Θ(1/
p

k)

Here we have implicitly used that conditioning on a subspace F , the distribution

of θ1, . . . ,θk are just independent uniform samples from F ∩Sn−1.

5.5 Euclidean Subspaces of ℓn
p

Recall that B n
p := {x ∈ R

n | ‖x‖p ≤ 1} = {x ∈ R
n |

∑n
i=1

|xi |p ≤ 1} is the ℓp -unit-ball.

Also note that 1 ≤ p ≤∞, the set B n
p is convex.

0

B n
p for p = 4

3

sandwiched as B n
1 ⊆ B n

p ⊆ B n
2

0

B n
p for p = 4

sandwiched as B n
2 ⊆ B n

p ⊆ B n
∞
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Depending on p, the balls B n
p have very large almost Euclidean sections. For

example the ball B n
1 of the ‖ ·‖1-norm has critical dimension Θ(n),

Theorem 5.16. For any fixed 1 ≤ p ≤ 2 one has k(B n
p ) =Θ(n).

Proof. We first prove a variant of Hölder’s Inequality:

Claim I. For 0 < r < s one has ( 1
n

∑n
i=1 |xi |r )1/r ≤ ( 1

n

∑n
i=1 |xi |s )1/s .

Proof of claim. Define f : R≥0 → R with f (x) := xs/r which is a convex func-

tion. Moreover let X be the random variable that picks a uniform element from

|x1|, . . . , |xn |. Then by Jensen’s inequality

( 1

n

n∑

i=1

|xi |r
)s/r

= f (E[X r ]) ≤ E[ f (X r )] =
1

n

n∑

i=1

|xi |s

Applying (. . .)1/s to both sides then gives the claim.

Claim II. For 1 ≤ p ≤ 2 and all x ∈R
n one has

(
1
n

)1− 1
p · ‖x‖1 ≤ ‖x‖p ≤ n

1
p − 1

2 · ‖x‖2.
Proof of Claim. Applying Claim I with r := p and s := 2 gives 1

n1/p ‖x‖p ≤ 1
n1/2 ‖x‖2.

On the other hand, setting r := 1 and s := p in Claim I we obtain 1
n‖x‖1 ≤ 1

n1/p ‖x‖p .

Combining both inequalities finishes Claim II.

Now we consider the body K := n
1
p − 1

2 ·B n
p . Then the upper bound in Claim II

guarantees that ‖x‖K ≤ ‖x‖2 for all x and so B n
2 ⊆ K .

0

B n
2

n
1
p −

1
2 B n

p

Moreover

M(K )
Def M= n

1
2−

1
p E

x∼Sn−1
[‖x‖p ]

Claim II
≥ n

1
2−

1
p ·n

1
p −1 · E

x∼Sn−1
[‖x‖1]

︸ ︷︷ ︸
=Θ(

p
n)

=Θ(1)

Then the claim follows as k(K ) ≥Ω(n ·M(K )2) ≥Ω(n).

It turns out that the hypercube B n
∞ = [−1,1]n is one of the bodies minimizing

the critical dimension:

Theorem 5.17. One has k(B n
∞) =Θ(log n).
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Proof. The lower bound follows from Theorem 5.7 as B n
∞ is in John position. For

the upper bound consider a subspace F ⊆ R
n so that B n

∞∩F is 2-spherical. We

can take a linear transformation T so that P := T (B n
∞∩F ) is sandwiched as B k

2 ⊆
P ⊆ 4B k

2 . Every facet of P corresponds to a facet of B n
∞ and so eΘ(k) ≤ f (P ) ≤

f (B n
∞) ≤ 2n by Lemma 5.13. Rearranging gives the claim.

We can also rather precisely characterize the critical dimension for B n
p if p >

2. The intuition is that if p grows, then the norm ‖·‖p puts more and more weight

on outliers and the norm is less similar to ‖·‖2 which in turn means the maximum

dimension of almost spherical subspaces will shrink.

Theorem 5.18. For 2 ≤ p <∞ one has Θ(n2/p ) ≤ k(B n
p ) ≤Θ(p ·n2/p ).

Proof. First note that we have B n
2 ⊆ B n

p . Then for the lower bound it suffices to

prove that M(B n
p ) ≥ n

1
p − 1

2 as then n · M(B n
p )2 ≥ n · (n

1
p −

1
2 )2 = n2/p . To get this

estimate, we first use Claim I from Theorem 5.16 with parameters 0 < 2 ≤ p to

obtain ‖x‖p ≥ n
1
p − 1

2 ‖x‖2 for all x ∈R
n . Then

M(B n
p ) = E

x∼Sn−1
[‖x‖p ] ≥ n

1
p −

1
2 · E

x∼Sn−1
[‖x‖2]

︸ ︷︷ ︸
=1

= n
1
p − 1

2

For the upper bound we prove the stronger property that any 2-spherical sec-

tion B n
p ∩V has k := dim(V ) ≤ O(p ·n2/p ) — not just most random sections. Let

U ∈R
n×k be a matrix so that the column vectors U 1, . . . ,U k form an orthonormal

basis of the subspace V , that means

R

2
· ‖y‖2 ≤ ‖U y‖p ≤ 2R · ‖y‖2 (∗)

for all y ∈R
k where R is the approximate radius of the spherical section. If we fix

any index i ∈ [n] and set y :=Ui in (∗) then

‖Ui‖2
2 ≤

( n∑

i ′=1

| 〈Ui ′ ,Ui 〉 |p
)1/p

= ‖UUi‖p
(∗)
≤ 2R‖Ui‖2

and so R ≥ 1
2‖Ui ‖2

≥ 1
2

as ‖Ui‖2 ≤ 1. Then taking random signs y ∈ {−1,1}k gives

(1/4)p ·kp/2

‖y‖2=
p

k
R≥1/2≤ (R/2)p

E
y∈{−1,1}k

[
‖y‖p

2

] (∗)
≤ E

y∈{−1,1}k

[∥∥U y
∥∥p

p

]

Khintchine
≤ (C

p
p)p

n∑

i=1

(
‖Ui‖2

2︸ ︷︷ ︸
≤1

)p/2 (∗∗)
≤ (C

p
p)p ·n
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Here we apply Khintchine’s inequality n times to each coordinate contribution

Ey∈{−1,1}k [| 〈Ui , y〉 |p ]. Note that a matrix U whose columns form an orthonormal

basis (even for a subspace) has the property that each row i ∈ [n] satisfies ‖Ui‖2
2 ≤

1. Rearranging gives k ≤O(p ·n2/p ).

Note that this bound does not give tight estimates for the whole range of pa-

rameters. While for the border case p = 2 it gives the obvious bound of Θ(n) ≤
k(B n

2 ) ≤Θ(n), there is a growing gap for larger p. Recall that the parameter range

p := log2(n) approximates the cube well enough as 1
2

B n
∞ ⊆ B n

log2(n)
⊆ B n

∞. For this

parameter, the theorem gives the bound of Θ(1) ≤ k(B n
log2(n)

) ≤Θ(logn) and here

we know that the upper bound is tight and not the lower bound. In fact, [PVZ17]

prove that k(B n
p ) =Θ(pn2/p ) for 2 ≤ p ≤Θ(logn).

5.6 Kashin’s Theorem

We have seen that for a symmetric body K ⊇ B n
2 , the dimension of almost spher-

ical sections is controlled by the quantity M(K ). However, a different quantity

that could be used is simply the volume of K . For the sake of argument suppose

that K is in John’s position and we write Voln(K ) = αn ·Voln(B n
2 ). Then we know

from John’s theorem that 1 ≤α≤
p

n. On the other hand it may very well be that

α is a lot smaller than this pathological upper bound, say α = O(1). In this case

we can see that the body has n/2-dimensional sections that are O(1)-spherical.

Theorem 5.19 (Volume Ratio Theorem - Kashin, Szarek, Tomczak-Jaegermann [Sza77,

STJ80, Kas77]). Let K ⊆R
n be a centrally symmetric convex body with B n

2 ⊆ K and

Voln(K ) =αnVoln(B n
2 ) for some α≥ 1. For k ∈ {1, . . . ,n}, a random k-dimensional

subspace F ⊆R
n has

B n
2 ∩F ⊆ K ∩F ⊆ (Cα)

n
n−k (B n

2 ∩F )

with probability at least 1−2−n where C is an absolute constant.

Proof. Recall that for a unit vector x ∈ Sn−1, the quantity ρK (x) := 1
‖x‖K

≥ 1 de-

notes the radius of K in direction x .

0

x
ρK (x)

K
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Writing the volume of K in polar coordinates we obtain

E
F

[
E

x∼Sn−1∩F

[
ρK (x)n

]]
= E

x∼Sn−1

[
ρK (x)n

]
Lem 1.46=

Voln(K )

Voln(B n
2 )

=αn

Then by Markov’s inequality with probability 1−2−n , a random subspace F ⊆R
n

will satisfy

E
x∼Sn−1∩F

[
ρK (x)n]

≤ (2α)n (∗)

So it remains to prove the following:

Claim. Any k-dimensional subspace F satisfying (∗) has B n
2 ∩F ⊆ K∩F ⊆ (O(α))

n
n−k ·

(B n
2 ∩F ).

Proof of claim. Let x∗ ∈ Sn−1∩F be point maximizing the radius ρK (x) and let us

abbreviate r := ρK (x∗) as that radius. We need to argue that there is a even signif-

icant fraction of points with high radius. Let B(x∗, 1
2r ) := {y ∈ Sn−1∩F | ‖x∗−y‖2 ≤

1
2r } be the spherical cap of radius 1

2r . Then

‖y‖K ≤ ‖x‖K +‖x − y‖K

Bn
2 ⊆K
≤

1

r
+‖x − y‖2 ≤

2

r

which means that the radius is ρK (y) ≥ r
2

for all points y ∈B(x∗, 1
2r ) in the spher-

ical cap. On the other hand we have discussed earlier that the volume of a k-

dimensional spherical cap satisfies1 σF (B(x∗, 1
2r )) ≥ ( 1

8r )k .

B(x∗, 1
2r )

0 x∗

r
K ∩F

On the other hand, we know that

Pr
x∼Sn−1∩F

[
ρK (x) >

r

2

]
· (r /2)n ≤ E

x∼Sn−1∩F

[
ρK (x)n]

≤ (2α)n

In particular, the set Ar /2 := {x ∈ Sn−1 ∩F | ρK (x) ≥ r /2} has measure σF (Ar /2) ≤
( 4α

r )n . Then

( 1

8r

)k
≤σF

(
B

(
x∗,

1

2r

)) B(x∗, 1
2r )⊆Ar /2

≤ σF (Ar ) ≤
(2α

r

)n

Then rearranging gives r ≤ (8k · (2α)n)1/(n−k) which then proves the claim.

1In Lemma 5.1 we have seen that Sk−1 can be covered with at most ( 4
ε )k many spherical caps

B(y ,ε) and hence each individual cap must have a measure of σ(B(y ,ε)) ≥ ( ε
4

)k . The claim then

follows if we set ε := 1
2r .
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Next, we prove that for a symmetric body K ⊇ B n
2 whose volume is not much

bigger than the volume of the ball, the intersection with a random rotation U (K )

is close to B n
2 . The intuition is that even if K has very long spikes, they will be few

so that the intersection cuts them off:

Theorem 5.20. Let K ⊆R
n be a centrally symmetric convex body with B n

2 ⊆ K and

Voln(K ) =αnVol(B n
2 ) for some α> 1. Then there is an orthogonal transformation

U ∈O(n) so that

B n
2 ⊆ K ∩U (K ) ⊆O(α2) ·B n

2

0

K

U (K )

Proof. For the sake of simplicity suppose n is even. We have seen in the last

theorem that a random subspace F ⊆ R
n with dim(F ) = n

2
has B n

2 ∩F ⊆ K ∩F ⊆
O(α2) ·(B n

2 ∩F ) with high probability. Note that also the orthogonal complement

F⊥ is a random subspace with dim(F⊥) = n
2

. Let PF : Rn → F be the orthogonal

projection into the subspace F . Then we define U (x) := PF (x)−PF⊥(x). Note that

if we write x = x1 +x2 with x1 ∈ F and x2 ∈ F⊥, then we have U (x1 +x2) = x1 −x2.

In particular from this we see that U is indeed an orthogonal transformation and

moreover, it has the useful property that U−1 =U . Geometrically speaking, U is

the reflection w.r.t. the subspace F⊥. It remains to prove that ‖x‖2 ≥ ‖x‖K∩U (K ) ≥
Ω( 1

α2 ) · ‖x‖2 ∀x ∈R
n . As B n

2 ⊆ K we also have B n
2 ⊆U (K ). Then

‖x‖2

Bn
2 ⊆K∩U (K )

≥ ‖x‖K∩U (K ) = max{‖x‖K ,‖x‖U (K )}
(∗)= max{‖x‖K ,‖U (x)‖K }

Def U= max{‖x1 +x2‖K ,‖x1 −x2‖K }
(∗∗)
≥

1

2
(‖x1‖K +‖x2‖K )

(∗∗∗)
≥ Ω

( 1

α2

)
· (‖x1‖2 +‖x2‖2) ≥Ω

( 1

α2

)
· ‖x‖2

In (∗) we use that x = λU (y) ⇔U (x) =U−1(x) = λy and so ‖x‖U (K ) = ‖U (x)‖K . A

argument for (∗∗) is the following: suppose that r := max{‖x1 +x2‖K ,‖x1 −x2‖K }

meaning that ±x1 ± x2 ∈ r K . Then by convexity x1, x2 ∈ r K which implies that

max{‖x1‖K ,‖x2‖K } ≤ max{‖x1 +x2‖K +‖x1 −x‖K }.
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For (∗∗∗) we used that K ∩F ⊆ O(α2)B n
2 ∩F and hence ‖x1‖2 ≥Ω( 1

α2 )‖x1‖K

— the same holds for x2.

A particularly useful and instructive case is if K = B n
1 . We can then prove that

there is a matrix A ∈R
2n×n so that ‖Ax‖1 =Θ(‖x‖2) for every x ∈R

n :

Theorem 5.21. There are vectors y1, . . . , y2n ∈ Sn−1 so that
∑2n

j=1
| 〈x , y j 〉 | =Θ(

p
n)·

‖x‖2 for every x ∈R
n .

Proof. We know that B n
2 ⊆

p
nB n

1 and Voln(
p

nB n
1 ) ≤O(1)n ·Voln(B n

2 ) hence by the

previous theorem there is an orthogonal transformation U so that

n∑

i=1

| 〈ei , x〉 |+
n∑

i=1

| 〈Ui , x〉 | = ‖x‖1 +‖U x‖1 =Θ(
p

n) · ‖x‖2

for all x ∈R
n .

A natural question is whether one can obtain a (1+ ε)-spherical section by

allowing more than one random orthogonal transformation. Indeed this is true.

For space reasons, we skip the proof which again is a concentration argument:

Theorem 5.22 (Bourgain-Lindenstrauss-Milman). Let K ⊆R
n be a symmetric con-

vex body so that B n
2 is the largest radius ball contained in K . If we sample in-

dependent random orthogonal transformations U1, . . . ,Ut where t =Θ( 1
ε2M(K )2 ),

then with high probability one has

M(K )

1+ε
≤ E

j∼[t]

[
‖U j (x)‖K

]
≤ (1+ε) ·M(K ) ∀x ∈ Sn−1

5.7 Diameter of random projections

We will prove a result about the diameter of random projections of convex sym-

metric sets. This lemma will be useful later in Chapter 7. For a symmetric convex

body K ⊆ B n
2 , we define the radius as radius(K ) := max{‖x‖2 | x ∈ K }. Phrased

differently, the radius is the minimum number r so that K ⊆ r B n
2 . We claim that

a proxy for the radius of “round” convex sets should be the quantity M(K ◦) =
1
2

w(K ). To justify this, suppose that K = r B n
2 . Then M(K ◦) = Ex∈Sn−1[‖x‖K ◦] =

Ex∈Sn−1 [max{〈y , x〉 : y ∈ K }] = r = radius(K ). Of course in general, K could have

long spikes that do not contribute much to the average value M(K ◦). But it turns

out that random projections of symmetic convex sets are getting close to attain-

ing this value. Recall that for a subspace F ⊆R
n , PF : Rn → F denotes the orthog-

onal projection into F .
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Lemma 5.23. Let K ⊆ R
n be a centrally symmetric convex set with K ⊆ r B n

2 and

let k ∈ {1, . . . ,n}. Then

Pr
dim(F )=k

[
PF (K ) ⊆O(1) ·max

{
M(K ◦),r

√
k
n

}]
≥ 1−e−Ω(k)

where F is a uniform random k-dimensional subspace.

Proof. After rescaling we may assume that r = 1. Recall that hK (a) := max{〈a, x〉 :

x ∈ K } = ‖a‖K ◦ is the support function of K . We have K ⊆ ρB n
2 iff hK (a) ≤ ρ for

every a ∈ Sn−1. For the projection PF (K ), the radius is then maxa∈Sn−1∩F hK (a).

Also the projection of K is convex and symmetric, hence from previous argu-

ments we know that if N is a 1
2

-net of F ∩ Sn−1, then the radius of PF (K ) is

Θ(1) ·maxa∈N hK (a).

a ∈ Sn−1 ∩F

PF (K )

K

hK (a)

So, we fix a 1
2

-net N of span{e1, . . . ,ek} of size |N | ≤ 5k . Let U be a uniformly ran-

dom orthogonal transformation. As we did before, we set F := span{U (e1), . . . ,U (ek)}

as the uniformly sampled subspace. As K ⊆ B n
2 , the function hK is 1-Lipschitz.

Moreover, Ex∼Sn−1 [hK (x)] = Ex∼Sn−1 [‖x‖K ◦] = M(K ◦). Then by Lemma 3.5,

Pr
x∼Sn−1

[
hK (x) > 10000 ·

(
M(K ◦)+

√
k
n

)]
≤ 64 exp

(
−10n ·

(√
k
n

)2)
= 64 exp(−10k)

In particular we can apply the union bound over all points in the 1
2

-net to obtain

Pr
U

[
hK (U (x)) ≤ 10000 ·

(
M(K ◦)+

√
k
n

)
∀x ∈N

]
≥ 1−64e−4k

If the latter event happens, the radius of PF (K ) is indeed bounded as claimed.

5.8 Exercises

Exercise 5.1.
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Let a1, . . . , am ∈ Sn−1 and let c1, . . . ,cm ≥ 0 be coefficients so that
∑m

i=1 ci ai aT
i = In . Prove

that Eθ∼Sn−1 [maxi=1,...,m | 〈ai ,θ〉 |] ≥Ω(

p
log(n)p

n
).

Hint. Use polarity and a result from this chapter.

Exercise 5.2.

Let N ≥ 2. We say that points a1, . . . , aN ∈ Sn−1 are δ-separated if ‖ai − a j‖2 ≥ δ for all

i 6= j . In the following you may use the following fact without proof2: For any 1
2 -separated

points a1, . . . , aN ∈ Sn−1 one has Eθ∼Sn−1 [maxi=1,...,N | 〈ai ,θ〉 |] =Θ(
√

log(N )/n). Consider

a polytope K := {x ∈ R
n | | 〈ai , x〉 | ≤ 1 ∀i ∈ [N ]} where the points a1, . . . , aN ∈ Sn−1 are

1
2

-separated.

(i) Prove that k(K )≥Ω(log(N )).

(ii) Prove that k(K )≤O(log(N )).

2We will prove this later in Chapter 9.



Chapter 6

Pisier’s Inequality and the

M M◦-estimate

We have seen that for a convex body K ⊆R
n there is always an affine linear trans-

formation T so that T (K ) approximates a ball up to a factor of n and this is best

possible in general, if we ask for an inclusion property of the form B n
2 ⊆ T (K ) ⊆

nB n
2 .

However, it turns out that there are “milder” properties where a convex body

can be drastically better approximated by a ball. Recall that w(K ) := Ex∈Sn−1 [wK (x)]

gives the mean width of a body. Suppose that we scale K so that Voln(K ) =
Voln(B n

2 ). Then from Urysohn’s Inequality we know that w(K ) ≥ w(B n
2 ) = 2. On

the other hand, w(K ) can be arbitrarily large for example if K is long and skinny

in some direction. The main conclusion of this chapter will be a surprisignly

strong upper bound:

For any convex body K ⊆R
n , there is a linear transformation T so that

Voln(T (K )) = Voln(B n
2 ) and w(T (K )) ≤O(logn).

If K is symmetric and T is the linear map so that T (K ) is in John position, then

we know that M(T (K )) ·M(T (K )◦) ≤
p

n. This can be drastically improved:

M M◦-estimate: For any symmetric convex body K ⊆R
n , there is a lin-

ear transformation T so that M(T (K )) ·M(T (K )◦) ≤O(logn).

As w(K ) = 2M(K ◦) this is equivalent to w(T (K )) ·w(T (K )◦) ≤O(logn).

6.1 Pisier’s inequality

We will need to develop some machinery to achieve this result. In particular we

will prove Pisier’s Inequality which can be stated as follows: Consider the quan-
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tity Ex∈{−1,1}n [‖ f (x)‖2
K ]1/2 for an arbitrary function f : {−1,1}n →R

m . If we replace

f (x) by its linear part then this quantity can only increase by a factor of at most

O(logm). This holds true for any norm ‖ · ‖K . To derive this result, we revisit the

concept of Fourier analysis.

6.1.1 Fourier analysis and the Rademacher Projection

For the remainder of this chapter, we will use µn as the uniform distribution on

{−1,1}n . For functions f , g : {−1,1}n →R, we abbreviate 〈 f , g 〉µn
:= Ex∼{−1,1}n [ f (x)·

g (x)]. In the literature, 〈·, ·〉µn is often called the expectation inner product. As the

name suggests, this is indeed an inner product — we will get back to that in a bit.

For any subset A ⊆ [n] we define the Walsh function w A : {−1,1}n → {−1,1} by

w A(x) :=
∏

i∈A

xi

Note that w; ≡ 1 is the constant-1 function. The following is a rather basic fact

in Fourier analysis:

Lemma 6.1. The Walsh functions have the following property:

(1) For A,B ⊆ [n] one has

〈w A, wB〉µn
=

{
1 if A = B

0 if A 6= B

That means {w A}A⊆[n] forms an orthonormal basis of the 2n-dimensional

vector space of functions f : {−1,1}n →R.

(2) For x , y ∈ {−1,1}n one has

E
A⊆[n]

[w A(x) ·w A(y)] =
{

1 if x = y

0 if x 6= y

(3) Every function f : {−1,1}n →R
m can be written uniquely in the form f (x) =∑

A⊆[n] w A(x) · y A for some y A ∈ R
m . We call the vector f̂ A := y A the A-th

Fourier coefficient of f .

Proof. For sets A,B , let A△B be the symmetric difference. Then w A(x) ·wB (x) =∏
i∈A xi ·

∏
i∈B xi = w A△B (x). For S := A∆B one has

E
x∈{−1,1}n

[wS(x)] =
∏

i∈S
E

x∈{−1,1}n
[xi ]

︸ ︷︷ ︸
=0

=
{

1 if S =;
0 if S 6= ;
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which shows (1). For (2) note that w A(x) ·w A(y) = w A(z) where z := x ⊙ y is given

by the coordinate-wise multiplication. Then

E
A⊆[n]

[w A(z)] = E
A⊆[n]

[ n∏

i=1

{
zi if i ∈ A
1 if i ∉ A

}]
=

n∏

i=1

E
A⊆[n]

[{
zi if i ∈ A
1 if i ∉ A

}]

︸ ︷︷ ︸
=0 if zi=−1,=1 if zi =1

=
{

1 if z = (1, . . . ,1)

0 if z 6= (1, . . . ,1)

For (3), consider first the case that m = 1. As the Walsh function form an or-

thonormal basis, there will clearly be one unique choice for y A and that choice

has to be the inner product with the Walsh function, i.e. y A = 〈 f , w A〉µn
. For m >

1 we apply the same reasoning coordinate wise — in fact y A = (〈 f1, w A〉µn
, . . . ,〈 fm , w A〉µn

)

where we denote fi : {−1,1}n →R as the i th coordinate of f .

Apart from an inner product, we also want to define norms for such functions.

If K ⊆ R
m is a symmetric convex body and f : {−1,1}n → R

m , then for q ≥ 1, we

can define a norm

‖ f ‖µn→‖·‖q
K

:=
(

E
x∈{−1,1}n

[
‖ f (x)‖q

K

])1/q

In particular, the remainder of this section we will work towards understanding

the behavior of the norm of a function if we “wipe out” the non linear part of the

function. First we define formally what we mean with the “wipe out” part:

Definition 6.2. Let f : {−1,1}n →R
m be a function. Then the Rademacher projec-

tion Radn f : {−1,1}n →R
m is defined by

Radn f (x) :=
n∑

i=1

xi f̂{i }

Note that the Rademacher projection is a linear operator that maps a function

f to the function just consisting of its linear parts.

For a symmetric convex body K ⊆R
m we define the convexity constant as

κ(K ) := sup
n, f

{
‖Radn f ‖µn→‖·‖2

K
| f : {−1,1}n →R

m with ‖ f ‖µn→‖·‖2
K
≤ 1

}

Phrased differently, the convexity constant is the smallest value so that for any

n ∈N and any function f : {−1,1}n →R
m one has

E
x∈{−1,1}n

[∥∥∥
n∑

i=1

xi f̂{i }

∥∥∥
2

K

]1/2
≤ κ(K ) · E

x∈{−1,1}n

[∥∥ f (x)
∥∥2

k

]1/2
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Note that we make no restriction on f whatsoever. For example f might not even

have any linear parts, i.e. it could be f̂{i } = 0 for all i . In this case, ‖Radn f ‖µn→‖·‖2
K
=

0 while ‖ f ‖µn→‖·‖2
K

could be arbitrarily large. In particular, this means that the

norm of the function can go arbitrarily down when wiping out non-linear parts

— however, we will see that the value cannot go up arbitrarily.

Next, we need another standard tool in Fourier analysis, which is the convo-
lution of functions.

Definition 6.3. For functions f : {−1,1}n →R
m and g : {−1,1}n →R we define the

convolution as the function f ∗ g : {−1,1}n →R
m with

( f ∗ g )(x) := E
y∈{−1,1}n

[
f (x ⊙ y) ·g (y)

]
∀x ∈ {−1,1}n

Here (x ⊙ y)i := xi · yi is the coordinate-wise product. Note that the convo-

lution is defined in an asymmetric way as the second function g is not vector-

valued. We show that the Fourier coefficients of the convolution are simply the

(scalar-)products of the Fourier coefficients of f and g . Note that f̂ A ∈ R
m is a

vector and ĝ A ∈R is a scalar.

Lemma 6.4. For functions f : {−1,1}n →R
m and g : {−1,1}n →R one has

�f ∗g A = f̂ A · ĝ A ∀A ⊆ [n]

Proof. The proof follows from writing out the definition of convolution and swap-

ping the order of the expectations properly:

à( f ∗g )A
Def ̂= E

x∈{−1,1}n

[
w A(x) · ( f ∗ g )(x)

]

Def ∗= E
x∈{−1,1}n

[
E

y∈{−1,1}n

[
w A(x) · f (x ⊙ y) ·g (y)

]]

= E
y∈{−1,1}n

[
E

z∈{−1,1}n

[
w A(z ⊙ y) · f (z) · f (y)

]]

= E
z∈{−1,1}n

[
w A(z) · f (z)

]
· E

y∈{−1,1}n

[
w A(y) ·g (y)

]
= f̂ A ·g A

where we replace z = x ⊙ y ⇔ z ⊙ y = x . Moreover we use that w A(z ⊙ y)= w A(z) ·
w A(y).

A useful insight is that the Rademacher projection can also be obtained by

convoluting f with the so-called Rademacher function gRad (x) :=
∑n

i=1
xi — the

reason is that the Rademacher function serves as a “filter” that precisely keeps

the linear part and removes the rest.
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Lemma 6.5. Define gRad : {−1,1}n → R by gRad(x) :=
∑n

i=1 xi . Then for any func-

tion f : {−1,1}n →R
m one has Radn f = f ∗ gRad.

Proof. It suffices to check that the functions on both sides of the equation have

identical Fourier coefficients. And in fact, using Lemma 6.4 we see that for A ⊆
[n] one has

á(Radn f )A =
{

f̂ A if |A| = 1

0 otherwise
and á( f ∗ gRad)A = f̂ A ·�gRad A = f̂ A ·

{
1 if |A| = 1

0 otherwise

In fact, both expressions coincide.

We are still aiming to understand norms of the form ‖ f ‖µn→‖·‖2
K

. At least for

the Euclidean norm (i.e. K = B m
2 ) we have an exact answer. The reason is clear:

one can consider ‖ f ‖µn→‖·‖2
2

as a Euclidean norm on a 2n-dimensional space.

Then the length is invariant if we instead use the coordinates for a different or-

thonormal basis — and the Walsh functions do form such a basis.

Lemma 6.6. A function f : {−1,1}n →R
m has

‖ f ‖µn→‖·‖2
2
= E

x∈{−1,1}n

[
‖ f (x)‖2

2

]1/2 !=
( ∑

A⊆[n]

‖ f̂ A‖2
2

)1/2

Proof. We can write the squared norm as

E
x∈{−1,1}n

[
‖ f (x)‖2

2

]
= E

x∈{−1,1}n

[∥∥∥
∑

A⊆[n]

w A(x) f̂ A

∥∥∥
2

2

]

‖z‖2
2=〈z ,z〉
= E

x∈{−1,1}n

[
〈

∑

A⊆[n]

w A(x) f̂ A ,
∑

B⊆[n]

wB (x) f̂B 〉
]

=
∑

A⊆[n]

∑

B⊆[n]

〈 f̂ A, f̂B〉 E
x∈{−1,1}n

[w A(x) ·wB (x)]

︸ ︷︷ ︸
=0 if A 6=B ,=1 o.w.

=
∑

A⊆[n]

‖ f̂ A‖2
2

For a function g : {−1,1}n → R, we will also use ‖g‖µn→|·| := Ex∈{−1,1}n [|g (x)|]
as the expected absolute value. We have seen that Radn f = f ∗ gRad and so it will

be crucial to bound the ‖ ·‖µn→‖·‖2
K

-norm for convolutions.

Lemma 6.7. Let K ⊆ R
m be a symmetric convex body and let f : {−1,1}n → R

m

and g : {−1,1}n → R be functions with g (x) =
∑

A⊆[n] w A(x) · cA and cA ∈ R. Then

the following bounds hold:



108 CHAPTER 6. PISIER’S INEQUALITY AND THE M M◦-ESTIMATE

(a) ‖ f ∗ g‖µn→‖·‖2
K
≤ ‖ f ‖µn→‖·‖2

K
· ‖g‖µn→|·|.

(b) ‖ f ∗ g‖µn→‖·‖2
2
≤ ‖ f ‖µn→‖·‖2

2
· ‖c‖∞.

