Lecturer: Thomas Rothvoss

Problem Set 4

Math 581A - Analysis of Boolean Functions

Fall 2025

Exercise 4.1 (10 points)

We write **0** as the function on the hypercube that is everywhere 0. In the following, let $f: \{-1,1\}^n \to \mathbb{R}$ be a function of degree $\deg(f) \leq d$.

- (i) Suppose that for $a \in \{-1, 1\}$ one has $f_{[n-1]|a} = \mathbf{0}$. Prove that $\deg(f_{[n-1]|-a}) \le d-1$. **Remark:** The statement means that if one subfunction is all-zero then the other subfunction has lower degree.
- (ii) Prove that if $f \neq \mathbf{0}$, then $\Pr_{x \sim \{-1,1\}^n} [f(x) \neq 0] \geq 2^{-d}$. **Hint:** Prove this by induction over n. Use (i).

Exercise 4.2 (10 points)

A function $g: \{-1,1\}^n \to \mathbb{R}$ is called a *k-junta* if it depends on at most *k* variables. More formally, *g* is a *k*-junta if and only if there is a set $T \subseteq [n]$ of size $|T| \le k$ so that $g = \sum_{S \subseteq T} \hat{g}(S) \cdot \chi_S$. Now let $f: \{-1,1\}^n \to \{-1,1\}$ be a function with $d:=\deg(f)$.

- (i) Prove that for each $i \in [n]$ one has either $\mathrm{Inf}_i[f] = 0$ or $\mathrm{Inf}_i[f] \geq \frac{1}{2^d}$. **Hint.** Use the previous exercise.
- (ii) Prove that f is a $d2^d$ -junta.

¹Recall that $f_{[n-1]|a}$ is the restriction of f on the variables $1, \ldots, n-1$ which is the function $(x_1, \ldots, x_{n-1}) \mapsto f(x_1, \ldots, x_{n-1}, a)$.