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Chapter 1

Introduction to boolean functions

This course deals with the analysis of functions of the form f : {±1}n → R. The

main tool will be Fourier analysis and we will see a rich set of applications to

theoretical computer science and combinatorics. The main source for these notes

is the terrific textbook by Ryan O’Donnell [O’D21] which is available for free on

Arxiv1. The book was first published in 2014 and we add some more recent results

that appeared later. Inspiration for the selection of additional material comes

from the course Analysis of Boolean Functions by given by Avishay Tal in Spring

2023 at UC Berkeley2 as well as the Spring 2021 course Topics in Combinatorics:
Analysis of Boolean Functions given by Dor Minzer at MIT3. Moreover, we rely on

the survey by Arturs Backurs4.

1.1 The basics

As mentioned earlier the goal is to study functions of the form f : {±1}n →R.

{−1,1}n

1See https://arxiv.org/abs/2105.10386
2See https://www.avishaytal.org/cs294-analysis-of-boolean-functions
3Seehttps://ocw.mit.edu/courses/18-218-topics-in-combinatorics-analysis-of-boolean-functions-sp
4See https://www.scottaaronson.com/showcase2/report/arturs-backurs.pdf
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8 CHAPTER 1. INTRODUCTION TO BOOLEAN FUNCTIONS

For two such functions f , g : {±1}n →R we define an inner product

〈 f , g 〉E := E
x∼{±1}n

[ f (x) ·g (x)] =
1

2n

∑
x∈{±1}n

f (x) ·g (x)

that is sometimes called the expectation inner product and we use the unusual

notation 〈·, ·〉E to remind ourselfs of the factor 1
2n that is not present in the stan-

dard inner product. Here we write x ∼ {−1,1}n to indicate that x is a vector that is

drawn uniformly at random from {−1,1}n . For a set S ⊆ [n], consider the special

function

χS : {±1}n → {±1} with χS(x) :=
∏

i∈S
xi ∀x ∈ {−1,1}n

The function χS is also called the character function. We denote S∆T := (S \ T )∪
(T \S) as the symmetric difference of sets S,T ⊆ [n]. We show a convinient fact for

these special character functions:

Lemma 1.1. For S,T ⊆ [n] one has

〈χS ,χT 〉E =
{

1 if S = T

0 otherwise.

Proof. We write

〈χS ,χT 〉E = E
x∼{±1}n

[χS (x)·χT (x)] = E
x∼{±1}n

[χS∆T (x)] =
∏

i∈S∆T
E

xi ∼{±1}
[xi ]

︸ ︷︷ ︸
=0

=
{

0 if |S∆T | > 0

1 if |S∆T | = 0

Here we use that χS (x) ·χT (x) = χS∆T (x). We also use that for independent ran-

dom variables X and Y one has E[X Y ] = E[X ]E[Y ].

We note that the set

Vn :=
{

f | f : {±1}n →R
}

is a vector space of dimension 2n and Lemma 1.1 says that the family of 2n many

functions {χS}S⊆[n] is pairwise orthogonal and even orthonormal. Hence {χS }S⊆[n]

must be an orthonormal basis for that vector space. It then makes sense to con-

sider the coordinates that an element f : {±1}n →R has with respect to that basis:

Definition 1.2. For f : {±1}n → R and S ⊆ [n] we denote the S-th Fourier coeffi-
cient as

f̂ (S) := 〈 f ,χS〉E = E
x∼{±1}n

[ f (x) ·χS (x)].
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By orthonormality we know the following:

Theorem 1.3 (Fourier Expansion Theorem). For every function f : {±1}n → R

there is a unique linear combination in terms of the character functions which is

f (x) =
∑

S⊆[n] f̂ (S) ·χS (x) for x ∈ {±1}n .

We make the following definition.

Definition 1.4. For f : {−1,1}n → R we define the degree as5 deg( f ) := max{|S| :

f̂ (S) 6= 0}.

Theorem 1.3 represents f as a multivariate multi-linear polynomial and deg( f )

denotes its total degree. The following can be obtained by applying Theorem 1.3

and using the orthonormality of the characters.

Theorem 1.5. For any f , g : {±1}n →R one has

(i) Plancharel’s Theorem: 〈 f , g 〉E =
∑

S⊆[n] f̂ (S) · ĝ (S)

(ii) Parsival’s identity: 〈 f , f 〉E =
∑

S⊆[n] f̂ (S)2

Proof. For (i) we use Theorem 1.3 and linearity of 〈·, ·〉E to write

〈 f , g 〉E =
∑

S⊆[n]

∑

T⊆[n]

f̂ (S)ĝ (T ) 〈χS ,χT 〉E︸ ︷︷ ︸
=1 if S=T,=0 o.w.

=
∑

S⊆[n]

f̂ (S)ĝ (S)

Then (ii) is a special case of (i).

One should think of Plancharel’s Theorem as the basic fact that for two el-

ements f and g in a vector space one can obtain their inner product by sum-

ming up the coordinate-wise products with respect to any orthonormal basis.

That brings us to the question why actually we have picked {χS }S⊆[n] as a basis

and not any other basis such as the standard basis which in this case would be

e y : {−1,1}n → {0,1} with

e y (x) :=
{

1 if x = y

0 otherwise.

The answer is that the Fourier basis takes the geometry of the hypercube into ac-

count and many statements become easier when being considered in the Fourier

basis.

5We can make the convention that the zero-everywhere function has degree −1.
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1.2 Fourier weights

For a function f : {−1,1}n → {−1,1} we know by Parsival’s identity that
∑

S⊆[n] f̂ (S)2 =
Ex∼{−1,1}n [ f (x)2] = 1. So it makes sense to think of the values f̂ (S)2 as a probabili-

ties:

Definition 1.6. For f : {−1,1}n → {−1,1} we denote S f as the distribution that

returns a set S ⊆ [n] with probability f̂ (S)2. We call S f the spectral sample for f .

Often it will be important whether most of the Fourier weight of a function f
lies on large sets S or on small sets.

Definition 1.7. For f : {−1,1}n →R and k ∈ {0, . . . ,n} we define the Fourier weight
at level k as

W k[ f ] :=
∑

S⊆[n]:|S|=k
f̂ (S)2

We also define f =k as the part of f coming from level k, i.e.

f =k (x) :=
∑

|S|=k

f̂ (S)χS (x)

1.3 Relationship of {−1,1}n to {0,1}n

In many settings it would be more natural to study functions of the form F :

{0,1}n → {0,1}, rather than f : {−1,1}n → {−1,1}, for example when we want to

work with addition modulo 2 or subspaces in F
n
2 . But one can always map a vec-

tor x ∈ {0,1}n to the vector ((−1)x1 , . . . , (−1)xn ) ∈ {−1,1}n and then do the analysis

in the {−1,1}n cube where the addition modulo 2 (denoted by ⊕) is replaced by

the coordinate-wise multiplication⊙. Mathematically speaking, for each coordi-

nate we have the two 2-element groups ({0,1},⊕) and ({−1,1},⊙) and we map the

neutral element of one to the neutral element of the other (and the non-neutral

element to the non-neutral element).

We should remark that the book by O’Donnell [O’D21] rather freely switches

back and forth between both cubes. Instead we will be more dogmatic and stick

with the {−1,1}n-cube which possibly helps reduce confusion while it means

we will work with somewhat less intuitive notions of convolution and {−1,1}-

linearity.
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1.4 Convolution

For two vectors x, y ∈ {±1}n we write x ⊙ y ∈ {±1}n as the vector with entries (x ⊙
y)i := xi · yi . As explained above, the ⊙-operation is the analogue to addition in

F2.

Definition 1.8. For functions f , g : {−1,1}n → R we define their convolution as

the function f ∗ g : {−1,1}n →R defined by

( f ∗ g )(x) := E
y∼{−1,1}n

[
f (x ⊙ y) ·g (y)

]
∀x ∈ {−1,1}n

We want to describe an important application of convolution.

Definition 1.9. A function f : {−1,1}n → R is called a (probability) density func-
tion if f (x) ≥ 0 for all x ∈ {−1,1}n and Ex∼{−1,1}n [ f (x)] = 1.

Note that for a probability density function f , according to our definition one

has
∑

x∈{−1,1}n f (x) = 2n which might be somewhat unintuitive but this scaling

will work well for us.

Proposition 1.10. If f , g : {−1,1}n →R≥0 are density functions, then also f ∗g is a

density function. Moreover if x ∼ f and y ∼ g independently then (x ⊙ y) ∼ f ∗ g .

Proof. Clearly

E
x∼{−1,1}n

[( f ∗ g )(x)] = E
y∼{−1,1}n

[
E

x∼{−1,1}n
[ f (x ⊙ y)]

︸ ︷︷ ︸
=1

·g (y)
]
= E

y∼{−1,1}n
[g (y)] = 1

and so f ∗ g is indeed a density function. For the moreover part, for any fixed

z ∈ {−1,1}n we have

Pr
x∼ f ,y∼g

[x⊙y = z] =
∑

x∈{−1,1}n
Pr
f

[x]Pr
g

[z⊙x] = 2n
E

x∼{−1,1}n
[ f (x)g (z⊙x)] = 2n ·( f ∗g )(z)

as claimed.

For the sake of completeness we want to mention that for all f , g ,h : {−1,1}n →
R one has commutativity in the form of f ∗g = g ∗ f and associativity, i.e. f ∗(g ∗
h) = ( f ∗ g )∗h. Finally we will prove the important fact that the Fourier coeffi-

cient of the convolution is simply the product of the two Fourier coefficients of

the original functions.

Theorem 1.11. For all f , g : {−1,1}n → R and S ⊆ [n] one has à( f ∗ g )(S) = f̂ (S) ·
ĝ (S).
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Proof. We have

à( f ∗ g )(S) = E
x∼{−1,1}n

[
( f ∗ g )(x) ·χS (x)

]

Def ∗= E
x∼{−1,1}n

[
E

y∼{−1,1}n
[ f (y) ·g (x ⊙ y)] ·χS (x)

]

(∗)= E
y,z∼{−1,1}n

[
f (y) ·g (z) ·χS (y ⊙ z)

]

= E
y∼{−1,1}n

[
f (y) ·χS (y)

]

︸ ︷︷ ︸
= f̂ (S)

· E
z∼{−1,1}n

[
g (z) ·χS (z)

]

︸ ︷︷ ︸
=ĝ (S)

= f̂ (S) · ĝ (S)

In (∗) we make the substitution z := x ⊙ y and we use that for fixed y , x ⊙ y is

uniform from {−1,1}n .

1.5 Restrictions

For a set J ⊆ [n] of coordinates we will denote the complement as J̄ := [n] \ J .

Definition 1.12. For a function f : {−1,1}n → R, an index set J ⊆ [n] and z ∈
{−1,1} J̄ , we define the restriction of f to J using z as the function f J |z : {−1,1}J →R

with f J |z (y) := f (y, z).

Intuitively speaking f J |z is the restriction of f to a subcube. It will be useful to

determine the Fourier coefficients for the function f J |z : {−1,1}J → R in terms of

the original Fourier coefficients.

Proposition 1.13. Let f : {−1,1}n → R, J ⊆ [n] and z ∈ {−1,1} J̄ . Then for any S ⊆ J
one has ( f̂ J |z )(S) =

∑
T⊆J̄ f̂ (S ∪T ) ·χT (z).

Proof. For each U ⊆ [n] there is a unique decomposition as U = S∪̇T with S ⊆ J
and T ⊆ J̄ . Morever we can decompose x ∈ {−1,1}n as x = (y, z) with y ∈ {−1,1}J

and z ∈ {−1,1} J̄ so that χU (x) =χS (y) ·χT (z).