(c) ‖ f ∗ g‖µn→‖·‖2
K
≤ ‖ f ‖µn→‖·‖2

K
· ‖c‖∞ ·dBM (K ,B m

2 ).

Proof. For (a) we bound

‖ f ∗ g‖µn→‖·‖2
K

Def ∗=
(

E
x∼{−1,1}n

[∥∥ E
y∼{−1,1}n

[
f (x ⊙ y) ·g (y)

]∥∥2

K

])1/2

triangle ineq. for ‖·‖K
≤ E

x∼{−1,1}n

[(
E

y∼{−1,1}n

[
‖ f (x ⊙ y)‖K · |g (y)|

])2]1/2

(∗)
≤

(
E

x∼{−1,1}n

[
E

y∼{−1,1}n

[
‖ f (x ⊙ y)‖2

K

√
|g (y)|2

]
· E

y∼{−1,1}n

[√
|g (y)|2

]])1/2

=
(

E
y∼{−1,1}n

[
|g (y)| · E

x∼{−1,1}n

[
‖ f (x ⊙ y)‖2

K

]])1/2
·
(

E
y∼{−1,1}n

[
|g (y)|

])1/2

(∗∗)=
(

E
y∼{−1,1}n

[
|g (y)| · E

x∼{−1,1}n

[
‖ f (x)‖2

K

]])1/2
·
(

E
y∼{−1,1}n

[
|g (y)|

])1/2

= ‖ f ‖µn→‖·‖2
K
· ‖g‖µn→|·|

In (∗) we use Cauchy-Schwarz in the form E[X Y ] ≤ E[X 2]1/2
E[Y 2]1/2 for the ran-

dom variables X := ‖ f (x ⊙ y)‖K
√

|g (y)| and Y :=
√

|g (y)| (considering x as fixed;

note that one could also use Theorem 1.18 with λ := 1
2

). Then in (∗∗) we use that

for any fixed y ∈ {−1,1}n the distribution x ⊙ y is still uniform from {−1,1}n .

For (b), recall that the Fourier expansion of the convolution is of the form

( f ∗ g )(x) =
∑

A⊆[n] w A(x) ·cA · f̂ A (see Lemma 6.4), hence

E
x∼{−1,1}n

[∥∥( f ∗ g )(x)
∥∥2

2

]
=

( ∑

A⊆[n]

‖cA · f̂ A‖2
2

)1/2
≤ ‖c‖∞ ·

( ∑

A⊆[n]

‖ f̂ A‖2
2

)1/2

︸ ︷︷ ︸
=Ex∈{−1,1}n [‖ f (x)‖2

2]1/2

For (c), take a linear map T : Rm → R
m so that ‖v‖K ≤ ‖T (v)‖2 ≤ d(K ,B m

2 ) · ‖v‖K
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for every vector v (we will use this twice in (∗∗∗)). Then

‖ f ∗ g‖µn→‖·‖2
K

= E
x∼{−1,1}n

[
‖( f ∗ g )(x)‖2

K

]1/2

(∗∗∗)
≤ E

x∼{−1,1}n

[
‖T (( f ∗ g )(x))‖2

2

]1/2

∗ is linear= E
x∼{−1,1}n

[
‖(T ( f )∗ g )(x)‖2

2

]1/2

(b)+Lem 6.6
≤ ‖c‖∞ ·

(
E

x∼{−1,1}n

[
‖T ( f (x))‖2

2

])1/2

(∗∗∗)
≤ dBM (K ,B m

2 ) · ‖c‖∞ ·
(

E
x∼{−1,1}n

[
‖ f (x)‖2

K

])1/2

Overall, we already have enough machinery to show that κ(K ) ≤ d(K ,B m
2 ).

For this sake, take a function f : {−1,1}n →R
m and use again gRad(x) :=

∑n
i=1

xi =∑
A⊆[n] w A(x)cA for cA ∈ {0,1}. Then

‖Radn f ‖µn→‖·‖2
K
= ‖ f ∗ gRad‖µn→‖·‖2

K

Lem 6.7
≤ max

A⊆[n]
{|cA |}

︸ ︷︷ ︸
=1

·dBM (K ,B m
2 ) · ‖ f ‖µn→‖·‖2

K

Surprisingly one can reduce that factor to O(logdBM (K ,B m
2 )) using more clever

arguments.

6.1.2 Constructing almost linear function g with bounded norm

The overall strategy behind Pisier’s proof is to find a function g : {−1,1}n → R

where the linear part is gRad(x) = x1+ . . .+xn and then use the triangle inequality

to get

‖Radn f ‖µn→‖·‖2
K
= ‖ f ∗ gRad‖µn→‖·‖2

K
≤ ‖ f ∗ g‖µn→‖·‖2

K
+‖ f ∗ (g − gRad)‖µn→‖·‖2

K

In order to bound the first part we need that ‖g‖µn→|·| is small and in order to

bound the 2nd part we need g to be almost linear with the linear part being x1 +
. . .+xn . In fact, such a function exists:

Theorem 6.8 (Pisier). For any n,ℓ ∈N with ℓ odd there is a function g : {−1,1}n →
R so that one has:

(I) Bounded norm. One has ‖g‖µn→|·| ≤ 8ℓ.
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(II) Almost linear. For A ⊆ [n] one has

ĝ A =





0 if A =;
1 if |A| = 1

0 if 2≤ |A| ≤ ℓ

and |ĝ A| ≤ 8ℓ
2ℓ

for all |A| > ℓ.

To get some intuition behind the construction, let us first understand why

we do not directly choose the linear function g (x) := x1 + . . .+ xn . The issue is

that ‖g‖µn→|·| = Ex∼{−1,1}n [|x1 + . . .+ xn] = Θ(
p

n) which is far too large. The next

idea is to set g (x) :=
∏n

j=1(1+εx j ) for some parameter 0 ≤ ε≤ 1. In this case the

norm is small enough as ‖g‖µn→|·| =
∏n

j=1 Ex j ∼{−1,1}[1+εx j ] = 1. But on the other

hand the Fourier coefficients are ĝ A = ε|A| which is not quite what we need, in

particular as ĝ; = 1 while we need a 0. However it turns out that a weighted sum

over functions
∏n

j=1(1+εx j ) with different values of ε works.

The first step will be to find a one-dimensional weight function that has the

properties that we need. At this point we deviate from the presentation of [AAGM15]

and instead use the more elementary and explicit construction of [IRR+20].

Lemma 6.9. Let n,ℓ ∈ N with ℓ odd. Then there is a finite set X and functions

φ : X →R and h : X → [−1
2

, 1
2

] so that

E
θ∼X

[
φ(θ) ·h(θ)k]

=
{

1 if k = 1

0 if k ∈ {0,2,3, . . . ,ℓ}

and Eθ∼X [|φ(θ)|] ≤ 8ℓ.

Proof. We define φ(θ) := 4ℓ−2
ℓ

· sin(ℓθ)

sin2(θ)
, h(θ) := 1

2
sin(θ), Γ := {k · 2π

4ℓ
| k = 0, . . . ,4ℓ−1}

and X := Γ\ {0,π}. We claim that

E
θ∼Γ\{0,π}

[
φ(θ) ·sink (θ)

]
=

{
2 if k = 1

0 if k ∈ {0,2,3, . . . ,ℓ}

and Eθ∼Γ\{0,π}[|φ(θ)|] ≤ 8ℓ which will satisfy the claim.

We will use 3 simple facts:

• Fact 1. One has sin(x) = Im(e i x) = ei x−e−i x

2i for x ∈R.

• Fact 2. For a ∈Z one has
∑

θ∈Γ e i aθ =
{

4ℓ if a ≡4ℓ 0

0 if a 6≡4ℓ 0
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• Fact 3. One has
∑ℓ−1

j=0
z j = zℓ−1

z−1
for z ∈C\ {1}.

First for k = 0 we have φ(−θ) = −φ(θ) and so Eθ[φ(θ)] = 0 by symmetry. Next,

consider 2 ≤ k ≤ ℓ. In that case

E
θ∼Γ\{0,π}

[
φ(θ) ·sink(θ)

]
=

1

|Γ|−2
·

4ℓ−2

ℓ

∑

θ∈Γ\{0,π}

sin(ℓθ) ·sink−2(θ)

sin(0)=0=sin(ℓπ)=
1

ℓ

∑

θ∈Γ
sin(ℓθ) ·sink−2(θ)

Fact 1=
1

ℓ

∑

θ∈Γ

(e iℓθ−e−iℓθ

2i

)
·
(e iℓ−e−iθ

2i

)k−2 Fact 2= 0

In the last step we use that multiplying out will result in a sum of terms of the

form
∑

θ∈Γ e i aθ where a ∈Z with a 6≡4ℓ 0.

Next, we consider the case k = 1. Then

E
θ∼Γ\{0,π}

[φ(θ) ·sin(θ)] =
1

ℓ

∑

θ∈Γ\{0,π}

sin(ℓθ)

sin(θ)

Fact 1=
1

ℓ

∑

θ∈Γ\{0,π}

e iℓθ−e−iℓθ

e iθ−e−iθ

Fact 3=
1

ℓ

∑

θ∈Γ\{0,π}

e−i (ℓ−1)θ ·
(e−i 2θ)ℓ−1

e i 2θ−1

=
1

ℓ

∑

θ∈Γ\{0,π}

e−i (ℓ−1)θ
ℓ−1∑

j=0

e−i 2θ j

︸ ︷︷ ︸
=ℓ for θ∈{0,π}

=
1

ℓ

(
−2ℓ+

∑

θ∈Γ
e−i (ℓ−1)θ

ℓ−1∑

j=0

e−i 2θ j
)

=
1

ℓ

(
−2ℓ+

ℓ−1∑

j=0

∑

θ∈Γ
e−iθ(ℓ−1+2 j )

︸ ︷︷ ︸
=4ℓ if ℓ−1+2 j≡4ℓ0,=0 o.w.

)
=

1

ℓ
(−2ℓ+4ℓ)= 2

where we use that ℓ−1 is even and so there is exactly one j so that ℓ−1+2 j ≡4ℓ 0.

Finally we bound the average size of the coefficients by

E
θ∼Γ\{0,π}

[|φ(θ)|] ≤
4ℓ−2

ℓ
E

θ∼Γ\{0,π}

[ 1

sin2(θ)

]

sin(θ)≥ 2
πθ ∀0≤θ≤π

2≤
4ℓ−2

ℓ
E

θ∼Γ\{0,π}

[ 1

( 2
π ·θ)2

]
≤

4

ℓ

ℓ−1∑

j=1

1

( 2
π

2π j
4ℓ )2

≤ 8ℓ

Where we use symmetry of Γ and sum 4-times over j = 1, . . . ,ℓ−1.
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Now we can construct the near-linear function g : {−1,1}n →R:

Proof of Theorem 6.8. Let X be the set and let φ and h be the functions from

Lemma 6.9. We choose the function g : {−1,1}n →R with

g (x) := E
θ∼X

[
φ(θ) ·

n∏

j=1

(
1+h(θ) ·x j

)]

Note we can easily read the Fourier coefficients ĝ A as they are simply the coeffi-

cients in front of the monomials
∏

j∈A x j when multiplying out. In fact, for any

A ⊆ [n] we have

ĝ A = E
θ∼X

[
φ(θ) ·h(θ)|A|

]
=





0 if |A| = 0

1 if |A| = 1

0 if 2 ≤ |A| ≤ ℓ

as required. For |A| > ℓ we bound

|ĝ A| = E
θ∼X

[
|φ(θ)| · |h(θ)||A|︸ ︷︷ ︸

≤2−|A|

]
≤

8ℓ

2ℓ
.

Finally in order to bound the average absolute value we use that always 1+h(θ) ·
x j > 0 and so

‖g‖µn→|·| = E
x∼{−1,1}n

[∣∣∣ E
θ∼X

[
φ(θ) ·

n∏

j=1

(
1+h(θ) ·x j

)∣∣∣
]

≤ E
x∼{−1,1}n

[
E

θ∼X

[
|φ(θ)| ·

n∏

j=1

(
1+h(θ) ·x j

)]

indep= E
θ∼X

[
|φ(θ)| ·

n∏

j=1

E
x j ∼{−1,1}

[
1+h(θ) ·x j

]

︸ ︷︷ ︸
=1

]
≤ E

θ∼X
[|φ(θ)|] ≤ 8ℓ.

6.1.3 Proof of Pisier’s Inequality

Finally we come to the main result we have been working towards:

Theorem 6.10 (Pisier). There is a constant C > 0 so that for every symmetric con-

vex body K ⊆R
m and f : {−1,1}n →R

m one has

‖Radn f ‖µn→‖·‖2
K
≤C log2(dBM (K ,B m

2 )+1) · ‖ f ‖µn→‖·‖2
K
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Proof. Let ℓ ∈N be a parameter that we determine later. Let g = gRad+grest be the

approximation of the Rademacher function from the previous Lemma 6.8 where

gRad(x) = x1 + . . .+ xn is the linear part and grest(x) =
∑

A⊆[n] cA w A(x) with cA = 0

for |A| ≤ ℓ and |cA | ≤ 8ℓ
2ℓ

for |A| > ℓ. Now fix any function f : {−1,1}n →R
m . Then

‖Radn f ‖µn→‖·‖2
K

Lem 6.5= ‖ f ∗ gRad‖µn→‖·‖2
K

triangle ineq
≤ ‖ f ∗ g‖µn→‖·‖2

K
+‖ f ∗ grest‖µn→‖·‖2

K

Lem 6.7
≤ ‖ f ‖µn→‖·‖2

K
· ‖g‖µn→|·|︸ ︷︷ ︸

≤8ℓ

+dBM (K ,B m
2 ) · ‖c‖∞︸ ︷︷ ︸

≤8ℓ/2ℓ

·‖ f ‖µn→‖·‖2
K

≤ ‖ f ‖µn→‖·‖2
K
·8ℓ ·

(
1+

dBM (K ,B m
2 )

2ℓ

)

then picking ℓ as the smallest odd integer with ℓ ≥ log2(d(K ,B m
2 )+ 1) gives the

claim.

Phrased differently we have proven that κ(K ) ≤ O(log2(dBM (K ,B m
2 ) + 1)) ≤

O(log(m)) for any symmetric convex body K ⊆R
m .

6.2 Trace duality

Let α : Rn×n →R≥0 be a matrix norm, meaning thatα is a norm on the set of n×n
matrices. In particular one has (i) α(V ) = 0 ⇔ V = 0; (ii) α(sV ) = |s| ·α(V ) and

(iii) α(V +U ) ≤ α(V )+α(U ) where V ,U ∈ R
n×n and s ∈ R. Examples would be

the Frobenius norm ‖V ‖F = (
∑n

i=1

∑n
j=1

V 2
i j )1/2 or the Schatten-p norm ‖V ‖S(p) =

(
∑n

i=1σi (V )p )1/p where σi (V ) gives the i th singular value of V and p ≥ 1. But

back to an arbitrary such matrix norm α. We can always define a dual norm by

setting

α∗(V ) := sup
{
Tr[V U ] |U ∈R

n×n with α(U ) ≤ 1
}
.

It turns out that for any matrix norm there is a matrix so that the norm and the

dual norm of the inverse are nicely bounded:

Lemma 6.11 (Lewis [Lew79]). For any matrix norm α : Rn×n → R≥0, there exists

an invertible matrix U ∈R
n×n so that α(U ) = 1 and α∗(U−1) = n.

Proof. We can split the proof into two parts.

Claim I. For any invertible matrix V ∈R
n×n one has α(V ) ·α∗(V −1) ≥ n.
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Proof of Claim I. We can write

n

α(V )
=

1

α(V )
Tr[In] = Tr

[
V −1 V

α(V )

]
Def dual norm

≤ α∗(V −1)

which can be then be rearranged to α(V ) ·α∗(V −1) ≥ n.

In order to find a matrix that attains equality we will use a variational argu-
ment. We choose

U := argmax
{

det(V ) : V ∈R
n×n invertible with α(V ) ≤ 1

}

Claim II. One has α(U ) = 1 and α∗(U−1) ≤ n.
Proof of Claim II. Clearly we have α(U ) = 1 and det(U ) > 0 as we could scale or

flip signs otherwise. It remains to be proven that for any matrix V ∈ R
n×n with

α(V ) ≤ 1, one has Tr[U−1V ] ≤ n.

So, fix an arbitrary V ∈ R
n×n with α(V ) ≤ 1. Then for a small enough ε> 0 we

have

det
(

In +εU−1V
)1/n = det

(
U−1 · (U +εV )

)1/n
(∗)

mult of det= α(U +εV ) ·det(U−1)1/n ·det
( U +εV

α(U +εV )

)1/n

︸ ︷︷ ︸
≤det(U )1/n by optimality︸ ︷︷ ︸

≤1

α is norm
≤ α(U )︸ ︷︷ ︸

=1

+εα(V )︸ ︷︷ ︸
≤1

= 1+ε

Considering the derivative of the determinant function1 we see that

ε
(∗)
≥ det(In +εU−1V )1/n −1

up to O(ε2) terms
≈ ε

Tr[U−1V ]

n

Then for ε→ 0 we obtain Tr[U−1V ] ≤ n as needed.

6.3 The ℓ-norm

Let K ⊆ R
n be a symmetric convex body. We define the ℓ-norm of a matrix A ∈

R
n×n as

ℓK (A) := E
x∼γn

[
‖Ax‖2

K

]1/2

(first introduced by [FTJ79]). We can verify that ℓK is indeed a norm.

1Consider f (t) := det(In + t M) with M ∈R
n×n . Then f ′(0) = Tr[M].
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Lemma 6.12. ℓK is a norm.

Proof. We only verify the triangle inequality, meaning that for matrices A,B ∈
R

n×n , we need to prove that ℓK (A +B ) ≤ ℓK (A)+ℓK (B ). Then

ℓK (A +B ) = E
x∼γn

[∥∥(A +B )x
∥∥2

K

]1/2 ‖·‖K norm
≤ E

x∼γn

[(
‖Ax‖K +‖B x‖K

)2]1/2

(∗)
≤ E

x∼γn

[
‖Ax‖2

K

]1/2 + E
x∼γn

[
‖B x‖2

K

]1/2 = ℓK (A)+ℓK (B ).

In (∗), we use Minkowski’s inequality from Lemma 1.20 for p = 2 and the jointly

distributed random variables X := ‖Ax‖K and Y := ‖B x‖K where x ∼ γn .

To give some relation to known quantities, later we will argue that ℓK (In) =
Θ(

p
n) ·M(K ). Recall that A ≻ 0 means that A is symmetric and all Eigenvalues

are strictly positive. Then finding a matrix A with A ≻ 0 so that ℓK (A) ·ℓK ◦(A−1)

is small is essentially the same as finding a linear transformation T : Rn → R
n so

that M(T (K )) ·M(T (K )◦) is small. We can make this relation formal:

Lemma 6.13. Let K ⊆ R
n be a symmetric convex body and let A ∈ R

n×n with A ≻
0. Then (i) ℓK (A) = ℓA−1(K )(In), (ii) ℓK ◦(A−1) = ℓ(A−1(K ))◦(In) and (iii) ℓ∗K (A−1) =
ℓ∗

A−1(K )
(In).

Proof. We have ‖Ax‖K = ‖x‖A−1(K ) which gives (i ). Next, ‖A−1x‖K ◦ = ‖x‖A(K ◦) =
‖x‖(A−1(K ))◦ proving (i i ). For (i i i ) we have sup{Tr[A−1U ] : ℓK (U ) ≤ 1} = sup{Tr[InV ] :

ℓK (AV ) ≤ 1} = sup{Tr[InV ] : ℓA−1(K )(V ) ≤ 1} where we make the substitution V :=
A−1U ⇔U = AV .

The next step is to find a good candidate for the matrix A that has a bounded

value of ℓK (A) ·ℓK ◦(A−1).

Lemma 6.14 (Consequence of Lewis Lemma). For any symmetric convex body

K ⊆R
n there is a matrix A ∈R

n×n with A ≻ 0 so that ℓK (A) = 1 and ℓ∗K (A−1) = n.

Proof. As ℓK is a matrix norm, Lewis Lemma (Lemma 6.11) guarantees us a ma-

trix B ∈R
n×n with ℓK (B ) = 1 and ℓ∗K (B−1) = n. But that matrix B does not have to

be symmetric. So we consider the singular value decomposition B =
∑n

k=1
σkuk v T

k
where u1, . . . ,un and v1, . . . , vn are two orthonormal bases of R

n . We set A :=∑n
k=1

σkuk uT
k

which by construction is symmetric and positive definite. We note

that for x ∼ γn , the random vectors B x =
∑n

k=1
σkuk 〈vk , x〉 and Ax =

∑n
k=1

σkuk 〈uk , x〉
have identical distributions. Hence ℓK (A) = ℓK (B ). Also reinspecting the proof

Lemma 6.11 we recall that B was chosen to maximize det(B ), subject to ℓK (B ) ≤
1. But det(A) = det(B ) and so also A is a suitable choice.
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The reader may have noted the crucial difference that the quantity ℓK (A)

is defined via a random Gaussian while the framework around the version of

Pisier’s inequality that we have presented, uses random variables from {−1,1}.

But we can use the Central Limit Theorem to approximate a Gaussian arbitrar-

ily well with sums of {−1,1}-random variables. For a large enough N , construct

a matrix B ∈ R
nN×n , which for any i ∈ [n] contains N times the column vector

1p
N

ei . Then we know that B y with y ∼ {−1,1}nN is a good approximation to the

standard Gaussian distribution γn . To be more concrete, we have a continuous

function F : Rn → R and we need that Ex∼γn [F (x)] = limN→∞Ey∈{−1,1}nN [F (B y)].

However, the continuity is not enough. For example if n = 1 and F (x) = ex3
, then

Ex∼γ1 [F (x)] =∞ while Ey∈{−1,1}N [F (B y)] is finite (though growing in N ). However,

it suffices to add as additional condition that that function increases moderately.

The version of the Central Limit Theorem that suffices for our purpose is the fol-

lowing:

Theorem 6.15 (Implication of the Central Limit Theorem). Let F : Rn → R be a

continuous function with lim‖x‖1→∞ F (x) · e−‖x‖1 = 0. Fix a matrix A ∈ R
n×n and

let B ∈ R
nN×n be the matrix that contains N column vectors of the form Ai

p
N

for

each i ∈ [n]. Then

E
x∼γn

[F (Ax)] = lim
N→∞

E
y∈{−1,1}nN

[
F (B y)

]

Now we come to handle the main challenge: we know how to obtain a matrix

A with A ≻ 0 so that ℓK (A) = 1 and ℓ∗K (A−1) = n. But what we really need is an

upper bound on ℓK ◦(A−1). This is the next step and this is the part where we

crucially rely on Pisier’s inequality.

Lemma 6.16. For any convex symmetric body K ⊆ R
n and any matrix A ∈ R

n×n

with A ≻ 0 one has ℓK ◦(A−1) ≤ κ(K ) ·ℓ∗K (A−1).

Proof. Following Lemma 6.13 we can replace K by K̃ := A−1(K ) and it suffices to

prove the claim ℓK ◦(In) ≤ κ(K ) ·ℓ∗K (In). For a large enough N , we make the same

choice of B ∈ R
nN×n which contains N copies of

eip
N

as columns. We define a

function f : {−1,1}nN →R
n with f (y) := B y . Then we have

ℓK ◦(In) = E
x∼γn

[
‖x‖2

K ◦
]1/2 (∗)≈ E

y∼{−1,1}nN

[
‖ B y︸︷︷︸
=: f (y )

‖2
K ◦

]1/2 = ‖ f ‖µnN→‖·‖2
K ◦

by the Central Limit Theorem (Theorem 6.15), where we can make the multi-

plicative or additive error in (∗) as small as we like by choosing N large enough.
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Next, we introduce a function h : {−1,1}nN → R
n where for y ∈ {−1,1}nN , we

choose h(y) as an element that is a multiple of the dual element to f (y) with

respect to the norm ‖ ·‖K ◦ . More precisely, we choose h(y)∈R
m so that

‖h(y)‖K =
‖ f (y)‖K ◦

‖ f ‖µnN→‖·‖2
K ◦

and 〈 f (y),h(y)〉 =
‖ f (y)‖2

K ◦

‖ f ‖µnN→‖·‖2
K ◦

This choice is always possible, see Lemma 1.7. Then

‖h‖µnN→‖·‖2
K
= E

y∈{−1,1}nN

[
‖h(y)‖2

K

]1/2 =
Ey∈{−1,1}nN

[
‖ f (y)‖2

K ◦
]1/2

‖ f ‖µnN→‖·‖2
K ◦

= 1.

Moreover

〈 f ,h〉µnN
=

Ey∼{−1,1}nN [‖ f (y)‖2
K ◦]

‖ f ‖µnN→‖·‖2
K ◦

= ‖ f ‖µnN→‖·‖2
K ◦

In other words, the function h is the dual element to f with respect to the

norm ‖ ·‖µnN→‖·‖2
K ◦

. We note that f is a linear function and the non-zero Fourier-

coefficients are f̂{ j } = B j . We want to remark that we do not know whether h is

linear. Let [nN ] = J1∪̇ . . .∪̇Jn be the partition of indices so that f̂{ j } = B j = eip
N

for

all j ∈ Ji . We note that h is symmetric in the sense that h(y) is invariant under

permuting indices j , j ′ ∈ Ji . This implies that ĥ{ j } = ĥ{ j ′} for all j , j ′ ∈ Ji . We

define a matrix C ∈R
n×n so that ĥ{ j } = C i

p
N

for j ∈ Ii and i ∈ [n]. Then

ℓK ◦(In) ≈ ‖ f ‖µnN→‖·‖2
K ◦

h is dual el. of f= 〈 f ,h〉µnN

=
∑

S⊆[nN]

〈 f̂S , ĥS〉︸ ︷︷ ︸
=0 if |S|6=1 as f linear

=
nN∑

j=1

〈 f̂{ j }, ĥ{ j }〉

(∗∗)=
n∑

i=1

〈ei ,C i 〉 = Tr[InC ]
Cauchy-Schwarz

≤ ℓ∗K (In) ·ℓK (C )

where we use in (∗∗) we use that each coordinate i appears N times. Then using

the Central Limit Theorem again

ℓK (C )
CLT≈ E

y∈{−1,1}nN

[∥∥∥
nN∑

j=1

y j ĥ{ j }

∥∥∥
2

K

]1/2
= ‖RadnN (h)‖µnN→‖·‖2

K
≤ κ(K ) · ‖h‖µnN→‖·‖2

K︸ ︷︷ ︸
=1
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Now we can finish the proof of the ℓℓ◦-estimate:

Theorem 6.17 (ℓℓ◦-Estimate [FTJ79]). For any convex symmetric body K ⊆ R
n

there is a matrix A ∈R
n×n with A ≻ 0 so that ℓK (A) ·ℓK ◦(A−1) ≤ n ·κ(K ).

Proof. We obtain a matrix A ∈R
n×n from Lemma 6.14 with A ≻ 0 so that ℓK (A) =

1 and ℓ∗K (A−1) = n where ℓ∗K is the dual norm of ℓK . Then applying Lemma 6.16

gives ℓK ◦(A−1) ≤ κ(K ) ·ℓ∗K (A−1) ≤ κ(K ) ·n, which then provides the claim.

6.4 The M M◦-estimate

Recall that the M-value of a symmetric convex body K is

M(K ) := E
x∼Sn−1

[‖x‖K ]

and the dual estimate is M◦(K ) := M(K ◦) (we however prefer using M(K ◦) to keep

notation at a minimum). More generally one can define Mp(K ) := Ex∈Sn−1

[
‖x‖p

K

]1/p
;

then one can in fact proof that M1(K ) ≤ M2(K ) ≤
p

2 ·M1(K ), which would imply

that

M(K ) =Θ

( 1
p

n

)
· E

x∼γn

[
‖x‖2

K

]1/2

We prove this in more generality but without determining the exact constant.

Lemma 6.18. There is a constant C > 0 so that for p ≥ 1 and any symmetric con-

vex body K ⊆R
n one has M1(K ) ≤ Mp (K ) ≤C

p
p ·M1(K ).

Proof. If we define the random variable X := ‖x‖K with x ∼ Sn−1, then the lower

bound is equivalent to E[X ]p ≤ E[X p ] which holds true by Jensen’s inequality. For

the upper bound, we recall Kahane’s Inequality from Theorem3.19 which shows

that for A ∈R
n×m one has

E
x∈{−1,1}m

[∥∥Ax
∥∥p

K

]1/p ≤O(
p

p) · E
x∈{−1,1}m

[∥∥Ax
∥∥

K

]

Making the substitution from Theorem 6.15, the same inequality also holds for

Gaussians2.

Theorem 6.19 (M M◦-estimate). For any symmetric convex body K ⊆R
n , there is

an invertible linear map T so that M(T (K )) ·M(T (K )◦) ≤O(1) ·κ(K ).

2Alternatively, the proof of Kahane’s inequality could be easily adapted to directly hold for

Gaussians.
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Proof. We can apply a linear transformation to K so that ℓK (In)·ℓK ◦(In) ≤ n·κ(K ).

Then ℓK (In) = Ex∼γn [‖x‖2
K ]1/2 = Θ(

p
n) · M(K ) and ℓK ◦(In) = Ex∼γn [‖x‖2

K ◦]1/2 =
Θ(

p
n) ·M(K ◦). Together that gives the claim.

Recall that any symmetric convex body K with Voln(K ) = Voln(B n
2 ) must have

a mean width of w(K ) ≥ 1 (see Theorem 1.28). On the other hand, the mean

width can be arbitrarily high for a symmetric convex body. But it turns out that

there is always a linear transformation that achieves a bound of O(log(n)) as al-

ways κ(K ) ≤O(logn).

Theorem 6.20 (Reverse Urysohn Inequality). Let K ⊆ R
n be a symmetric con-

vex body. Then there exists a linear map T so that Voln(T (K )) = Voln(B n
2 ) and

w(T (K )) ≤O(κ(K )).

Proof. We first prove a non-trivial claim:

Claim. Let Q ⊆R
n be any convex body with 0 ∈ int(Q). Then w(K ) ≥ 2

(
Voln (Bn

2 )

Voln (Q◦)

)1/n
.

Proof of Claim. Recall the quantities hQ(θ) = max{〈θ, x〉 : x ∈ Q} and ρQ (θ) :=
max{r ≥ 0 | rθ ∈Q} for θ ∈ Sn−1 and the fact that hQ(θ) = 1

ρQ◦ (θ)
. Then

w(Q) = 2 E
θ∼Sn−1

[hQ (θ)]
(∗)
≥ 2 E

θ∼Sn−1

[
hQ (θ)−n]−1/n =

(
E

θ∼Sn−1
[ρQ◦(θ)n ]

)−1/n (∗∗)=
( Voln(Q◦)

Voln(B n
2 )

)−1/n

Here for the inequality (∗) we can verify that for a positive random variable X one

has E[X ] ≥ E[X −n]−1/n since by Hölders Inequality (Theorem 1.18) we can bound

(E[X ] ·E[X −n ]
1
n )

n
n+1 = E[X ]

n
n+1 E[X −n]

1
n+1 ≥ E[X

n
n+1 X −n· 1

n+1 ] = E[X 0] = 1. Finally we

have used integration in polar coordinates from Lemma 1.46 to obtain (∗∗).

