Problem Set 6

CSE 599S - Lattices

Winter 2023

Exercise 2.4 (10pts)

Let $\mathbf{B} \in \mathbb{R}^{n \times n}$ be a regular matrix. Prove that $\mathcal{V} \subseteq n \cdot \lambda_n(\Lambda) \cdot B_2^n$ where \mathcal{V} is the Voronoi cell of the lattice $\Lambda := \Lambda(\mathbf{B})$.

Exercise 2.7 (10pts)

Prove the following statement: Let $\Lambda \subseteq \mathbb{R}^n$ be a full rank lattice and let $t \in \mathbb{R}^n$ be a vector with $CVP(\Lambda, t) < 2^{-n/2-1}\lambda_1(\Lambda)$. Then one can find a vector $\mathbf{x} \in \Lambda$ with $\|\mathbf{x} - t\|_2 = CVP(\Lambda, t)$ in polynomial time.

Exercise 3.3 (10pts)

Let $\Lambda \subseteq \mathbb{R}^n$ be a full rank lattice and let $K \subseteq \mathbb{R}^n$ be a symmetric convex body. Then for any t > 0, $|\Lambda \cap t \cdot \lambda_1(\Lambda, K) \cdot K| \le (2t+1)^n$.