J J̄[n] =

x = ( y , z )

U = ∪̇S T

This can be used to write

f J |z(y) = f (x) =
∑

U⊆[n]

f̂ (U ) ·χU (x) =
∑
S⊆J

( ∑

T⊆J̄

f̂ (S ∪T ) ·χT (z)
)
·χS (y)
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Then by Theorem 1.3, the term
∑

T⊆J̄ f̂ (S ∪T ) ·χT (z) has to be the Fourier coeffi-

cient ( f̂ J |z )(S).

We could also ask how the Fourier coefficients ( f̂ J |z)(S) change as we vary z.

Proposition 1.14. Let f : {−1,1}n →R and let S ⊆ J ⊆ [n]. Define

F : {−1,1} J̄ →R with F (z) := ( f̂ J |z )(S)

Then the following holds

(a) One has F (z) =
∑

T⊆J̄ f̂ (S ∪T ) ·χT (z).

(b) For all T ⊆ J̄ one has F̂ (T ) = f̂ (S ∪T ).

(c) One has Ez∼{−1,1}J̄ [F (z)] = f̂ (S).

(d) One has Ez∼{−1,1}J̄ [F (z)2] =
∑

T⊆J̄ f̂ (S ∪T )2.

Proof. From Prop 1.13 we know that indeed

F (z) = ( f̂ J |z )(S) =
∑

T⊆J̄

f̂ (S ∪T ) ·χT (z)

which gives (a). Then again by Theorem 1.3, the Fourier coefficient F̂ (T ) has to be∑
T⊆J̄ f̂ (S∪T ) which gives (b). For (c) we use that Ez∼{−1,1}J̄ [F (z)] = F̂ (;) = f̂ (S) us-

ing (b). For (d) we use Parsival’s Inequality (Theorem 1.5) to get Ez∼{−1,1}J̄ [F (z)2] =
∑

T⊆J̄ F̂ (T )2 =
∑

T⊆J̄ f̂ (S ∪T )2 making use of (b).

1.6 Norms for functions on the hypercube

Occasionally it is useful to use ℓp -norms for boolean functions. Traditionally one

would treat a function f : {−1,1}n → R simply as an 2n-dimensional vector and

define ‖ f ‖p := (
∑

x∈{−1,1}n | f (x)|p )1/p for 1≤ p <∞ and ‖ f ‖∞ := maxx∈{−1,1}n | f (x)|.
Standard comparison estimates give that for 1 ≤ p ≤ q ≤ ∞ one has ‖ f ‖q ≤
‖ f ‖p ≤ (2n)1/p−1/q‖ f ‖q . But since as inner product we use 〈·, ·〉E , it will make

sense to define an ℓp -norm using the expectation as well:

Definition 1.15. For f : {−1,1}n →R and 1 ≤ p <∞ we define

‖ f ‖E ,p := E
x∼{−1,1}n

[| f (x)|p ]1/p =
1

(2n)1/p
· ‖ f ‖p

and ‖ f ‖E ,∞ = ‖ f ‖∞.
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Then we obtain the following comparison inequality:

Proposition 1.16. For 1 ≤ p ≤ q <∞ and f : {−1,1}n →R one has

( 1

2n

)1/p−1/q
‖ f ‖E ,q ≤ ‖ f ‖E ,p ≤ ‖ f ‖E ,q

Proof. We fix 1 ≤ p ≤ q < ∞. It will be convinient to prove the upper bound

‖ f ‖E ,p ≤ ‖ f ‖E ,q and the lower bound in the sum form ‖ f ‖q ≤ ‖ f ‖p . For the upper

bound we can see that

‖ f ‖q
E ,p = E

x∼{−1,1}n

[
| f (x)|p

]q/p Jensen
≤ E

x∼{−1,1}n

[
| f (x)|q

]
= ‖ f ‖q

E ,q

where we use Jensen’s inequality (Theorem 1.40) together with the fact that the

map z 7→ zq/p is convex as
q
p ≥ 1.

Next we prove the lower bound. We can scale both sides of the inequality and

just prove that ‖ f ‖p = 1 ⇒‖ f ‖q ≤ 1. From ‖ f ‖p = 1 we know that ‖ f ‖∞ ≤ 1. Then

‖ f ‖q
q =

∑
x∈{−1,1}n

| f (x)|q ≤
∑

x∈{−1,1}n
| f (x)|p = 1

because for 0 ≤ z ≤ 1 one has zq ≤ zp .

Similarly we can consider ℓp -norms of the Fourier coefficients:

Definition 1.17. Let 1 ≤ p <∞. The Fourier p-norm (or spectral p-norm) of f :

{−1,1}n →R is

‖̂ f ‖̂p :=
( ∑

S⊆[n]

| f̂ (S)|p
)1/p

Moreover ‖̂ f ‖̂∞ := maxS⊆[n] | f̂ (S)|.

For example by Parsivals Theorem we know that ‖ f ‖E ,2 = ‖̂ f ‖̂2.

1.7 Noise stability

A recurrent theme in analysis of boolean function is to analyze how functions

change under perturbations.

Definition 1.18. For −1 ≤ ρ ≤ 1 and x ∈ {−1,1}n we write y ∼ Nρ(x) if y ∈ {−1,1}n

is a random vector so that independently for each coordinate i ∈ [n],

yi =
{

xi with probability 1
2
+ ρ

2

−xi with probability 1
2
− ρ

2
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It is useful to note that for 0 ≤ ρ ≤ 1 we could have equivalently defined

yi =
{

xi with probability ρ

uniform from {−1,1} with probability 1−ρ

For all −1≤ ρ ≤ 1 one has

E
x∼{−1,1}n

y∼Nρ (x)

[xi · yi ] = E
x∼{−1,1}n

[
xi ·

((1

2
+
ρ

2

)
·xi +

(1

2
−
ρ

2

)
· (−xi )

)

︸ ︷︷ ︸
=ρxi

]
= ρ

In other words, the correlation between xi and yi is exactly ρ. We also call (x, y)

with x ∼ {−1,1}n and y ∼ Nρ(x) a ρ-correlated pair. One can think of y as a per-

turbation of the vector x.

Definition 1.19. For f : {−1,1}n →R and −1 ≤ ρ ≤ 1 we define the noise stability

Stabρ[ f ] := E
x∼{−1,1}n

y∼Nρ (x)

[ f (x) · f (y)]

In other words, the noise stability tells how much the function value at x
correlates with the function value at a perturbation y . If f : {−1,1}n → {−1,1}

is boolean, then it is useful to note that

Stabρ[ f ] = 2 Pr
x∼{−1,1}n ,

y∼Nρ (x)

[ f (x) = f (y)]−1

and −1 ≤ Stabρ[ f ] ≤ 1.

For example for the character functions we have

Stabρ[χS ] = E
x∼{−1,1}n ,

y∼Nρ (x)

[∏

i∈S
xi yi

]
=

∏

i∈S
E

x∼{−1,1}n ,
y∼Nρ (x)

[xi yi ]

︸ ︷︷ ︸
=ρ

= ρ|S|

That means for 0 ≤ ρ ≤ 1, the smaller |S| is the higher the stability of χS .

Definition 1.20. For −1≤ ρ ≤ 1 we define Tρ : Vn →Vn as the linear operator that

maps a function f : {−1,1}n →R to Tρ f : {−1,1}n →R with

Tρ f (x) = E
y∼Nρ (x)

[ f (y)]

Intuitively, Tρ f is perturbed version of f . As usually we describe the Fourier

expansion of Tρ f :
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Proposition 1.21. For f : {−1,1}n →R and −1≤ ρ ≤ 1 one has

(Tρ f )(x) =
∑

S⊆[n]

ρ|S| f̂ (S) ·χS (x) =
n∑

k=0

ρk f =k (x)

Proof. Since Tρ is a linear operator, it suffices to verify the claim for χS with S ⊆
[n]. Indeed for any x ∈ {−1,1}n one has

(TρχS )(x) =
∏

i∈S
E

y∼Nρ (x)
[yi ]

︸ ︷︷ ︸
=ρxi

=
∏

i∈S
(ρxi ) = ρ|S| ·χS (x)

In other words, the operator Tρ “dampens” the Fourier coefficients and the

effect is stronger, the larger |S| is. We can use the operator to express the stability

of a function in terms of its Fourier coefficients.

Proposition 1.22. For any f : {−1,1}n →R and −1 ≤ ρ ≤ 1 one has

Stabρ[ f ] =
∑

S⊆[n]

ρ|S| f̂ (S)2 = E
S∼S f

[
ρ|S|]

Proof. Using the Tρ operator we can write

Stabρ[ f ]
Def stability

= E
x∼{−1,1}n

[
f (x) · E

y∼Nρ (x)
[ f (y)]

]

Def Tρ= 〈 f ,Tρ f 〉E

Plancharel=
∑

S⊆[n]

f̂ (S) · �(Tρ f )(S)
Prop 1.21=

∑

S⊆[n]

f̂ (S) · f̂ (S) ·ρ|S|

From this claim we can draw the conclusion that the stability of a function f
is high if much of its Fourier weight lies on the lower levels. Also we can see that

for any f : {−1,1}n → R and 0 ≤ ρ ≤ 1 one has Stabρ[ f ] ≥ 0, which is not obvious

from the definition itself.

Noise sensitivity. We also introduce somewhat opposite quantity to stability:

Definition 1.23. Let f : {−1,1}n → {−1,1} and 0 ≤ δ ≤ 1. Draw x ∼ {−1,1}n and

obtain y by flipping each bit independently with probability δ. Then the noise
sensitivity of f is defined as

NSδ[ f ] := Pr[ f (x) 6= f (y)]
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One can see that the distribution (x, y) that is produced in the definition cor-

responds to a ρ-correlated pair if δ= 1
2
− ρ

2
⇔ ρ = 1−2δ. Moreover if for a boolean

function one has Stabρ[ f ] ≈ 1 then this corresponds to NSδ[ f ] ≈ 0. The exact de-

pendence is as follows:

Lemma 1.24. For f : {−1,1}n → {−1,1} and 0≤ δ≤ 1 one has

NSδ[ f ] =
1

2
−

1

2
Stab1−2δ[ f ]

1.8 Derivatives and Influences

We want to introduce the notion of a derivative for a function f : {−1,1}n → R in

the coordinate directions. For a vector x ∈ {−1,1}n and b ∈ {−1,1} we define

x(i 7→b) := (x1, . . . , xi−1,b, xi+1, . . . , xn)

as the vector x where the i th bit is set to b (no matter what it was before). We also

define

x⊕i := (x1, . . . , xi−1,−xi , xi+1, . . . , xn)

as the vector x where the i th bit is flipped.

Definition 1.25. For i ∈ {1, . . . ,n}, we define Di : Vn → Vn as the operator that

maps a function f : {±1}n →R to the function Di f : {±1}n →R with

(Di f )(x) :=
1

2
·
(

f (xi 7→1)− f (xi 7→−1)
)

Intuitively this gives the change of f at x in coordinate direction i . As always

it will be usful to know the Fourier expansion of Di f in terms of the Fourier coef-

ficients of the original function f . Note that by construction, (Di f )(x) does not

depend on xi and hence we already know that (D̂i f )(S) = 0 whenever i ∈ S.