Now, using the M M◦-estimate one can find a linear map T so that w(T (K )) ·
w(T (K )◦) ≤O(κ(K )) (recall that w(Q) = 2M(Q◦) for any symmetric convex body).

After scaling we may further assume that Voln(T (K )) = Voln(B n
2 ). Then

w(T (K )◦)
Claim
≥ 2

( Voln(B n
2 )

Voln(T (K ))

)1/n
= 2

from which it follows that w(T (K )) ≤O(κ(K )).

We can also provide a result for non-symmetric bodies:

Theorem 6.21. Let K ⊆ R
n be a convex body. Then there is a linear transforma-

tion T so that Voln(T (K )) = Voln(B n
2 ) and w(T (K )) ≤O(log(n)).

Proof. Since the difference body K −K is symmetric, we can use the last Theorem

and apply a linear transformation to K so that Voln(K −K ) = 1 and w(K −K ) ≤
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O(log(n)). We already noted in an earlier chapter that w(K −K ) = 2w(K ). More-

over, Voln(K ) ≥ 4−n ·Voln(K −K ) by Rogers-Shephard inequality. Then scaling K
by some factor in [1,4] will satisfy the claim.

6.5 A geometric interpretation of the ℓ-position

We want to give a different geometric interpretation of the ℓ-position that feels

a bit like a relaxed variant of the John position. We will see that every symmet-

ric convex body can be put into a position where it contains 90% of the sphere

Sn−1 while the polar of K contains 90% of the smaller sphere Θ( 1
log(n)

)Sn−1. The

constants are of course chosen arbitrarily.

K
Sn−10

K ◦
0

Θ( 1
log(n)

)Sn−1

More formally:

Theorem 6.22. For any symmetric convex body K ⊆R
n , there is a linear transfor-

mation T : Rn →R
n so that

Pr
x∼Sn−1

[x ∈ T (K )] ≥
9

10
and Pr

x∼ 1
C log(n)

Sn−1
[x ∈T (K )◦] ≥

9

10

where C > 0 is a universal constant.

Proof. Using the M M◦-estimate of Theorem 6.19, we may apply a linear transfor-

mation to the body K so that M(K ) = 1
10

and M(K ◦) ≤ C
10

log(n) for some constant

C > 0. Then M(K ) = Ex∼Sn−1 [‖x‖K ] = 1
10

and by Markov’s inequality, Prx∼Sn−1 [x ∉
K ] = Prx∼Sn−1 [‖x‖K > 1] ≤ 1

10
. Similarly M(K ◦) = Ex∼Sn−1 [‖x‖K ◦] ≤ C

10
log(n) and

again by Markov’s inequality, Prx∼Sn−1 [x ∉C log(n)·K ◦] = Prx∼Sn−1 [‖x‖K ◦ >C log(n)] ≤
1

10
.

6.6 Computing the ℓ-position

We want to briefly comment on the issue whether the ℓ-position of a body is

computable in polynomial time. Let K be a symmetric convex body. Again, con-

sider the quantity ℓK (A) = Ex∼γn [‖Ax‖2
K ]1/2 for a matrix A ∈R

n×n . Then with the

same arguments as in the beginning of Chapter 2 we can replace A with a positive
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semi-definite matrix B so that ℓK (A) = ℓK (B ). That means, finding the matrix A

for Theorem 6.17 boils down to solving the convex program

maxdet(A) (C P1)

E
x∼γn

[
‖Ax‖2

K

]1/2 ≤ 1

A º 0

Let A be the optimum solution. Now set K̃ := A−1(K ). We consider again the

convex program, but this time for K̃ :

maxdet(B ) (C P2)

E
x∼γn

[
‖B x‖2

K̃

]1/2 ≤ 1

B º 0

Note that ‖B x‖K̃ = ‖B x‖A−1(K ) = ‖B Ax‖K . Then it is not hard to see that B = In

is the optimum solution to (C P2). From the proof of Theorem 6.17 we know that

ℓK̃ (In) = 1 and ℓK̃ ◦(In) ≤O(n logdBM (K )). We can rewrite this as Ex∼γn [‖x‖2
K̃

]1/2 =
1 and Ex∼γn [‖x‖K̃ ◦] ≤O(n logdBM (K )).

Exercises

Exercise 6.1.

Consider the Schatten-p norm α(V ) := ‖V ‖S(p) for V ∈ R
n×n where p ≥ 1. Find a matrix

U ∈R
n×n so that α(U ) = 1 and α∗(U−1) =n.

Exercise 6.2.

For K := B n
∞, compute (up to universal constants) the quantities ℓK (In), ℓ∗K (In) and

ℓK ◦(In).

Exercise 6.3.

In the following let K ⊆R
n be any convex symmetric body.

(i) Prove that for any matrix A ∈R
n×n one has ℓRad

K ◦ (A) ≤ κ(K ) · (ℓRad
K )∗(A).

(ii) Prove that for any convex symmetric body K ⊆ R
n there is a matrix A ∈ R

n×n so

that ℓRad
K (A) ·ℓRad

K ◦ (A−1) ≤n ·κ(K ).

Exercise 6.4.
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Let n be a power of 2. In this exercise we want to prove that K := B n
∞ hasκ(K )≥Ω(

√
log(n))

(which by the way is tight for unconditional norms). For a complex number z = a+bi ∈C

with a,b ∈R we denote ℜ(z) = a and ℑ(z) = b. Let d := log2(n) and consider the function

h : {−1,1}d →R defined by h(x) :=ℑ(
∏d

j=1
(1+ x jp

d
· i )).

(i) Prove that |h(x)| ≤O(1) for all x ∈ {−1,1}d .

(ii) Prove that ĥ{ j } = 1p
d

for all j ∈ [d ].

Now consider f : {−1,1}d → R
n where we index coordinates of the vector f (x) ∈ R

n by

f (x)y for y ∈ {−1,1}d . For x , y ∈R
d we denote x ⊙ y ∈R

d as the coordinate wise product,

that means (x ⊙ y ) j := x j · y j . Then define the function by f (x)y := h(x ⊙ y ).

(iii) Prove that ‖ f (x)‖∞ ≤O(1) for all x ∈ {−1,1}d and ‖ f ‖µd→‖·‖2
∞
≤O(1).

(iv) Prove that f̂{ j } = 1p
d
· (y j )y∈{−1,1}d for all j ∈ [d ].

(v) Prove that for every x ∈ {−1,1}d one has ‖Radd f (x)‖∞ ≥
p

d and ‖Radd f ‖µd→‖·‖2
∞
≥p

d .

(vi) Conclude that κ(B n
∞) ≥Ω(

√
log(n)).



Chapter 7

The Quotient of Subspaces Theorem

and Linear Duality

Suppose that K ⊆R
n is a symmetric convex body. We denote radius(K ) := max{‖x‖2 :

x ∈ K }. We want to revisit the question of finding O(1)-ellipsoidal slices of K .

We know already that there might not be any subspace A ⊆ R
n with dim(A) ≥

ω(log(n)) so that K ∩ A is O(1)-ellipsoidal. Also projections are not necessar-

ily better. We have seen in Lemma 5.23 that for a body K ⊆ B n
2 , a random k-

dimensional subspace A will have radius(PA(K )) ≤ O(M(K ◦)+
p

k/n). Here it

might be helpful to recall that M(K ◦) = 1
2

w(K ). Again, if k ≫ log(n) is large, this

bound might not be good enough. It turns out that we can prove a stronger re-

sult:

Pajor-Tomczak Theorem. Let K ⊆ R
n be a symmetric convex set and

let F be a random λn-dimensional subspace. Then radius(K ∩F ) ≤
O( 1p

1−λ
) ·M(K ◦) with high probability.

However, this result only gives a one-sided bound. It was Milman who proved

that the combination of intersection and projection indeed leads to near ellip-

soidal sets. In a simplified form one can prove that:

Milman’s Quotient of Subspaces Theorem. For any symmetric convex
body K ⊆ R

n there are subspaces B ⊆ A ⊆ R
n with dim(B) ≥ n/2 and

an ellipsoid E ⊆ B so that E ⊆ PB (K ∩ A) ⊆O(1) ·E .

Of course this is a high dimensional phenomenom — an attempt at a visualiza-

tion for K ⊆R
3 is as follows:

123
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K

K ∩ A

b

b

B
PB (K ∩ A)

Towards the end of the chapter we will prove another remarkable result that gives

a geometric duality-type relation between a body K and its polar:

Milman’s Linear Duality Theorem. For any symmetric convex body K
there is a subspace F ⊆R

n with dim(F ) ≥Ω(n) so that either radius(K∩
F ) ≤O(1) or radius(K ◦∩F ) ≤O(1).

7.1 A simple bound on the radius of K ∩ A

First, we want to work towards the Pajor-Tomczak Theorem. The goal is to obtain

a bound that radius(K ∩ A) ≤ f (λ) ·M(K ◦) holds with high probability where A ⊆
R

n is a random subspace with dim(A) = λn. It is clear that for λ→ 1, one must

have f (λ) → ∞. Note that later we will indeed have use for the regime where

λ ≈ 1. One can also see that the Pajor-Tomczak bound is optimal as for an (n −
Θ(1))-dimensional subspace it gives radius(K ∩ A) ≤O(

p
n) ·M(K ◦) which is best

possible.

To warm up, we give a simple, yet suboptimal bound.

Theorem 7.1. Let K ⊆ R
n be a symmetric convex body and let 0 < λ< 1. Draw a

random λn-dimensional subspace A ⊆R
n . Then

Pr
[

radius(K ∩ A) ≤C 1/(1−λ) ·M(K ◦)
]
≥ 1−e−n

where C > 0 is a universal constant.

Proof. After scaling we may assume that M(K ◦) = 1. The idea is to apply the

Volume Ratio Theorem (Theorem 5.19) which guarantees that one has radius(K ∩
A) ≤ (O(α))n/(n−dim(A)) with high probability, provided that B n

2 ⊆ K and Voln(K ) =
αn ·Voln(B n

2 ).

The first issue is that K might be arbitrarily thin in some directions and hence

not contain B n
2 . We fix this by considering instead the enlarged set T := conv(K ∪

B n
2 ) which is again convex and symmetric.
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0 K

B n
2

T = conv(K ∪B n
2 )

But potentially the larger set T has a larger M◦-value and we need to show that

M(T ◦) is not too large. In fact

M(T ◦) =
1

2
w(T )

conv(K∪Bn
2 )⊆K+Bn

2≤
1

2
w(K +B n

2 ) =
1

2
w(K )

︸ ︷︷ ︸
=M(K ◦)=1

+
1

2
w(B n

2 )
︸ ︷︷ ︸

=1

= 2

The next step is to obtain an upper bound on the volume of T . For this pur-

pose we make use of Urysohn’s Inequality (Theorem 1.28) to get

2 ≥ M(T ◦) =
1

2
w(T )

Urysohn
≥

( Voln(T )

Voln(B n
2 )

)1/n

This can be rearranged to Voln(T ) ≤ 2n ·Voln(B n
2 ). Since now B n

2 ⊆ T , we can

apply the Volume Ratio Theorem and conclude that a random λn-dimensional

subspace A ⊆ R
n satisfies radius(T ∩ A) ≤ (c ·2)

n
n−λn with probability at least 1−

2−n . The claim follows from K ⊆ T .

7.2 The Theorem of Pajor-Tomczak

Finally we show the radius result with the optimum dependence. We want to

recall Lemma 5.23 that we have proven in Section 5.7.

Lemma 5.23. For any centrally symmetric convex set K ⊆ t ·B n
2 , a ran-

dom k-dimensional subspace A ⊆R
n satisfies

Pr
[

radius(PA(K )) ≤O(1) ·max
{

M(K ◦), t
√

k
n

}]
≥ 1−e−Ω(k)

We we state and prove the Theorem of Pajor and Tomczak-Jaegermann (fol-

lowing the later proof of [Mil90a]):

Theorem 7.2 (Pajor, Tomczak-Jaegermann [PTJ86]). Let K ⊆ R
n be a symmet-

ric convex set and let 0 < ε < 1. Then if we draw a uniform random (1− ε)n-

dimensional subspace A, then

Pr
[

radius(K ∩ A) ≤O
( 1
p
ε

)
·M(K ◦)

]
≥ 1−e−Θ(1)·εn .
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Proof. For a large enough constant C > 0, we pick a parameter t :=C
p

1/ε·M(K ◦)

and let N ⊆ K be a minimum cardinality t-net of K , meaning that K ⊆⋃
y∈N (y +

tB n
2 ). Then Sudakov’s Inequality (Theorem 4.12) bounds the size of that net as

|N | = N (K , tB n
2 ) ≤ exp

(
Θ(n) · (w(K )/t )2

)
≤ eεn/100,

if C is chosen large enough, using that w(K ) = 2M(K ◦).

K

b

b

b

b

b

b

b

b

y ∈N

t

The trick behind the proof is to study the the projection of K into A⊥ instead of

directly considering the intersection K ∩ A. For a large enough constant C ′, we

consider two events

A := “‖PA⊥(y)‖2 ≥
1

2

p
ε · ‖y‖2 ∀y ∈N ′′

B := “radius
(
PA⊥(K ∩ tB n

2 )
)
≤C ′ ·M(K ◦)′′

which basically say that the projection of certain parts of K into A⊥ is close enough

to the expected value.

K

A : dim= (1−ε)n

A⊥ : dim= εn

0

y

x

PA⊥(tB n
2 ∩K )

tB n
2 ∩K

PA⊥(y)

Claim I. One has Pr[A & B] ≥ 1−e−Θ(εn).
Proof of Claim I. First fix a unit length vector y ∈ Sn−1. Then one has E[‖PA⊥(y)‖2

2] =
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dim(A)
n = εn

n = ε. Moreover, the function y 7→ ‖PA⊥(y)‖2 is 1-Lipschitz. Hence

by the usual concentration argument PrA[‖PA⊥(y)‖2 ≥ 1
2

p
ε] ≥ 1 − e−εn/10. As

|N | ≤ eεn/100 we obtain Pr[A] ≥ 1− e−Ω(εn) from the union bound. For event

B we invoke Lemma 5.23 to obtain that with probability 1−e−Θ(εn) one has

radius(PA⊥(K ∩ tB n
2 )) ≤O(1) ·max

{
M(K ◦), t

√
dim(A⊥)

n︸ ︷︷ ︸
=C ·M(K ◦)

}
≤C ′ ·M(K ◦)

if C ′ is chosen large enough. The claim follows.

Claim II. If events A & B happen, then radius(K ∩ A) ≤O( 1p
ε

) ·M(K ◦).

Proof of claim II. Fix a point x ∈ K ∩ A and let y ∈N be the net point with ‖x −
y‖2 ≤ t . Note that x − y ∈ 2K by the triangle inequality and so x − y ∈ tB n

2 ∩2K ⊆
2(tB n

2 ∩K ). Then x ∈ A means that PA⊥(x) = 0 and so

‖PA⊥(y)‖2 = ‖PA⊥(x − y)‖2 ≤ 2 · radius
(
PA⊥(tB n

2 ∩K )
) event B

≤ 2C ′ ·M(K ◦)

Then the length of x can be bounded as

‖x‖2

triangle ineq.
≤ ‖y‖2 +‖x − y‖2︸ ︷︷ ︸

≤t

event A
≤

2
p
ε
‖PA⊥(y)‖2 + t ≤O

( 1
p
ε

)
·M(K ◦)

as claimed.

7.3 The Quotient of Subspaces Theorem

Recall that for a symmetric convex set K and the ball B n
2 , the Banach-Mazur dis-

tance dBM (K ,B n
2 ) is the minimum number R ≥ 1 so that there is an ellipsoid

E ⊆ R
n so that E ⊆ K ⊆ R · E . Note that always dBM (K ,B n

2 ) ≤
p

n. An impor-

tant ingredient of the Quotient of Subspaces Theorem is the following “One-step

argument”. In particular it implies already that there are subspaces R
n ⊇ A ⊇ B

with dim(B) ≥ n
2

where E ⊆ PB (K ∩ A) ⊆O(logn) ·E for some ellipsoid E .

We also want to refresh a couple of facts on polarity. If K ⊆ Q are convex

bodies containing 0 in the interior, then K ◦ ⊇Q◦. For any R > 0, the polar of the

radius-R ball is (R ·B n
2 )◦ = 1

R B n
2 . Moreover, if K ⊆ R

n is a symmetric convex body

and H ⊆ R
n is a subspace, then (K ∩ H)◦ = PH (K ◦) (see Lemma 1.9). Note that

here for the first time in this text we are using polarity for convex sets that are not

full-dimensional.

Theorem 7.3 (One-step Quotient Subspace). For every symmetric convex set K ⊆
R

n and 0 < λ < 1, there are subspaces R
n ⊇ A ⊇ B with dim(B) ≥ λ2n and an

ellipsoid E ⊆R
n so that E ⊆ PB (K ∩ A) ⊆O( 1

1−λ ) · ln(dBM (K ,B n
2 )+1) ·E .
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Proof. The claim is invariant under linear transformations, hence we may as-

sume that the body K is in ℓ-position, which according to Theorem 6.19 means

that M(K ) · M(K ◦) ≤ O(ln(dBM (K ,B n
2 )+ 1). We sample a λn-dimensional sub-

space A ⊆ R
n and from Pajor-Tomczak (Theorem 7.2) we know that radius(K ∩

A) ≤O( 1p
1−λ

)M(K ◦) with probability 1−e−Θ(λn). This can be equivalently written

as

K ∩ A ⊆Θ

( M(K ◦)
p

1−λ

)
· (B n

2 ∩ A) (I )

Taking the polar on both sides of the inclusion in (I ) gives

(K ∩ A)◦ ⊇Θ

(p1−λ

M(K ◦)

)
· (B n

2 ∩ A) (I I )

We take again a λ2n-dimensional random subspace B ⊆ A and again with prob-

ability 1−e−Θ(λ2n) the claim from the Pajor-Tomczak Theorem applies and

radius((K ∩ A)◦∩B) ≤O
(M(((K ∩ A)◦)◦)

p
1−λ

)
=O

(M(K ∩ A)
p

1−λ

)
≤O

( M(K )
p

1−λ

)
(I I I )

Here we have used that ((K ∩ A)◦)◦ = K ∩ A and by Theorem 5.15 also M(K ∩ A) ≤
O(1) ·M(K ) with high probability over the choice of A. Then

Θ

(p1−λ

M(K ◦)

)
· (B n

2 ∩B)
(I I )
⊆ (K ∩ A)◦∩B

(I I I )
⊆ O

( M(K )
p

1−λ

)
· (B n

2 ∩B) (I V )

Taking the polars of (I V )1 we obtain

Θ

(p1−λ

M(K )

)
· (B n

2 ∩B) ⊆ PB (K ∩ A) ⊆Θ

( M(K ◦)
p

1−λ

)
· (B n

2 ∩B)

That means PB(K∩A) is near-spherical with approximation factor O( 1
1−λ)·M(K ◦)·

M(K ) ≤ O( 1
1−λ ) · ln(dBM (K ,B n

2 )+1) using that K is in ℓ-position. The claim then

follows.

Theorem 7.3 already provides the surprising claim that there are subspaces

R
n ⊇ A ⊇ B with dim(B) ≥ n/2 so that dBM (PB (K ∩ A),B dim(B)

2 ) ≤ O(logn). How-

ever, we can improve the logarithmic factor to O(1) by iterating the argument. In

particular suppose we have a sequence R
n ⊇ A0 ⊇ B0 ⊇ A1 ⊇ B1 ⊇ . . . ⊇ AT−1 ⊇

BT−1 of nested subspaces and consider the iterate Kt+1 := PBt (Kt ∩ At ) for t ∈
{0, . . . ,T−1}. Then there are also subspacesRn ⊇ A∗ ⊇ B∗ with dim(B∗) ≥ dim(BT−1)

so that the final iterate KT can be obtained by a single intersection/projection,

i.e. KT = PB∗(K ∩ A∗). This follows from the following lemma:

1Note that taking the polars of K1 ⊆ K2 ⊆ K3 means obtaining the relation K ◦
3 ⊆ K ◦

2 ⊆ K ◦
1 ; also

recall that we are using Lemma 1.9 here.
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Lemma 7.4. Let K ⊆R
n be a symmetric convex body. Then

(a) For subspaces Rn ⊇ A ⊇ B one has PB (K ∩ A) = PB+A⊥(K )∩B .

(b) For subspaces Rn ⊇ A ⊇ B ⊇C ⊇ D one has PD (PB (K ∩A)∩C ) = PD (K ∩A∩
B⊥).

Proof. For (a), we can check that

PB+A⊥(K )∩B = {x ∈B | x + y ∈ K with y ⊥ B and y ⊥ A⊥}

= {x ∈B | x + y ∈ K with y ∈ A∩B⊥}
x+y∈A anyway= {x ∈B | x + y ∈ K ∩ A with y ∈ B⊥} = PB (K ∩ A)

For (b), we can see that

PD (PB (K ∩ A)∩C )
B⊇C= PD (PC+(B⊥)⊥(K ∩ A)∩C )

(a)= PD (PC ((K ∩ A)∩B⊥))

C⊇D= PD (K ∩ A∩B⊥)

The full version of Milman’s Theorem [Mil85] requires Theorem 7.3 plus 1-2

pages of calculations to get the tight estimates. Hence we prefer a weaker but

simpler-to-prove and more explicit bound that is sufficient for our later applica-

tions:

Theorem 7.5 (Simple Quotient of Subspaces Theorem). Let K ⊆R
n be a symmet-

ric convex body. Then there are subspaces R
n ⊇ A ⊇ B with dim(B) ≥ n

2
so that

dBM (PB (K ∩ A),B dim(B)
2 ) ≤O(1).

Proof. We will call Theorem 7.3 iteratively. We set K0 := K and D0 := dBM (K ,B n
2 ).

In each iteration t ∈ {1,2, . . .} we will maintain a body Kt ⊆ Bt−1 that is an iterated

intersection/projection of the original body K and Bt−1 is some subspace. As the

original body is full-dimensional we will have dim(Kt ) = dim(Bt−1). We abbre-

viate D t := dBM (Kt ,B dim(Kt )
2 ) as the Banach-Mazur distance of the intermediate

body. If that distance satisfies D t ≤ 100C 3 then we set T := t and terminate the

procedure with KT as final iterate; here C ≥ 1 is the unspecified constant from

Theorem 7.3. Otherwise, if D t is above that threshold, then we apply the pro-

cedure from Theorem 7.3 to find subspaces At ⊇ Bt so that we can set Kt+1 :=
PBt (Kt ∩ At ). For any parameter 0 < δt < 1 that we choose in a moment, we have
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the guarantee that D t+1 ≤ Cp
δt

· ln(10D t ) and dim(Kt+1) ≥ dim(Kt ) · (1−δt ). The

choice for parameters that we make is δt := 1
Dt

so that indeed

D t+1 ≤C
√

D t · ln(10D t )
Dt ≥100C 3

≤
1

2
D t

as D t was large enough. Note that δT−1 = 1
DT−1

≤ 1
100C 3 . Also observe that the

δt -values are geometrically increasing; more precisely we have δT−1 ≥ 2δT−2 ≥
4δT−3 ≥ . . . ≥ 2T−1δ0. The dimension of the body at the end of the procedure is

dim(KT ) = n
T−1∏
t=0

(1−δt ) ≥ n ·exp
(
−2

T−1∑
t=0

δt

)
≥ n ·exp

(
−2δT−1

T−1∑

i=0

2i

︸ ︷︷ ︸
≤2

)

≥ n ·exp(−4δT−1)
δT−1≤ 1

100≥ n ·exp(−25)

The claim follows.

We have so far avoided an explanation, why the Theorem of Milman is called

Quotient of Subspaces Theorem. Consider the normed vector space X = (Rn ,‖·‖K )

and take subspaces R
n ⊇ A ⊇ B . We can consider the quotient subspace A \ B :=

A ∩ B⊥ and equip it with the norm ‖ · ‖PB (K∩A). Then Milman’s Theorem says

that there is a quotient subspace of high dimension that has a bounded Banach-

Mazur distance to the corresponding ℓ2-space. However, we have prefered a ge-

ometric presentation of the topic.

7.4 The Bourgain-Milman Inequality

In Chapter 1 we have discussed the Blaschke-Santaló inequality which proves

that among all symmetric convex bodies K ⊆ R
n , the Euclidean ball maximizes

the Mahler product

s(K ) := Voln(K ) ·Voln(K ◦)

In other words, one always has s(K ) ≤ s(B n
2 ). It is somewhat surprising that this

is basically an equality in the sense that there is a small universal constant C > 0

so that for every symmetric convex body K ⊆R
n one has

C n ≤
Voln(K ) ·Voln(K ◦)

Voln(B n
2 )2

≤ 1.
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That means Voln(K ) determines Voln(K ◦) up to a factor of 2Θ(n). It might be

worth mentioning that the Mahler product is invariant under linear transfor-

mations, which means that for any bijective linear map A : Rn → R
n one has

s(A(K )) = s(K ). We now show this result due to Bourgain and Milman which is a

nice application of the Quotient of Subspaces Theorem that we have just proven

(we will see a second proof in Chapter 8 using M-ellipsoids). Here we will use

repetedly (K ∩F )◦ = PF (K ◦) from Lemma 1.9.

Theorem 7.6 (Bourgain-Milman [BM87]). Let K ⊆ R
n be a centrally symmetric

convex body. Then

Voln(K ) ·Voln(K ◦)

Voln(B n
2 )2

≥ 2−Θ(n)

We proof the statement by an iterative / inductive argument over the quantity

αN := inf
{( s(K )

s(B n
2 )

)1/n
|K ⊆R

n is symmetric convex body with n ≤ N }

Then the goal is prove that αN ≥ Ω(1). For the sake of simplicity suppose we

have a body K that attains this value for some n, i.e. αn = (s(K )/s(B n
2 ))1/n . We

use the simple version of the Quotient of Subspace Theorem from Theorem 7.5

to obtain two subspaces R
n ⊇ A ⊇ B with dim(B) = n

2
and dim(A) =: m so that

PB (K ∩ A) is within a factor C0 of an ellipsoid. As the claim is invariant under

linear transformations, so we may assume that

(B n
2 ∩B) ⊆ PB (K ∩ A) ⊆C0 · (B n

2 ∩B)

In wise foresight, we define lower dimensional bodies

K1 := PA⊥(K ) and K2 := K ∩ A∩B⊥.

Note that by Lemma 1.9,

K ◦
1 = (PA⊥(K ))◦ = K ◦∩A⊥ and K ◦

2 = (K ∩(A∩B⊥))◦ = PA∩B⊥(K ◦) = PB⊥(PA(K ◦))

are the polar of K1 with respect to subspace A⊥ and the polar of K2 with respect

to subspace A∩B⊥.

The key ingredient for the proof is the insight from Lemma 1.48 that the vol-

ume of a symmetric convex body can be well approximated by taking the product

of the volume of an intersection and a projection into the complementary sub-
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space. We use this insight twice to estimate

Voln(K ) (∗)
Lem 1.48 for K and subsp. A

≥ 2−2n ·Volm(K ∩ A) ·Voln−m (PA⊥(K ))

Lem 1.48 for K∩A & s.p. B⊥

≥ 2−4nVoln/2(PB (K ∩ A)︸ ︷︷ ︸
⊇Bn

2 ∩B

) ·Volm−n/2(K ∩ A∩B⊥
︸ ︷︷ ︸

=K2

) ·Voln−m (PA⊥(K )︸ ︷︷ ︸
K1

)

≥ 2−4n ·Voln/2(B n/2
2 ) ·Volm−n/2(K2) ·Voln−m (K1)

We apply the same line of arguments to the polar of K :

Voln(K ◦) (∗∗)

Lem 1.48 for K and subsp. A⊥

≥ 2−2n ·Voln−m (K ◦∩ A⊥) ·Volm(PA(K ◦))
Lem 1.48 for PA(K ◦) & s.p. B

≥ 2−4nVoln−m (K ◦∩ A⊥
︸ ︷︷ ︸

=K ◦
1

) ·Voln/2(PA(K ◦)∩B︸ ︷︷ ︸
=(PB (K∩A))◦

) ·Volm−n/2(PB⊥(PA(K ◦))︸ ︷︷ ︸
=K ◦

2

)

≥ 2−4nVoln−m (K ◦
1 ) ·C−n/2

0 Voln/2(B n/2
2 ) ·Volm−n/2(K ◦

2 )

using that (PB (K ∩A))◦ = (K ∩A)◦∩B = PA(K ◦)∩B by applying Lemma 1.9 twice.

Then multiplying the bounds in (∗) and (∗∗) and abbreviating the unit ball vol-

ume κn := Voln(B n
2 ) we obtain

αn
n =

Voln(K ) ·Voln(K ◦)

Voln(B n
2 )2

(∗∗∗)

(∗)+(∗∗)
≥ 2−8nC−n/2

0

κ2
n/2

κ2
n

·Voln−m (K1)Voln−m (K ◦
1 )︸ ︷︷ ︸

≥αm−n
n ·κ2

n−m

·Volm−n/2(K2)Volm−n/2(K ◦
2 )︸ ︷︷ ︸

≥αm−n/2
n ·κ2

m−n/2

≥ 2−8nC−n/2
0

( κn/2κm−n/2κn−m

κn︸ ︷︷ ︸
≥1

)2
·αn−m

n αm−n/2
n

≥ 2−8n ·C−n/2
0 ·αn/2

n

Here we use that αn must be monotonically non-decreasing. Moreover, we use

that satisfies κr+s ≤ κr ·κs for all r, s > 0 as one can easily see from the upper

bound of Lemma 1.48. Then rearranging (∗∗∗) for αn gives that αn ≥ 2−16C−1
0

which then gives the claim.

This brings us to a beautiful duality theorem for covering numbers:
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Theorem 7.7 (Duality of Covering Numbers — König-Milman [KM87]). For every

pair K ,T ⊆R
n of symmetric, convex bodies one has

2−Θ(n)N (T ◦,K ◦) ≤ N (K ,T ) ≤ 2Θ(n)N (T ◦,K ◦)

Proof. Again we use that for symmetric convex sets S,Q one has N (S,Q) = 2Θ(n) ·
Voln (S+ 1

2 Q)

Voln ( 1
2 Q)

. Then we get the relation between covering numbers and volume ra-

tios:

N (T ◦,K ◦) ≤ 2Θ(n) Voln(T ◦+K ◦)

Voln(K ◦)

(∗)
≤ 2Θ(n) Voln((K ∩T )◦)

Voln(K ◦)

(∗∗)= 2Θ(n) Voln(K )

Voln(K ∩T )

(∗∗∗)
≤ 2Θ(n)N (K ,T ).

