Lecturer: Thomas Rothvoss

Problem Set 5

Math 581A - Analysis of Boolean Functions

Fall 2025

Exercise (20pts)

The distribution NAE_1 is the uniform distribution over the 6 triples

$$\left\{(1,1,-1),(1,-1,1),(-1,1,1),(-1,-1,1)(-1,1,-1),(1,-1,-1)\right\} = \left\{-1,1\right\}^3 \setminus \left\{(1,1,1),(-1,-1,-1)\right\} = \left\{-1,1\right\}^3 \setminus \left\{-1,1\right\}$$
= \left\{-1,1\right\}^3 \setminus \left\{-1,1\right\}

Here *NAE* stands for *not-all-equal*. More generally, for $n \in \mathbb{N}$, the distribution NAE_n provides triples (x, y, z) with $x, y, z \in \{-1, 1\}^n$ where $(x_i, y_i, z_i) \sim NAE_1$ independently for all $i = 1, \dots, n$. Consider the following so-called not-all-equal test:

Input: Function $f: \{-1,1\}^n \to \{-1,1\}$

- (1) Draw $(x, y, z) \sim NAE_n$ (2) Reject if f(x) = f(y) = f(z). Accept otherwise.

Solve the following:

- (i) Prove that if f is a dictatorship function then Pr[NAE test accepts f] = 1.
- (ii) Prove that for any function $f: \{-1,1\}^n \to \mathbb{R}$ one has

$$\underset{(x,y,z)\sim NAE_n}{\mathbb{E}}[f(x)\cdot f(y)] = \operatorname{Stab}_{-1/3}[f]$$

(iii) Prove that for any function $f: \{-1,1\}^n \to \mathbb{R}$ one has $\Pr[\text{NAE test accepts } f] = \frac{3}{4} - \frac{3}{4} \operatorname{Stab}_{-1/3}[f]$. **Hint.** Define the function $T: \{-1,1\}^3 \rightarrow \{0,1\}$ with

$$T(a_1, a_2, a_3) = \begin{cases} 0 & \text{if } a_1 = a_2 = a_3 \\ 1 & \text{otherwise} \end{cases} = \frac{3}{4} - \frac{1}{4}a_1a_2 - \frac{1}{4}a_1a_3 - \frac{1}{4}a_2a_3$$

Then observe that $\Pr[\text{NAE test accepts } f] = \mathbb{E}_{(x,y,z) \sim NAE_n}[T(f(x),f(y),f(z))].$

(iv) Let $0 \le \varepsilon \le 1$. Prove that if $f: \{-1,1\}^n \to \{-1,1\}$ passes the NAE test with probability $1-\varepsilon$, then $W^1[f] \ge 1 - \frac{9}{2}\varepsilon$.

Hint. Use (iii) and write the acceptance probability in terms of the weights $W^k[f]$.

Comment. Recall that $W^1[f] = \sum_{i=1}^n \hat{f}(\{i\})^2$ is the *level-1 weight* of the function and more generally $W^1[f] = \sum_{|S|=k} \hat{f}(S)^2$ is the *level-k weight*. You will reveive full points for any inequality of the form $W^1[f] \ge 1 - \text{constant} \cdot \varepsilon$.

(v) Suppose that $f: \{-1,1\}^n \to \{-1,1\}$ passes the NAE test with probability $1-\varepsilon$. Prove that there is an index $i \in [n]$ and a sign $\sigma \in \{-1,1\}$ so that $\operatorname{dist}(f, \sigma \cdot \chi_{\{i\}}) \leq C\varepsilon$ where C > 0 is a universal constant.

Hint: Use the FKN Theorem.

(vi) Recall that the BLR Linearity test accepts a function f if $f(x \odot y) \cdot f(x) \cdot f(y) = 1$ for $x, y \sim \{-1, 1\}^n$ uniformly. Let $f : \{-1, 1\}^n \to \{-1, 1\}$ be a function so that

$$\Pr[\mathsf{NAE} \; \mathsf{test} \; \mathsf{accepts} \; f \wedge \mathsf{BLR} \; \mathsf{test} \; \mathsf{accepts} \; f] \geq 1 - \varepsilon$$

Prove that f is close to a dictatorship function, i.e. there is an index $i \in [n]$ so that $\operatorname{dist}(f, \chi_{\{i\}}) \le C' \varepsilon$ for some universal constant C' > 0.

Comment: Recall that a dictatorship function passes both the BLR test and the NAE test with probability 1. In particular combining the BLR test and the NAE test gives a 6-query test with completeness 1 to check if a function is a dictator function.