Proposition 1.26. For any f : {−1,1}n →R and coordinate i ∈ [n] one has

(Di f )(x) =
∑

{i }⊆S⊆[n]

f̂ (S) ·χS\{i }(x) ∀x ∈ {−1,1}n

Hence for S ⊆ [n] one has

�(Di f )(S) =
{

0 if i ∈ S

f̂ (S ∪ {i }) if i ∉ S
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Proof. One can check that for any S ⊆ [n] one has

(DiχS)(x) =
{
χS\{i }(x) if i ∈ S

0 if i ∉ S

Then by linearity

(Di f )(x) =
∑

S⊆[n]

f̂ (S) · (DiχS )(x) =
∑

S⊆[n]:i∈S
f̂ (S) ·χS\{i }(x)

Summing up the squared change gives another useful quantity called influ-

ence.

Definition 1.27. For a function f : {−1,1}n →R and a coordinate i ∈ [n] we define

Infi [ f ] := E
x∼{−1,1}n

[
(Di f )(x)2

]
= ‖Di f ‖2

E ,2

as the influence of coordinate i .

Often we are interested in boolean functions with values in {−1,1} in which

case the derivative and influence notions simplify:

Lemma 1.28. For a function f : {−1,1}n → {−1,1} one has

(Di f )(x)2 =
{

1 if f (xi→1) 6= f (xi→−1)

0 otherwise.

Moreover

Infi [ f ] = Pr
x∼{−1,1}n

[
f (x) 6= f (x⊕i )

]

In other words, for a function f : {−1,1}n → {−1,1}, the influence Infi [ f ] ∈
[0,1] gives the fraction of edges of the hypercube with direction ei where both

endpoints have different values.

Definition 1.29. For f : {−1,1}n →R we define the total influence as

I [ f ] :=
n∑

i=1

Infi [ f ].

Note that for a boolean function f : {−1,1}n → {−1,1} one has 0 ≤ I [ f ] ≤ n.
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Theorem 1.30. Let f : {−1,1}n →R. Then

(i) For any i ∈ [n] one has Infi [ f ] =
∑

S⊆[n]:i∈S f̂ (S)2.

(ii) One has I [ f ] =
∑

S⊆[n] |S| · f̂ (S)2.

Proof. For (i) we apply Prop 1.26 to get

Infi [ f ] = ‖̂Di f ‖̂2
2

Prop 1.26=
∑

S⊆[n]:i∈S
f̂ (S)2

For (ii) we sum over all coordinates to get

I [ f ] =
n∑

i=1

Infi [ f ]
(i )=

n∑

i=1

∑

S⊆[n]:i∈S
f̂ (S)2 =

∑

S⊆[n]

|S| · f̂ (S)2

as the double sum counts every set S exactly |S| times.

ρ-stable influence. We introduce a concept that connects noise stability from

the previous section with influence:

Definition 1.31. Let f : {−1,1}n → R, 0 ≤ ρ ≤ 1 and i ∈ [n]. Then the ρ-stable
influence of i on f is

Inf
(ρ)

i [ f ] := Stabρ[Di f ]

Moreover, I (ρ)[ f ] :=
∑n

i=1 Inf
(ρ)

i [ f ] is the ρ-stable total influence of f .

These quantities might be less intuitive, but we can also obtain their Fourier

representation:

Lemma 1.32. For any f : {−1,1}n →R and 0 ≤ ρ ≤ 1 the following holds:

(i) One has Inf
(ρ)

i [ f ] =
∑

S⊆[n]:i∈S ρ
|S|−1 f̂ (S)2.

(ii) One has I (ρ) =
∑

S⊆[n] |S|ρ|S|−1 f̂ (S)2.

(iii) One has I (ρ) = d
dρ

Stabρ[ f ].

Proof. For (i), we use that

Inf
(ρ)

i [ f ]
Def= Stabρ[Di f ]

Prop 1.22=
∑

S⊆[n]

ρ|S| · �(Di f )(S)2 Prop 1.26=
∑

S⊆[n]:i∉S
ρ|S| · f̂ (S ∪ {i })2

We leave (ii) and (iii) as an exercise.
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Degree-d influences We make another definition:

Definition 1.33. For f : {−1,1}n → R and d ∈ Z≥0 we define the degree-d influ-
ences as

Inf≤d
i [ f ] :=

∑

S⊆[n]:i∈S and |S|≤d

f̂ (S)2

One can think of the degree-d influences as an alternative to the ρ-stable

influences. In the former we cut off any coefficients larger than d , in the latter

we just discount those at an exponential rate. We record a lemma for later use:

Lemma 1.34. For f : {±1}n → [−1,1], d ∈Z≥0 and ε> 0 let I := {i ∈ [n] | Inf≤d
i [ f ] ≥

ε} be the influentual coordinates. Then |I | ≤ d
ε

.

Proof. We have

ε|I | ≤
n∑

i=1

Inf≤d
i [ f ] =

n∑

i=1

∑

S⊆[n]:i∈S and |S|≤d
f̂ (S)2 =

∑

|S|≤d
f̂ (S)2

︸ ︷︷ ︸
≤1

· |S|︸︷︷︸
≤d

≤ d

which can be rearranged to |I | ≤ d
ε

.

1.9 Variance of functions

Occasionally the following notion will be useful:

Definition 1.35. For a function f : {−1,1}n → R we abbreviate Var[ f ] as the vari-
ance of the random variable f (x) where x ∼ {−1,1}n . In other words

Var[ f ] := E
x∼{−1,1}n

[
f (x)2

]
− E

x∼{−1,1}n
[ f (x)]2

Lemma 1.36. For any f : {−1,1}n →R one has Var[ f ] =
∑

;⊂S⊆[n] f̂ (S)2.

Proof. Follows from Parsival’s identity and the fact that Ex∼{−1,1}n [ f (x)] = f̂ (;).

1.10 Useful inequalities

We collect a few standard inequalities that will turn out to be useful during this

course.
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Lemma 1.37 (Reverse Markov Inequality). Let 0 ≤ X ≤ M be a random variable.

Then Pr[X ≥ t ] ≥ E[X ]−t
M .

Proof. We have

E[X ] ≤ t ·Pr[X < t ]︸ ︷︷ ︸
≤1

+M ·Pr[X ≥ t ] ≤ t +M ·Pr[X ≥ t ]

Rearranging gives the claim.

Lemma 1.38 (Cauchy-Schwarz). For any real-valued random variables X ,Y one

has

E[|X ·Y |] ≤
√
E[X 2]E[Y 2]

Lemma 1.39 (Paley-Zygmund). Let X be a real-valued random variable with X ≥
0 and 0 < E[X 2] <∞. Then for any 0 ≤ t ≤ 1,

Pr[X > t E[X ]] ≥ (1− t )2E[X ]2

E[X 2]

Proof. We bound

E[X ] = E[X ·1X≤t E[X ]]︸ ︷︷ ︸
≤t E[X ]

+E[X ·1X>t E[X ]]
Cauchy-Schwarz

≤ t E[X ]+
√

E[X 2] ·Pr[X > t E[X ]]

Rearranging gives the claim.

Theorem 1.40 (Jensen Inequality for Convex Functions). Let X : Ω→ R be a ran-

dom variable and F : R→R be a convex function. Then F (E[X ]) ≤ E[F (X )].

The inequality follows immediately from the definition of convexity.

Example of convex function F and

distribution X over only two values x1, x2

x1 x2E[X ]

F (E[X ])
E[F (X )]

F

Theorem 1.41 (Hölder’s Inequality). Let X ,Y : Ω → R be jointly distributed ran-

dom variables. Let p, q ≥ 1 be a pair with 1
p + 1

q = 1. Then E[|X ·Y |] ≤ E[|X |p ]1/p ·
E[|Y |q ]1/q .
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Theorem 1.42 (Littlewood’s Inequality). Let X be a random variable. If p, q,r ≥ 1

and 0 < θ < 1 are values so that 1
p = θ

q + 1−θ
r , then

E[|X |p ]1/p ≤ E[|X |q ]θ/q ·E[|X |r ](1−θ)/r

This can be conviniently rewritten for the norm of functions:

Theorem 1.43 (Littlewood’s Inequality II). Let f be a random variable. If p, q,r ≥
1 and 0< θ < 1 are values so that 1

p = θ
q + 1−θ

r , then

‖ f ‖E ,p ≤ ‖ f ‖θE ,q · ‖ f ‖1−θ
E ,r

We note that necessarily p needs to lie between q and r so that θ ∈ (0,1).

Theorem 1.44 (Generalized Binomial Theorem). For any x,r ∈R with |x| < 1 one

has

(1+x)r =
∞∑

k=0

(
r

k

)
xk

where (
r

k

)
:=

r · (r −1) · . . . · (r −k +1)

k !



Chapter 2

Linearity testing

Recall that a function F : Fn
2 → F2 is linear if F (x ⊕ y) = F (x)⊕F (y) for all x, y ∈ F

n
2 .

The following topic is typically phrased using the cube F
n
2 but as we explained

above, we prefer not to have to switch back and forth and will do the exposition

and proof fully with the cube {−1,1}n .

We say that a function f : {−1,1}n → {−1,1} is {−1,1}-linear if

f (x ⊙ y) = f (x) · f (y) ∀x, y ∈ {−1,1}n

We have already seen that for any S ⊆ [n] one has χS (x ⊙ y) = χS (x) ·χS (y) for all

x, y ∈ {±1}n , meaning that the character functions are {−1,1}-linear. In fact, one

can show that the character functions are the only {−1,1}-linear functions, which

we leave as an exercise.

In 1990, Blum, Luby and Rubinfeld [BLR90] studied approximately linear func-

tions. In particular they considered the following test which can be done using

only query access to 3 random points.

BLR LINEARITY TEST

Input: Query access to a function f : {−1,1}n → {−1,1}

(1) Draw x, y ∼ {−1,1}n independently at random.

(2) Accept if f (x ⊙ y) = f (x) · f (y).

Suppose this test passes with 99%, then would this imply some structure on f ?

Still, f might not be an actual {−1,1}-linear function but maybe it is close to

one. In fact, it will be within 1% of a character function. Here, for functions

f , g : {−1,1}n → {−1,1} we define the distance between them

dist( f , g ) := Pr
x∼{−1,1}n

[ f (x) = g (x)]

Note that always 0 ≤ dist( f , g ) ≤ 1.

23
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Theorem 2.1. Suppose a function Let f : {±1}n → {±1} be a function that passes

the BLR Linearity Test with probability at least 1
2
+ε for 0 ≤ ε≤ 1

2
. Then there is a

set S ⊆ [n] so that f̂ (S) ≥ 2ε as well as dist( f ,χS ) ≤ 1
2
−ε.

Proof. We write

2ε =
(1

2
+ε

)
−

(1

2
−ε

)

BLR test
≤ E

x,y∼{±1}n
[ f (x ⊙ y) · f (x) · f (y)]

Thm 1.3= E
x,y∼{±1}n

[( ∑

S⊆[n]

f̂ (S)χS(x ⊙ y)
)( ∑

T⊆[n]

f̂ (T )χT (x)
)( ∑

R⊆[n]

f̂ (R)χR (y)
)]

χS (x⊙y)=χS (x)χS (y)
=

∑

S,T,R⊆[n]

f̂ (S) f̂ (R) f̂ (T ) E
x,y∼{±1}n

[
χS(x) ·χS (y) ·χT (x) ·χR (y)

]

indep.=
∑

S,T,R⊆[n]

f̂ (S) f̂ (T ) f̂ (R) E
x∼{±1}n

[
χS (x)χT (x)

]

︸ ︷︷ ︸
=1 if S=T,=0 o.w.

E
y∼{±1}n

[χS (y)χR (y)]

︸ ︷︷ ︸
=1 if S=R, =0 o.w.