In (∗) we use that T ◦+K ◦ ⊆ 2conv(K ◦ ∪T ◦) = 2((T ◦)◦ ∩ (K ◦)◦)◦ = 2(T ∩K )◦ by

Lemma 1.8. In (∗∗) we use the inequalities of Bourgain-Milman (Theorem 7.6)

and Blaschke-Santaló (Theorem 1.30). In (∗∗∗) we use that Voln(K∩T )·N (K ,T ) ≥
Voln(K ) because for symmetric convex bodies the intersection Voln((x +T )∩K )

is maximized for x = 0.

7.5 The Linear Duality Relation

We have already proven earlier in Theorem 5.11 that for every symmetric convex

body K , a random subspace F of dimension dim(F ) ≥ Ω(
p

n) satisfies the fol-

lowing: either K ∩F or K ◦∩F is O(1)-spherical. We will prove here that we can

improve the dimension of the subspace F to Ω(n) if we are satisfied with a one-
sided bound that guarantees either K ∩F or K ◦∩F to be contained in a ball of

radius O(1).

The Distance Lemma

We begin by proving a seemingly unrelated lemma that is called the Distance
Lemma. We know that for K symmetric and convex and x ∈ Sn−1 we have ‖x‖K ·
‖x‖K ◦ ≥ 〈x , x〉 = 1 by Cauchy-Schwarz. The Distance Lemma on the other hand

will give us a upper bound on ‖x‖K and ‖x‖K ◦, depending on the radius and in-

radius of K . To get some intuition we first state a simplified version:

Lemma 7.8 (Simplified Distance Lemma). Let K ⊆R
n be a convex symmetric set

with 1
r B n

2 ⊆ K ⊆ r B n
2 . Then ‖x‖2

K +‖x‖2
K ◦ ≤ r 2 +1 for all x ∈ Sn−1.
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Clearly every individual term separately satisfies ‖x‖2
K ≤ r 2 and ‖x‖2

K ◦ ≤ r 2 for

x ∈ Sn−1 — so the non-trivial claim is that their sum can never exceed r 2 +1.

We will now prove a more general version. It will be worth keeping the fol-

lowing pictures in mind:

K
b

a

1
a ‖x‖2 ≤ ‖x‖K ≤ 1

b‖x‖2

0

K ◦

1
b1

a

b‖x‖2 ≤ ‖x‖K ◦ ≤ a‖x‖2

0

Lemma 7.9 (Distance Lemma). Let K ⊆R
n be a convex symmetric set with 1

a ‖x‖2 ≤
‖x‖K ≤ 1

b ‖x‖2 for all x ∈ R
n . Suppose that there is an x ∈ Sn−1 with

(
b‖x‖K

)2 +( ‖x‖K ◦
a

)2 = t > 1, then a
b ≤ 1

t−1
.

Proof. Fix the point x ∈ Sn−1 from the assumption and let y be the dual point,

that means ‖x‖K ◦ = 〈x , y〉 and ‖y‖K = 1. Note that by assumption ‖y‖2 ≤ a‖y‖K =
a. We will argue only using points in the 2-dimensional plane span{x , y}. Con-

sider the line through the points x
‖x‖K

and y and denote the point on that line

that minimizes the ‖ · ‖2 norm by z = (1+λ) x
‖x‖2

−λy for some λ ∈ R. Note that

‖z‖2
2 = (1+λ)2 − 2λ(1+λ)

‖x‖2
〈x , y〉+λ2‖y‖2

2 and from 〈x , y〉 > 0 we can see that λ> 0.

We reproduce the figure of the book [AAGM15] in a modified form:

z

≤
√

a2 −‖x‖2
K ◦

≥ b

≤ a

0 x

y

x
‖x‖K

x‖x‖K ◦

α
αβ

β

K

Next, note that ‖z‖K = ‖(1+λ) x
‖x‖K

−λy‖K ≥ (1+λ)−λ‖y‖K = (1+λ)−λ= 1 and

by assumption ‖z‖2 ≥ b‖z‖K ≥ b. Note that we have two triangles in the picture

that are similar as their angles are both α,β,90o. Then the ratio of the length of
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the two sides incident to the β-angle are identical, i.e.

b‖x‖K
‖z‖2≥b
≤

‖z‖2

1/‖x‖K
=

‖z −0‖2

‖0− x
‖x‖K

‖2

triangle similarity=
‖y −‖x‖K ◦x‖2

‖y − x
‖x‖K

‖2

Phytagoras=

√
‖y‖2

2 −‖x‖x‖K ◦‖2
2√

(‖y‖2
2 −‖x‖x‖K ◦‖2

2)+‖ x
‖x‖K

−x‖x‖K ◦‖2
2

‖y‖2≤a
≤

√
a2 −‖x‖2

K ◦
√

a2 −‖x‖2
K ◦ + ( 1

‖x‖K
−‖x‖2

K ◦)2

=
√

a2 −‖x‖K ◦
√

a2 −2
‖x‖K ◦
‖x‖K

+ 1
‖x‖2

K

Squaring and multiplying both sides by 1
a2‖x‖2

K
gives

b2

a2
≤

1− (‖x‖K ◦/a)2

a2‖x‖2
K −2‖x‖K ‖x‖K ◦ +1

Multiplying by the right hand side denominator and adding
2‖x‖K ‖x‖K ◦−a2‖x‖2

K

(a/b)2 to

both sides gives

b2

a2
≤ 1−

((‖x‖K ◦

a

)2
+

(
b‖x‖K

)2)

︸ ︷︷ ︸
=t

+
2b

a
(b‖x‖K )

‖x‖◦K
a

AMGM
≤ 1− t +

b

a

((
b‖x‖K

)2
+

(‖x‖K ◦

a

)2)

︸ ︷︷ ︸
=t

= 1− t +
tb

a

where we use the AMGM inequality of α ·β≤ 1
2

(α2 +β2). Rearranging gives

0 ≤ 1− t +
tb

a
−

b2

a2
=

(
1−

b

a

)

︸ ︷︷ ︸
>0

·
(b

a
− (t −1)

)

hence one must have b
a − (t −1)≥ 0 which is a

b ≤ 1
t−1

.

7.5.1 Radius of random sections — with a twist

Take a symmetric convex body K ⊆R
n and consider the quantity M((K ∩ r B n

2 )◦).

We know that this is a proxy for the radius of a ball that has the same average
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width as K ∩ r B n
2 . For r →∞ we expect that M((K ∩ r B n

2 )◦) → M(K ◦) while for

very small r , one has M(K ∩ r B n
2 )◦) = M((r B n

2 )◦) = r . Hence for any 0 < α < 1,

there will be a value r ∗ > 0 so that M((K ∩ r ∗B n
2 )◦) =α · r ∗.

r

α · r

M(K ◦)

M((K ∩ r B n
2 )◦)

r ∗

We can prove an interesting lemma where we get the intersection with r B n
2 for

free — however, we seem to have little control on how large or small that ra-

dius r is going to be. In the statement of the lemma we use the unspecified con-

stant CPT ≥ 1 from the Pajor-Tomczak Theorem (Theorem 7.2) which guarantees

that Pr[radius(K∩F ) ≤ CPTp
1−λ

M(K ◦)] ≥ 1−e−Θ(1−λ)·n for a randomλn-dimensional

subspace. It was in fact proven by Gordon [Gor88] that the constant CPT can be

taken arbitrarily close to 1 if on the other hand n is at least a threshold that de-

pends on the target choice of CPT and λ. We will later take the liberty to pick CPT

to be rather close to 1, without proving Gordon’s Theorem.

Lemma 7.10. Fix 0 < λ< 1 and let K ⊆R
n be a symmetric convex body. Let r > 0

be a value so that M((K ∩ r B n
2 )◦) = 9

10

p
1−λ

CPT
· r . Then

Pr[radius(K ∩F ) < r ] ≥ 1−4 exp(−Θ(1−λ) ·n)

where F ⊆R
n is a random λn-dimensional subspace.

Proof. We apply the Pajor-Tomczak Theorem to K ∩ r B n
2 and with probability

1−4 exp(−Θ(1−λ) ·n), a random λn-dimensional subspace F will satisfy

radius((K ∩ r B n
2 )∩F )

Thm. 7.2
≤

CPTp
1−λ

·M((K ∩ r B n
2 )◦)

choice of r=
9

10
r

Expressed in terms of norms, the subspace F satisfies

max
{
‖x‖K ,

1

r
‖x‖2

}
= ‖x‖K∩r Bn

2
≥

10

9
·

1

r
· ‖x‖2 ∀x ∈ F

But that means there is no point x ∈ F where this maximum is attained for the

second term — hence ‖x‖K ≥ 10
9
· 1

r ‖x‖2 for every x ∈ F . And that shows the claim.
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Note that the choice of the constant 9
10

was somewhat arbitrary.

7.5.2 The Linear Duality Theorem

Now we have everything for the final result of this chapter:

Theorem 7.11 (Milman [Mil90b]). Let K ⊆ R
n be a convex symmetric set. Then

there exists a subspace F ⊆ R
n with dim(F ) ≥Ω(n) so that either radius(K ∩F ) ≤

O(1) or radius(K ◦∩F ) ≤O(1).

Proof. Let 0 < λ < 1 be a small constant that we determine later. Let a > 0 be a

value so that M((K ∩aB n
2 )◦) =

p
1−λ

2CPT
·a. Also let b > 0 be the value so that M((K ◦∩

1
b B n

2 )◦) =
p

1−λ
2CPT

· 1
b . The crucial part of the proof is proving that a and b are not far

apart:

Claim. One has b
a ≤ 10.

Proof of claim. Consider the set T := conv((K ∩aB n
2 )∪bB n

2 )). Note that by con-

struction bB n
2 ⊆ T ⊆ aB n

2 .

0 K

T
bB n

2

aB n
2

We know that

M(T ◦)
T⊇K∩aBn

2≥ M((K ∩aB n
2 )◦)

choice of a=
p

1−λ

2CPT
a (∗)

Moreover we can use the fact that (A∩B)◦ = conv(A◦∪B◦) in (∗∗∗) to obtain

M(T )
T⊆conv(K∪bBn

2 )

≥ M(conv(K∪bB n
2 ))

(∗∗∗)= M
((

K ◦∩
1

b
B n

2

)◦) choice of b=
p

1−λ

2CPT
·
1

b
. (∗∗)

Then we can estimate that

(bM(T ))2+
( 1

a
M(T ◦)

)2 (∗)+(∗∗)
≥

(
b

9

10

p
1−λ

CPT
·

1

b

)2
+

( 1

a
·

9

10

p
1−λ

CPT
a
)2

=
81

50

1−λ

C 2
PT

≥
6

5
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if we choose CPT = 11
10

and λ := 1
10

.

That means the premise of the Distance Lemma is satisfied for the two av-
erages M(T ) and M(T ◦). But it is not hard to extract a concrete point x∗ that

satisfies the premise as well. As bB n
2 ⊆ T , we know that the map x 7→ ‖x‖T is

b-Lipschitz and hence for a suitable choice of constant, the set A := {x ∈ Sn−1 |
‖x‖T ≥ M(T )−Θ( bp

n
)} has measure σ(A) ≥ 3

4
. Similarly, 1

a ⊆ T ◦ and so x 7→ ‖x‖T ◦

is 1
a -Lipschitz which implies that B := {x ∈ Sn−1 | ‖x‖T ◦ ≥ M(T ◦)−Θ( 1

a
p

n
) also has

σ(B) ≥ 3
4

. Then any x∗ ∈ A∩B satisfied (b‖x∗‖T )2+( 1
a ‖x∗‖T ◦)2 ≥ 6

5
−Θ( 1p

n
) ≥ 1+ 1

10

for n large enough. Then by the Distance Lemma, we conclude that a
b ≤ 10.

Now we go back to reasoning about the original body K . Consider a random

λn-dimensional subspace F ⊆R
n . We will do a case split, dependent on whether

the radius a is large or small.

• Case a ≤ 1. Then we use the choice of a and apply Lemma 7.10 with body

K and r := a to get radius(K ∩F ) ≤ a ≤ 1.

• Case a > 1. Crucially in this case one has b ≥ 1
10

. We apply Lemma 7.10

to K ◦ with r = 1
b and obtain that with probability at least 1−4 exp(−Θ((1−

λ)n)) one has that radius(K ◦∩F ) < 1
b ≤ 10.

7.6 Exercises

Exercise 7.1.

(i) What upper bound on radius(B n
∞∩ A) does the Pajor-Tomczak Theorem provide

where A is a uniform k-dimensional subspace.

(ii) What upper bound on radius(B n
1 ∩ A) does the Pajor-Tomczak Theorem provide

where A is a uniform k-dimensional subspace.

(iii) Consider the body K := r B n
∞ for some r > 0. For which range of r is radius(K ∩A) ≤

O(1) (for most subspaces A with dim(A) = n
2 ; using the estimate of (i ))? For which

range of r is radius(K ◦∩A) ≤O(1) (again for most subspaces with dim(A) = n
2 and

using the estimate from (i i ))?

Exercise 7.2.

(i) Prove that for any subspace F ⊆R
n with dim(F ) = k one has radius(B n

∞∩F ) ≥
p

k.
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(ii) Prove that there are constants c ,c ′ > 0 so that for all n there exists a subspace

F ⊆R
n with dim(F ) ≥ cn so that radius(B n

1 ∩F ) ≤ c ′
p

n
.

Hint. Use the linear duality theorem (Theorem 7.11).
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Chapter 8

M-ellipsoids and applications

One of the most powerful results in convex geometry is the existence of the M-
ellipsoid. It implies that for many purposes of volume computation and covering

numbers, any symmetric convex body can be replaced with an ellipsoid while

only incurring a constant factor loss.

Formally, for a symmetric convex body K ⊆ R
n and a universal constant C >

0, we say that an origin-centered ellipsoid E ⊆ R
n is an M-ellipsoid for K , if

Voln(K ) = Voln(E ) and

C−n ≤
Voln(K +P )

Voln(E +P )
≤C n and C−n ≤

Voln(K ◦+P )

Voln(E◦+P )
≤C n

for every symmetric convex body P ⊆ R
n . In this chapter we will show the result

of Milman that indeed every symmetric convex body K admits such an ellipsoid.

We will prove that such an ellipsoid E has the property that the covering num-

bers N (K ,E ), N (E ,K ), N (K ◦,E◦) and N (E◦,K ◦) are all upper bounded by 2Θ(n). In

fact, the reverse holds in the sense that if all these covering numbers are upper-

bounded by 2O(n) and Voln(E ) = Voln(K ), then E is an M-ellipsoid for K .

For the existence of the M-ellipsoid, we will use the method of isotrophic sym-
metrization. The same method will also enable us to give a more intuitive proof

of the Reverse Santaló-Inequality due to Bourgain-Milman that we have seen in

Chapter 7. Recall that combined we know that:

Blaschke-Santaló-Bourgain-Milman Theorem. For every symmetric
convex body K one has

C n ≤
Voln(K ) ·Voln(K ◦)

Voln(B n
2 )2

≤ 1

where C > 0 is a universal constant. The lower bound also holds also
for any asymmetric body with 0 ∈ int(K ).

141
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Finally we will be able to proof that for any centrally symmetrix convex body K
there is a linear transformation U : Rn → R

n with |det(U )| = 1 so that the Brunn-

Minkowski inequality with U (K ) is appproximately tight.

8.1 M-position and equivalences

For the time being, we will restrict our attention to symmetric convex sets and

later in Chapter 8.7 discuss which results extend to the asymmetric case. It was

useful for example in Chapter 3 to introduce the notion of John’s position for a

convex body. Similarly we want to introduce the following terminology:

Definition 8.1. We say that a centrally symmetric convex body K ⊆R
n with Voln(K ) =

Voln(r B n
2 ) is in M-position with constant C , if r B n

2 is the M-ellipsoid for K , i.e. if

for every symmetric convex body P ⊆R
n one has

C−n ≤
Voln(K +P )

Voln(r B n
2 +P )

≤C n and C−n ≤
Voln(K ◦+P )

Voln

(
1
r B n

2 +P
) ≤C n

In particular we will later show that for every symmetric convex body K , there

is a linear transformation A so that A(K ) is in M-position.

Remark 1. We should point out that alternatively in the definition of an M-ellipsoid

E we could have required that P may be an arbitrary convex body (not neces-

sarily symmetric). But these two candidate definitions are equivalent. To see

this recall that N (P −P,P ) ≤ 25n by Lemma 4.8. Then 2−5nVoln(K + (P −P )) ≤
Voln(K +P ) ≤ Voln(K + (P −P )) for any two convex bodies K ,P where K is sym-

metric.

A crucial fact is that K and E have similar volume expansion, if and only if

one can cover one with few copies of the other. Note that in the following The-

orem one may have a loss of constants when moving between the statements

(A), (B), (C ). Recall that N (K ,E ) is the minimum number of translates of E to

cover K .

Theorem 8.2 (Equivalence for M-ellipsoids). Let K ⊆ R
n be a symmetric convex

body and let E ⊆R
n be an origin centered ellipsoid with Voln(K ) = Voln(E ). Then

the following is equivalent

(A) One has

C−n ≤
Voln(K +P )

Voln(E +P )
≤C n and C−n ≤

Voln(K ◦+P )

Voln(E◦+P )
≤C n

for a universal constant C and every symmetric convex body P ⊆R
n .
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(B) One has

max
{

N (K ,E ), N (E ,K ), N (K ◦ ,E◦), N (E◦,K ◦)
}
≤ 2Θ(n).

(C) One has N (K ,E ) ≤ 2O(n).

Proof. After applying a linear transformation, we may assume that E = B n
2 = E◦.

Then (A) is equivalent to the property that K is in M-position (with respect to

B n
2 ).

(A) ⇒⇒⇒ (B ). From Chapter 4 we know that the covering number is bounded by

volume ratios and

N (K ,B n
2 )

Lem 4.3
≤

Voln(K + 1
2

B n
2 )

Voln( 1
2

B n
2 )

(A)
≤ 2Θ(n)

Voln(B n
2 + 1

2
B n

2 )

Voln( 1
2

B n
2 )

≤ 2Θ(n).

The other 3 covering estimates work along the same lines.

(B ) ⇒⇒⇒ (A). Suppose that N := N (K ,B n
2 ) ≤ 2Θ(n). Then there is a covering K ⊆⋃N

i=1
(xi +B n

2 ) which means that for a convex body T one has K +T ⊆ ⋃N
i=1

(xi +
B n

2 )+T . Hence Voln(K +T ) ≤ 2O(n) ·Voln(B n
2 +T ). Again, the other 3 cases work

along the same lines.

(B ) ⇒⇒⇒ (C ). Obvious.

(C ) ⇒⇒⇒ (B ). This requires some non-trivial work. In particular we require the

Duality of Covering Numbers that we have proven in Theorem 7.7: For every
pair K ,T ⊆ R

n of symmetric, convex bodies one has 2−Θ(n)N (T ◦,K ◦) ≤ N (K ,T ) ≤
2Θ(n)N (T ◦,K ◦). From the assumption N (K ,B n

2 ) ≤ 2O(n), we then get N (B n
2 ,K ◦) ≤

2O(n). We can the 3rd covering number by applying the volume ratio argument

N (K ◦,B n
2 )

Lem 4.3
≤

Voln(K ◦+ 1
2

B n
2 )

Voln( 1
2

B n
2 )

≤ 2O(n) ·
Voln(K ◦+B n

2 )

Voln(B n
2 )

Blaschke-Santaló
≤ 2O(n) ·

Voln(B n
2 )

Voln((K ◦+B n
2 )◦)

K ◦+Bn
2 ⊆2conv(K ◦∪Bn

2 )

≤ 2O(n)
Voln(B n

2 )

Voln((conv(K ◦∪B n
2 ))◦)

conv(A∪B)◦=A◦∩B◦
= 2O(n) ·

Voln(B n
2 )

Voln(K ∩B n
2 )

(∗)
≤ 2O(n) ·N (K ,B n

2 )︸ ︷︷ ︸
≤2O(n)

·
Voln(B n

2 )

Voln(K )︸ ︷︷ ︸
=1

In (∗) we have used that Voln(K ∩ B n
2 ) · N (K ,B n

2 ) ≥ Voln(K ) as the intersection

volume Voln((x +B n
2 )∩K ) is maximized for x = 0. The last of the 4 estimates on

N (B n
2 ,K ) follows again from the duality of covering numbers.
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We note that the equivalence with (C ) requires the Duality of Entropy num-

bers (Theorem 7.7) which uses the Bourgain-Milman inequality (Theorem 7.6),

which in turn we had proven using the Quotient of Subspaces Theorem. In this

chapter we will see a more intuitive proof for the Bourgain-Milman inequality,

hence we will refrain from using (C ) before finishing the reasoning of that alter-

native proof.

Again, by Remark 1 the equivalences in Theorem 8.2 are also true if P is any

(potentially asymmetric) convex body.

8.2 Isomorphic symmetrization

Now we come to a procedure that is called isomorphic symmetrization which we

have seen in a variant in Theorem 7.11. This procedure will be the key in prov-

ing the existence of an M-ellipsoid. The idea is to take an arbitrary symmetric

convex body K , intersect it with a large ball and add in the convex hull with a

smaller ball. The consequence is that we will obtain another symmetric convex

body K1 that is “more round”. To get some intuition about the choice of param-

eters suppose that K is in ℓ-position and we have scaled K so that M(K ) = 1 and

M(K ◦) ≤ O(logn). Then if we apply the procedure with parameter α := 1, then

it means we intersect K with a ball of radius M(K ◦) ≤ O(logn) and we take the

convex hull with the ball of radius 1. In turn we will end up with a body K that

has volume 2−Θ(n) ≤ Voln(K1)/Voln(K ) ≤ 2Θ(n) while its geometric distance to the

Euclidean ball has dropped to dG (K1,B n
2 ) ≤O(logn). Note that the choice of n100

in the following assumption 1
n100 B n

2 ⊆ K ⊆ n100B n
2 is somewhat arbitrary — any

polynomial relation to B n
2 would suffice.

Lemma 8.3. Let K ⊆R
n be a symmetric convex body 1

n100 B n
2 ⊆ K ⊆ n100B n

2 so that

M(K ) = 1 and let 1 ≤ α ≤ n1/3. Define an inner radius of Rin := 1
α

and an outer

radius of Rout := M(K ◦) ·α and consider

K1 := conv
(
(K ∩RoutB

n
2 )∪RinB n

2

)

Then the following holds:

(1) One has

e−Θ(n/α2) ≤
Voln(K1)

Voln(K )
≤ eΘ(n/α2) and e−Θ(n/α2) ≤

Voln(K ◦
1 )

Voln(K ◦)
≤ eΘ(n/α2)

(2) For every symmetric convex body P ⊆R
n one has

exp(−Θ(n/α2)) ≤
Voln(K1 +P )

Voln(K +P )
≤ exp(Θ(n/α2))
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(3) It holds that dG (K1,B n
2 ) ≤ M(K ) ·M(K ◦) ·α2.

0 K

K1

Rin = 1
α

Rout = M(K ◦) ·α

Proof. Note that since M(K ) = 1 one has M(K ◦) ≥ 1, and hence indeed Rin ≤
Rout. Next, it is clear that the “moreover” part is true as dG (K1,B n

2 ) ≤ Rout/Rin =
M(K ) · M(K ◦) ·α2. The idea behind the main part of the analysis is that K1 is

sandwiched between Euclidean balls of radius proportional to M(K ) and M(K ◦)

and hence with Sudakov’s primal and dual Inequality we can obtain estimates on

how many copies a ball takes to cover K ; similar for the polar. Then from those

covering numbers we get an estimate on the volume ratios.

Claim I. One has N (K ,RoutB
n
2 ), N (RinB n

2 ,K ), N (K ◦, 1
Rin

B n
2 ), N ( 1

Rout
B n

2 ,K ◦) ≤ exp(Θ(n/α2)).
Proof of claim II. We begin by proving the 2 estimates for the covering numbers

involving K . First, by Sudakov’s Inequality (Theorem 4.12; recall that w(K ) =
2 ·M(K ◦)), we only need few copies of the outer ball to cover K :

N (K ,RoutB
n
2 ) ≤ exp

(
Θ(n) ·

( M(K ◦)

Rout︸ ︷︷ ︸
=1/α

)2)
= exp(Θ(n/α2)) (∗)

Secondly, by the dual Sudakov Inequality (Theorem 4.10) one has

N (RinB n
2 ,K ) = N (B n

2 ,αK ) ≤ exp
(
Θ(n) ·

( M(K )

α

)2)
= eΘ(n/α2)

Now we discuss the polar. Again with Sudakov’s Inequality

N
(
K ◦,

1

Rin
B n

2

)
≤ exp

(
Θ(n) ·

( M(K )

1/Rin

)2)
= eΘ(n/α2)

and again with the dual Sudakov Inequality

N
( 1

Rout
B n

2 ,K ◦
)
= N (B n

2 ,RoutK
◦) ≤ exp

(
Θ(n) ·

(M(K ◦)

Rout

)2)
= eΘ(n/α2)
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Claim II. One has e−Θ(n/α2) ≤ Voln (K1)
Voln (K )

≤ eΘ(n/α2).
Proof of Claim II. We use the bounds on the covering numbers to obtain esti-

mates on Voln(K1). First, we obtain a lower bound on the volume of K1 by

Voln(K1) ≥ Voln(K ∩RoutB
n
2 ) ≥

Voln(K )

N (K ,RoutB
n
2 )

Claim I
≥ exp(−Θ(n/α2)) ·Voln(K )

For the upper bound we estimate that

Voln(K1) ≤ Voln

(
conv

(
K ∪RinB n

2

))

≤ O(n) ·n100 ·N (RinB n
2 ,K ) ·Voln(K ) ≤ eΘ(n/α2) ·Voln(K )

where we absorb the polynomial factor into the term eΘ(n/α2) ≥ eΘ(n1/3) as α ≤
n1/3. Here we use that for symmetric bodies K ,L with L ⊆βK one has Voln(conv(K∪
L)) ≤O(βn) ·N (L,K ) ·Voln(K ). Note that in our case RinB n

2 ⊆ n100K as α≥ 1.

Claim III. One has e−Θ(n/α2) ≤ Voln (K ◦
1 )

Voln (K ◦)
≤ eΘ(n/α2).

Proof of Claim III. Now we discuss the volume for the polar. First, the polar has

the form

K ◦
1 = (K ∩RoutB

n
2 )◦∩

(
RinB n

2

)◦
= conv

(
K ◦∪

1

Rout
B n

2

)
∩

1

Rin
B n

2

Then

Voln(K ◦
1 ) ≥ Voln

(
K ◦∩

1

Rin
B n

2

)
≥

Voln(K ◦)

N (K ◦, 1
Rin

B n
2 )

Claim I
≥ e−Θ(n/α2)Voln(K ◦)

Similar to before, we obtain the upper bound

Voln(K ◦
1 ) ≤ Voln

(
conv

(
K ◦∪

1

Rout
B n

2

))
≤O(n) ·

n100

Rout
·N

( 1

Rout
B n

2 ,K ◦
)

︸ ︷︷ ︸
≤eΘ(n/α2)

·Voln(K ◦)

Again we use 1
n100 B n

2 ⊆ K ◦.

Claim IV. One has e−Θ(n/α2) ≤ Voln (K1+P)
Voln (K+P)

≤ eΘ(n/α2) for any symmetric convex body
P.
Proof of Claim IV. We will crucially use two lemmas on covering numbers and

volumes from Chapter 4. First we write

Voln(K1 +P ) ≤ Voln
(
conv

(
K ∪RinB n

2

)
+P

)

Lem 4.16
≤ O(n101) ·N

(
RinB n

2 ,K
)
·Voln(K +P )

≤ eO(n/α2) ·Voln(K +P )
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Here we use that K ⊆ n100B n
2 and we absorb the polynomial factor into the expo-

nential one. Conversely,

Voln(K1 +P ) = Voln

(
conv

(
(K ∩RoutB

n
2 )∪RinB n

2

)
+P

)

≥ Voln((K ∩RoutB
n
2 )+P )

Lem 4.15
≥

Voln(K +P )

N (K ,RoutB
n
2 )

≥ e−Θ(n/α2) ·Voln(K +P )

This concludes the Theorem.

For the sake of completeness, we state the consequence for a body that is not

already in M-position:

Corollary 8.4. Let K ⊆ R
n be any symmetric convex body let 1 ≤ α ≤ n1/3 be

a parameter. Then there exists a symmetric convex body K1 ⊆ R
n so that the

following holds:

(1) One has

Voln(K1)

Voln(K )
,

Voln(K ◦
1 )

Voln(K ◦)
,

Voln(K1 +P )

Voln(K +P )
∈

[
e−Θ(n/α2),eΘ(n/α2)

]

for every symmetric convex body P ⊆R
n .

(2) One has dBM (K1) ≤O(α2 · log(dBM (K )+1)).

Proof. Let A : Rn → R
n be a linear map so that A(K ) is in ℓ-position, scaled so

that M(A(K )) = 1. Recall that due to Theorem 6.19 this means that M(A(K )) ·
M(A(K )◦) ≤C0 ln(dBM (K )+1) for some constant C0. Moreover, if we have a body

in ℓ-position scaled so that M(A(K ))= 1, then from Cor 5.10 we know thatΘ( 1p
n

)B n
2 ⊆

A(K ) and Θ( 1p
n log(n)

)B n
2 ⊆ A(K )◦. Then Theorem 8.3 can be applied and (by a

slight abuse of notation) we obtain a body that we write as A(K1) so that e−Θ(n/α2) ≤
Voln (A(K1))
Voln (A(K ))

≤ eΘ(n/α2) holds and dBM (K1) = dBM (A(K1)) ≤C0 ln(dBM (K )+1) is true.

Importantly, a linear map does not change the ratio of volumes, hence also
Voln (K1)
Voln (K )

=
Voln (A(K1))
Voln (A(K ))

. The same reasoning holds for the other two properties.
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8.3 Iterated Isomorphic Symmetrization

The next obvious step is to iteratively apply the Isomorphic Symmetrization to

a body K until we reach a body K̃ with dBM (K̃ ) ≤ O(1). We can summarize the

properties as follows:

Theorem 8.5. Let K ⊆ R
n be any symmetric convex body. Then there exists a

symmetric convex body K̃ ⊆R
n with dBM (K̃ ) ≤O(1) so that

Voln(K̃ )

Voln(K )
,

Voln(K̃ ◦)

Voln(K ◦)
,

Voln(K̃ +P )

Voln(K +P )
∈

[
2−Θ(n),2Θ(n)

]

for every symmetric convex body P ⊆R
n .

Proof. Let C0 > 0 be the constant from Cor 8.4so that dBM (K1) ≤C0α
2·log(dBM (K )+

1). Consider the following iterative procedure:

(1) Set K0 := K
(2) FOR t = 0 TO ∞ DO

(3) IF dBM (Kt ) ≤C1 := 100C 3
0 then set T := t and return KT

(4) Apply Isomorphic Symmetrization of Cor 8.4 to Kt with parameter

αt := (dBM (Kt ))1/4 and let Kt+1 be the outcome.

