Lecturer: Thomas Rothvoss

Problem Set 7

CSE 599S - Lattices

Winter 2023

Exercise 4.1 (10pts)

Prove that in any full-rank lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\mu(\Lambda) \le n \cdot \lambda_n(\Lambda)$. **Extra point:** Prove that even $\mu(\Lambda) \le O(\sqrt{n}) \cdot \lambda_n(\Lambda)$.

Exercise 4.3 (10pts)

Prove the following statement: For any symmetric convex body $K \subseteq \mathbb{R}^n$ and any full rank lattice $\Lambda \subseteq \mathbb{R}^n$ one has $\lambda_1(K, \Lambda) \cdot \lambda_1(K^\circ, \Lambda^*) \leq Cn$ where C > 0 is a universal constant.

Hint: You may use the following deep result of Blaschke-Santaló-Bourgain-Milman without a proof: For any symmetric convex body $K \subseteq \mathbb{R}^n$ one has

$$C_1^n \le \frac{\operatorname{Vol}_n(K) \cdot \operatorname{Vol}_n(K^\circ)}{\operatorname{Vol}_n(B_2^n)^2} \le 1$$

for some universal constant $C_1 > 0$.