=
∑

S⊆[n]

f̂ (S)3

≤ max
S⊆[n]

{ f̂ (S)} ·
∑

S⊆[n]

f̂ (S)2

︸ ︷︷ ︸
=〈 f , f 〉E=1

≤ max
S⊆[n]

{ f̂ (S)}

Now fix the set S maximizing f̂ (S). Then

2ε≤ f̂ (S) = 〈 f ,χS〉E = 1−2dist( f ,χS)

which can be rearranged to dist( f ,χS) ≤ 1
2
−ε.

The original result is due to [BLR90] while we have presented a later proof

due to Bellare.
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The Goldreich Levin algorithm

In this chapter we discuss the Goldreich-Levin algorithm that computes the large

Fourier coefficients of a boolean function f : {−1,1}n → {−1,1} with only query

access to f . The Goldreich-Levin algorithm was first developed in the context of

a reduction in cryptography but it has multiple other applications.

3.1 Estimating Fourier coefficients

We begin with the simple observation that a single Fourier coefficient can be es-

timated using random samples. A random query to f : {−1,1}n → {−1,1} means

to draw x ∼ {−1,1}n uniformly and reading the value f (x) ∈ {−1,1}.

Lemma 3.1. Given S ⊆ [n] and δ,ε > 0 and access to O( 1
ε2 · log 1

δ ) many random

queries to f : {−1,1}n → {−1,1} one can compute a value α ∈R so that

Pr[| f̂ (S)−α| ≤ ε] ≥ 1−δ

Proof. Note that f̂ (S) = Ex∼{−1,1}n [ f (x) ·χS (x)]. So if we draw x1, . . . , xN ∼ {−1,1}n

and set Xi := f (xi ) ·χS (xi ) then −1 ≤ Xi ≤ 1 and E[Xi ] = f̂ (S). Our estimate is α :=
1
N

∑N
i=1 Xi and by a standard Chernov bound, N := Θ( 1

ε2 log( 1
δ

)) samples suffice.

We will extend this argument and show that also “groups” of Fourier coeffi-

cients can be estimated. For a vector a ∈ {0,1,∗}n we define

Wa( f ) :=
∑

S⊆[n]:
ai=0⇒i∉S,
ai=1⇒i∈S

f̂ (S)2

25



26 CHAPTER 3. THE GOLDREICH LEVIN ALGORITHM

Here one can think of a as a pattern and Wa( f ) is the sum of the squared Fourier

weight over all sets S that match the pattern.

0 0 0 0 1 1 1 1 ∗ ∗ ∗ ∗ ∗ ∗

b b b b b b b b b b b b b b

( )
a =

matching set S
1 2 . . . n

That means if a contains k many placeholders ∗, then Wa( f ) is the sum over

2k many squared Fourier coefficients of f . In particular, for all S ⊆ [n] one has

W1S ( f ) = f̂ (S)2 and assuming f : {−1,1}n → {−1,1} one has W(∗,...,∗)( f ) =
∑

S⊆[n] f̂ (S)2 =
1.

Lemma 3.2. Given a ∈ {0,1,∗}n and ε,δ > 0 and access to O( 1
ε2 log 1

δ ) queries to

f : {−1,1}n → {−1,1}, one can produce a value β ∈R so that

Pr[|Wa( f )−β| ≤ ε] ≥ 1−δ

Proof. Let [n] = I0∪̇I1∪̇I∗ be the partition of the coordinates according to where

a has 0’s, 1’s and ∗’s. Let F : {−1,1}I∗ →R be the function which for z ∈ {−1,1}I∗ is

defined as

F (z) := ( àf I0∪I1|z )S = E
y∼{−1,1}I0∪I1

[
f (y, z) ·χS (y)

]
(∗)

Here we use the notation of restrictions from Section 1.5. Then we can express

Wa( f )
Def=

∑
T⊆I∗

f̂ (I1 ∪T )2

Parsival= E
z∼{−1,1}I∗

[F (z)2]

(∗)= E
z∼{−1,1}I∗

[
E

y∼{−1,1}I0∪I1

[
f (y, z) ·χS (y)

]2
]

= E
z∼{−1,1}I∗

[
E

y,y ′∼{−1,1}I0∪I1

[
f (y, z) ·χS (y) · f (y ′, z) ·χS (y ′)

]]

Here we use that for any random variable Y ∼ D coming from some distribu-

tion D one has E[Y ]2 = E[Y ]E[Y ′] = E[Y ·Y ′] where Y ,Y ′ ∼ D are independent

copies of that same distribution D. Similar to Lemma 3.1 we can draw indepen-

dent samples (zi , yi , y ′
i ) for i = 1, . . . , N and set β as the unweighted average of

the random variables Xi := f (yi , zi )χS (yi ) · f (y ′
i , zi )χS (y ′

i ). Again −1 ≤ Xi ≤ 1 and

E[Xi ] =Wa( f ) and so N :=O( 1
ε2 log( 1

δ ) samples suffice.
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We would like to point out a subtle difference in the argument to Lemma 3.1.

We do not simply query f at 2N random points because we need the product

f (yi , zi ) · f (y ′
i , zi ). That means we need correlated random samples where pair-

wise the coordinates of I∗ are the same!

3.2 The Goldreich-Levin algorithm

Roughly speaking the Goldreich-Levin algorithm computes all sets S ⊆ [n] of

large Fourier coefficients, i.e. | f̂ (S)| ≥ ε by only querying f at poly(n, 1
ε ) many

points. Now, there is the slight technicality that if | f̂ (S)| ≈ ε then using Lemma 3.1

we couldn’t be certain whether the S-th Fourier coefficient was slightly above or

below the threshold of ε. So the precise statement that we prove is as follows:

Theorem 3.3. Given ε > 0 and query access to a function f : {−1,1}n → {−1,1},

using poly(n, 1
ε ) many queries one can with high probability compute a family

F ⊆ 2[n] of size |F | ≤ 4
ε2 so that

(i) | f̂ (S)| ≥ ε⇒ S ∈F

(ii) S ∈F ⇒| f̂ (S)| ≥ ε
2

.

Proof. We first state the algorithm formally:

GOLDREICH-LEVIN ALGORITHM

Input: Query access to a function f : {−1,1}n → {−1,1} and ε> 0

(1) Initialize F := {(∗, . . . ,∗)}

(2) WHILE F contains a vector containing a ∗ DO

(3) Select and remove a vector a from F that contains a ∗; let i be

the index with ai =∗
(4) Create two vectors a(0) := (a1, . . . , ai−1,0, ai+1, . . . , an) and a(1) :=

(a1, . . . , ai−1,1, ai+1, . . . , an)

(5) For ℓ ∈ {0,1}, if Wa(ℓ)( f ) ≤ ε2

2
then discard a(ℓ), otherwise add it

to F .

(6) Return F

Note that the algorithm initializes F as a single “bucket” corresponding to the

pattern (∗, . . . ,∗) containing all Fourier coefficients S ⊆ [n]. In each iteration we

remove a bucket containing more than one set S and split it into two buckets

containing half the sets. Then we measure its squared Fourier weight; if the mea-

sured value is below ε2

2
then we discard it, otherwise we keep it. At the end all
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remaining buckets will contain a single set S. If we run the test in Lemma 3.2

with accuracy ε′ := ε2

4
(and high enough confidence 1−δ) then we know that no

set S ⊆ [n] with | f̂ (S)| ≥ ε will ever be discarded and all sets that we have left at

the end have f̂ (S)2 ≥ ε2

2
− ε2

4
⇒ | f̂ (S)| ≥ ε

2
. The final set F returned in (6) only

contains singletons satisfying 1 ≥
∑

S∈F f̂ (S)2 ≥ ε2

4
implying that |F | ≤ 4

ε2 . One

can arrange the set of all considered vectors a as a binary (but not necessarily

balanced) tree which has O( 1
ε2 ) leaves and O( n

ε2 ) nodes total. Hence a confidence

of δ :=Θ(ε
2

n ) suffices.

(∗,∗, . . . ,∗)

(0,∗, . . . ,∗) (1,∗, . . . ,∗)

(0,0,∗, . . . ,∗) (0,1,∗, . . . ,∗)

. . .

. . . . . .

3.3 Application to List Decoding of the Hadamard Code

The Walsh Hadamard code is an error correcting code that maps S ⊆ [n] to the

code words WH(S) := (χS (x))x∈{−1,1}n . Note that this is an extremely inefficient

code as it encodes the n-bits represented by S ⊆ [n] with the 2n-bits needed to

encode the boolean function χS . But the code has man useful properties. Recall

that in the notation from Chapter 2 we write dist( f , g ) as the fraction in which

boolean functions f , g : {−1,1}n → {−1,1} differ. First, note that distinct code

words differ in exactly half the bits:

Lemma 3.4. For all distinct S,T ⊆ [n] one has dist(χS ,χT ) = 1
2

.

Proof. As used earlier dist( f , g )= 1
2
− 1

2
〈χS ,χT 〉E = 1

2
.

Then certainly, if we have a function f : {−1,1}n → {−1,1} with minS⊆[n]{dist( f ,χS)} <
1
4

, then by the triangle inequality there has to be a unique set S∗⊆ [n] with dist( f ,χS∗) <
1
4

. But one can easily pick two distinct set S1,S2 and construct f as the “mid

point” between χS1 ,χS2 so that dist( f ,χS1) = 1
4
= dist( f ,χS2). In other words, the

unique decoding property is lost once we reach a radius of 1
4

. But between dis-

tance 1
4

and 1
2
−ε, the Walsh Hadamard code is still list decodable. In particular for
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any given f and ε> 0 there is a bounded number of sets S with dist( f ,χS) ≤ 1
2
−ε

and one can even compute these efficiently.

Theorem 3.5 (List decoding of Walsh Hadamard). Given ε > 0 and query access

to a boolean function f : {−1,1}n → {−1,1} one can compute a list F ⊆ 2[n] so that

(i) For all S ∈F one has dist( f ,χS) ≤ 1
2
− ε

2
.

(ii) If dist( f ,χS) ≤ 1
2
−ε, then S ∈F .

The list can be computed from poly(n, 1
ε ) many queries to f and |F | ≤O( 1

ε2 ).

all functions {−1,1}n → {−1,1}

f ( 1
2
−ε)

WH(S)

1/2
∈F

Proof. We use the Goldreich Levin algorithm (Theorem 3.3 plus removing those

sets S with negative f̂ (S)) to compute a set F with |F | ≤O( 1
ε2 ) so that f̂ (S)≥ 2ε⇒

S ∈F and S ∈F ⇒ f̂ (S) ≥ ε. We consider the cases:

(i) For S ∈F we have dist( f ,χS ) = 1
2
− 1

2
〈 f ,χS〉E ≤ 1

2
− ε

2
.

(ii) If 1
2
− 1

2
〈 f ,χS〉E = dist( f ,χS) ≤ 1

2
−ε then f̂ (S) ≥ 2ε and so by construction

S ∈F .
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Chapter 4

Hardness of Approximation I (via

PCP Theorem + Parallel Repetition)

In this chapter we discuss a very important application of boolean functions to

derive hardness of approximation results. We will make a small detour and ex-

plain some background on the PCP Theorem and the Parallel Repetition Theo-

rem first (even if it does not contain any boolean functions). After that we prove

that for any ε> 0, there is no ( 1
2
+ε)-approximation algorithm for maximizing the

number of satisfied linear equations in F2 with 3 variables per equation. For this

chapter, we follow the notes of Minzer [Min22]. Much of the covered material

can also be found in Chapter 7 of O’Donnell’s book [O’D21].