We know that the Isomorphic Symmetrization decreases the Banach Mazur dis-

tance to the Euclidean ball to

dBM (Kt+1)

Cor 8.4+
choice of αt≤ C0 ln(dBM (Kt )+1) ·

√
dBM (Kt ) ≤

1

16
dBM (Kt )

As this distance is strictly decreasing, the procedure will terminate and the final

iterate satisfies dBM (KT ) ≤ C1. Moreover by the choice of the parameter αt , we

conclude thatαt+1 ≤ 1
2
αt where the final parameter satisfiesαT−1 = (dBM (KT−1))1/4 ≥

1. The bounds on the loss in volume from Lemma 8.3 imply that in each iteration

t ∈ {0, . . . ,T −1} we have

e−Θ(n/α2
t ) ≤

Voln(Kt+1)

Voln(Kt )
≤ eΘ(n/α2

t )

Then accounting the loss of volume over all iterations we get

Voln(K̃ )

Voln(K )
=

T−1∏
t=0

Voln(Kt+1)

Voln(Kt )
≥

T−1∏
t=0

e−Θ(n/α2
t ) = exp

(
−Θ(n)·

1

α2
T−1︸ ︷︷ ︸
≤1

·
T−1∑

k=0

(2−k )2

︸ ︷︷ ︸
≤2

)
≥C−n

1 e−Θ(n)

The upper bound can be obtained similarly; the same holds for the other two

ratios Voln(K̃ ◦)/Voln(K ◦) and Voln(K̃ +P )/Voln(K +P ).
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Note that actually O(log∗(n)) many iterations suffice if one makes the choice

of αt := ln(dBM (Kt ) + 1). However, the analysis is somewhat simpler with our

choice. The ellipsoid that is a O(1)-approximation to K̃ will indeed be the M-

ellipsoid of K . In order to prove this, we first show the Bourgain-Milman In-

equality.

8.4 Another proof for the Bourgain-Milman Inequal-

ity

Recall the notation s(K ) := Voln(K ) ·Voln(K ◦) and that the Blaschke-Santaló in-

equality says that s(K ) ≤ s(B n
2 ) for any symmetric convex body and we have seen

the reverse approximate inequality by Bourgain and Milman in Chapter 7. Here

we can present an alternative proof that gives both directions of the inequality at

once and also provides a more intuitive explanation why the inequality holds.

Theorem 8.6 (Bourgain-Milman Inequality). Consider any symmetric convex body

K ⊆R
n . Then one has ( 1

C )n ≤ s(K )
s(Bn

2 )
≤C n , for some constant C > 0.

Proof. We would like to remind the reader that for any bijective linear map A :

R
n → R

n one has s(A(K )) = s(K ) as volume ratios do not change under a lin-

ear map since Voln(A(K )) = |det(A)|·Voln(K ) and Voln(A(K )◦) = 1
|det(A)| ·Voln(K ◦).

Now, apply the Iterated Isomorphic Symmetrization of Theorem 8.5 to the body

K and let K̃ be the result. As dBM (K̃ ) ≤ O(1), we know that dG (K̃ , A(B n
2 )) ≤ O(1)

for some linear map. Then

s(K ) = Voln(K ) ·Voln(K ◦)
Theorem 8.5

≥ 2−Θ(n) ·Voln(K̃ ) ·Voln(K̃ ◦)

≥ 2−Θ(n) ·2−Θ(n) ·Voln(A(B n
2 )) ·Voln(A(B n

2 )◦) = 2−Θ(n) ·2−Θ(n) · s(B n
2 )

the upper bound follows along the same lines.

8.5 Existence of M-ellipsoids

Now back to proving the existence of M-ellipsoids.

Theorem 8.7 (Milman [Mil88]). Every symmetric convex body K ⊆R
n has an M-

ellipsoid EK .

Proof. Again, we apply the Iterated Isomorphic Symmetrization from Theorem 8.5

to K and denote K̃ as outcome. Let E be an ellipsoid with Voln(E ) = Voln(K ) and
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1
C E ⊆ K̃ ⊆C ·E for some constant C . Then

N (K ,E )
Lem 4.3
≤

Voln(K + 1
2
E )

Voln( 1
2
E )

≤ 2Θ(n)·
Voln(K̃ + 1

2
E )

Vol( 1
2
E )

≤ 2Θ(n)
Voln(C ·E + 1

2
E )

Voln( 1
2
E )

= 2Θ(n)·(2C+1)n

As C = O(1), this means N (K ,E ) ≤ 2Θ(n). Now we can apply Theorem 8.2.(C) and

infer that E is indeed an M-ellipsoid for K . This reasoning has indeed used the

Bourgain-Milman inequality.

8.6 The Reverse Brunn-Minkowski Inequality

Recall that the Brunn-Minkowski inequality says that for any measurable sets

K ,Q ⊆R
n one has

Voln(K +Q)1/n ≥ Voln(K )1/n +Voln(Q)1/n

It is not hard to come up with examples of even symmetric convex sets where this

inequality is arbitrarily weak and Voln(K +Q) is a lot higher than the guarantee:

0

K +Q

K

Q

But it turns out that if both sets are in M-position, then the inequality is indeed

close to tight.

Theorem 8.8 (Reverse Brunn-Minkowski Inequality — Milman [Mil86]). For ev-

ery symmetric convex body K , there is an invertible linear map UK : Rn →R
n with

|det(UK )| = 1 so that the following holds: for every pair K ,Q ⊆ R
n of symmetric

convex bodies one has

Voln

(
UK (K )+ t ·UQ (Q)

)1/n
≤O(1) ·

(
Voln(UK (K ))1/n + t ·Voln(UQ (Q))1/n

)
∀t ≥ 0

Proof. We use the proof following [Mil88]. Let EK be the M-ellipsoid for body

K . We pick the map UK so that UK (EK ) = rK ·B n
2 where rK is the radius with

Voln(K ) = Voln(rK B n
2 ). In other words, UK (K ) is in M-position. Note that the
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maps UK do not change volume and in particular Voln(K ) = Voln(UK (K )). Let C
be the constant from the M-ellipsoid definition. Then

Voln

(
UK (K )+ t ·UQ (Q)

)1/n M-ellipsoid for K
≤ C ·Voln

(
rK B n

2 + t ·UQ (Q)
)1/n

M-ellipsoid for Q
≤ C 2 ·Voln

(
rK B n

2 + t · rQ B n
2

)1/n

= C 2 ·
(
Voln(rK B n

2 )1/n + t ·Voln(rQ B n
2 )1/n

)

= C 2 ·
(
Voln(K )1/n + t ·Voln(Q)1/n

)

8.7 Extension to the non-symmetric case

In this section, we discuss how some of the result that we have proven for sym-

metric convex sets, also extend to non-symmetric sets. First of all, the inequality

of Bourgain-Milman also applies to the non-symmetric case:

Theorem 8.9 (Bourgain-Milman Inequality for Asymmetric Convex Sets). For any

convex body K containing 0 in the interior one has

Voln(K ) ·Voln(K ◦)

Voln(B n
2 )2

≥ 2−Θ(n)

Proof. We define T := K −K which is a symmetric convex body with T ⊇ K . Then

using the inequality of Rogers-Shephard we know that Voln(K −K ) ≤ 4n ·Voln(K ).

As T ◦ ⊆ K ◦ we obtain

Voln(K )︸ ︷︷ ︸
≥4−n Voln (T )

·Voln(K ◦)︸ ︷︷ ︸
≥Voln (T ◦)

≥ 4−n ·Voln(T ) ·Voln(T ◦)

Bourgain-Milman
with T symmetric

≥ 2−Θ(n) ·Voln(B n
2 )2

One should mention that the reverse of this inequality (that means the Blaschke-

Santaló inequality) does not necessarily hold. Consider K := [−1, M] ⊆R with M
large. Then K ◦ = [−1, 1

M ] and Vol1(K )·Vol1(K ◦) = (M−1)·(1− 1
M ) ≥ M/2 for M ≥ 4.

Next, we can prove that the powerful duality result for covering numbers from

Theorem 7.7 extends to asymmetric sets:
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Theorem 8.10. Let K ,T ⊆ R
n be convex bodies, both having 0 as barycenter.

Then

2−Θ(n)N (T ◦,K ◦) ≤ N (K ,T ) ≤ 2Θ(n)N (T ◦,K ◦)

Proof. It suffices to prove one direction. We will use that we know the inequal-

ity for symmetric sets already from the König-Milman Theorem (Theorem 7.7).

Then

N (T ◦,K ◦)
monotonicity

≤ N (conv(T ◦∪ (−T )◦),K ◦∩ (−K )◦)
König-Milman

≤ 2O(n) ·N
(
(K ◦∩ (−K )◦)◦, (conv(T ◦∪ (−T )◦))◦

)

= 2O(n) ·N
(
conv(K ∪ (−K )),T ∩ (−T )

)

≤ 2O(n) ·N (K −K ,K )︸ ︷︷ ︸
≤2O(n)

·N (K ,T ) ·N (T,T ∩ (−T ))︸ ︷︷ ︸
≤2O(n)

RS+MP
≤ 2O(n) ·N (K ,T )

where in the last step we use Rogers-Shepphard (Theorem 1.47) and Milman-

Pajor (Theorem 4.5).

In order to obtain an M-ellipsoid for a non-symmetric body K , the obvious

strategy is to try either the M-ellipsoid for larger symmetric set K −K or the one

for the smaller symmetric set K ∩ (−K ). Luckily in terms of M-position it does

not matter which one we use:

Lemma 8.11. Let K ⊆ R
n be a convex body with barycenter at 0. Then K −K is

in M-position if and only if K ∩ (−K ) is in M-position (possibly with different

constants).

Proof. Follows from K∩(−K )⊆ K−K and N (K−K ,K∩(−K ))≤ 25n , see Lemma 4.8.

Then the covering numbers N (K −K ,r B n
2 ) and N (K ∩(−K ),r B n

2 ) differ by at most

a factor of 2O(n).

Finally we can argue that after a translation, every convex set admits an M-

ellipsoid.

Theorem 8.12 (M-ellipsoids for asymmetric convex sets). For any convex body

K ⊆R
n with barycenter at 0, there exists an ellipsoid E so that

(A) One has

C−n ≤
Voln(K +P )

Voln(E +P )
≤C n and C−n ≤

Voln(K ◦+P )

Voln(E◦+P )
≤C n

for every symmetric convex body P .
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(B) One has

max
{

N (K ,E ), N (K ◦,E◦), N (E ,K ), N (E◦,K ◦)
}
≤ 2O(n)

Proof. Applying a linear transformation to K does not change the validity of the

statement and it also leaves the barycenter at the origin. Hence we may assume

that the symmetric body K −K is in M-position with respect to the ball B n
2 . We

claim that then the properties hold for the choice of E := B n
2 . As K −K is in M-

position we know that there is a constant C0 so that

Voln(K +P )

Voln(B n
2 +P )

≤
Voln((K −K )+P )

Voln(B n
2 +P )

≤C n
0

for every symmetric convex body P . For the lower bound, suppose that K ∩ (−K )

is in M-position with respect to the ball rintB
n
2 and with respect to the constant

C1. Then in particular we have Voln(rintB
n
2 ) = Voln(K ∩ (−K )) ≥ 4−nVoln(K −K ) =

8−nVoln(B n
2 ) using the Milman-Pajor Theorem (Theorem 4.5 with Cor 4.6) from

which we conclude that 1
4
≤ rint ≤ 1. Then

Voln(K +P )

Voln(B n
2 +P )

≥
Voln((K ∩ (−K ))+P )

Voln(B n
2 +P )

≥ (1/4)n Voln((K ∩ (−K ))+P )

Voln(rintB
n
2 +P )

≥ (1/4)nC n
1

The volume bounds for the polar work similar, using the inclusions (K −K )◦ ⊆ K ◦

and (K ∩ (−K ))◦ ⊇ K ◦. For the covering estimates we have N (K ,B n
2 ) ≤ N (K −

K ,B n
2 ) ≤ 2O(n) and N (B n

2 ,K ) ≤ N (B n
2 ,K ∩ (−K )) ≤ 2O(n). The other two estimates

follow from duality of covering numbers.

8.8 Regular M-ellipsoids

We want to briefly mention a powerful extension to the concept of M-ellipsoids.

If E is the M-ellipsoid for K , then we know that in particular N (K ,E ) ≤ 2O(n). But

this alone does not necessarily guarantee that the covering number is shrinking

substantially if the ellipsoid is scaled, i.e. it is not clear how large N (K , tE ) with

t > 1 would need to be. A stronger form of so-called regular M-ellipsoids pro-

vides such guarantees! exactly. Details can be found in the textbooks of Artstein-

Avidan et al [AAGM15] or Pisier [Pis89b] or in the original work of Pisier [Pis89a].

Theorem 8.13 (Pisier). Let 0 ≤ p < 2 and let K ⊆R
n be a symmetric convex body.

Then there exists an ellipsoid E ⊆R
n so that

N (K , tE ), N (E , tK ), N (K ◦ , tE◦), N (E◦, tK ◦) ≤ exp
(
C n/t p)

∀t ≥ 1,

where C :=C (p) > 0 is a constant only depending on p.
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Note that setting t := (2C n)1/p we have N (K , tE ), N (E , tK ) = 1 and hence
1
t E ⊆ K ⊆ tE . From this one can see that the statement must be false for p > 2.

With some extra work, the concept of regular M-ellipsoids can be generalized

to non-symmetric convex bodies (where the constant of 2
5

seems unlikely to be

tight).

Theorem 8.14 (Vritsiou [Vri23]). Let 0 ≤ p < 2
5

and let K ⊆ R
n be a convex body

with 0 as barycenter. Then there exists an ellipsoid E ⊆R
n so that

N (K , tE ), N (E , tK ), N (K ◦ , tE◦), N (E◦, tK ◦) ≤ exp
(
C n/t p)

∀t ≥ 1,

where C :=C (p) > 0 is a constant only depending on p.

We note that an earlier paper by Klartag and Milman [KM05] (Prop 2.2) al-

ready claimed the same result, but the authors later report that the proof is flawed.

However, parts of the proof strategy of Klartag and Milman turned out to be

sound. We refer to the work of Vritsiou [Vri23] for details.

8.9 Exercises

Exercise 8.1.

For any symmetric convex set K ⊆ R
n there is a linear map A : Rn → R

n so that one has

max
{

N (A(K ),Q), N (Q , A(K )), N (A(K )◦,Q), N (Q , A(K )◦)
}
≤ 2O(n) where Q := 1p

n
B n
∞ is the

cube of side length 2p
n

.

Exercise 8.2.

Let K ⊆ B n
2 be a symmetric convex set contained in the unit ball. Then there exists an

M-ellipsoid E∗ of K with E∗ ⊆C B n
2 where C is a universal constant.

Exercise 8.3.

There is a universal constant C > 0 so that the following holds for even n. Let K ⊆ B n
2 be

a symmetric convex body and let 0 < δ≤ 1 be so that Voln(K ) = δnVoln(B n
2 ). Then there

is a subspace F ⊆ R
n with dim(F ) = n/2 so that Voln/2(( C

δ2 K ∩F )∩B n
2 ) ≥ 2−CnVoln(B n

2 ).

Hint. Consider the M-ellipsoid for K and show that at least n/2 of the axes have length

at least Θ(δ2). Choose F as the span of the n/2 longest axis. You may use the result from

the previous exercise.



Chapter 9

The Gaussian Approach

The goal of this chapter will be to develop a more fine-grained understanding of

the Gaussian mean width

g (T ) := E
x∼γn

[
sup
t∈T

〈t , x〉
]

for a set T ⊆ R
n . Recall that this is not really a new quantity as g (T ) = an

2
·w(T )

where w(T ) is the mean width of T and an = Ex∼γn [‖x‖2] is the expected length

of a Gaussian where
p

n ·
√

n
n+1

≤ an ≤
p

n, see Lemma 1.1.

So far we have mostly considered sets T that were convex bodies, but convex-

ity is not needed for the definition to make sense. In fact, we can even restrict to

the finite case whenever it is helpful:

Lemma 9.1. Let T ⊆R
n . If T is unbounded, then g (T )=∞. If T is bounded, then

for any ε> 0 there is a finite set T ′ ⊆ T with g (T )−ε≤ g (T ′) ≤ g (T ).

We leave the proof as an exercise. Throughout this chapter we use log(x) :=
ln(x). Whenever we state an upper bound including a O(log(N ))-term the reader

should interpret this as O(log(2N )) to cover the case N = 1.

9.1 Gaussian Random Processes

It will turn out to be useful to discuss a more general concept. Unlike the other

chapters in this set of lecture notes, for the remainder of this chapter we will fol-

low the exposition in the recent textbook by Vershynin [Ver19]. First we want to

introduce Gaussians that are not necessarily “standard”. If M ∈R
n×n is a symmet-

ric, positive-definite matrix, then we write N (0, M) as the distribution of a Gaus-

155
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sian random vector x ∼ N (0, M) with expectation Ex∼N(0,M)[x] = 0 and covari-

ance matrix Ex∼N(0,M)[x xT ] = M . Equivalently, for i , j ∈ [n] one has Ex∼N(0,M)[xi ·
x j ] = Mi j . We remind the reader that a random Gaussian x ∼ N (0, In) can be

generated by sampling the coordinates x1, . . . , xn ∼ N (0,1) independently. We

start with the following rather abstract definition:

Definition 9.2. A random process is a collection of random variables (X t )t∈T on

the same probability space. A random process (X t )t∈T is a Gaussian process, if

for every a : T →R with finite support, there is a σ≥ 0 with
∑

t∈T at X t ∼ N (0,σ2).

For such a Gaussian process we define a metric d by d(s, t ) := E[|Xs − X t |2]1/2 for

s, t ∈T .

For this definition we make no restrictions on the index set T . We would like

to mention that all Gaussians for the rest of this chapter are “centered”, which

means they have mean 0.

We give a name to the type of Gaussian process that corresponds to our geo-

metric setting:

Definition 9.3. For a set T ⊆ R
n , the random process (Xt )t∈T with X t = 〈x , t〉 for

x ∼ N (0, In ) is called a canonical Gaussian process.

If T is finite then we call (X t )t∈T a finite Gaussian process. We summarize a

few facts about Gaussians:

Lemma 9.4. The following holds:

(A) Let (X t )t∈T and (Yt )t∈T be two finite Gaussian processes with identical co-

variance matrices (i.e. E[X t Xs ] = E[Yt Ys ] for t , s ∈ T ). Then the distribu-

tions of (X t )t∈T and (Yt )t∈T are identical.

(B) Let (X t )t∈T be a Gaussian process and let T ′⊆ T be a finite set with E[X t Xs] =
0 for all t , s ∈T ′ with t 6= s. Then the random variables (X t )t∈T ′ are indepen-

dent.

(C) For s > 0 one has 1p
2π

( 1
s −

1
s3 )e−s2/2 ≤ Prx∼N(0,σ2 )[x ≥ s ·σ] ≤ 1p

2πs
e−s2/2

Typically (A) is proven by arguing that the Fourier transforms of both pro-

cesses are identical and then conclude that the distributions themselfs are iden-

tical. We skip the proof though.

It is useful to observe that the distance metric for a canonical Gaussian pro-

cess (Xt )t∈T corresponds to the Euclidean distance of the vectors:

d(s, t ) = E

[∣∣Xs −Xt

∣∣2]1/2 = E
x∼N(0,In )

[
〈x , s − t〉2

]1/2 = ‖s − t‖2 ∀s, t ∈T
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We will often work with a general Gaussian process as it gives us some more flex-

ibility — in some sense it is “dimension-free”. But it is useful to keep in mind that

at least for the finite case both concepts are equivalent:

Lemma 9.5. A Gaussian process (X t )t∈T with finite T is always a canonical Gaus-

sian process.

Proof sketch. Let M ∈ R
T×T be the covariance matrix of the Gaussian process,

meaning that Ms,t = E[Xs X t ] for s, t ∈ T . Then M is positive semidefinite and

so there are vectors {ut }t∈T with ut ∈ R
T so that Ms,t = 〈us ,ut 〉. Now consider

the random process (Yt )t∈T with Yt := 〈x ,ut 〉 with x ∼ N (0, I|T |). Then E[Ys Yt ] =
〈us ,ut 〉 = Mst for all s, t ∈ T , meaning that the Gaussian processes (X t )t∈T and

(Yt )t∈T have the same covariance matrix. Then by Lemma 9.4.(A) the random

processes have the same distribution.

Now we come back to our main task of understanding the expected supre-
mum of a Gaussian process which is

E

[
sup
t∈T

X t

]
.

First, we want to emphasize that for independent Gaussians, the expected supre-

mum is rather easy to understand:

Lemma 9.6 (Geometric version of Lemma 9.7). Let T = {x1, . . . , xN } be pairwise

orthogonal vectors with A ≤ ‖xi‖2 ≤ B for all i ∈ [N ]. Then

Θ
(

A
√

log(N )
)
≤ g (T )≤Θ

(
B

√
log(N )

)
.

Moreover, the upper bound also holds for non-orthogonal vectors.

We will prove this in the setting of Gaussian processes:

Lemma 9.7. Let (X t )t∈T be a finite Gaussian process where (i) one has A≤ E[X 2
t ]1/2 ≤

B for t ∈ T and (ii) one has E[X t1 X t2 ] = 0 for all t1 6= t2. Then

Θ

(
A
√

log(|T |)
)
≤ E

[
sup
t∈T

X t

]
≤Θ

(
B

√
log(|T |)

)

and the upper bound holds without (ii).

Proof. It suffices to show the claim for |T | large enough. We also may assume

that for some t0 ∈ T the lower bound on the variance is tight, i.e. A = E[X 2
t0

]1/2.
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Note that the assumptions tell us that (i) the standard deviation of the random

Gaussians X t is between A and B and (ii) the Gaussians X t are independent.

For the upper bound we simply observe that ‖X t‖ψ2 ≤O(B) and so the claim

follows from Lemma 3.17.(i).

Now we come to the lower bound. Again using the estimate from Lemma 9.4.(C)

one can verify that for some small constant c2 > 0 and λ := c2 A
√

log(|T |) one has

Pr[X t ≥λ] ≥ 1
|T | for each t ∈ T . Using the independence gives

Pr[∃t ∈ T : X t ≥λ]
indep= 1−

∏
t∈T

(
1−Pr[X t ≥λ]︸ ︷︷ ︸

≥1/|T |

)

≥ 1−
(
1−

1

|T |

)|T | 1−x≥e−x/2∀0≤x≤ 1
2≥ 1−e−|T |· |T |

2 ≥
1

4

We are almost done with the analysis, but there is the slight issue that the ran-

dom variable supt∈T X t might also be negative sometimes. But the negative con-

tribution can be loosely bounded by |E[min{0,supt∈T X t }]| ≤ |E[min{0, X t0 }]| ≤
E[|X t0 |] =

√
2
π
· A. Then

E

[
sup
t∈T

X t

]
≥λ ·Pr[∃t ∈T : X t ≥λ]−

√
2

π
A ≥ c3 A

√
log(|T |)

as claimed.

This leaves us with two main questions:

1. How can we show a lower bound on E[supt∈T X t ] without orthogonality/independence?

2. How can we get better a better upper bound than just using a union bound.

9.2 Slepian’s Inequality

We will now develop a tool to answer the first question. In a simple to state form,

we can prove the following:

Lemma 9.8 (Sudakov-Fernique Inequality — Geometric version). Let T = {x1, . . . , xN }

and S = {y1, . . . , yN } be two sets of vectors with ‖xi − x j ‖2 ≤ ‖yi − y j‖2 for all

i , j ∈ [N ]. Then g (T ) ≤ g (S).
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x1x2x3

g (T ) ≤

y1
y2

y3

g (S)

The idea behind the proof is to continuously “morph” the set T into the set S and

prove that along the way, the expected supremum is non-decreasing. Again we

use the probabilistic view for the proof.

9.2.1 Gaussian Interpolation

We show a few lemmas first that are fairly specific about Gaussians.

Lemma 9.9. Let f : R→R be a differentiable function. Then

E
X∼N(0,1)

[ f ′(X )] = E
X∼N(0,1)

[X · f (X )]

Proof. Let γ(x) := 1p
2π

e−x2/2 be the density function of the Gaussian and w.l.o.g.

assume that f (x) 6= 0 ⇒ a < x < b for some bounded interval I = [a,b] ⊆R. Then

for X ∼ N (0,1) one has1

E[ f ′(X )] =
∫

I
f ′(x) ·γ(x)d x

partial int.=
[

f (x) ·γ(x)
]b

a︸ ︷︷ ︸
=0

−
∫

I
f (x) ·γ′(x)d x

(∗)= −
∫

I
f (x) · (−x ·γ(x)) d x = E[X · f (X )]

where we use in (∗) that γ′(x) =−x ·γ(x) as one can easily verify.

Here is the multi-dimensional analogue (we skip the proof):

Lemma 9.10. Let f : Rn → R be a differentiable function and let M ∈ R
n×n be a

PSD matrix. Then for X ∼ N (0, M) one has

E[X · f (X )]︸ ︷︷ ︸
∈Rn

= M︸︷︷︸
∈Rn×n

(E[∇ f (X )])︸ ︷︷ ︸
∈Rn

1Recall that integration by parts gives
∫b

a f ′(x)γ(x)d x +
∫b

a f (x)γ′(x)d x = f (x) · γ(x)|ba = 0 as

f (a)= 0= f (b).
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Note that writing this equation coordinate-wise gives

E
X

[Xi · f (X )] =
n∑

j=1

Mi j E
X

[ ∂ f

∂x j
(X )

]

again with X ∼ N (0, M).

Now we come to the Gaussian interpolation principle. The idea is that we

consider two Gaussian random vectors X ,Y and a smooth interpolation Z (u)

between those where Z (0) = Y and Z (1) = X . Then we can characterize exactly

how E[ f (Z (u))] changes as u increases. For example suppose that X ∼ N (0, M X )

and Y ∼ N (0, M Y ) are Gaussians where the covariance matrices M X and M Y are

identical, except for a single entry (i , j ) where M X
i j = MY

i j +ε. Then indeed

d

du
E[ f (Z (u))] =

ε

2
·E

[ ∂ f 2

∂xi∂x j

(
Z (u)

)]

Lemma 9.11 (Gaussian Interpolation). Let M X , M Y ∈ R
n×n be PSD matrices and

let X ∼ N (0, M X ) and Y ∼ N (0, M Y ) be independent Gaussian random vectors.

Define the interpolation

Z (u) :=
p

u ·X +
p

1−u ·Y for u ∈ [0,1].

Then for any twice-differentiable function f : Rn →R one has

d

du
E[ f (Z (u))] =

1

2

n∑

i=1

n∑

j=1

(M X
i j −MY

i j ) ·E
[ ∂ f 2

∂xi∂x j

(
Z (u)

)]

Proof. Using the chain rule2 we can write

d

du
E[ f (Z (u))]

chain rule=
n∑

i=1

E

[ ∂ f

∂xi

(
Z (u)

)
·

d Zi

du

]

(∗)=
1

2

n∑

i=1

E

[ ∂ f

∂xi
(Z (u)) ·

( Xip
u
−

Yip
1−u

)]

Claim I+II=
1

2

n∑

i=1

n∑

j=1

(M X
i j −MY

i j ) ·E
[ ∂ f 2

∂xi∂x j

(
Z (u)

)]

Here we use in (∗) that d
du (

p
uXi +

p
1−uYi ) = 1

2
p

u
Xi − 1

2
p

1−u
Yi .

Claim I. Condition on Y . Then
n∑

i=1

1
p

u
E
X

[
Xi ·

∂ f

∂xi

(
Z (u)

)]
=

n∑

i , j=1

M X
i , j E

X

[ ∂2 f

∂xi∂x j
(Z (u))

]

2We use the following multivariate chain rule: let f : Rn → R and g : R → R
n with g (u) =

(g1(u), . . . , gn(u)). Then d
du ( f (g (u))=

∑n
i=1

∂ f
∂xi

(g (u)) · g ′
i (u).
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Proof of Claim. We consider Y as fixed for the remainder of the proof of this

claim. Abbreviate gi (X ) := ∂ f
∂xi

(p
uX +

p
1−uY

)
. Then

1
p

u

n∑

i=1

E
X

[
Xi

∂ f

∂xi

(
Z (u)

)]
=

1
p

u

n∑

i=1

E
X

[
Xi ·gi (X )

]

=
1
p

u

n∑

i=1

n∑

j=1

M X
i j E

X

[∂gi

∂x j
(X )

]

=
1
p

u

n∑

i=1

n∑

j=1

M X
i j E

X

[ ∂2 f

∂xi∂x j

(p
u ·X +

p
1−u ·Y

)
·
p

u
]

=
n∑

i=1

n∑

j=1

M X
i j E

X

[ ∂2 f

∂xi∂x j

(
Z (u)

)]

One can obtain an analogous expression for the Yi -term (we skip the proof).

Claim II. Condition on X . Then

n∑

i=1

1
p

1−u
E
Y

[
Yi ·

∂ f

∂xi

(
Z (u)

)]
=

n∑

i , j=1

MY
i , j E

[ ∂2 f

∂xi∂x j
(Z (u))

]

9.2.2 Proof of Slepian’s Lemma

After the previous Lemma we can give a natural condition when the increase is

guaranteed to be non-negative. To get some intuition imagine we have a func-

tion f (x) = a0 +
∑n

i=1 bi xi +
∑

i 6= j ci j xi x j which is a degree-2 polynomial. Then

the expected function value is EX∼N(0,M)[ f (X )] = a0 +
∑

i 6= j ci j EX∼N(0,M)[Xi X j ]

meaning that in particular any linear term is cancelled out. Then if ci j ≥ 0 and

we increase E[Xi X j ] = Mi j , then the expected function value would be increasing

(or remain the same).

Lemma 9.12 (Functional form of Slepian’s Lemma). Consider two Gaussian ran-

dom vectors X ∈R
n and Y ∈R

n with

E[X 2
i ] = E[Y 2

i ] ∀i ∈ [n] and E[|Xi −X j |2] ≤ E[|Yi −Y j |2] ∀i , j ∈ [n]

Let f : Rn →R be a twice-differentiable function with
∂2 f

∂xi ∂x j
≥ 0 for all i 6= j . Then

E[ f (X )] ≥ E[ f (Y )].



162 CHAPTER 9. THE GAUSSIAN APPROACH

Proof. Using the formula from Lemma 9.11. we get

d

du
E[ f (Z (u))] =

1

2

n∑

i=1

n∑

j=1

(M X
i j −MY

i j )
︸ ︷︷ ︸




= 0 if i = j ,

≥ 0 if i 6= j

·E
[ ∂ f 2

∂xi∂x j

(
Z (u)

)

︸ ︷︷ ︸
≥0 if i 6= j

]
≥ 0

As the expectation is increasing in u, we can conclude that E[ f (Y )] = E[ f (Z (0))] ≤
E[ f (Z (1))] = E[ f (X )].

