Due date: Friday, Dec 5, 2025, 11pm, on GradeScope

Problem Set 9

Math 581A - Analysis of Boolean Functions

Fall 2025

Exercise 9.1 (20pts)

In the following, for a function $f: \{-1,1\}^n \to \mathbb{R}$ and $d \ge 1$, we abbreviate $f^{\le d} := \sum_{|S| \le d} \hat{f}(S) \chi_S$ as the part up to degree d. We also write $W^{\le d}[f] := \sum_{|S| \le d} \hat{f}(S)^2$ as the Fourier weight on level at most d.

- (i) Prove that for any $f: \{-1,1\}^n \to \mathbb{R}$ and any $q \ge 2$ and $d \ge 1$ one has $W^{\le d}[f] \le \|f\|_{E,q/(q-1)} \cdot \|f^{\le d}\|_q$.
- (ii) Extend (i) to prove that $W^{\leq d}[f] \leq \|f\|_{E,q/(q-1)} \sqrt{q-1}^d \cdot \sqrt{W^{\leq d}[f]}$

From now on we make the assumption that $f : \{-1,1\}^n \to \{-1,0,1\}$ and set $\alpha := \Pr_{x \sim \{-1,1\}^n}[|f(x)| = 1]$.

- (iii) What is $||f||_{E,q/(q-1)}$ in terms of α ?
- (iv) Prove the so-called *Level-d inequality*: For $f: \{-1,1\}^n \to \{-1,0,1\}, d \ge 1$ and α as defined above one has

$$W^{\leq d}[f] \leq O\left(\alpha^2 \left(\log\left(\frac{10}{\alpha}\right)\right)^d\right)$$

Remark. This exercise is inspired by the lecture notes of Dor Minzer's Spring 2024 course on Analysis of Boolean Functions at MIT.