4.1 Probabilistically checkable proofs

Consider a language L ⊆ {0,1}∗. We are given an input x ∈ {0,1}∗ and our goal is

to decide whether x ∈ L or not. Suppose there is an all powerful prover that wants

to convince us of the former. The prover presents a proof string π. But we cannot

read the whole proof, we can merely read a few randomly chosen entries of the

proof but it has to suffice to convince us that x should be accepted when x ∈ L
while we should likely reject if x ∉ L. This is called a probabilistically checkable

proof.

Definition 4.1. Let Σ be a finite set, 1 ≥ s > c ≥ 0. A PCP[s,c]
Σ

(r (n), q(n))-verifier is

a deterministic polynomial time Turing machine V π(x,u) that receives an input

x ∈ {0,1}∗ and uniform random bits u ∼ {0,1}r (|x|) and can make non-adaptive

queries to q(|x|) positions of a proof string π ∈ Σ
∗. More precisely, the Turing

machine can write indices i1, . . . , iq(n) (n := |x|) on a special tape and then receive

31
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the symbols πi1 , . . . ,πiq (n) — but it can make such a query only once, in particular

the queries are non-adaptive.

We say that such a verifier V π decides a language L ⊆ {0,1}∗ if

x ∈ L ⇒ ∃π : Pr
u∼{0,1}r (n)

[V π(x,u) accepts] ≥ s

x ∉ L ⇒ ∀π : Pr
u∼{0,1}r (n)

[V π(x,u) accepts] ≤ c

We also denote PCPs,c
Σ

(r (n), q(n)) as the set of languages that can be decided by

a PCPs,c
Σ

(r (n), q(n))-verifier.

proof π:

V π(x,u)
q(n) queries

V π(x,u)

One of the deepest results in all of theoretical computer science is the follow-

ing:

Theorem 4.2 (PCP Theorem — Arora, Feige, Goldwasser, Lund, Lovász, Motwani,

Safra, Sudan, Szegedy 19921). There are constants ε > 0 and |Σ| so that one has

PCP[1,1−ε]
Σ

(O(logn),O(1)) = NP.

The reader should appreciate at this point that it is mindblowing how just

checking a constant number of symbols could suffice for NP-hard problems. This

has dramatic consequences for the approximability of NP-hard problems as we

will discuss here. Proving Theorem 4.2 is far beyond the scope of this lecture.

For an excellent exposition of the original algebraic proof of the PCP Theorem

we recommend the notes of Minzer [Min22]. A more recent proof using a gap-
amplification argument was found by Dinur [Din07]. The latter proof can also

be found in Chapter 22 of the textbook of Arora and Barak [AB09].

First, it would be a simple observation that one can encode each symbol Σ by

bits and hence enforce that Σ = {0,1}. But we will take a different route instead

that is more useful for hardness results.

4.1.1 Constraint Satisfaction Problems

The following problem provides a useful alternative view of the functionality of a

PCP verifier.

1Really this is a combination of several works and we cite the set of authors that received the

2001 Gödel prize.



4.1. PROBABILISTICALLY CHECKABLE PROOFS 33

Definition 4.3. The input to the constraint satisfaction problem CSPΣ,q consists

of a q-uniform2 hypergraph H = ([n],E ) and functions Φe : Σe → {0,1} that de-

pend only on the values assigned to elements in e . An assignment x ∈Σ
n satisfies

constraint e if Φe(x) = 1 (where we really mean Φe ((xi )i∈e) = 1). The goal is to

find an assignment x ∈ Σ
n that maximizes the number of satisfied constraints

with Φe(x) = 1. We write val(H) ∈ [0,1] as the optimum fraction of satisfiable con-

straints. We write CSP
[s,c]
Σ,q as the correspponding gap version of the problem were

one needs to distinguish whether val(H) ≥ s or val(H) ≤ c.

We denote the Karp reduction between two languages by ≤p . More formally,

for two languages A,B ⊆ {0,1}∗ we write A ≤p B if there is a polynomial time

computable function f : {0,1}∗ → {0,1}∗ so that x ∈ A ⇔ f (x) ∈B .

Proposition 4.4. Let L ∈ NP and fix Σ and 1 ≥ c > s ≥ 0. Then the following is

equivalent:

(A) L ∈ PCPs,c
Σ

(O(logn), q)

(B) One has L ≤p CSP
[s,c]
Σ,q

Proof. (A) ⇒ (B). Consider a PCP[s,c]
Σ

(r, q)-verifier V π(x,u) with a proof of length

|π| = n. For each choice u ∈ {0,1}r of random bits the verifier reads q entries of the

proof; we denote those entries by eu ∈
([n]

q

)
. Let Φeu : Σeu → {0,1} be the function

with Φeu (π) = 1 if and only if the verifier accepts π in case the random bits are u.

Then we obtain a CSPΣ,q instance H whose value val(H) is exactly the maximum

probability that the verifier accepts any proof. Note that if r (n) ≤ O(logn), then

the instance H has polynomial size.

(B) ⇒ (A). This reduction also works in reverse: suppose we have a polyno-

mial time reduction from a language L ∈ NP to the gap version CSP
[s,c]
Σ,q . Then if H

is the produced hypergraph with n vertices, then use π ∈ Σ
n as the proof string.

We define a verifier that picks a uniform random edge e ∼ E and accepts if and

only if Φe(π) = 1. Then this is a PCP[s,c]
Σ

(O(log |E |), q) verifier.

4.1.2 Reducing to 2 queries

Next, we prove that in the PCP Theorem two queries suffice, i.e. PCP[1,1−ε′]
Σ′ (O(log n),2)=

NP (while PCP[s,c]
Σ′ (O(logn),1)= P for any 1≥ s > c ≥ 0).

Proposition 4.5 (2-query PCP Theorem). There are constant ε′ > 0 and |Σ′| so

that CSP
[1,1−ε′]
Σ′,2

is NP-hard.

2That means all edges e ∈ E have size |e| = q .
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Proof. Consider a CSPΣ,q instance H = (V ,E ). We define a bipartite graph G =
(V ∪̇VE ,F ) with the original vertices V and a vertex ve for every original hyperedge

e ∈ E , i.e. VE = {ve : e ∈ E }. We insert an edge (v, ve) whenever v ∈ e . We use

symbols Σ for V and symbols Σq for vertices in VE corresponding to assignments

to all the q many original nodes. An assignment x : (V ∪U ) → (Σ∪Σ
q ) satisfies an

edge (v, ve) if (i) x(ve ) satisfies e and (ii) the value of x(v) is consistent with the

entry in x(ve).

v1 v2

v3

graph H

e

v1

v2

v3

ve

V VE

graph G

The following is simple and we skip the argument:

Claim I. val(H) = 1 ⇒ val(G) = 1.

The next claim is the more interesting part and we leave it as homework:

Claim II. val(H) ≤ 1−ε⇒ val(G)≤ 1− ε
q .

4.1.3 Label Cover

Instead of working with CSPΣ′,2 it is common to work with an different problem

that is equivalent in terms of hardness.

Definition 4.6. A label-cover instanceΨ consists of a bipartite graph G = (L∪̇R ,E ),

an alphabet Σ= ΣL∪̇ΣR and maps Φe : ΣL → ΣR for all edges e ∈ E . The goal is to

find an assignment A : V →Σ with A(u) ∈ΣL for u ∈ L and A(v) ∈ΣR for v ∈ R that

maximizes the number of satisfied constraints. Here a constraint e = (u, v)∈ E is

satisfied if Φe (A(u)) = A(v).
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L R

e

graph G

ΣL ΣR

map Φe

We denote val(Ψ) ∈ [0,1] as the value of the instance, which is the maximum frac-

tion of satisfiable constraints. We would like to point out that the constraints Φe

with e = (u, v) are of a particular form in the sense that for any assignment for u
there is exactly one assignment for v that makes the constraint Φe true. This is

also called a projection constraint.

We write LABELCOVER
[1,1−ε]
k as the gap version of the problem where we have

to distinguish the cases val(Ψ) = 1 from val(Ψ) ≤ 1−ε where Ψ has alphabet size

k.

Theorem 4.7. There are constants ε > 0 and k ∈ N so that LABELCOVER
[1,1−ε]
k is

NP-hard.

Proof. This follows from the NP-hardness of CSPΣ′,2 with the following additional

observation concerning the proof of Prop 4.5: In the constructed CSPΣ′,2-instance

G = (V ∪VE ,F ) any assignment for ve allows exactly one assignment to v that

makes (v, ve) ∈ F true. So indeed this is a projection constraints (where L := VE

and R :=V ).

Naturally, for deriving hardness results it would be much more useful to have

NP-hardness for LABELCOVER
[1,ε]
k for every constant ε > 0 rather than hardness

for LABELCOVER
[1,1−ε]
k for some tiny ε.

4.2 The 2-prover 1-round game

LetΨ= (G ,Σ=ΣL∪ΣR , {Φe }e∈E ) be a label-cover instance and consider the follow-

ing game: we have a verifier V that only has randomized polynomial time com-

putation available and two all-powerful provers P1 and P2. The verifier draws

a random edge e = (u, v) ∈ E , sends u to P1 and v to P2. Both provers need

to output assignments a ∈ ΣL and b ∈ ΣR respectively without communicating
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with each other and their assignments should satisfy the chosen constraint of

Φe (a) = b. The goal of the provers is to maximize the probability to satisfy the

chosen constraint.

prover 1 verifier prover 2

V

P1 P2

u v

V

α β

Draw e = (u, v) ∼ E

Accept if Φe (α) =β

projection game corresponding to Ψ

It is an exercise to argue that this game is equivalent to label cover. This is the

reason the game is also called a projection game.

Lemma 4.8. The value of the game equals the value of the label-cover instance,

val(Ψ).

So by some abuse of notation we interpret val(Ψ) not just as the value of the

label-cover instance but also the value of the equivalent 2-prover 1-round game.

Now we want to generalize the game. Imagine the verifier wanted to increase its

chances and sample independently edges e1, . . . ,et ∼ E where ei = (ui , vi ), sends

u1, . . . ,ut to prover 1 and v1, . . . , vt to prover 2. Then prover 1 sends assignments

α1, . . . ,αt ∈ΣL and prover 2 sends assignments β1, . . . ,βt ∈ΣR to the prover. Then

the verifier accepts if Φei (αi ) = βi for all i = 1, . . . , t . We call this the t-fold game
and denote it by Ψ

⊗t .
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prover 1 verifier prover 2

V

P1 P2

u1, . . . ,ut v1, . . . , vt

V
α1, . . . ,αt β1, . . . ,βt

Draw e1, . . . ,et ∼ E
with ei = (ui , vi )

Accept if Φei (αi ) =βi

for all i = 1, . . . , t

projection game Ψ
⊗t

Again one can show that this game corresponds to a label cover instance of size

nt . Clearly, val(Ψ⊗t ) ≥ val(Ψ)t for all t . One might suspect that in fact val(Ψ⊗t ) =
val(Ψ)t , but that turns out to be false. However a weaker version holds.

Theorem 4.9 (Parallel Repetition Theorem — Raz [Raz95]). For any δ> 0 and |Σ|
there is a constant3 C > 0 so that: For any label cover instance Ψ with val(Ψ) ≤
1−δ and any t ∈N one has val(Ψ⊗t ) ≤ exp

(
−C · t

)
.

This is a fundamental result originally due to Raz [Raz95] and while there are

several proofs known, they all are beyond the scope of this class. We recommend

the simplifications due to Holenstein [Hol07] and Rao [Rao08] as well as the work

of Moshkovitz [Mos14] which first modifies the game so that the modified games

indeed has val(Ψ⊗t ) ≈ val(Ψ)t . By going back to the Label Cover problem we

can now derive the statement which will be the starting point for our hardness

reductions.

