Problem Set 6

CSE 599S - Lattices

Winter 2023

Exercise 2.4 (10pts)

Let $\boldsymbol{B} \in \mathbb{R}^{n \times n}$ be a regular matrix. Prove that $\mathcal{V} \subseteq n \cdot \lambda_{n}(\Lambda) \cdot B_{2}^{n}$ where \mathcal{V} is the Voronoi cell of the lattice $\Lambda:=\Lambda(\boldsymbol{B})$.

Exercise 2.7 (10pts)

Prove the following statement: Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full rank lattice and let $\boldsymbol{t} \in \mathbb{R}^{n}$ be a vector with $\operatorname{Cvp}(\Lambda, t)<2^{-n / 2-1} \lambda_{1}(\Lambda)$. Then one can find a vector $\boldsymbol{x} \in \Lambda$ with $\|\boldsymbol{x}-\boldsymbol{t}\|_{2}=\operatorname{CVP}(\Lambda, \boldsymbol{t})$ in polynomial time.

Exercise 3.3 (10pts)

Let $\Lambda \subseteq \mathbb{R}^{n}$ be a full rank lattice and let $K \subseteq \mathbb{R}^{n}$ be a symmetric convex body. Then for any $t>0$, $\left|\Lambda \cap t \cdot \lambda_{1}(\Lambda, K) \cdot K\right| \leq(2 t+1)^{n}$.