Now we can provide the proof of Slepian’s Inequality:

Theorem 9.13 (Slepian’s Inequality). Let (X t )t∈T and (Yt )t∈T be two finite Gaus-

sian processes so that

E[X 2
t ] = E[Y 2

t ] and E[(X t −Xs)2] ≤ E[(Yt −Ys )2] ∀s, t ∈ T

Then for any τ ∈R one has

Pr
[

sup
t∈T

X t ≥ τ
]
≤ Pr

[
sup
t∈T

Yt ≥ τ
]

.

Moreover E[supt∈T X t ] ≤ E[supt∈T Yt ].

Proof of Slepian’s Inequality. We set n := |T |. For some parameter β > 0, let us

define

hβ(x) :=
1

1+exp(−β · (τ−x + 1p
β

))

We make the observation that hβ is strictly decreasing in x, at least twice differ-

entiable and for any fixed x one has limβ→∞ hβ(x) = 1]−∞,τ].

1

0 τ

hβ

We set fβ(x) :=
∏n

i=1
hβ(xi ) which is an approximation to the function 1maxi=1,...,n {xi }≤τ.

We can verify that for i 6= j and x ∈R
n one has

∂2 fβ

∂xi∂x j
(x) = h′

β(xi )
︸ ︷︷ ︸

<0

·h′
β(x j )

︸ ︷︷ ︸
<0

∏

k∈[n]\{i , j }

h(xk )︸ ︷︷ ︸
>0

> 0
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Then by Lemma 9.12 one has

Pr
[

max
i=1,...,n

Xi ≤ τ
]
= lim

β→∞
E[ fβ(X )] ≥ lim

β→∞
E[ fβ(Y )] = Pr

[
max

i=1,...,n
Yi ≤ τ

]

The “moreover” part follows from the integral identity.

9.2.3 The Sudakov-Fernique Inequality

We have stated earlier the geometric version of the Sudakov-Fernique Inequality

(see Lemma 9.8) which only proves the “moreover” part of Slepian’s lemma, but

it allows that the variance of the random variables strictly increases. Now we give

the probabilistic version and the proof:

Theorem 9.14 (Sudakov-Fernique Inequality). Let (X t )t∈T and (Yt )t∈T be two fi-

nite Gaussian processes so that

E[|X t −Xs |2] ≤ E[|Yt −Ys |2] ∀t 6= s

Then E[supt∈T X t ] ≤ E[supt∈T Yt ].

Proof. After reindexing we have T = {1, . . . ,n} and Xi = 〈g , xi 〉 and Yi = 〈g , yi 〉 for

some vectors xi and yi and g ∼ N (0, In). Recall that the covariance matrix of

X is M X
i j = 〈xi , x j 〉 = 1

2
(‖xi‖2

2 +‖x j ‖2
2 −‖xi − x j ‖2

2) and the assumption says that

‖xi − x j ‖2
2 ≤ ‖yi − y j‖2

2 for all i , j ∈ T . As before, we set Z (u) :=
p

uX +
p

1−uY .

For a parameter β> 0 we define a function

fβ(z) :=
1

β
log

( n∑

i=1

exp(βzi )
)

which is often called soft maximum function. This function is monotonically in-

creasing and at least twice differentiable with limβ→∞ fβ(z)= maxi=1,...,n zi for ev-

ery fixed z ∈R
n . It will be convinient to abbreviate coefficients pi(z) := exp(βzi )∑n

k=1
exp(βzk )

.

Note that pi (z)≥ 0 and
∑n

i=1 pi (z)= 1. One can easily verify that that 2nd deriva-

tives of the softmax functions are

∂2 fβ(z)

∂2zi
=β · (pi (z)−pi (z)2) and

∂2 fβ(z)

∂zi∂z j
=−β ·pi (z) ·p j (z)
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We can simplify the contribution of X to the Gaussian Interpolation Formula as

n∑

i=1

n∑

j=1

M X
i j ·

∂ f 2
β

(z)

∂zi∂z j
= β

n∑

i=1

pi‖xi‖2
2 −β

n∑

i=1

n∑

j=1

〈xi , x j 〉pi p j

= β
n∑

i=1

pi‖xi‖2
2 −

β

2

n∑

i=1

n∑

j=1

(‖xi‖2
2 +‖x j ‖2

2 −‖xi −x j ‖2
2)pi p j

= β
n∑

i=1

pi‖xi‖2
2 −2 ·

β

2

n∑

i=1

pi‖xi‖2
2

n∑

j=1

p j

︸ ︷︷ ︸
=1︸ ︷︷ ︸

=0

+
β

2

n∑

i=1

n∑

j=1

pi p j ‖xi −x j ‖2
2

for any vector z with pi := pi (z). Then using the Gaussian Interpolation Formula
we obtain

d

du
E[ fβ(Z (u))] =

1

2

n∑

i=1

n∑

j=1

(M X
i j −MY

i j ) ·E
[ ∂ f 2

β

∂zi∂z j

(
Z (u)

)]

=
β

2

n∑

i=1

n∑

j=1

(
‖xi −x j ‖2

2 −‖yi − y j‖2
2

)
︸ ︷︷ ︸

≤0

·E
[

pi (Z (u))︸ ︷︷ ︸
≥0

·p j (Z (u))︸ ︷︷ ︸
≥0

]
≤ 0

As in a previous proof, this implies

E

[
max

i=1,...,n
Xi

]
= lim

β→∞
E

[
fβ(Z (1)︸︷︷︸

=X

)
]
≤ lim

β→∞
E

[
fβ(Z (0)︸︷︷︸

=Y

)
]
= E

[
max

i=1,...,n
Yi

]

9.3 Sudakovs’ Minoration Inequality

We can now give an answer to the problem of proving lower bounds on E[supt∈T X t ]

for non-independent Gaussian random variables. The beauty in the Sudakov-

Fernique Comparsion Inequality is that we can now analyze g (T ) for non-orthogonal

vectors by comparing it with g (S) for orthogonal vectors S.

Lemma 9.15 (Sudakov’s Inequality — Geometric version). Let T = {x1, . . . , xN } be

vectors with A ≤ ‖xi −x j ‖2 ≤ B for i 6= j . Then

Θ
(

A
√

log(N )
)
≤ g (T )≤Θ

(
B

√
log(N )

)
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Lemma 9.16 (Sudakov’s Inequality). Let (X t )t∈T be a finite Gaussian process where

A ≤ E[|X t1 −X t2 |2]1/2 ≤ B for all t1 6= t2. Then

Θ

(
A
√

log(|T |)
)
≤ E

[
sup
t∈T

X t

]
≤Θ

(
B

√
log(|T |)

)

Proof. We only prove the lower bound; the upper bound is already proven in

Lemma 9.7. Let (Yt )t∈T be independent Gaussians with E[Y 2
t ]1/2 = Ap

2
. Then

for s 6= t one has E[|Yt −Ys |2] = E[Y 2
t ]+E[Y 2

s ] = A2 ≤ E[|X t − Xs |2]. By Sudakov-

Fernique Comparison Inequality (Lemma 9.14) and Lemma 9.7 for independent

Gaussians we have

E

[
sup
t∈T

X t

]
≥ E

[
sup
t∈T

Yt

]
≥Ω

(
A
√

log(|T |)
)

A useful quantity in the study of Gaussian processes is the following:

Definition 9.17. Let X = (X t )t∈T be a Gaussian process with distances d(s, t ) :=
E[|Xs −X t |2]1/2 and d(s,S) := inf{d(s, t ) : t ∈ S}. For ε> 0 we define

Nε(X ) := min
{
|S| : S ⊆ T and ∀t ∈ T : d(t ,S) ≤ ε

}

If X = (Xt )t∈T happens to be a canonical Gaussian process with T ⊆ R
n then

this definition corresponds to the covering number Nε(X ) = N̄ (T,εB n
2 ) (where

centers need to be chosen from the set T ). In that case we also use the notation

Nε(T ).

Theorem 9.18 (Sudakov’s Minoration Inequality). Let X = (X t )t∈T be a Gaussian

process. Then for any ε> 0 one has E[supt∈T X t ] ≥Ω(ε
√

log Nε(X )).

Proof. Pick a maximal set S ⊆ T with d(s, t ) ≥ ε for s, t ∈ S. Then Nε(X ) ≤ |S| (as

d(t ,S) ≤ ε for all t ∈ T ). Then applying the Lemma 9.16 to S we get

E

[
sup
t∈T

X t

]
≥ E

[
sup
t∈S

X t

]
Lem 9.16

≥ Θ
(
ε
√

log(|S|)
)
≥Θ

(
ε
√

log(Nε(X )
)

(note that if S can be picked with |S| =∞, then E[supt∈T X t ] =∞).

9.3.1 Application for Covering Numbers in R
n

Now we can give a nice application to bounding the volume of a polytope with

few vertices. Intuitively the claim says that a polytope contained in B n
2 needs

exponentially many vertices in order to cover a significant fraction of the volume

of B n
2 .
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Theorem 9.19. Let P ⊆ B n
2 be a polytope with N vertices. Then

Voln(P )

Voln(B n
2 )

≤
( log(N )

n

)O(n)

Proof. Let x1, . . . , xN be the vertices of P , that means P = conv{x1, . . . , xN }. Let

ε > 0 be a parameter that we determine later. We use Sudakov’s Minoration In-

equality to obtain

Θ(ε
√

log(Nε(P )))
Thm 9.18

≤ g (P )
(∗)= g ({x1, . . . , xN })

‖xi ‖2≤1
≤ Θ(

√
log(N )) (∗∗)

Here we use in (∗) that a linear objective function over P is maximized at one of

its vertices. Rearranging (∗∗) then tells us that we can cover P with at most

Nε(P ) ≤ NΘ(1/ε2)

many ε-radius balls.

xi

P

b

b

b
B n

2

y +εB n
2

Then considering a covering of P with ε-radius balls gives a volume bound of

Voln(P )

Voln(B n
2 )

≤ NΘ(1/ε2) ·
Voln(εB n

2 )

Voln(B n
2 )

= NΘ(1/ε2) ·εn
ε:=

p
log(N)/n
≤

( log(N )

n

)Cn

9.3.2 The Gaussian Contraction Principle

We want to state an inequality that is often useful. A function φ : R→ R is called

a contraction, if |φ(x)−φ(y)| ≤ |x − y | for all x, y ∈ R. For example the function

φ(x) := |x| is a contraction.

Theorem 9.20 (Gaussian Contraction Inequality). Let P ⊆R
n be a bounded sym-

metric set and let φ1, . . . ,φn : R→R be contractions. Then

E
g∼N(0,In )

[
sup
z∈P

∣∣∣
n∑

i=1

giφi (zi )
∣∣∣
]
≤ E

g∼N(0,In )

[
sup
z∈P

∣∣∣
n∑

i=1

gi zi

∣∣∣
]
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This result can be easily proven by applying the Sudakov-Fernique Inequality

in Theorem 9.14.

9.4 Dudley’s Inequality

In this section we will answer the question whether one can provide a systematic

upper bound on the supremum of a Gaussian process which is better than just

taking the union bound as in Lemma 9.7. In some sense we will show that Su-

dakov’s lower bound of Θ(ε
√

log Nε(X )) is tight minus the issue that we need to

sum over the whole range of possible ε’s.

Theorem 9.21 (Discrete version of Dudley’s Inequality). For any finite3 Gaussian

process X = (X t )t∈T one has

E

[
sup
t∈T

X t

]
≤O(1) ·

∑

ε∈2Z
ε ·

√
log Nε(X ).

Proof. Let Tk ⊆ T be minimal ( 1
2

)k -nets of size |Tk | = N(1/2)k (X ). For every t ∈ T
we let πk(t ) ∈Tk denote the closest point, meaning that in particular d(t ,πk (t )) ≤
( 1

2
)k . We fix a kmin ∈ Z and kmax ∈ Z so that |Tkmin

| = 1 and |Tkmax
| = T and write

Tkmin
= {t0}. This construction induces a tree with leaves T and root t0 as depicted

below:

t0

πk−1(t )

πk (t )

t

Tkmin

...
Tk−1

Tk

...
Tkmax

Our goal is to find an upper bound on the quantity E[supt∈T {X t − X t0 }] (which

is the same as E[supt∈T X t ] as E[X t0 ] = 0). Then E[supt∈T {X t − X t0 }] is upper

3In the available literature (see e.g. [Ver19, AAGM15]) this inequality is usually stated for

any Gaussian process, not just finite ones. But that brings us to some subtle issues of how

the expected supremum is actually defined. For example [AAGM15] defines E[supt∈T Xt ] :=
sup{E[supt∈S Xt ] : S ⊆ T with S finite}. Then indeed the bound proven for finite subprocesses

carries over.
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bounded by the maximum length of a path t = πkmax
(t ) → πkmax−1(t ) → . . . →

πkmin+1(t ) → πkmin
(t ) = t0 from a leaf to the root. To obtain Dudley’s Inequality

we will upper bound the expected maximum edge weight on every level which

then naturally implies an upper bound on the expected maximum weight of ev-

ery t0-t path.

We first bound the expected maximum stretch on one level:

Claim. For every k one has E[supt∈T {Xπk (t) −Xπk−1(t)}] ≤O(1) · ( 1
2

)k
√

log |Tk |.
Proof of Claim. For a fixed t ∈ T we have

d(πk (t ),πk−1(t )) ≤ d(πk (t ), t )+d(πk−1(t ), t ) ≤
(

1

2

)k

+
(

1

2

)k−1

≤ 4 ·
(

1

2

)k

.

The number of different pairs (πk (t ),πk−1(t )) is bounded by |Tk | · |Tk−1| ≤ |Tk |2.

Then using the upper bound from Lemma 9.16 we obtain

E

[
sup
t∈T

{
Xπk (t) −Xπk−1(t)

}]
≤O(1) ·4 ·

(1

2

)k√
log(|Tk |2)

which is of the claimed form.

Now we can finish the argument (using that E[X t0 ] = 0):

E

[
sup
t∈T

{
X t −X t0

}]
= E

[
sup
t∈T

{ kmax∑

k=kmin+1

Xπk (t) −Xπk−1(t)

}]

≤
kmax∑

k=kmin+1

E

[
sup
t∈T

{Xπk (t) −Xπk−1(t)}
]

≤ O(1) ·
kmax∑

k=kmin+1

(1/2)k
√

log(N(1/2)k (X ))

which is the desired bound.

Theorem 9.21 can also be restated in the form E[supt∈T X t ] ≤O(1)·
∫∞

0

√
log Nε(X )dε

which is called Dudley’s Integral Inequality.

9.5 Generic Chaining and Talagrand’s Majorizing Mea-

sure Theorem

While for many settings, Dudley’s chaining argument gives already a tight bound,

we will see a construction in the exercises where the gap between Dudley’s bound

and the real expected supremum is unbounded. To get some intuition where
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Dudley’s argument is potentially loose, consider a random process X = (X t )t∈T

and the tree that we have used to prove Theorem 9.21. For Dudley’s bound we

have upper bounded the maximum weight of edges separatedly on every level.

But it is not hard to see that in general the combination of those maximum weight

edges do not form a path from a leaf to the root!

t0

πk−1(t )

πk (t )

t

Tkmin

...

Tk−1

Tk

...
Tkmax

We will now discuss a refined bound due to Talagrand. Again we use the no-

tation d(t ,S) := infs∈S d(t , s) for a subset S ⊆ T .

Definition 9.22. Let T be a set with metric d . We call a sequence (Tk)k=0,...,∞ with

Tk ⊆ T an admissible sequence if

|T0| = 1 and |Tk | ≤ 22k
∀k ∈ {1,2, . . .}

Then

γ2(T,d) := inf
(Tk )k admissible

{
sup
t∈T

∞∑

k=0

2k/2d(t ,Tk )
}

Intuitively the bound says that we can select a “net” Tk and we need to pay

for the maximum sum of distances of any t to all the nets, weighting the distance

to Tk by 2k/2. If X = (X t )t∈T is a Gaussian process then we write γ2(X ) := γ2(T,d)

where d(s, t ) := E[|Xs − X t |2]1/2 is the usual metric. We can now prove that the

quantity γ2(X ) is an upper bound on the expected supremum:

Theorem 9.23. Let X = (X t )t∈T be a Gaussian process. Then

E

[
sup
t∈T

X t

]
≤O(1) ·γ2(X ).

Proof. Fix an admissible sequence (Tk)k=0,...,∞ with T0 = {t0} and let πk (t ) ∈ Tk

denote the closest point to t .

Claim I. For u ≥ 10, one has

(∗) := Pr
[

sup
t∈T

∣∣Xπk (t)−Xπk−1(t)

∣∣≤Cu2k/2·d
(
πk (t ),πk−1(t )

)
∀k ∈N

]
≥ 1−2 exp(−u2)
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Proof of Claim I. For a fixed k and t we have by Lemma 9.4.(C) that

Pr
[
|Xπk (t) −Xπk−1(t−1)| >Cu2k/2 ·d

(
πk(t ),πk−1(t )

)]
≤ 2 exp(−8u22k)

for some constant C > 0. Then we can bound

(∗)
union bound

≤
∞∑

k=1

∑
s1∈Tk ,s2∈Tk−1

Pr
[
|Xs1 −Xs2 | >Cu2k/2 ·d(s1, s2)

]

≤
∞∑

k=1

|Tk | · |Tk−1|︸ ︷︷ ︸
≤22k+1

·2 exp
(
−8u22k)

≤ 2 exp(−u2)

if, say u ≥ 10. So the claim is proven.

Now fix a value of u and suppose the event in Claim I happens. Then

sup
t∈T

|X t −X t0 | = sup
t∈T

∣∣∣
∞∑

k=1

(Xπk (t) −Xπk−1(t))
∣∣∣≤ sup

t∈T

∞∑

k=1

∣∣Xπk (t) −Xπk−1(t)

∣∣

≤ sup
t∈T

∞∑

k=1

Cu2k/2 ·d
(
πk(t ),πk−1(t )

)
≤Cu ·γ2(T )

If we think of u as the random variable that gives the smallest possible value that

makes Claim I true, then clearly E[u] ≤O(1) and the claim follows.

The amazing result (again due to Talagrand) is thatγ2(X ) is always a constant

factor approximation to the real expected supremum for any Gaussian process.

Theorem 9.24 (Talagrand’s Majorizing Measure Theorem [Tal87]). LetX = (X t )t∈T

be a Gaussian process. Then

C1γ2(X ) ≤ E

[
sup
t∈T

X t

]
≤C2γ2(X )

for universal constants C1,C2 > 0.

The proof of the lower bound is rather involved and we will have to omit it

here.

9.5.1 Approximating symmetric convex bodies

We want to describe a geometric implication of Talagrand’s Majorizing Measure

Theorem that can be tremendously useful. We can prove that for every symmet-

ric convex body K there is an included body W ⊆ K that has only few constraints

that are close to the origin.
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Theorem 9.25. For any symmetric convex body K ⊆R
n with Ex∼N(0,In )[‖x‖K ] = 1,

there is a symmetric convex body

W :=
{

x ∈R
n : | 〈d , x〉 | ≤C ·2k/2 ∀k ∈N∀d ∈ Dk

}
⊆ K

where Dk ⊆ Sn−1 with |Dk | ≤ 22k+1
and C > 0 is a universal constant.

K
W

C ·2k/2

a ∈Dk

Proof. We write K = {x ∈ R
n | 〈a, x〉 ≤ 1 ∀a ∈ T } with 0 ∈ T (one can choose for

example T := K ◦, but our argument does not need convexity, so in case K is a

polytope, T can be chosen as the facet normal vectors plus the origin). Consider

the Gaussian process {Xa }a∈T with variables Xa := (〈a, g 〉) where g ∼ N (0, In ).

The distance metric of that Gaussian process is simply d(a,b)= E[|Xa−Xb |2]1/2 =
‖a − b‖2. Note that ‖x‖K = E[supa∈T 〈a, x〉]. We apply Talagrands Majorizing
Theorem (Theorem 9.24) and obtain an admissible sequence {Tk }k=0,...,∞ with

(i ) Tk ⊆ T for all k ∈Z≥0, (i i ) T0 = {0}, (i i i ) |Tk | ≤ 22k
for k ∈N

so that

sup
a∈T

{ ∞∑

k=0

2k/2 ·d(a,Tk )
}

Thm 9.24
≤ O(1) ·E

[
sup
a∈T

Xa

] assumption
≤ O(1)

For each a ∈ T , let πk (a) ∈ Tk be the closest element in Tk , i.e. d(a,πk (a)) =
d(a,Tk ). Now we have everything in place to define the body W that approxi-

mates K . We set

W :=
{

x ∈R
n : | 〈a −b, x〉| ≤C ·2k/2‖a −b‖2 ∀k ∈N∀a ∈Tk ∀b ∈ Tk−1

}

where we will choose C > 0 small enough. We want to prove that W ⊆ K . First

note that for any a ∈ T we can write

a =
∞∑

k=1

(πk(a)−πk−1(a)).
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Now fix any x ∈W and a ∈ T . Then

| 〈a, x〉 | ≤
∞∑

k=1

| 〈πk (a)−πk−1(a), x〉 |

x∈W
≤

∞∑

k=1

C ·2k/2 ·d(πk (a),πk−1(a))︸ ︷︷ ︸
≤d(a,Tk )+d(a,Tk−1)

≤O(C ) ·
∞∑

k=0

2k/2d(a,Tk)

︸ ︷︷ ︸
≤O(1)

≤O(C )
C small
≤ 1

and hence x ∈ K . It remains to bring the constraints of W into the claimed for-

mat. We set Dk := { a−b
‖a−b‖2

: a ∈ Tk ,b ∈ Tk−1} for k ∈N. Then |Dk | ≤ |Tk | · |Tk−1| ≤
22k ·22k−1 ≤ 22k+1

and the claim is proven.

By arranging the sets T0,T1,T2, . . . as one sequence of vectors a1, a2, a3, . . .

Theorem 9.25 can be conviniently rephrased as follows:

Corollary 9.26. For any symmetric convex body K ⊆R
n there is a sequence {aℓ}ℓ∈N ⊆

Sn−1 of unit vectors so that

W :=
{

x ∈R
n : | 〈aℓ, x〉 | ≤βℓ ∀ℓ ∈N

}
with βℓ :=

C
√

log(2ℓ)

Ex∼N(0,In )[‖x‖K ]

satisfies W ⊆ K . Here, C > 0 is a universal constant.

We want to emphasize that this result in Cor 9.26 is so tight that the body

satisfies Ex∼N(0,In )[‖x‖W ] ≤ O(1) ·Ex∼N(0,In )[‖x‖K ]. Even stronger, simply by ap-

plying a union bound over all the constraints defining W , one can derive that

E[‖X ‖W ] ≤O(1) ·Ex∼N(0,In )[‖x‖K ] for any subgaussian random vector X .

9.6 Subgaussian random variables and Talagrand’s Com-

parison Inequality

The reader should observe that many of the upper bounds on E[supt∈T X t ] which

we have seen so far, only use the tail bounds that we know for Gaussian ran-

dom variables X t . This applies for example to the upper bound in Lemma 9.7,

Dudley’s Inequality (Theorem 9.21) or Theorem 9.23. In turn this means that the

same bounds would apply to any “non-Gaussian” random variables as long as

these satisfy Gaussian tail bounds. At this point we recommend the reader to

review the subgaussian norm introduced in Section 3.4.

For example we can use Dudley’s bound or Talagrand’s bound (Theorem 9.23)

to upper bound E[supt∈T X t ] in terms of the ‖ · ‖ψ2 -norms. But often this is still
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tedious! Amazingly we can simply upper bound E[supt∈T X t ] by the value of a

dominating Gaussian process.

Theorem 9.27 (Talagrand’s Comparison Inequality). Let (X t )t∈T be a mean-zero

random process and let (Yt )t∈T be a Gaussian random process. Assume that

‖Xs −X t‖ψ2 ≤ E[|Ys −Yt |2]1/2 ∀s, t ∈T

Then

E

[
sup
t∈T

X t

]
≤C ·E

[
sup
t∈T

Yt

]

for a universal constant C > 0.

Proof. We abbreviate dX (s, t ) := ‖Xs−X t‖ψ2 and dY (s, t ) := E[|Ys−Yt |2]1/2 for s, t ∈
T . First we make the observation that the proof in Theorem 9.23 only uses tail

bounds for Gaussians and applies as well to the random process (X t )t∈T , mean-

ing that E[supt∈T X t ] ≤ γ2(T,dX ). Next, the assumption tells us that dX (s, t ) ≤
dY (s, t ) for all s, t ∈ T and so by monotonicity we have γ2(T,dX ) ≤ γ2(T,dY ). Fi-

nally Talagrand’s Majorizing Measure Theorem [Tal87] shows that up to a con-

stant factor, γ2(T,dY ) is also a lower bound on E[supt∈T Yt ]. We summarize this

to

E

[
sup
t∈T

X t

]
Theorem 9.23

≤ C1 ·γ2(T,dX )
monotonicity

≤ C1 ·γ2(T,dY ) ≤C1C2 ·E
[

sup
t∈T

Yt

]

for some constants C1,C2 > 0.

We would like to point out that this is an incredibly powerful principle. While

we will only see two such application of Talagrand’s Comparison Inequality here,

the book of Vershynin [Ver19] has several more.

9.6.1 The inequality of Maurey and Pisier

We prove a variant of an inequality due to Maurey and Pisier [MP76].

Theorem 9.28 (Maurey-Pisier). There is a universal constant C > 0 so that the

following holds: For any symmetric convex body K ⊆R
n one has

E
x∼{−1,1}n

[‖x‖K ] ≤C · E
y∼N(0,In )

[‖y‖K ].

Proof. We note that for any vector b ∈ R
n and some constant C0 > 0 one has

‖〈b, x〉‖ψ2 ≤C0‖b‖2 (where x ∼ {−1,1}n) as one can easily derive from Lemma 3.17.
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We can write K = {x ∈ R
n | 〈ai , x〉 ≤ 1 ∀i ∈ T } for some index set T . Consider the

mean zero random processes (Xi )i∈T with Xi := 〈ai , x〉 and x ∼ {−1,1}n as well

as the Gaussian process (Yi )i∈T with Yi := 〈C0ai , y〉 and y ∼ N (0, In ). Then for

indices i , j ∈ T we have

‖Xi −X j ‖ψ2 = ‖〈ai −a j , x〉‖ψ2 ≤C0‖ai −a j‖2 = E[|Yi −Y j |2]1/2

Then by Talagrand’s Comparison Inequality (Theorem 9.27) we have

E
x∼{−1,1}n

[‖x‖K ] = E
x∼{−1,1}n

[
sup
i∈T

〈ai , x〉
]

≤ C1 E
y∼N(0,In )

[
sup
i∈T

〈C0ai , y〉
]

= C0C1 E
y∼N(0,In )

[‖y‖K ]

9.7 Concentration for Gaussian Random Matrices

The goal for remainder of this chapter is to prove the tight bound of Dvoretzky’s

Theorem. The key tool is a very tight — and very flexible — deviation inequal-

ity for random matrices. We write N m×n (0,1) as the distribution over Gaussian
random matrices A ∈R

m×n where all entries are drawn as Ai j ∼ N (0,1) indepen-

dently. Recall that a set T is symmetric if −T = T .

Theorem 9.29. Let K ⊆ R
m be a symmetric convex body with 1

b B m
2 ⊆ K and let

A ∼ N m×n (0,1) be Gaussian random matrix. For any symmetric set T ⊆ R
n one

has

E

[
sup
x∈T

∣∣∣‖Ax‖K −E

[
‖Ax‖K

]∣∣∣
]
≤O(b) ·g (T )

Proof. By scaling K and T we may assume that b = 1 and so B m
2 ⊆ K . For x ∈ R

n

we define the random variable

Xx := ‖Ax‖K −E[‖Ax‖K ]

The claim is that E[supx∈T |Xx |] ≤O(g (T )). We note that (Xx )x∈T is not a Gaussian

process, but at least E[Xx ] = 0 for all x . Moreover, we should explain why each

random variable Xx is sub-gaussian. As B m
2 ⊆ K we know that the map y 7→ ‖y‖K

is 1-Lipschitz and for a fixed vector x ∈ R
n we know that Ax ∼ ‖x‖2N (0, Im ).

Then by Theorem 3.10 this means that in our recently developed notation one

has
∥∥‖Ax‖K

∥∥
ψ2

≤C‖x‖2 for some constant C > 0.

Now back to the actual proof. We will compare the mean-zero random pro-

cess (Xx )x∈T and with the canonical Gaussian process (Yx )x∈T defined by Yx :=
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C · 〈g , x〉 where g ∼ N (0, In ) and C is a large enough constant. Assuming that we

can indeed prove that

‖Xx −X y‖ψ2

to prove!
≤ C‖x − y‖2 = E

[
|Yx −Yy |2

]1/2 ∀x , y ∈R
n

then by Talagrand’s Comparison Inequality (Theorem 9.27) we can conclude that4

E

[
sup
x∈T

|Xx |
] Talagrand

≤ O(1)·E
[

sup
x∈T

|Yx |
]
=O(1)· E

g∼N(0,In )

[
sup
x∈T

| 〈g , x〉 |
]

T symmetric= O(g (T )).

The first step is to analyze the subgaussian norm of individual random variables

more carefully:

Claim I. Fix a ∈ R
m , s ≥ 0 and consider the random variable f (b) := ‖a + sb‖K

where b ∼ N (0, Im ). Then ‖ f (b)−E[ f (b)]‖ψ2 ≤O(s).
Proof of Claim I. By Theorem 3.10 it suffices to prove that the function f is s-

Lipschitz. And indeed for b,b ′ ∈R
m one has

| f (b)− f (b ′)| =
∣∣‖a + sb‖K −‖a + sb ′‖K

∣∣≤ s‖b −b ′‖K

Bm
2 ⊆K
≤ s‖b −b ′‖2

Next, we show the required claim for unit length vectors.