Theorem 4.10 (Strong Label Cover Hardness). For each ε > 0 there is a k ∈ N so

that LABELCOVER
[1,ε]
k is NP-hard.

4.3 The 3Lin problem

The target problem for our hardness proof will be the following:

3One can choose C :=Θ

(
δ3

log |Σ|

)
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Definition 4.11. For a 3LIN2 instance I we are given m equations of the form

xei ,1
⊕xei ,2

⊕xei ,3
= ci

where ei ,1,ei ,2,ei ,3 ∈ {1, . . . ,n} are distinct indices, ci ∈ F2 and ⊕ is the addition

modulo 2. The goal is to find an assignment x ∈ F
n
2 that maximizes the fraction

of satisfied equations. We denote the optimum value by val(I) ∈ [0,1].

If val(I)= 1, then one can use Gaussian elimination to find a satisfying assign-

ment x. We also note that for any instance, a random assignment will satisfy half

the equations. In the remainder of this chapter, we will prove that remarkably

this is already the best possible approximation algorithm:

Theorem 4.12. For any constant ε> 0 the following holds: Given a 3LIN2 instance

I it is NP-hard to distinguish whether val(I)≥ 1−ε or val(I)≤ 1
2
+ε.

Similar to earlier chapters it will be notationally more convinient to work with

the {−1,1}n cube rather than {0,1}n .

Definition 4.13. For a 3LIN{−1,1} instance I we are given m weighted equations

of the form

xei ,1
⊙xei ,2

⊙xei ,3
= ci

where ei ,1,ei ,2,ei ,3 ∈ {1, . . . ,n} are distinct indices, ci ∈ {−1,1} and wi ≥ 0 is the

weight. The goal is to find an assignment x ∈ {−1,1}n that maximizes the cumu-

lated weight of satisfied equations. Again denote the optimum value by val(I).

In this formulation we admit weights, but one could “simulate” weights by

replacing each equation i with ⌊N wi ⌋ many unweighted copies where N is big

enough.

4.4 The Noisy Linearity Test

First we want to build up on the linearity test from Chapter 2.

Definition 4.14. A function f : {±1}n → {±1} is called a dictatorship function if

there is an index i ∈ [n] so that f (x) = xi =χ{i }(x) for all x ∈ {−1,1}n .

Note that there are only n dictator functions in dimension n. There is also a

coding-theoretic interpretation:

Definition 4.15. The long code in dimension n is the set LC := {(xi )x∈{−1,1}n | i ∈
[n]}.
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In other words, the long code contains the function tables of all the dictator

ship functions. In particular the long code is a subset of the Hadamard code

(see Section 3.3). The long code is called long code because — well — it is long.

It uses 2n bits to encode merely n code words (which could be encoded using

only log2 n bits). But it has so much redundancy that it is quite useful. The idea

is that given a LABELCOVER instance and an assignment A : L → ΣL for the left

hand side nodes, we will encode the symbol A(u) for u ∈ L using the function

table (χA(u)(x))x∈{−1,1}ΣL ; analogously for the right hand side nodes R . Before we

come to the actual reduction, we need to learn how to make use out of those

dictatorship functions.

We recall that in Chapter 2 we have proven that any function f : {±1}n → {±1}

that passes the linearity test

f (x ⊙ y) = f (x) · f (y) for x, y ∼ {±1}n

with probability at least 1
2
+δ, must have a coefficient S ⊆ [n] with f̂ (S) ≥ 2δ. But

every function χS with S ⊆ [n] passes this test with probability 1. Now we would

like to modify this linearity test so that it still accepts dictatorship functions but is

likely rejects functions χS with large |S|. It turns out that dictatorship functions

are less sensitive to noise than functions χS with large |S|. This is the crucial

property that we will use.

Definition 4.16. For 0 ≤ ε≤ 1, we define the ε-biased distribution Dε([n]) as the

distribution over {−1,1}n with independent coordinates so that

Pr
x∼Dε([n])

[xi = 1] = 1−ε and Pr
x∼Dε([n])

[xi =−1] = ε

for all i ∈ [n].

If clear from context, then we drop the set [n]. Note that Ex∼Dε
[xi ] = 1−2ε.

NOISY LINEARITY TEST

Input: Access to a function f : {±1}n → {±1}.

(1) Pick independent random x, y ∼ {−1,1}n and a ∼Dε([n])

(2) Accept if f (a⊙x ⊙ y) = f (x) · f (y)

We will now analyze the Noisy Linearity test; the arguments will extend the proof

of Theorem 2.1.

Theorem 4.17 (Noisy Linearity Test). Let f : {±1}n → {±1} and 0 < ε≤ 1
2

.

(A) If f is a dictatorship function, then it passes the Noisy Linearity test with

probability 1−ε.
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(B) If f passes the Noisy Linearity test with probability 1
2
+δ, then there is an

S ⊆ [n] so that (1−2ε)|S| f̂ (S) ≥ 2δ (in particular |S| ≤ ln(1/δ)
2ε

and f̂ (S) ≥ 2δ).

Proof. For (A). If f (x) = xi , then for x, y ∼ {−1,1}n and a ∼Dε one has

Pr[ f (a⊙x ⊙ y) = f (x) f (y)] = Pr[ai xi yi = xi yi ] = Pr[ai = 1] = 1−ε

For (B). Now assume that f is an arbitrary function that passes the test with prob-

ability 1
2
+δ. We note that

E
x,y∼{±1}n

a∼Dε

[ f (a⊙x ⊙ y) f (x) f (y)] = 2 Pr[ f (a⊙x ⊙ y) f (x) f (y) = 1]︸ ︷︷ ︸
≥1/2+δ

−1 ≥ 2δ

Writing out the Fourier expansion (as we did in the proof of Theorem 2.1) we

obtain

2δ ≤ E
x,y∼{±1}n ,a∼Dε

[ f (a⊙x ⊙ y) f (x) f (y)]

Thm 1.3= E
x,y∼{±1}n ,a∼Dε

[( ∑

S⊆[n]

f̂ (S)χS(a⊙x ⊙ y)
)( ∑

T⊆[n]

f̂ (T )χT (x)
)( ∑

R⊆[n]

f̂ (R)χR (y)
)]

indep.=
∑

S,T,R⊆[n]

f̂ (S) f̂ (T ) f̂ (R) E
a∼Dε

[χS (a)] E
x∼{±1}n

[
χS(x)χT (x)

]

︸ ︷︷ ︸
=1 if S=T,=0 o.w.

E
y∼{±1}n

[
χS (y)χR (y)

]

︸ ︷︷ ︸
=1 if S=R, =0 o.w.

=
∑

S⊆[n]

f̂ (S)3
∏

i∈S
E[ai ]︸ ︷︷ ︸
=1−2ε︸ ︷︷ ︸

=(1−2ε)|S|

≤ max
S⊆[n]

{
(1−2ε)|S| f̂ (S)

}
·

∑

S⊆[n]

f̂ (S)2

︸ ︷︷ ︸
=1

Here we have used independence of x, y, a and the fact that χS (x ⊙ y) = χS(x) ·
χS (y).

4.5 A combined Noisy Linearity + constraint test

The next step is to develop a variant of the noisy linearity test that can incorpo-

rate one label cover constraint φ : ΣL → ΣR . Recall that a pair (a,b) ∈ ΣL ×ΣR

satisfies the constraint φ if φ(a) = b. We encode a ∈ ΣL with a dictatorship func-

tion f :=χ{a} : {−1,1}ΣL → {±1} and b ∈ΣR is encoded by the dictatorship function

g := χ{b} : {±1}ΣR → {±1}. In the instructive special case where ΣL = ΣR =Σ and φ
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is the identity, the right test would be to draw x, z ∼ {−1,1}Σ and w ∼Dε(Σ) and

check whether

f (w ⊙x ⊙ z) = f (z)⊙ g (x)

The case where φ is an arbitrary function needs some modification. For x ∈
{−1,1}ΣR we define φ−1(x) ∈ {−1,1}ΣL as the vector with φ−1(x)i := xφ(i ) for i ∈ΣL .

We also call φ−1 the pull-back function of φ.

ΣL ΣR

map φ

−1

−1

1

x

−1

−1

−1

1

1

φ−1(x)

Consider the following test:

NOISY LINEARITY + CONSTRAINT TEST

Input: Constraint φ : ΣL → ΣR . Access to functions f : {±1}ΣL → {±1} and

g : {−1,1}ΣR → {±1}.

(1) Sample x ∼ {−1,1}ΣR and set y :=φ−1(x)

(2) Sample z ∼ {−1,1}ΣL and w ∼Dε(ΣL)

(3) Accept if f (w ⊙ y ⊙ z) · f (z) = g (x)

For a set S ⊆ΣL we define

φodd(S) :=
{
b ∈ΣR | there is an odd number of a ∈ S with φ(a) = b

}

S

φodd(S)

ΣL ΣR

map φ

We will now analyze the Noisy Linearity + Constraint Test.

Theorem 4.18. The Noisy Linearity + Constraint Test satisfies the following:

(A) If f =χ{a} and g =χ{b} with φ(a) = b, then the test accepts with probability

1−ε.
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(B) If the test accepts with probability at least 1
2
+δ, then

∑

S⊆ΣL :|S|≤ ln(1/δ)
ε

f̂ (S)2 · ĝ (φodd(S))2 ≥ δ2

Proof. For (A). In this case, the equation

f (w ⊙ y ⊙ z) · f (z) = wa ya︸︷︷︸
=xb

z2
a︸︷︷︸

=1

= wa xb
!= xb = g (x)

is true iff wa = 1, which happens with probability 1−ε.

For (B). As before in the proof of Theorem 4.17 we expand the bias of f (w ⊙
y ⊙ z) f (z)g (x) into the Fourier basis and simplify the terms:

2δ ≤ E
x,y,z,w

[ f (w ⊙ y ⊙ z) f (z)g (x)]

= E
x,y,z,w

[ ∑
S⊆ΣL

f̂ (S)χS(w ⊙ y ⊙ z)
∑

T⊆ΣL

f̂ (T )χT (z)
∑

R⊆ΣR

ĝ (R)χR (x)
]

=
∑

S,T,R
f̂ (S) f̂ (T )ĝ (R) E

x∼{−1,1}ΣR

[χR (x)χS (y)] E
z∼{−1,1}ΣL

[χS (z)χT (z)]

︸ ︷︷ ︸
=1 if S=T,=0 o.w.

E
w∼Dε(ΣL)

[χS (w)]

︸ ︷︷ ︸
=(1−2ε)|S|

(∗)=
∑

S⊆ΣL ,R⊆ΣR

(1−2ε)|S| f̂ (S)2ĝ (R) · E
x∼{−1,1}ΣR

[χR (x)χφodd(S)(x)]

︸ ︷︷ ︸
=1 if R=φodd(S),0 o.w.

