Lecturer: Thomas Rothvoss

Problem Set 3

Math 581A - Analysis of Boolean Functions

Fall 2025

Exercise (20pts)

(i) Consider a function $g: \{0,1\}^n \to \mathbb{R}$. Prove that there is a unique choice of values $(a_S)_{S \subseteq [n]} \subseteq \mathbb{R}$ so that

$$g(y) = \sum_{S \subseteq [n]} a_S \prod_{i \in S} y_i \quad \forall y \in \{0, 1\}^n$$

Also prove that the choice to make is in fact

$$a_S = \sum_{T \subset S} (-1)^{|S \setminus T|} g(\mathbf{1}_T)$$

where $\mathbf{1}_T \in \{0,1\}^n$ is the characteristic vector of set T.

- (ii) Prove that for a function $g: \{0,1\}^n \to \{0,1\}$, the values a_S as defined in (i) satisfy $a_S \in \{-2^{|S|}, \dots, +2^{|S|}\}$.
- (iii) For a function $f: \{-1,1\}^n \to \mathbb{R}$, let $g: \{0,1\}^n \to \mathbb{R}$ be the function defined by $g(\frac{x+1}{2}) := f(x)$ for $x \in \{-1,1\}^n$. Again, let a_S be the coefficients so that $g(y) = \sum_{S \subseteq [n]} a_S \prod_{i \in S} y_i$ for all $y \in \{0,1\}^n$. Prove that

$$\hat{f}(S) = \sum_{T \supseteq S} 2^{-|T|} a_T \quad \forall S \subseteq [n]$$

We denote the *real degree* of g by $rdeg(g) := max\{|S| : a_S \neq \emptyset\}$ where g is represented as in (i). Combining (i) and (iii) one can derive that deg(f) = rdeg(g) — you may use this fact without proving it.

- (iv) Let $f: \{-1,1\}^n \to \{0,1\}$ be a function with degree $k:=\deg(f)$. Prove that all Fourier coefficients are $\frac{1}{2^k}$ -granular, i.e. $\hat{f}(S) \in \frac{\mathbb{Z}}{2^k}$ for all $S \subseteq [n]$.
 - (v) Let $f: \{-1,1\}^n \to \{0,1\}$ be a function with degree $k:= \deg(f)$. Prove that $\|f\|_1 \le 2^k$.