Claim II. For x , y ∈ Sn−1 one has ‖Xx −X y‖ψ2 ≤C‖x − y‖2 for a large enough con-
stant C > 0.
Proof of claim. Define u := x+y

2
and v := x−y

2
. We keep in mind that x = u+v , y =

u − v . Note that u ⊥ v and so Au ∼ ‖u‖2N (0, Im ) and Av ∼ ‖v‖2N (0, Im ) are

independent random vectors. In the following we write we write ‖ · ‖ψ2(Au) for

the subgaussian norm of a random variable where we have conditioned on the

outcome of5 Au. Then conditioning on any outcome of Au we have

∥∥‖Au + Av‖K −E[‖Au + Av‖K | Au]
∥∥
ψ2(Au)

a:=Au,
s:=‖v‖2 ,

b∼N(0,Im )=
∥∥‖a + sb‖k −E[‖a + sb‖K ]

∥∥
ψ2

Claim I
≤ O(‖v‖2)

Analogously we have

∥∥‖Au − Av‖K −E[‖Au − Av‖K | Au]
∥∥
ψ2(Au) ≤O(‖v‖2)

4Here we have the small technicality that we have | · | on the left hand side. That means we are

actually interested in the expected supremum of the random process (±Xx )x∈T . Using Talagrand

we can relate this to the expected supremum of the Gaussian process (±Yx )x∈T which is the same

as the expected supremum of (Yx )x∈T because we assumed that T is symmetric.
5Which does not mean that we have conditioned on the outcome of all of A.
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In fact the random variables Au + Av and Au − Av have identical distributions

(regardless whether we condition on Au) or not. Then using the triangle inequal-

ity (Lemma 3.17.(iii)) one has

∥∥‖Au + Av‖K −‖Au − Av‖K

∥∥
ψ2(Au)

=
∥∥∥
(
‖Au + Av‖K −E[‖Au + Av‖K | Au]

)
−

(
‖Au − Av‖K −E[‖Au − Av‖K | Au]

)∥∥∥
ψ2(Au)

Lem. 3.17.(iii)
≤

∥∥∥‖Au + Av‖K −E[‖Au + Av‖K | Au]
∥∥∥
ψ2(Au)

+
∥∥∥‖Au − Av‖K −E[‖Au − Av‖K | Au]

∥∥∥
ψ2(Au)

≤ O(‖v‖2)

Since this is true for every conditioning Au it must also hold unconditioned (one

can derive this easily from the definition of ψ2). Hence

∥∥‖Ax‖K −‖Ay‖K

∥∥
ψ2

=
∥∥‖Au + Av‖K −‖Au − Av‖K

∥∥
ψ2

≤O(‖v‖2) =O(‖x − y‖2)

which finishes Claim II.

Now we consider the case for arbitrary vectors x , y ∈ R
n . By symmetry we

may assume ‖x‖2 ≥ ‖y‖2. Also we have already argued that ‖Xx‖ψ2 ≤ O(‖x‖2)

which covers the case ‖y‖2 = 0. Then after scaling we may assume that ‖x‖2 ≥ 1

and ‖y‖2 = 1. We write x = s x̄ with s = ‖x‖2 and ‖x̄‖2 = 1. Then Xx = s ·X x̄ and so

‖Xx −X y‖ψ2 = ‖(s −1)X x̄ + (X x̄ −X y )‖ψ2

Lem. 3.17
≤ (s −1)‖Xx‖ψ2 +‖X x̄ −X y‖ψ2

≤ O(1) ·
(
(s −1)+‖x̄ − y‖2

)

= O(1) ·
(
‖x − x̄‖2︸ ︷︷ ︸
≤‖x−y‖2

+‖x̄ − y‖2︸ ︷︷ ︸
≤‖x−y‖2

)

≤ O(1) · ‖x − y‖2

0
x̄

x

y
Sn−1

That finishes the proof.

We would like to point out that this theorem can be proven not just for norms

but also for the more general class of positive-homogeneous, subadditive func-

tions. Again, see [Ver19] for details.
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9.8 The tight version of Dvoretzky’s Theorem

Recall that in Chapter 5 we have proven the following version fo Dvoretzky’s The-

orem:

Theorem (Theorem 5.6). Let K ⊆R
n be a symmetric convex body and let 0 < ε≤

1
2

. Then there exists a subspace V of dimension k :=Θ( ε2

log(1/ε)
log(n)) so that K∩V

is (1+ε)-spherical.

It turns out that the dependence on ε is not tight and with some work one can

remove the log(1/ε)-term. Now that we are closing in on the proof of Dvoretzky’s

Theorem we want to discuss how we actually generate a random k-dimensional

subspace F ⊆ R
n . In Chapter 5 we have typically selected a matrix U ∈ R

n×k so

that the columns are orthonormal. This had the benefit that F ∩ Sn−1 = {U x :

x ∈ Sk−1} are precisely the unit vectors in that subspace. On the other hand, the

machinery that we developed here only applies to random Gaussians. Hence we

want to draw a Gaussian random matrix A ∼ N n×k (0,1) and use the subspace

F := span{Ax | x ∈ R
k } spanned by the columns of A. Note that by rotational

symmetry this is again a uniform k-dimensional subspace. Consider the map

T : Rk →R
n with T (x) := 1

an
Ax where an := Ey∼N(0,In )[‖y‖2] ≈

p
n, see Lemma 1.1.

Then for each fixed x ∈ Sk−1 we have EA[‖T (x)‖2] = 1. While some deviation is

possible we will be able to argue that T (B k
2 ) is approximately Sn−1 ∩F .

First, we prove a little helper lemma:

Lemma 9.30. Let T : Rk →R
n be an linear map, let K ⊆R

n be a symmetric convex

body and let 0 < ε ≤ 1 and r > 0. Consider the subspace F := {T (x) | x ∈ R
k}. If

|‖T (x)‖K − r | ≤ εr ∀x ∈ Sk−1, then (1−ε)r · (K ∩F ) ⊆ T (B k
2 ) ⊆ (1+ε)r · (K ∩F ).

Proof. After scaling assume r = 1. By convexity, for the 2nd inclusion it suffices to

prove that T (Sk−1) ⊆ (1+ε)K . And indeed for x ∈ Sk−1 one has ‖T (x)‖K ≤ (1+ε) by

assumption. Now suppose that there is a y ∈ F with ‖y‖K < 1−ε and y ∉ T (B k
2 ).

We can scale y down until y ∈ ∂T (B k
2 ) and still ‖y‖K < 1− ε. But if y lies on

the boundary of T (B k
2 ) then also y ∈ T (Sk−1). Again the assumption tells us that

|‖y‖K −1| ≤ ε which is a contradiction.

Lemma 9.31. There is a constant c0 > 0 so that for n ∈N and ε> 0 and k ≤ c0ε
2n

the following holds: Draw A ∼ N n×k (0,1) and consider the map T : Rk →R
n with

T (x) := 1
an

Ax and F := span{Ax : x ∈R
k}. Then

Pr
[

(1−ε) · (B n
2 ∩F ) ⊆ T (B k

2 ) ⊆ (1+ε)(B n
2 ∩F )

]
≥ 0.99.
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1
an

A1

1
an

A2

T (B k
2 )

(1+ε) · (B n
2 ∩F )

Proof. We apply the Matrix Concentration Theorem 9.29 and

E

[
sup

x∈Sk−1

∣∣∣‖Ax‖2 −E[‖Ax‖2]︸ ︷︷ ︸
=an

∣∣∣
]
≤O(1) ·g (Sk−1)︸ ︷︷ ︸

=ak

≤O(
p

k)

Then dividing by an and choosing the constant c0 small enough gives

E

[
sup

x∈Sk−1

∣∣∣‖Ax‖2

an
−1

∣∣∣
]
≤O(

p
k/n) ≤

ε

100

Then with probability at least 0.99 one has

sup
x∈Sk−1

∣∣∣‖Ax‖2

an
−1

∣∣∣≤ ε (∗)

Using Lemma 9.30 this then shows the claim.

Now we come to the tight version of Dvoretzky’s theorem which was proven

first by Gordon.

Theorem 9.32 (Gordon [Gor85]). Let ε > 0. For every symmetric convex body

K ⊆R
n there is a subspace F ⊆R

n with dim(F ) = k =: Θ(ε2 log(n)) so that dBM (K∩
F,B k

2 ) ≤ 1+ε.

We already know that for any symmetric convex body K we can find aΩ(logn)-

dimensional 2-spherical section. Then after scaling it only remains to prove the

following:

Theorem 9.33. For a universal constant c0 > 0 the following holds: Let K be a

symmetric convex body with 1
2

B n
2 ⊆ K ⊆ 2B n

2 and let 0 < ε ≤ 1. Then there is a

subspace F ⊆R
n with dim(F ) = k := c0ε

2n so that

(1−ε) · (B n
2 ∩F ) ⊆ K ∩F ⊆ (1+ε) · (B n

2 ∩F )
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Proof. We draw a Gaussian random matrix A ∼ N k×n (0,1) and consider the sub-

space F := {Ax : x ∈R
k } spanned by the columns of A. Note that with probability

1 one has dim(F ) = k. We define a map T : Rk →R
n with T (x) := 1

an
Ax . Note that

for a fixed x ∈ Sk−1 one has EA[‖Ax‖K ] = Ey∼N(0,In )[‖y‖K ] = an ·Ey∼Sn−1[‖y‖K ] =
an ·M(K ). Then using Theorem 9.29 we get

E

[
sup

x∈Sk−1

∣∣∣‖Ax‖K −E

[
‖Ax‖K

]
︸ ︷︷ ︸
=an M(K )

∣∣∣
]
≤O(1) ·g (Sk−1)︸ ︷︷ ︸

=ak

Then by Markov’s inequality the left hand side expectation is at most 100 times

the right hand side with probability 99%. We fix a matrix A where this indeed

happens and the event from Lemma 9.31 happens. Then dividing by an gives

sup
x∈Sk−1

∣∣∣‖T (x)‖K −M(K )
∣∣∣≤O

( ak

an

)
=Θ

(p
k/n

)
≤

ε

3
M(K ) (∗)

using M(K ) ≥ 1/2 as K ⊆ 2B n
2 and using that k = c0ε

2n with a small enough con-

stant c0. Then combining (∗) with Lemma 9.30 we know
(
1−

ε

3

)
·M(K ) · (K ∩F ) ⊆ T (B k

2 ) ⊆
(
1+

ε

3

)
·M(K ) · (K ∩F ) (∗∗)

and from Lemma 9.31 we know that also
(
1−

ε

3

)
· (B n

2 ∩F ) ⊆ T (B k
2 ) ⊆

(
1+

ε

3

)
· (B n

2 ∩F ) (∗∗∗)

Combining (∗∗) and (∗∗∗) we obtain

1− ε
3

1+ ε
3︸ ︷︷ ︸

≥1−ε

·(B n
2 ∩F ) ⊆ M(K ) · (K ∩F ) ⊆

1+ ε
3

1− ε
3︸ ︷︷ ︸

≤1+ε

·(B n
2 ∩F )

as desired.

9.9 Exercises

Exercise 9.1.

Let T ⊆ R
n . Prove that if T is bounded, then for any ε> 0 there is a finite set T ′ ⊆ T with

g (T )−ε≤ g (T ′) ≤ g (T ).

Exercise 9.2.

Consider the Gaussian process X = (Xt )t∈N of independent Gaussians with E[X 2
t ]1/2 =

1p
1+log2(t )

).
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(a) Prove that E[supt∈N Xt ] is finite.

(b) Prove that Dudley’s upper bound is unbounded6.

(c) Give an admissible sequence which shows that γ2(X ) is finite.

Exercise 9.3.

Prove that for any symmetric set T ⊆ R
n and any symmetric convex body K ⊆ R

m one

has

E
A∼N m×n (0,1)

[
sup
x∈T

∣∣∣sup
y∈K

〈Ax , y〉− g (K ) · ‖x‖2

∣∣∣
]
≤O(g (T )) · radius(K )

Hint. Use Theorem 9.29.

Remark. This is known as “Two-sided Chevet’s Inequality” or “General Chevet Inequal-

ity”.

Exercise 9.4.

Let T ⊆ Sn−1 be a symmetric set and draw A ∼ N m×n where g (T ) ≤ C0
p

m for a small

enough constant C0. Then with probability at least 1/2 one has T ∩ker(A) =;.

Hint: Apply Theorem 9.29.

Remark: This is known as the “Escape through a Mesh Theorem”.

Exercise 9.5.

Let S ⊆ Sn−1 be a finite set of points. Let k := C0

ε2 log(|S|) for a large enough constant C0.

Show that for a Gaussian random matrix A ∼ N k×n(0,1) with probability at least 1/2 one

has (1−ε)ak‖x − y‖2 ≤ ‖Ax − Ay‖2 ≤ (1+ε)ak‖x − y‖2 for all x , y ∈ S.

Hint. Apply Theorem 9.29.

Remark. This is known as “Johnson-Lindenstrauss Lemma”.

Exercise 9.6.

Prove that for a large enough constant C the following holds: A random matrix A ∼
N m×n(0,1) with m ≥C n has 1

2

p
m ≤ σi (A) ≤ 2

p
m for all i ∈ [n] with probability at least

1/2.

Hint. Recall that σi (A) gives the i th largest singular value of A. In particular σ1(A) =
maxx∈Sn−1 ‖Ax‖2 and σn(A) =minx∈Sn−1 ‖Ax‖2. Use again Theorem 9.29.

6In the proof of Dudley’s upper bound we have made the assumption of a finite Gaussian

process but the bound indeed holds in the infinite case too.



Chapter 10

Volume distribution in convex bodies

and the isotropic position

In this chapter we will discuss the distribution of volume in a convex body. For

this sake we are introducing another “standard position” for a convex body where

we ask that the mass of a body is as normalized as possible. This position will turn

out to be helpful for many types of such volume considerations.

10.1 Introduction

Before we begin, recall that we say a body K is centered, if bary(K ) = Ex∼K [x] = 0.

The central definition is as follows:

Definition 10.1. A convex body K ⊆ R
n is in isotropic position, if the following 3

conditions are satisfied:

(I) Voln(K ) = 1.

(II) The barycenter of K is the origin.

(III) One has Ex∼K
[

x xT
]
=α · In for some α≥ 0.

Another way to see this is that if we sample x ∼ K uniformly, then the 1st and

2nd moment of x are identical to a scaled standard Gaussian. The constant α

from (III) is going to be of particular interest to us:

Definition 10.2. For a convex body K ⊆R
n that is in isotropic position we define

the isotropic constant as the number LK ∈R≥0 satisfying Ex∼K
[

x xT
]
= L2

K ·In . For

a convex body K that may not be in isotropic position we set LK := LT (K ) where

T is a volume-preserving affine map1 so that T (K ) is in isotropic position.

1Recall that T : Rn → R
n with T (x) := Ax +b with A ∈ R

n×n ,b ∈ R
n and |det(A)| = 1 is affine

and volume-preserving in the sense that that Voln(T (K ))= Voln(K ) for any measurable set K .

181
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We will see later in Sec 10.3 that the map T putting T (K ) in isotropic position

is unique up to rotations and so this definition is well-defined. It is worth noting

that for an isotropic convex body K one has LK = Ex∼K [‖x‖2
2]1/2

p
n

meaning that LK is

somewhat proportional to the average length of points in K . We will see that al-

ways LK ≥Ω(1) and LK is indeed minimized for the Euclidean ball (see Sec 10.4).

On the other hand, upper bounds on LK are a lot less understood. It is easy to

derive from John’s Theorem that at least for symmetric convex bodies one has

LK ≤ O(
p

n) and with a bit more work one can prove that LK ≤ O(n1/4 log(n)),

which is due to Bourgain (see Section 10.8). But it is indeed conjectured that a

constant upper bound on LK is possible. This can be phrased as a conjecture in

various different forms:

• Isotropic Constant Conjecture I. One has LK ≤ O(1) for any convex body

K .

• Isotropic Constant Conjecture II. For any convex body K ⊆R
n in isotropic

position and any direction y ∈ Sn−1 one has Ex∼K [〈x , y〉2] ≤O(1).

• Slicing Conjecture I. For any convex body K in isotropic position and any

direction θ ∈ Sn−1 one has Voln−1(K ∩θ
⊥) ≥Ω(1).2

• Slicing Conjecture II. For any centered convex body K with Voln(K ) = 1,

there exists at least one direction θ ∈ Sn−1 so that Voln−1(K ∩θ
⊥) ≥Ω(1).

θ
⊥

0

θ

K

We will later give formal statements and prove that in fact all these conjectures

are equivalent. The chapter will then close with a proof of Bourgain’s upper

bound of LK ≤ O(n1/4 log(n)); a key estimate that we need towards that goal is

that for any convex body K in isotropic position and any direction θ one has

Voln({x ∈ R
n | 〈x ,θ〉 ≥ t ·LK }) ≤ exp(−Θ(t )) for any t ≥ Θ(1). In particular from

this one can see that the isotropic constant LK controls how much volume non-

centered slices of K may contain.

2We abbreviate θ
⊥ := {x ∈R

n | x ⊥ θ} as the (n−1)-dimensional subspace that is orthogonal to

the vector θ.
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10.2 The basics

To get some intuition we want to discuss at least one concrete example. Con-

sider the cube K := [−1
2

, 1
2

]n which has Voln(K ) = 1 and is centered. Moreover

Ex∼K [x xT ] = α · In where α = Ex∼[− 1
2 , 1

2 ][x2] = 1
12

. Hence we know that K is in

isotropic position and LK = 1p
12

. Next we will formalize a claim that we made

earlier:

Lemma 10.3. If K ⊆R
n is in isotropic position then Ex∼K [‖x‖2

2] = nL2
K and Ex∼K [‖x‖2] ≤p

n ·LK .

Proof. Simply write

E
x∼K

[
‖x‖2

]2 Jensen
≤ E

x∼K

[
‖x‖2

2

]
= E

x∼K

[
Tr

[
x xT ]] linearity= Tr

[
E

x∼K

[
x xT ]

︸ ︷︷ ︸
=L2

K In

]
= L2

K n

where Jensen’s inequality applies as y 7→ y2 is a convex function.

We show a useful lemma which implies that in order to check isotropy of a

body it suffices to verify a 1-dimensional integral.

Lemma 10.4. Suppose that K ⊆ R
n is convex with bary(K ) = 0 and Voln(K ) = 1.

Then the following is equivalent:

• K is isotropic with constant LK .

• One has Ex∼K [〈x , y〉2] = L2
K ‖y‖2

2 for every y ∈R
n .

Proof. Abbreviate M := Ex∼K [x xT ]. Then Ex∼K [〈x , y〉2] = 〈M , y y T 〉. We can now

see that 〈M , y y T 〉 = L2
K ‖y‖2

2 ∀y ∈R
n iff M = L2

K In .

Phrased differently, for any convex body K in isotropic position, the random

variable 〈x , y〉 with x ∼ K has a standard deviation of exactly LK for any direction

y ∈ Sn−1. We want to restate the first two conjectures that we mentioned in the

introduction:

Conjecture 1 (Isotropic Constant Conjecture I). There is a universal constant C >
0 so that LK ≤C for any convex body K ⊆R

n .

Conjecture 2 (Isotropic Constant Conjecture II). There is an absolute constant
C > 0 so that every convex body K ⊆R

n in isotropic position satisfies

E
x∼K

[〈x , y〉2] ≤C 2 ∀y ∈ Sn−1
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Then from Lemma 10.4 we see that these two conjectures are equivalent and

indeed the best achievable values of C are the same in both.

10.3 Existence and uniqueness of isotropic position

It still remains to justify that any convex body K can be brought into isotropic

position and that the position is unique up to rotation.

Lemma 10.5. Let K ⊆R
n be a centered convex body. Then there exists a bijective

linear map T : Rn →R
n so that T (K ) is isotropic.

Proof. Consider the matrix M :=
∫

K x xT d x . Then by construction, M is symmet-

ric and positive definite and hence it has a square root M1/2 ≻ 0. Consider the

map T (x) := M−1/2x . Then we can verify that for every y ∈R
n one has

∫

T (K )
〈x , y〉2 d x = det(M−1/2)

∫

K
〈M−1/2x , y〉2

d x

= det(M−1/2)

∫

K
〈x xT , (M−1/2 y)(M−1/2 y)T 〉d x

= det(M−1/2) ·Tr
[

M M−1/2 y y T M−1/2
]
= det(M−1/2) · ‖y‖2

2

using an integral transformation. Then a scaling of T (K ) will be in isotropic po-

sition.

Next, we can prove that the isotropic position is unique up to orthogonal

transformations. In the same proof we will learn that the isotropic position arises

as a solution to a minimization problem. To be more precise, the isotropic posi-

tion will be the one that minimizes the average ‖ ·‖2
2-length of points in K .

Lemma 10.6. Let K ⊆R
n be a centered convex body with Voln(K ) = 1. Define

B(K ) := inf
{∫

T (K )
‖x‖2

2 d x |T : Rn →R
n linear map with |det(T )| = 1

}

Then a position K1 = T (K ) (with Voln(K1) = 1) is isotropic if and only if

∫

T (K )
‖x‖2

2 d x = B(K )

Moreover, if K1 and K2 are isotropic positions of K , then K2 = U (K1) for some

orthogonal transformation U : Rn →R
n .
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Proof. Let K1 be an isotropic position of K . Then
∫

K1
x xT d x = α · In for some

α > 0 and
∫

K1
‖x‖2

2d x = Tr[
∫

K1
x xT d x] = αn. We need to prove that no other

transformation could achieve a smaller value.

For this purpose, fix any linear map A : Rn → R
n with |det(A)| = 1 and esti-

mate that
∫

A(K1)
‖x‖2

2d x =
∫

K1

‖Ax‖2
2d x =

∫

K1

Tr
[

AT Ax xT ]
d x

linearity= α ·Tr[AT A] ≥αn

here we use that AT A is a symmetric PSD matrix with det(AT A) = 1 and so Tr[AT A] ≥
n by the arithmetic-geometric mean inequality. Moreover, the only case where

one has equality is if AT A = In which means that A is an orthogonal matrix. That

concludes the uniqueness proof.

We can also give an alternative variational argument. We restate the part of

the claim that we reprove:

Lemma 10.7. Suppose that K is a centered convex body with Voln(K ) = 1 and

the property that In is an optimum for the minimization problem. Then K is in

isotropic position.

Proof. Take any linear map A : Rn → R
n with det(A) = 1. Let ε > 0 be small

enough so that In + εA is invertible and consider the matrix B := In+εA

det(In+εA)1/n .

Then by minimality
∫

K
‖x‖2

2d x ≤
∫

K
‖B x‖2

2d x =
1

det(In +εA)2/n

∫

K
‖x +εAx‖2

2 d x

=
1

1+ 2ε
n Tr[A]+O(ε2)

∫

K

(
‖x‖2

2 +2ε〈x , Ax〉+O(ε2)
)
d x

Then rearranging, and comparing the derivative w.r.t. ε at ε = 0 (which makes

the O(ε2) terms disappear) we obtain

1

n
Tr[A] ·

∫

K
‖x‖2

2d x ≤
∫

K
〈x , Ax〉d x (∗)

Repeating the argument with −A we obtain that the inequality (∗) holds with

equality; after rearranging we obtain
∫

K
‖x‖2

2d x =
n

Tr[A]

∫

K
〈x , Ax〉d x =

n

Tr[A]
· 〈

∫

K
x xT d x , A〉

for all invertible linear maps A. The only way that the right hand side expression

is constant over all A is if
∫

K x xT d x = αIn for some α, which means K was in

isotropic position.
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The discussion above leads to an alternative characterization of LK (which

also could be used as a definition):

Lemma 10.8. Let K ⊆R
n be a convex body with bary(K ) = 0. Then

LK =
( 1

n
min

{
Ex∼T (K )[‖x‖2

2]

Voln(T (K ))2/n
| T bijective linear map

})1/2

Proof. Applying a linear transformation to K does obviously not change the right

hand side, hence we may as well assume that K is in isotropic position. Then by

Lemma 10.6 the minimum is attained for the identity T (x) = x . Then

( 1

n
E

x∼K
[‖x‖2

2]
)1/2 Cor 10.3=

( 1

n
·nL2

K

)1/2
= LK

as claimed.

This characterization is useful because for any centered convex body K ⊆R
n

and any linear map T with Voln(T (K )) = 1 we obtain an upper bound of LK ≤
Ex∼T (K )[‖x‖2

2]1/2

p
n

.

10.4 Lower and upper bounds on LK

Interestingly one can prove that the Euclidean ball is the body that minimizes the

isotropic constant and hence LK ≥Ω(1) for any convex body K .

Lemma 10.9. Every convex body K ⊆ R
n has LK ≥ LBn

2
≥ c, where c > 0 is an

absolute constant.

Proof. The isotropic constant LK is invariant under linear transformations, so

me may assume that K is in isotropic position. We pick r so that the ball B := r B n
2

has Voln(B) = 1. Note that also B is isotropic. Observe that Voln(K \ B) = Voln(B \

K ), but the vectors in K \ B are longer than the ones in B \ K .

0 B \ K

K \ B
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This insight alone implies the statement as “moving” mass from K \B to B \K can

only decrease the average ‖ ·‖2
2-length. More formally one can verify that

LK
K isotropic=

( 1

n

∫

K
‖x‖2

2d x
)1/2

=
( 1

n

∫

K∩B
‖x‖2

2d x +
1

n

∫

K \B
‖x‖2

2d x
)1/2

≥
( 1

n

∫

K∩B
‖x‖2

2d x +
1

n

∫

B\K
‖x‖2

2d x
)1/2 B isotropic= LB

We have already justfied earlier that LBn
2
≥ c for some universal constant c > 0.

In fact, there is no convex body K known where even LK > 1. We can obtain

a first rather weak upper bound on LK using John’s Theorem. Recall that dBM (K )

is the Banach-Mazur distance of a body to B n
2 .

Lemma 10.10. Let K ⊆ R
n be a centrally symmetric convex body. Then LK ≤

O(dBM (K )) ≤O(
p

n).

Proof. Apply a linear transformation to K so that Voln(K ) = 1 and r B n
2 ⊆ K ⊆

r dBM (K )B n
2 . Clearly r ≤Θ(

p
n) because Voln(Θ(

p
n) ·B n

2 ) = 1. We cannot guaran-

tee that K is now in isotropic position, but still by Lemma 10.8 we can obtain an

upper bound of

LK ≤
( 1

n
E

x∼K
[‖x‖2

2]
)1/2

≤
( 1

n
(r ·dBM (K ))2

)1/2
≤O(dBM (K ))

One can prove that in order to solve the isotropic constant conjecture one

can restrict the attention to symmetric bodies. The proof is a bit more involved

and we simply state the result which uses a construction of Keith Ball:

Theorem 10.11. For every convex body K ⊆R
n , there exists a centrally symmetric

convex body Q ⊆R
n so that LK ≤C ·LQ where C > 0 is a universal constant.

10.5 Moments of Inertia and maximal hyperplane sec-

tions

Let K ⊆ R
n be a centered convex body with Voln(K ) = 1. We define the matrix of

inertia of K as

MK := E
x∼K

[
x xT ]
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Then MK is a positive definite matrix by construction and hence there is a pos-

itive definite square root M1/2
K . As usually we also denote MK and M−1/2

K as the

linear maps that are described by the matrices MK and M−1/2
K . We define the

Binet ellipsoid of K as

EB (K ) := M−1/2
K (B n

2 ) = {M−1/2
K x | x ∈B n

2 }

Then the norm induced by that ellipsoid satisfies

‖y‖EB (K ) = ‖M1/2
K y‖2 = (y T MK y)1/2 =

(
E

x∼K

[
〈x , y〉2

])1/2

This means that for any y ∈ Sn−1, the standard deviation of the random variable

〈x , y〉 with y ∼ K is given by ‖y‖EB (K ). From what we know already it follows that:

Corollary 10.12. Let K ⊆ R
n be a centered convex body. Then K is in isotropic

position if and only if EB (K ) = L−1
K ·B n

2 .

Geometrically one may imagine that EB (K ) behaves “inverse proportionally”

to K :

K 0

EB (K ) = 1
LK

B n
2

K in isotropic pos.

0

EB (K )

K not in isotropic pos.

As we mentioned earlier, a linear map T : Rn → R
n with |det(T )| = 1 is volume

preserving. We will now prove that Voln(EB (K )) = Voln(EB (T (K )) by showing that

EB (K ) is a function of the isotropic constant LK .

Lemma 10.13. Let K ⊆R
n be a centered convex body with Voln(K ) = 1. Then

Voln(EB (K )) = Voln(B n
2 ) ·L−n

K

Proof. One can easily check that for any bijective linear map A : Rn → R
n , the

matrix of inertia changes as MA(K ) = AMK AT when applying a linear transfor-

mation. Then let A be the map with |det(A)| = 1 so that A(K ) is in isotropic po-

sition and so EB (A(K )) = L−1
K B n

2 . We know that MA(K ) = AMK AT , but these two
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matrices have identical determinant. Then

L−n
K Voln(B n

2 )
A(K ) in isot. pos= Voln(EB (A(K )))

Vol. of ellipsoid= Voln(B n
2 ) · |det(MA(K ))|−1/2

= Voln(B n
2 ) · |det(MK )|−1/2

Vol. of ellipsoid= Voln(EB (K ))

We can now derive that every convex body has a “thin direction” depending

on its isotropic constant. Interestingly for this statement, the body K does not

need to be in isotropic position.

Lemma 10.14. Let K ⊆ R
n be a centered convex body with Voln(K ) = 1. Then

there exists a direction y ∈ Sn−1 so that

E
x∼K

[
〈x , y〉2

]
≤ L2

K

0

y

K

Proof. Recall that for a symmetric convex body Q, the radius in direction y is

denoted by ρQ (y) = max{r ≥ 0 | r y ∈ Q}. Integrating in polar coordinates (see

Lem 1.46) gives

E
y∼Sn−1

[
‖y‖−n

Q

]
= E

y∼Sn−1

[
ρQ (y)n]

=
Voln(Q)

Voln(B n
2 )

Applying this to the symmetric convex body EB (K ) gives

E
y∼Sn−1

[
‖y‖−n

EB (K )

] integrating in
polar coord=

Voln(EB (K ))

Voln(B n
2 )

Lem 10.13= L−n
K

Hence there must be at least one vector y∗ ∼ Sn−1 where indeed ‖y∗‖EB (K ) ≤ LK .

We discussed earlier that ‖y∗‖EB (K ) = Ex∼K [〈x , y〉2]1/2 which proves the claim.

In the proof we used an average argument over an inverse quantity. And indeed

for a long and skinny body such as K := [− 1
2N , 1

2N ]×[ N
2

, N
2

] almost all of the vectors

y will have Ex∼K [〈x , y〉2] ≫ L2
K .

We want to eventually prove that for a convex body in isotropic position, ev-

ery slice K ∩θ
⊥ has the same volume — up to a constant factor. For this goal, we

need a couple of technical estimates.
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10.6 The Maximum of Log concave functions

Next we show an important inequality that relates the maximum of a log concave

function with its bary center. Recall that a function f : Rn → [0,∞[ is centered if∫
Rn x · f (x)d x = 0.

Theorem 10.15 (Fradelizi). Let f : Rn → [0,∞[ be a centered log-concave func-

tion. Then sup{ f (x) : x ∈R
n} ≤ en · f (0).