=
∑

S⊆ΣL

(1−2ε)|S| f̂ (S)2ĝ (φodd(S))

Cauchy-S.
≤

( ∑

S⊆ΣL

f̂ (S)2

︸ ︷︷ ︸
=1

·
∑

S⊆ΣL

(1−2ε)2|S| f̂ (S)2ĝ (φodd(S))2
)1/2

≤
( ∑

S⊆ΣL :

|S|> ln(1/δ)
ε

f̂ (S)2

︸ ︷︷ ︸
≤1

(1−2ε)2|S|
︸ ︷︷ ︸
≤δ4 by (∗∗)

ĝ (φodd(S))2

︸ ︷︷ ︸
≤1

+
∑

S⊆ΣL :

|S|≤ ln(1/δ)
ε

(1−2ε)2|S|
︸ ︷︷ ︸

≤1

f̂ (S)2ĝ (φodd(S))2
)1/2

≤
(
δ4 +

∑

S⊆ΣL :|S|≤ ln(1/δ)
ε

f̂ (S)2ĝ (φodd(S))2
)1/2

Then rearranging gives
∑

S⊆ΣL :|S|≤ ln(1/δ)
ε

f̂ (S)2 · ĝ (φodd(S))2 ≥ (2δ)2 −δ4 ≥ δ2. Here

we use in (∗) that

χS(y) =χS(φ−1(x)) =
∏

i∈S
xφ(i ) =χφodd(S)(x)
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as pairs of distinct indices i1, i2 ∈ S with φ(i1) =φ(i2) have xφ(i1) ·xφ(i2) = 1. This is

the reason why we have the term φodd(S) appearing in the statement in the first

place. Finally note that in (∗∗) we use that for |S| > ln(1/δ)
ε

one has (1−2ε)2|S| ≤
exp(−4ε|S|) ≤ exp(−4 ln( 1

δ )) = δ4.

In particular, Theorem 4.18 shows that if f and g pass the test with proba-

bility 1
2
+δ, then there is a significant Fourier coefficient f̂ (S)2 · ĝ (φodd(S))2 for

small S. Intuitively this should be helpful to extract a good labelling from S. But

there is one obstacle for this in order to be useful. We need to make sure that the

large Fourier coefficient does not come from the set S =;. For that the following

definition will be useful:

Definition 4.19. A function f : {−1,1}n → {±1} is odd if f (−x) = − f (x) for all

x ∈ {−1,1}n .

In particular an odd function has the Fourier coefficient f̂ (;) = Ex∼{−1,1}n [ f (x)] =
0. Now, let us go back to the test where we have functions f : {−1,1}ΣL → {−1,1}.

Let H ⊆ {−1,1}ΣL be any subset of the hypercube so that each pair {x,−x} of

antipodal points has |H∩ {x,−x}| = 1. A canonical choice would be H := {x ∈
{−1,1}n | x1 = 1}.

H

{−1,1}n

We can demand that the test only has a table for the partial function f : H →
{−1,1} and whenever the test adresses an entry f (x) with x ∈ {−1,1}n \H then we

define that entry as f (x) :=− f (−x). This was we can enforce that the function f
is odd. Now we have all ingredients for a reduction.

4.6 Hardness for 3LIN

Now we will reduce LABELCOVER to 3LIN{−1,1}. The crucial ingredient to that re-

duction is the fact that the equations f (w ⊙ y ⊙ z) · f (z) = g (x) from the Noisy

Linearity + Constraint Test are in fact 3LIN{−1,1}-equations. Now we come to the

actual reduction:
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Proposition 4.20. For any 0 < ε ≤ 1 there is a γ := γ(ε) > 0 so that the following

holds. Given a label cover instance Ψ = (G ,Σ = ΣL∪̇ΣR , (Φe )e∈E ) one can con-

struct a 3LIN{−1,1} instance I of size polynomial in |V | and 2|Σ| so that:

• Completeness: val(Ψ) = 1 ⇒ val(I)≥ 1−ε.

• Soundness: val(Ψ) ≤ γ⇒ val(I) ≤ 1
2
+ε.

Proof. We create a 3LIN{−1,1} instance I that contains a variable fu(z) ∈ {−1,1}

for all u ∈ L and z ∈ {−1,1}ΣL . Moreover we have a variable gv (x) for all v ∈ R
and x ∈ {−1,1}ΣR . For each edge e = (u, v) ∈ E in the label cover instance, each

x ∈ {−1,1}ΣR , z ∈ {−1,1}ΣL and a ∈ {−1,1}ΣL we insert the equation

fu(a⊙ y ⊙ z) · fu (z) ·gv (x) = 1

where y :=φ−1
e (x). The weight of that equation is 1

|E | times the probability/density

of the tuple (x, z, a), which is 2−|ΣR | ·2−|ΣL | · (1−ε)#i :ai =1 ·ε#i :ai =−1. Note that the

sum of all the weights is exactly 1. As explained above, we enforce that the func-

tions fu and gv are odd (which really means we only have half the variables that

we listed).

Claim I. One has val(Ψ) = 1 ⇒ val(I)≥ 1−ε.
Proof of Claim I. Let A : V →Σ be a satisfying assignment for Ψ. Then we set the

variables for u ∈ L and v ∈ L to the corresponding dictatorship functions fu :=
χ{A(u)} and gv :=χ{A(v)}. As proven in Theorem 4.18.(A), for each single constraint

e = (u, v), the weight of the associated 3LIN{−1,1}-equations that are satisfied is at

least 1−ε
|E | . Here we also use that dictatorship functions are odd.

Now we can prove soundness:

Claim II. For any δ,ε> 0, there is a γ := γ(δ,ε) > 0 so that val(I) ≥ 1
2
+δ⇒ val(Ψ) ≥

γ.
Proof of Claim II. We fix the functions fu and gv that satisfy a 1

2
+δ fraction of

equations. For an edge e = (u, v)∈ E we abbreviate

δe := E
x,z,a,y :=φ−1

e (x)

[
fu(a⊙ y ⊙ z) · fu (z) ·gv (x)

]

Equivalently, the fraction of equations in I that arise from e and are satisfied

is 1
2
+ δe

2
. One should think of δe as the advantage that the functions fu and gv

provide over a random assignment (which would satisfy half of the equations).

Note that val(I) = 1
2
+ 1

2 Ee∼E [δe] ≥ 1
2
+δ and so Ee∼E [δe ] ≥ 2δ. We call an edge e

good if δe ≥ δ and denote those good edges by Egood := {e ∈ E | e is good}. By the

Reverse Markov inequality (Lemma 1.37) we know that |Egood| ≥ δ|E |. So we have

a constant fraction of edges where fu , gv provide a constant advantage.
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Next, we construct an assignment A : V →Σ that satisfies a constant fraction

of good edges. For each vertex u ∈ L we consider the function f : {±1}ΣL → {±1}

that is supposed to encode the label for u. Recall that
∑

S⊆ΣL f̂u(S)2 = 1. We draw a

set Su ⊆ΣL at random with probability f̂u(S)2. Then we draw A(u) ∼ Su uniformly

at random. Similarly we assign labels to vertices on the right: for v ∈ R we draw

Sv ⊆ ΣR with probability ĝv (S)2 and then sample A(v) ∼ Sv . It remains to prove

that this is a decent assignment:

Subclaim II.A. For each e ∈ Egood one has PrA[A satisfies e] ≥ δ2

ln(1/δ)2ε
2.

Proof of Subclaim II.A. Let e = (u, v). First let us condition that we choose a set

Su and Sv := φodd
e (Su). If these events have happened with positive probability,

then f̂u(Su)2 > 0 and ĝv (φodd
e (Sv ))2 > 0. Since by construction fu and gv are odd,

we know that Su 6= ; and φodd
e (Sv ) 6= ;. Any b ∈ φodd

e (Sv ) has at least one a ∈ Sv

so that φe(a) = b. Hence the probability to satisfy the edge e is

Pr
A

[
A satisfies e | Su and Sv :=φodd

e (Su)
]
≥

1

|Su | · |φodd
e (Su)|

|φodd
e (Su )|≤|Su |

≥
1

|Su |2

Now, let us uncondition. Then only summing over the small sets Su guaranteed

in Theorem 4.18.(B) we get a lower bound of

Pr
A

[A satisfies e]≥
∑

S⊆ΣL :|S|≤ ln(1/δ)
ε

f̂u(S)2ĝv (φodd
e (S))2

︸ ︷︷ ︸
≥δ2 by Thm 4.18.(B)

·
1

|S|2︸︷︷︸
≥ ε2

ln(1/δ)2

≥
ε2δ2

ln(1/δ)2

That finishes Subclaim II.A. Since at least a δ-fraction of edges is good, we have

that val(Ψ) ≥ δ3

ln(1/δ)2 ε
2 and Claim II follows.

For the conclusion we can set for example ε := δ.

We can conclude that gap version 3LIN
[1−ε, 1

2+ε]

{−1,1}
is NP-hard:

Theorem 4.21. For any constant ε > 0 the following holds: Given a 3LIN{−1,1} in-

stance I it is NP-hard to distinguish whether val(I) ≥ 1−ε or val(I) ≤ 1
2
+ε.

Proof. Follows from combining the hardness of LABELCOVER
[1,γ]

k for any γ > 0

(with k := k(γ) large enough) from Theorem 4.10 with the reduction in Prop 4.20.
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Chapter 5

Hypercontractivity

Recall that for any f : {−1,1}n → R and 1 ≤ p ≤ q < ∞ we have ‖ f ‖E ,p ≤ ‖ f ‖E ,q

by a Jensen inequality argument (see Prop 1.16). The goal of this chapter will be

how to bound ‖ f ‖E ,q in terms of ‖ f ‖E ,p .

5.1 Bonami’s Lemma

First we prove that for any function f the ratio
‖ f ‖E ,q

‖ f ‖E ,p
(the “Jensen gap”) can be

bounded dependent on the degree of f . Recall that for any random variable X ,

by Jensen inequality one has E[X 4] ≥ E[X 2]2. On the other hand, for well concen-

trated random variables one would expect that the gap between both quantities

is not large.

Definition 5.1. We say that a random variable X is B-reasonable if E[X 4] ≤ B ·
E[X 2]2.

It is not hard to verify that the random variables x ∼ {−1,1}, g ∼ N (0,1) and

u ∼ [−1,1] are B-reasonable for some constant B . Reasonable random variables

satisfy some (weak) concentration:

Lemma 5.2. If X is B-reasonable, then for all t > 0, Pr[|X | > t E[X 2]1/2] < B
t4 .

Proof. Using monotonicity of z → z4 and Markov’s Inequality we get

Pr
[
|X | > t E[X 2]1/2

]
= Pr

[
X 4 > t 4

E[X 2]2
]
< E[X 4]

t 4
E[X 2]2

≤
B

t 4
.

47
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It is a well known fact that concentration of a random variable also implies

some form of anti-concentration:

Proposition 5.3. Let X be B-reasonable. Then for any 0 ≤ t ≤ 1 one has Pr[|X | ≥
t E[X 2]1/2] ≥ (1−t2)2

B .

Proof. Using the Paley-Zygmund inequality (Lemma 1.39) we obtain

Pr
[
|X | ≥ t E[X 2]1/2

]
= Pr

[
X 2 ≥ t 2

E[X 2]
] Paley-Zygmund

≥ (1−t 2)2E[X 2]2

E[X 4]

B-reasonable
≥

(1− t 2)2

B

Next, we prove an important result telling us that low degree boolean func-

tions correspond to reasonable random variables.

Theorem 5.4 (Bonami Lemma). Let f : {−1,1}n →R be a function with deg( f ) ≤ k.

Then

(i) The random variable f (x) (where x ∼ {−1,1}n) is 9k -reasonable.

(ii) One has ‖ f ‖E ,4 ≤
p

3
k‖ f ‖E ,2.

