Problem Set 7

Math 581A - Analysis of Boolean Functions

Fall 2025

Exercise 7.1 (6pts)

Let $1 \le k \le n$ and consider the subcube $A := \{x \in \{\pm 1\}^n : x_1 = \ldots = x_k = 1\}$. Let $\alpha := \frac{|A|}{2^n}$ and $0 \le \rho \le 1$. Prove that $\Pr_{x \sim A, y \sim N_{\rho}(x)}[y \in A] = \alpha^{\log_2(\frac{2}{1+\rho})}$.

Exercise 7.2 (14pts)

For a function $f: \{\pm 1\}^n \to \mathbb{R}$ and $k \in \mathbb{Z}_{\geq 0}$ we define the *projection/truncation to degree* k as the function $f^{\leq k}: \{\pm 1\}^n \to \mathbb{R}$ with $f^{\leq k}: = \sum_{S \subseteq [n]: |S| \leq k} \hat{f}(S) \cdot \chi_S$. Prove the following:

- (i) For $q \ge 2$ one has $||f^{\le k}||_{E,q} \le \sqrt{q-1}^k ||f||_{E,q}$.
- (ii) For $1 < q \le 2$ one has $||f^{\le k}||_{E,q} \le \left(\frac{1}{\sqrt{q-1}}\right)^k ||f||_{E,q}$. **Hint.** First prove that $||f^{\le k}||_{E,2} \le \left(\frac{1}{\sqrt{q-1}}\right)^k \cdot ||T_{\sqrt{q-1}}f^{\le k}||_{E,2}$.

Remark. Let us recall a few general facts that might be useful here. For any function $g: \{\pm 1\}^n \to \mathbb{R}$ and any $1 \le p \le q$ one has $\|g\|_{E,p} \le \|g\|_{E,q}$. Also the projection has the property that $\|g^{\le k}\|_{E,2} \le \|g\|_{E,2}$. Finally, it might be worth reading (or waiting for) Chapter 5.8 which we will cover on Monday, Nov 10.