Proof. Let us scale the function so that
∫
Rn f (x)d x = 1. Then we can interpret f

as the density function of some distribution µ. Note that the property that f is

centered means that Ey∼µ[x] = 0. We will show that for a fixed x∗ ∈R
n one has

ln( f (x∗))
(∗)
≤ E

x∼µ

[
ln( f (x))

]
+n

(∗∗)
≤ ln( f (0))+n

In fact, we can see (∗∗) from

E
x∼µ

[
ln( f (x))

] Jensen
≤ ln

(
f
(
E

x∼µ
[x]

︸ ︷︷ ︸
=0

))
= ln( f (0))

where we apply Jensen inequality with the fact that ln( f (x)) is concave. Recall

that for a concave function g (x) := ln( f (x)) we always have the upper bound

g (x∗) ≤ g (x)+〈x∗−x ,∇g (x)〉.

g (·) = ln( f (·))

R
n

x∗x

g (x)+〈·−x ,∇g (x)〉

Then averaging over x gives (∗) as

ln( f (x∗)) ≤ E
x∼µ

[
ln( f (x))

]
+ E

x∼µ

[
〈x∗−x ,∇g (x)〉

]

︸ ︷︷ ︸
(∗∗∗)

It remains to show that (∗∗∗) = n. Recall that ∇g (x) = ∇ f (x)

f (x)
. Then switching

from the average to the integral view gives

(∗∗∗) =
∫

Rn
f (x)〈x∗−x ,

∇ f (x)

f (x)
〉d x =

∫

Rn
〈x∗,∇ f (x)〉d x

︸ ︷︷ ︸
=0

−
∫

Rn
〈x ,∇ f (x)〉d x

︸ ︷︷ ︸
=−n

= n
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Here we use the following:

Claim. Let f : Rn → [0,∞[ be an integrable function with lim‖x‖2→∞ ‖x‖2
2 f (x)d x =

0 and
∫
Rn f (x)d x = 1. Then

∫
Rn 〈x ,∇ f (x)〉d x =−n.

Proof of Claim. First consider a 1-dimensional function h : R→R≥0 with lim|x|→∞ |x·
h(x)| = 0 (i.e. quickly decaying). Integration by parts gives

∫
x ·h′(x)d x = x ·h(x)−∫

h(x)d x. So ∫

R

x ·h′(x)d x = [x ·h(x)]∞−∞︸ ︷︷ ︸
=0

−
∫

R

h(x)d x.

Now consider the function f . Then

∫

Rn
〈x ,∇ f (x)〉d x =

∫

Rn

( n∑

i=1

xi
∂

∂xi
f (x)

)
d x

=
n∑

i=1

∫

Rn−1

(∫

R

xi ·
∂

∂xi
f (x)d xi

)

︸ ︷︷ ︸
=−

∫
R

f (x)dxi

d x−i =−n

∫

Rn
f (x)d x =−n

where x−i ∈R
n−1 is the vector x without the i th entry.

We can now get a nice application out of this theorem. If we take (n − 1)-

dimensional slices of an arbitrary convex body, then the maximum volume slice

might not go though the barycenter — but one can prove that no slice is more

than a constant factor larger than the one through the barycenter.

Lemma 10.16. Let K ⊆ R
n be a centered convex body with Voln(K ) = 1. Fix a

direction θ ∈ Sn−1 and consider the function f (t ) := Voln−1(K ∩ {x ∈ R
n | 〈x ,θ〉 =

t }). Then for all t ∈R one has f (t ) ≤ e · f (0).

0 K

max. volume slice slice through barycenter

Proof. By Brunn’s Concavity Principle, the function f is log-concave. Moreover,

as K is centered, also f is centered. Then applying Theorem 10.15 with n = 1

gives f (t ) ≤ e · f (0) for all t ∈R.

Now we can summarize a few useful properties of log concave distributions:
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Theorem 10.17 (Properties of Log-Concave Distributions on R). Let X be an R-

valued continuous random variable with E[X ] = 0 so that the density function f :

R→ [0,∞[ is log-concave. Then the following holds for some universal constants

C1,C2 > 0:

(A) One has Pr[X ≥ 0] ≥ 1
e .

(B) One has f (t ) ≤ 6 f (0) ·2−|t |· f (0)/2 for any t ∈R.

(C) The standard deviation of X satisfies C1

f (0)
≤ E[X 2]1/2 ≤ C2

f (0)
.

(D) For any λ≥ 0 one has Pr[|X | ≥λ · 2
f (0)

] ≤ 40 ·2−λ.

Proof. Claim (A). The claim is already shown in the proof of Grünbaum’s Lemma

(Lemma 1.38).

Claim (B). By symmetry it suffices to consider the case t ≥ 0. Fix a value s >
0 so that f (s) = 1

2
f (0) (after a small perturbation, f would be continuous and

such a value exists). In particular f (t ) ≥ 1
2

f (0) for 0 ≤ t ≤ s and hence s ≤ 2
f (0)

as
∫
R

f (t )d t = 1. On the other hand, f is log concave and so for t > s one has
1
2

f (0) = f (s) ≥ f (0)1−s/t f (t )s/t which can be rearranged to f (t ) ≤ f (0) · 2−t/s ≤
f (0) ·2−t · f (0)/2.

t

ff (0)

f (0) ·2−t/s

s

1
2

f (0)

For 0 ≤ t ≤ s we use the estimate f (t ) ≤ 3 f (0) from Fradelizi’s Theorem (Theo-

rem 10.15). Both cases are dominated by the upper bound f (t ) ≤ 6 f (0)·2−t · f (0)/2.

Claim (C). Again we use the upper bound ‖ f ‖∞ ≤ 3 f (0) from Fradelizi’s Theorem

(Theorem 10.15). This implies that Pr[|X | ≥ 1
12 f (0)

] ≥ 1− 2‖ f ‖∞
12 f (0)

≥ 1
2

. Then we can

lower bound the standard deviation as E[X 2]1/2 ≥ ( 1
2
· 1

(12 f (0))2 )1/2 ≥ 1
24 f (0)

. For the

upper bound we use the exponential decay from (B) to derive that

E[X 2] =
∫∞

−∞
t 2 f (t )d t

(B)
≤ 2·6 f (0)

∫∞

0
t 2·2−t · f (0)/2d t = 12 f (0)·

16

ln(2)3
·

1

f (0)3
≤

600

f (0)2

Claim (D). By symmetry it suffices to prove that Pr[X ≥ λ 2
f (0)

] ≤ 20 ·2−λ. We ab-

breviate s := λ 2
f (0)

. Then

Pr[X ≥ t ] =
∫∞

s
f (t )d t

(B)
≤ 6 f (0) ·

∫∞

s
2−t · f (0)/2d t =

2 ·6
ln(2)

·2−s f (0)/2 ≤ 20 ·2−λ



10.7. SLICES OF ISOTROPIC BODIES 193

10.7 Slices of isotropic bodies

Now we can prove that for a convex body in isotropic position, every slice though

the origin has approximately the same volume of Θ( 1
LK

). Recall that we abbrevi-

ate θ
⊥ = {x ∈R

n : x ⊥ θ} as the (n −1)-dimensional subspace orthogonal to θ.

Theorem 10.18. Let K ⊆R
n be an isotropic convex body. Then for every direction

θ ∈ Sn−1 one has
c1

LK
≤ Voln−1(K ∩θ

⊥) ≤
c2

LK

where c1,c2 > 0 are absolute constants.

Proof. We fix a body K in isotropic position and a direction θ and abbreviate

f (t ) := Voln−1({x ∈ K | 〈x ,θ〉 = t }) as the function that gives the volume of the

slices in direction θ. Recall that f is log concave. Consider the random variable

〈x ,θ〉 for x ∼ K which has f as density function. Then

LK = E
x∼K

[
〈x ,θ〉2

]1/2 Thm 10.17.(C)
∈

[ C1

f (0)
,

C2

f (0)

]

Rearranging gives the claim.

This brings us to the following conjecture (also called the Slicing Problem or

the Hyperplane Conjecture):

Conjecture 3 (Slicing Conjecture I). For every convex body K ⊆ R
n in isotropic

position and any direction θ ∈ Sn−1 one has

Voln−1(K ∩θ
⊥) ≥C1

where C1 > 0 is a universal constant.

Conjecture 4 (Slicing Conjecture II). For every convex body K ⊆R
n with Voln(K ) =

1 and bary(K ) = 0, there exists a direction θ ∈ Sn−1 so that

Voln−1(K ∩θ
⊥) ≥C2

where C2 > 0 is a universal constant.

We will now show these conjectures are equivalent:

Lemma 10.19. Isotropic Constant Conjecture I ⇔ Slicing Conjecture I ⇔ Slicing

Conjecture II.
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Proof. We prove the equivalences in several steps:

Claim. Isotropic Constant Conjecture I ⇔ Slicing Conjecture I.

Proof of Claim. From Theorem 10.18 we know that for a convex body K in isotropic

position one has Voln−1(K ∩θ
⊥) =Θ( 1

LK
) for every θ ∈ Sn−1.

Claim. Slicing Conjecture II ⇒ Slicing Conjecture I.

Proof of Claim. Suppose K is in isotropic position. Then by Slicing Conjecture II

there is one direction θ with Voln−1(K ∩θ
⊥) ≥Ω(1). Then by Theorem 10.18 we

know that this holds for every slice.

Claim. Isotropic Constant Conjecture I ⇒ Slicing Conjecture II.

Proof of Claim. Let K be any centered convex body with Voln(K ) = 1. Then by

Lemma 10.14 there is a direction θ ∈ Sn−1 with Ex∼K [〈x ,θ〉2] ≤ L2
K . Again con-

sider the function f (t ) := Voln−1({x ∈K | 〈x ,θ〉 = t }) which is the density function

of the random variable 〈x ,θ〉 where x ∼ K . Then

C1

f (0)

Thm 10.17.(C )
≤ E

x∼K

[
〈x ,θ〉2

]1/2 ≤ LK

Rearranging gives f (0) ≥Ω( 1
LK

) and the claim follows.

10.8 Bourgain’s upper bound for the isotropic con-

stant

The best bounds known on the quantity LK are O(n1/4 ln(n)) due to Bourgain

and O(n1/4) due to Klartag as well as a very recent bound of Chen [Che20] which

shows that LK ≤ no(1). We will prove the weaker bound of Bourgain; here in the

exposition we will follow the simple proof of Dar. First, we need an estimate

about the distribution of volume:

Lemma 10.20. There is a constant C > 0 so that the following holds: Let K ⊆ R
n

be an isotropic convex body. For a direction θ ∈ Sn−1 one has

Pr
x∼K

[
| 〈x ,θ〉 | ≥λ ·C ·LK

]
≤ 40 ·2−λ

for all λ≥ 0.

Proof. For a fixed direction θ ∈ Sn−1 we can consider the random variable X :=
〈x ,θ〉 with x ∼ K and its log concave density function f (t ) := Voln−1({x ∈ K |
〈x ,θ〉 = t }). By isotropy of K and Theorem 10.17.(C) we have LK = E[X 2]1/2 ∈
[ C1

f (0)
, C2

f (0)
]. Then by Theorem 10.17.(D) we get

Pr
[
|X | ≥λ

2

C1
LK

]
≤ Pr

[
|X | ≥λ

2

f (0)

]
Thm 10.17.(D)

≤ 40 ·2−λ
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This can be understood that for any isotropic convex body and any direction

θ, at least 99.9% of the volume lies within a slab of width O( 1
LK

). We would like

to point out that the concentration from Lemma 10.20 is tight, at least when one

requires it to hold for every direction θ. To see this, consider K :=Θ(n) ·B n
1 where

the constant is chosen so that Voln(K ) = 1. Then Lk =Θ(1) as one can verify and

the decay in any of the standard basis directions θ ∈ {e1, . . . ,en} decays as in the

statement of the Lemma. That being said, for a random direction θ the decay

would be a lot stronger. There is a rather simple consequence of this lemma.

Corollary 10.21. Let K ⊆R
n be an isotropic convex body and let θ1, . . . ,θN ∈ Sn−1

be directions. Then

E
x∼K

[
max

i=1,...,N
| 〈θi , x〉 |

]
≤O(LK ln(N )).

Proof. For each i ∈ [N ] and k ≥ 1 one has Pr[| 〈θi , x〉 | ≥ kC ′ ln(N )] ≤ 1
Nk for some

constant C ′ > 0. Then apply union bound and sum up contributions for k ≥ 1.

The calculation is very similar to Lemma 3.17.(i) and we omit the details.

We need a decomposition argument that is similar to the one from Dudley’s

Theorem from Chapter 9.

Theorem 10.22 (Dudley-Fernique Decomposition). Let K ⊆R
n be a convex body

with 0 ∈ K and let r > 0 be a parameter. Let m be so that K ⊆ r 2m ·B n
2 . Then for

all j ∈ {1, . . . ,m} there are sets Z j ⊆ 3r ·2 j ·B n
2 of cardinality

|Z j | ≤ exp
(
O(n) ·

(w(K )

r 2 j

)2)

so that the following holds: for every x ∈K , there is a decomposition x = w +z1+
. . .+ zm where z j ∈ Z j and ‖w‖2 ≤ 2r .

Proof. By Sudakov’s Theorem (Theorem 4.12), we can cover K with balls of radius

2 j r where the centers N j ⊆ K satisfy |N j | ≤ exp(O(n) · ( w(K )

2 j r
)2). Here one can

choose Nm = {0}. For j ≥ 1, we define

Z j := (N j −N j+1)∩ (3r 2 j B n
2 )

as the set of difference vectors between step j and j − 1 that are short enough.

After adapting the constant, we still have |Z j | ≤ exp(O(n) · ( 1
r 2 j ·w(K ))2). Now fix
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x ∈ K . Let y j ∈ N j be the point with ‖x−y j ‖2 ≤ r ·2 j . Setting z j := y j −y j+1 where

ym+1 := 0 and w := x − y1 gives a decomposition of

x = (x − y1)︸ ︷︷ ︸
=w

+ (y1 − y2)︸ ︷︷ ︸
=z1

+ (y2 − y3)︸ ︷︷ ︸
=z2

+ . . .+ (ym − ym+1)︸ ︷︷ ︸
=zm

K
0

rs rs

rs

rs rs

rs rs

rs

rs rs

rs rsrs xy2 y1

z2
z1 w

Visualization for m = 2

Note that indeed ‖w‖2 ≤ 2r and ‖z j‖2 ≤ ‖x − y j‖2 +‖x − y j+1‖2 ≤ r · (2 j +2 j+1) ≤
3r ·2 j so that z j ∈ Z j .

Now we can give the result of Bourgain, where we use the proof of Dar:

Theorem 10.23 (Bourgain). Let K ⊆R
n be a convex body. Then LK ≤O(n1/4 ln(n)).

Proof. Wl.o.g. assume that K is in isotropic position. Let T : Rn → R
n be the vol-

ume preserving linear map from the ℓℓ◦-estimate from Chapter 6, which means

that w(T (K )) ≤O(
p

n log(n)) and Voln(T (K )) = 1. Recall that the underlying ma-

trix T can be chosen to be symmetric and positive definite. As K itself is in

isotropic position we have Ex∼K [x xT ] = L2
K In . Then

E
x∼K

[
max

y∈T (K )
〈x , y〉

]
≥ E

x∼K
[〈x ,T x〉] = 〈 E

x∼K
[x xT ]

︸ ︷︷ ︸
=L2

K In

,T 〉 = L2
K ·Tr[T ] ≥ L2

K n (∗)

where we use that det(T ) = 1⇒ Tr[T ] ≥ n.

We can apply the Dudley-Fernique Decomposition from Theorem 10.22 to the

body T (K ) with a parameter r > 0 that we determine later. We will use that every

vector y ∈ T (K ) can be decomposed into y = w + z1 + . . .+ zm where ‖w‖2 ≤ 2r
and z j ∈ Z j with ‖z j‖2 ≤ 3r ·2 j and |Z j | ≤ exp(O(n) ·( w(T (K ))

r 2 j )2). For a vector z , we

abbreviate z̄ := z
‖z‖2

as his normalization. Then we can continue the bound from
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(∗) to

L2
K n ≤ E

x∼K

[
max

y∈T (K )
〈x , y〉

]
≤

m∑

j=1

E
x∼K

[
max
z∈Z j

〈z , x〉
]
+ E

x∼K

[
max

‖w‖2≤2r
〈w , x〉

]

≤
m∑

j=1

3r ·2 j
E

x∼K

[
max
z∈Z j

〈z̄ , x〉
]

︸ ︷︷ ︸
bound by Cor 10.21

+2r · E
x∼K

[‖x‖2]

︸ ︷︷ ︸
≤
p

nLK by Lem 10.3

≤
m∑

j=1

3r ·2 j ·O(LK ln(|Z j |))+2r
p

nLK

≤
m∑

j=1

3r 2 j LK ·O(n) ·
( w(T (K ))

r 2 j

)2
+2r

p
nLK

≤
O(n2 log2(n))

r
LK

m∑

j=1

2− j

︸ ︷︷ ︸
≤1

+2r
p

nLK

We divide the obtained relation by LK n and choose r := n3/4 log(n) to balance the

terms and get

LK ≤
O(n log2(n))

r
+

2r
p

n
≤O(n1/4 log(n))

Gaussian tails. It is also possible to obtain concentration with Gaussian-type

tails for volumes in isotropic bodies, not just the exponential tails as in Lemma 10.20.

We state the result without proof:

Lemma 10.24. For any convex body K ⊆R
n in isotropic position one has

Voln
({

x ∈ K | ‖x‖2 ≥C
p

nLK ·λ
})

≤ 2e−λ2

for any λ≥ 0, where C > 0 is a universal constant.
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Chapter 11

Projections and sections of cubes

We have met cubes B n
∞ as fundamental, yet very simple convex bodies. It turns

out that projections and sections of cubes have interesting properties that we

want to discuss in this chapter.

11.1 Introduction to zonotopes

Given vectors a1, . . . , am ∈R
n , the set

K := conv{−a1,+a1}+ . . .+conv{−am ,+am} =
{ m∑

i=1

λi ai : λ1, . . . ,λm ∈ [−1,1]
}

is called a zonotope. The 1-dimensional parts conv{−ai ,+ai } are called the seg-
ments defining the zonotope. In our definition, a zonotope is always a compact

symmetric convex set. The easiest zonotope is certainly the cube B n
∞ itself. Here

is a zonotope in R
2 defined by 3 segments:

0

a3

a1
a2

K

More generally, a zonoid is any body that can be arbitrarily well approximated

by zonotopes. Formally speaking a symmetric convex body K ⊆ R
n is a zonoid

if there is a sequence {Kt }t∈N of zonotopes so that limt→∞ dH (K ,Kt ) = 0 where

199
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dH is the Hausdorff metric (see Chapter 1.3). It turns out that for all p ≥ 2, the

balls B n
p are zonoids while for 1 ≤ p < 2, the balls B n

p are not zonoids. For more

fascinating details on zonotopes and zonoids we refer to the article of Bourgain,

Lindenstrauss and Milman [BLM89].

Recall that the support function hK : Rn → R of a convex body K is hK (a) :=
supx∈K 〈a, x〉. We will see that the support function of zonotopes has a neat

expression. For this it will be notationally convinient to think of the vectors

a1, . . . , am as the rows of a matrix A ∈R
m×n .

Lemma 11.1. Consider the zonotope K = {
∑m

i=1
yi Ai | y ∈ [−1,1]m} where A ∈

R
m×n . Then the support function is hK (x) = ‖Ax‖1 for all x ∈R

n .

Proof. We verify that

hK (x) = max
{ m∑

i=1

yi 〈Ai , x〉 : yi ∈ [−1,1]
}
=

m∑

i=1

| 〈Ai , x〉 | = ‖Ax‖1

If we consider the linear map T : Rm →R
n with T (y)= AT y then the zonotope

K = {
∑m

i=1
yi Ai | y ∈ [−1,1]m} is of the form K = T (B m

∞), which means that one can

think of zonotopes as projections of cubes. Note that here “projection” does not

necessarily mean “orthogonal projection”.

We want to at least prove that B n
2 is a zonoid. In fact, we will even prove a

rather strong quantitative bound on the number of segments required for an ε-

approximation. This will also provide us with some motivation for the topic of

the following section.

Theorem 11.2. Let 0 < ε ≤ 1
2

. Then there is a zonotope K ⊆ R
n with O( n

ε2 ) many

segments so that (1−ε) ·K ⊆ B n
2 ⊆ (1+ε) ·K .

Proof. This will be a quick application of the incredibly powerful and flexible

concentration inequality of Theorem 9.29. Draw a Gaussian random matrix A ∼
N m×n (0,1). We verify that for each x ∈ Sn−1 we have EA[‖Ax‖1] = m Ea∼N(0,In )[| 〈a, x〉 |] =
m

√
2
π
=: µ. Note that 1p

m
B m

2 ⊆ B m
1 . Then

E
A

[
sup

x∈Sn−1

∣∣‖Ax‖1 −µ
∣∣
]

Theorem 9.29
≤ O(

p
m) ·g (Sn−1)︸ ︷︷ ︸

≤O(
p

n)

≤O(
p

nm) ≤
ε

2
·µ

where in the last step we use m ≥C n
ε2 for a large enough constant C > 0. Then if K

is the zonotope generated by the m vectors A1

µ
, . . . , Am

µ
then the support function

satisfies |hK (x)−1| ≤ ε
2

for all x ∈ Sn−1 and so K satisfies the claim.
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Note that for a weaker bound of O(log( 1
ε ) · n

ε2 ) it suffices to use an ε-net argu-

ment. Considering that a ball B n
2 can be approximated with a zonotope with only

linear in n many segments, we might be wondering how well an arbitrary zonoid
can be approximated. We will answer this next.

11.2 Approximating zonotopes with few segments

In this section we will prove that every zonoid can be approximated surprisingly

well with only a few segments. We provide the proof of the best known bound

which is due to Talagrand:

Theorem 11.3 (Talagrand 1990). Let 0 < ε ≤ 1
2

. For any zonoid K ⊆ R
n there is a

zonotope Q with (1− ε)Q ⊆ K ⊆ (1+ ε)Q so that Q has at most O(
n log(n)

ε2 ) many

segments.

It is not known whether the log(n) term can be removed (even if one would be

willing to pay with a higher dependence on ε). By definition we can approximate

the initial zonoid arbitrarily well with a zonotope K̃ = {
∑m

i=1 yi Ai | y ∈ [−1,1]m}.

Then the support function of that zonotope is hK̃ (x) = ‖Ax‖1 and our goal is

to approximate that support function with hQ(x) = ‖B x‖1 where the number of

rows of B is at most O(
n log(n)

ε2 ) (as that number corresponds to the number of

segments of Q). We will do exactly that in an iterative process.

11.2.1 Reducing the number of segments by a constant factor

Before we come to the main technical lemma, we need to review some more lin-

ear algebra. Consider a matrix A ∈R
m×n with r := rank(A) and let A =

∑r
k=1

σkuk v T
k

be the Singular Value Decomposition where u1, . . . ,ur ∈ R
m and v1, . . . , vr ∈ R

n

are both orthonormal. Then the Frobenius norm is ‖A‖F = (
∑n

j=1 ‖A j ‖2
2)1/2 =

(
∑m

i=1
‖Ai‖2

2)1/2.

We define the pseudo-inverse of A as A+ :=
∑r

k=1
1
σk

vk uT
k
∈R

n×m . Now, let us

assume that the matrix has full column rank, i.e. rank(A) = n (which means in

particular that m ≥ n). Then it is worth noting that

A+A =
n∑

k=1

n∑

ℓ=1

σk

σℓ
vℓuT

ℓ uk v T
k =

n∑

k=1

vk v T
k = In

using orthonormality. On the other hand, A A+ =
∑n

k=1
uk uT

k is a symmetric m ×
m matrix with n Eigenvalues that are 1 and all other Eigenvalues 0. In particular
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the column lengths satisfy
∑m

i=1 ‖(A A+)i‖2
2 = ‖A A+‖2

F = n. Hence on average the

columns of A A+ have length Ei∼[m][‖(A A+)i‖2
2] = n

m . Now we come to the main

technical lemma where we show how to reduce the number of rows by a constant

fraction while approximately preserving the norm ‖Ax‖1 for all x .

Lemma 11.4. Let A ∈ R
m×n be a matrix with rank(A) = n. Then there is a matrix

B ∈R
3
4 m×n so that

sup
x∈Rn

|‖B x‖1 −‖Ax‖1|
‖Ax‖1

≤O
(
√

n log(m)

m

)

The overall proof strategy is simple: for every row index i flip a fair coin and

with probability 1
2

we double the row and with probability 1
2

we replace it with

0. The first problem is that some rows might be more important than others, for

example if some row Ai happens to be orthogonal to all others, then in order to

have a relative error < 1 we definitely need to keep that row. We solve that prob-

lem by simply fixing the rows that are long in carefully defined sense. Another

problem is that the absolute error that we allow for a vector x actually depends

on the quantity ‖Ax‖1 which is inconvinient.

Proof. See Talagrand.

11.2.2 Finishing the proof of Talagrand’s bound

As discussed earlier to obtain Talagrand’s result from Theorem 11.3 it suffices to

prove the following:

Lemma 11.5. Let 0 < ε ≤ 1
2

and n ∈ N. Then for any matrix A ∈ R
m0×n with

rank(A) = n there is a matrix B ∈R
m×n so that m ≤O(

n logn
ε2 ) and

sup
x∈Rn

|‖B x‖1 −‖Ax‖1|
‖Ax‖1

≤ ε

Proof. Let C1 > 0 be the implicit constant from the claim of Lemma 11.4. We

abbreviate the initial matrix by A(0) := A ∈R
m0×n . More generally for t ≥ 0 we will

have a matrix of the form A(t) ∈R
mt×n . As long as we have mt >

Dn log(n)

ε2 for a large

enough constant D > 0, we apply Lemma 11.4 and find a matrix A(t+1) ∈R
mt+1×n

with mt+1 ≤ 3
4

mt rows so that

sup
x∈Rn

|‖At+1x‖1 −‖A(t)x‖1|
‖A(t)x‖1

≤C1

√
n log(mt )

mt
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Let T be the first index that satisfies mT ≤ Dn log(n)

ε2 . Then for any fixed x ∈R
n \ {0}

we have

‖A(T )x‖1

‖A(0)x‖1

≤
T−1∏
t=0

(
1+C1

√
n log(mt )

mt

)
(∗)
≤ 1+C2

√
n log(mT−1)

mT−1
≤ 1+ε

as mT−1 ≥ Dn log(n)

ε2 and D is large enough. Note that the crucial point for (∗) is

that the terms
√

n log(mt )

mt
are geometrically increasing and hence are dominated

by the last term. The lower bound on ‖A(T )x‖1

‖A(0)x‖1
is analogous. Then B := A(T ) satis-

fies the claim.

11.3 Vaaler’s Theorem

Now we switch topics and talk about sections of cubes rather than projections.

Consider the cube B n
∞ and a d-dimensional subspace H ⊆R

n . We are wondering

what lower bound one can prove on Vold (B n
∞∩H).

H
B n
∞∩H

B n
∞

0

If H happens to be spanned by d coordinate directions ei , then clearly Vold (B n
∞∩

H) = Vold (B d
∞) = 2d . A beautiful theorem of Vaaler tells us that this indeed is the

minimal volume for any subspace H . We will prove this result in the form of

Vold ([−1
2

, 1
2

]n ∩H) ≥ 1 which is notationally more convinient.

11.3.1 Comparision of distributions and Kanter’s Lemma

A crucial ingredient in the proof of Vaaler’s Theorem will be the following notion:

Definition 11.6. Let ν and µ be distributions on R
n . We say that µ is more peaked

than ν if

ν(K ) ≤µ(K ) ∀symmetric, closed, convex K ⊆R
n

We write ν¹peaked µ.

Intuitively, if ν¹peaked µ then the mass of µ is closer to the origin.
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0

N (0, s1)

Fig: Two 1-dim Gaussians where N (0, s1) ¹peaked N (0, s2) for s1 ≥ s2.
0

N (0, s2)

In the following, for a compact set Q ⊆ R
n , let Uniform(Q) be the uniform distri-

bution on Q. Recall that for s > 0, N (0, s2) is the 1-dimensional Gaussian distri-

bution with density function 1

s
p

2π
·exp(− x2

2s2 ).

We state a few convinient facts without proof (we will not even need all those

facts for our purpose):

Lemma 11.7. The following holds

(i) If A,B ∈R
n×n are matrices with 0 ¹ A ¹ B then N (0,B ) ¹peaked N (0, A).

(ii) For two symmetric convex bodies K ⊆Q one has Uniform(Q) ¹peaked Uniform(K ).

(iii) One has N (0, 1
2π

) ¹peaked Uniform([−1
2

, 1
2

]).

(iv) For any s > 0 one has N (0, 2
π s2) ¹peaked Uniform([−s, s]).

For (iii) note that the density functions of N (0, 1
2π

) and Uniform([−1
2

, 1
2

]) both

have value 1 at the origin, hence the constants we have chosen are tight.

Prx∼[− 1
2 , 1

2 ][x ∈ [−t , t ]]

Prx∼N(0, 1
2π )[x ∈ [−t , t ]]

t
1
2

1

We will crucially rely on the following lemma due to Kanter:

Lemma 11.8 (Kanter 1977). Let ν1,µ1 be log-concave distributions on R
n1 with

ν1 ¹peaked µ1 and let ν2,µ2 be log-concave distributions onR
n2 with ν2 ¹peaked µ2.

Then the product distributions ν1 ⊗ν2 and µ1 ⊗µ2 are log-concave distributions

on R
n1+n2 and (ν1 ⊗ν2) ¹peaked (µ1 ⊗µ2).
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A proof can be found for example in Chapter 4 of [JL01]. Note that in particu-

lar Uniform(K ) is log-concave for any convex body K and for A º 0, the Gaussian

distribution N (0, A) is log-concave.

11.3.2 Proof of Vaaler’s Theorem

Now, we are ready for the main proof.

Theorem 11.9 (Vaaler 1979). For any subspace H ⊆R
n with d := dim(H) one has

Vold ([−1
2

, 1
2

]n ∩H) ≥ 1.

Proof. Our strategy is use the notion of peakedness and compare the volume

with a corresponding Gaussian measure. First, recall that 1p
2π

· N (0,1) ¹peaked

Uniform([−1
2

, 1
2

]) by Lemma 11.7.(iii) and so by Kanter’s Lemma this also holds

for the n-fold product measure, i.e. 1p
2π

·N (0, In ) ¹peaked Uniform([−1
2

, 1
2

]n). It

will be convinient to abbreviateν := 1p
2π

·N (0, In ) andµ := Uniform([−1
2

, 1
2

]n). Re-

call that by a slight abuse of notation, the density function ofν isν(x)= exp(−π‖x‖2
2).

Next, let B ∈ R
n×n be an orthonormal basis of Rn so that the first d columns are

also a basis of H , i.e. H = span{B 1, . . . ,B d }. Take a tiny value of ε> 0 and consider

the intersection of strips

Qε :=
{

x ∈R
n : | 〈A j , x〉 | ≤

ε

2
∀ j = d +1, . . . ,n

}

ε/2

[−1
2

, 1
2

]n

H
Qε

0

Then using that Qε is a symmetric closed convex set we have

εn−d Vold (B m
∞∩H) ≈µ(Qε)

ν¹peakedµ

≥ ν(Qε) = Pr
y∼ 1p

2π
N(0,In−d )

[
‖y‖∞ ≤

ε

2

]
≈ εn−d v(0)︸︷︷︸

=1

Here the multiplicative error in both approximations “≈” goes to 0 as ε→ 0. Then

rearranging and sending ε→ 0 gives the desired inequality of Vold ([−1
2

, 1
2

]n∩H) ≥
1.
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