Proof. We quickly show that (ii) follows from (i) as

‖ f ‖E ,4 = E[ f (x)4]1/4 (i )
≤

(
9k ·E[ f (x)2]2

)1/4 =
p

3
k · ‖ f ‖E ,2

Now we prove (i) by induction over n. For n = 0, the random variable f (x) is

constant and the claim is true. Now assume n ≥ 1. We write x = (x̄, xn) with

x̄ = (x1, . . . , xn−1) and pull out the variable xn to obtain

f (x) = xn g (x̄)+h(x̄)

where g and h depend on at most n−1 variables with deg(g ) ≤ k−1 and deg(h) ≤
k. The goal is to prove that E[ f (x)4] ≤ 9k ·E[ f (x)2]2 where x ∼ {−1,1}n . First we

can rewrite the right hand side as

E

[
f (x)2

]2 = E

[(
xn g (x̄)+h(x̄)

)2]2

=
(
E[x2

n]︸ ︷︷ ︸
=1

E[g (x̄)2]+2E[xn]︸ ︷︷ ︸
=0

E[g (x̄)h(x̄)]+E[h(x̄)2]
)2

=
(
E[g (x̄)2]+E[h(x̄)2]

)2
=: (∗)
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using that xn and x̄ are independent. Now we do the main argument and bound

the left hand side as

E

[
f (x)4

]
= E

[(
xn g (x̄)+h(x̄)

)4]

indep.+binom
formula= E[x4

n]︸ ︷︷ ︸
=1

E

[
g (x̄)4

]
+4E[x3

n]︸ ︷︷ ︸
=0

E

[
g (x̄)3h(x̄)

]
+6E[x2

n]︸ ︷︷ ︸
=1

E

[
g (x̄)2h(x̄)2

]

+4E[xn]︸ ︷︷ ︸
=0

E

[
g (x̄)h(x̄)3

]
+E

[
h(x̄)4

]

= E

[
g (x̄)4

]
+6E

[
g (x̄)2h(x̄)2

]
+E

[
h(x̄)4

]

Cauchy-Schwarz
≤ E

[
g (x̄)4

]
+6

√
E

[
g (x̄)4

]
E

[
h(x̄)4

]
+E

[
h(x̄)4

]

induction
≤ 9k−1

E

[
g (x̄)2

]2 +6

√
9k−1

E

[
g (x̄)2

]2 ·9k
E

[
h(x̄)2

]2 +9k
E

[
h̄(x)2

]2

(∗∗)
≤ 9k ·E

[
g (x̄)2

]2 +2E[g (x̄)2]E[h(x̄)2]+E[h(x̄)4]

bin.formula= 9k ·
(
E[g (x̄)2]+E[h(x̄)2]

)2

︸ ︷︷ ︸
=(∗)

= 9k ·E
[

f (x)2
]2

In (∗∗) we use that 6
p

9k−19k = 6 · 9k

3
= 2 ·9k .

5.2 The FKN Theorem

Next, we see an application of Bonami’s Lemma to derive the FKN Theorem

which says that any boolean function f : {−1,1}n → {−1,1} with most weight on

level-1 must be close to ±χ{i } for some coordinate i . Recall that for two functions

f , g : {−1,1}n → {−1,1}, their distance is denoted by dist( f , g ) := Prx∼{−1,1}n [ f (x) 6=
g (x)] ∈ [0,1] and the level-1 weight of f is W 1[ f ] =

∑n
i=1 f̂ ({i })2. The reader may

note that the FKN Theorem is a claim rather specifically about boolean functions,

i.e. function with f (x) ∈ {−1,1}.

Theorem 5.5 (Friedgut-Kalai-Naor (FKN) Theorem). Let f : {−1,1}n → {−1,1} be

a function with W 1[ f ] = 1−δ for some 0 ≤ δ ≤ 1. Then there is an index i ∈ [n]

and a sign σ ∈ {−1,1} so that dist( f ,σχ{i }) ≤O(δ).

Proof. We may assume that δ ≤ 1
C for some large universal constant C > 0; oth-

erwise the claim would be trivially true. Let g (x) := f =1(x) =
∑n

i=1 f̂ ({i })χ{i }(x) be

the linear part of f . It will be useful to study the function g 2 which is a quadratic
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function of the form

g (x)2 =
( n∑

i=1

f̂ ({i })χ{i }(x)
)2

=
n∑

i=1

f̂ ({i })2 +
n∑

i=1

∑

j 6= j
f̂ ({i }) f̂ ({ j })χ{i , j }(x)

Note that by assumption, we have Ex∼{−1,1}n [g (x)2] =W 1[ f ] = 1−δ. It will be cru-

cial to prove that the variance of g 2 is small1.

Claim I. One has Var[g 2] ≤O(δ).
Proof of Claim I. Since deg(g 2) ≤ 2 we know by the Bonami Lemma (Theorem 5.4)

that g 2 is 92-reasonable. As Ex∼{−1,1}n [g (x)2] = 1−δ we can use Prop 5.3 to obtain

that Pr
[
|g (x)2 − (1−δ)| ≥ 1

2

√
Var[g 2]

]
≥ Ω(1). For the sake of contradiction, let

us assume that 1
2

√
Var[g 2] ≥ δ+C

p
δ (since otherwise Var[g 2] ≤O(δ) and we are

done). Then Prx∼{−1,1}n [|g (x)2 − 1| ≥ C
p
δ] ≥ Ω(1). Since |z2 − 1| ≤ 4

∣∣|z| − 1
∣∣ for

−2 ≤ z ≤ 2, this implies that Prx∼{−1,1}n [4||g (x)|−1| ≥C
p
δ] ≥Ω(1). Then

δ =
∑

S⊆[n]

à(g − f )(S)2

= E
x∼{−1,1}n

[(
g (x)− f (x)

)2]

≥ Ω(1) · E
x∼{−1,1}n

[(
g (x)− f (x)

)2

︸ ︷︷ ︸
≥(C

p
δ/4)2

|
∣∣|g (x)|−1

∣∣≥ C

4

p
δ
]
≥Ω(C 2δ)

Choosing C large enough results in a contradiction.

Now inspecting the Fourier representation of the variance of g 2 we see that

Ω(δ) ≤ Var[g 2]
Lem 1.36=

∑

|S|=2

ĝ 2(S) (∗)

=
n∑

i=1

∑

j 6=i
f̂ ({i })2 f̂ ({ j })2

=
( n∑

i=1

f̂ ({i })2

︸ ︷︷ ︸
=1−δ

)2
−

n∑

i=1

f̂ ({i })4

≥ (1−δ)2

︸ ︷︷ ︸
≥1−2δ

−max
{

f̂ ({i })2 : i ∈ [n]
}
·

n∑

i=1

f̂ ({i })2

︸ ︷︷ ︸
≤1

≥ 1−2δ− f̂ ({i∗})2

1Which shouldn’t be surprising as g as close to f and f 2 = 1 is constant.
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where i∗ is the index attaining the maximum. Then rearranging (∗) gives f̂ ({i∗})2 ≥
1−Θ(δ). Let σ ∈ {−1,1} be the sign with σ f̂ ({i∗}) ≥ 1−Θ(δ). Recalling the relation

between distance and inner product from Chapter 2 we then conclude that

dist( f ,σχ{i∗}) =
1

2
·
(
1−〈 f ,σχ{i∗}〉E︸ ︷︷ ︸

≥1−Θ(δ)

)
≤O(δ)

5.3 The KKL Theorem

In this section we discuss an important application of hypercontractivity to ana-

lyze the influence of boolean functions that we introduced in Section 1.8. Recall

that for a function f : {−1,1}n → {−1,1}, the influence of the i th coordinate is the

probability that flipping the i th bit changes the value, i.e.

Infi [ f ] = Pr
x∼{−1,1}n

[
f (x) 6= f (x⊕i )

] Thm 1.30.(i )=
∑

S⊆[n]:i∈S
f̂ (S)2

A function would have Infi [ f ] = 0 for all i if f is constant, so let us focus on func-

tions that are balanced (i.e. Ex∼{−1,1}n [ f (x)] = 0) or almost balanced (i.e. Var[ f ] =
Θ(1)). Clearly 0 ≤ Infi [ f ] ≤ 1, but how small can the influence of coordinates ac-

tually be? We can estimate that the sum of the influences of a balanced function

(i.e. f̂ (;) = 0) is

I [ f ] =
n∑

i=1

Infi [ f ]
Thm 1.30.(i i )=

∑
;⊂S⊆[n]

f̂ (S)2

︸ ︷︷ ︸
=1− f̂ (;)2

· |S|︸︷︷︸
≥1

≥ 1− f̂ (;)2

︸ ︷︷ ︸
=0

= 1

and so there has to be some coordinate i with Infi [ f ] ≥ 1
n . Next, we discuss two

non-trivial constructions and analyze their influence.

5.3.1 The Majority Function

Consider an odd n and consider the majority function f : {−1,1}n → {−1,1} with

f (x) :=
{

1 if
∑n

i=1
xi > 0

−1 if
∑n

i=1 xi < 0

The function is symmetric, hence the influence of all coordinates must be the

same and it suffices to determine Inf1[ f ]. Let us draw x2, . . . , xn ∼ {−1,1} at ran-

dom. Then the outcome of f depends on the first coordinate if and only if
∑n

i=2 xi =
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0. It is a well known fact in probability that Prx2 ,...,xn∼{−1,1}[
∑n

i=2 xi = 0] = Θ( 1p
n

)

and so Infi [ f ] =Θ( 1p
n

) for all n.

b

b

b

b

bC

bC

bC

bC

(1,1,1)

(−1,−1,−1)

majority function for n = 3

+1
−1

5.3.2 The Tribes Function

Next, we discuss a more complex function. We fix integers s, w ∈N and set n :=
s ·w . We partition the coordinates as [n] = I1∪̇ . . .∪̇Is with |I j | = w for j = 1, . . . , s.

Then we define the function Tribesw,s : {−1,1}n → {−1,1} by

Tribesw,s (x) :=
{
−1 if ∃ j ∈ [s] : xI j = (−1, . . . ,−1)

1 otherwise.

One can imagine that one has s many tribes of size w each and Tribesw,s (x) is a

voting function that rejects if at least one tribe unanimously rejects. If one sets

−1 ≡ TRUE and 1 ≡ FALSE then Tribesw,s corresponds to a DNF of s clauses con-

taining w many variables each:

∨

∧ ∧ ∧ ∧ ∧I1 I2
. . . Is

w variables

We observe that

Pr
x∼{−1,1}n

[Tribesw,s (x) = 1] =
s∏

j=1

Pr[xI j 6= (−1, . . . ,−1)] = (1−2−w )s
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We are interested in the parameter regime where this function is approximately

balanced and setting s := 2w gives2 (1−2−w )s ≈ 1
e . Now we can prove that using

this choice of parameters, every variable has very low influence.

Lemma 5.6. For w ∈ N, set s := 2w and n := sw . Then Var[Tribesw,s ] = Θ(1) and

Infi [Tribesw,s ] =Θ( ln(n)
n ) for all i = 1, . . . ,n.

Proof. First, from n = sw = w2w we can get that 2w =Θ(
log(n)

n ). By symmetry all

coordinates have the same influence, so consider coordinate 1 and assume 1 ∈ I1.

If we draw x2, . . . , xn ∼ {−1,1}, then f (x) depends on x1 if and only if both of the

following is satisfied:

(A) One has xi =−1 for all i ∈ I1 \ {1}.

(B) One has xI j 6= (−1, . . . ,−1) for all j ∈ {2, . . . , s}

The probability of this happening is then

Inf1[Tribesw,s ] = 2−(w−1)
︸ ︷︷ ︸
=Pr[(A)]

·(1−2−w )s−1

︸ ︷︷ ︸
=Pr[(B)]=Θ(1)

=Θ(2−w ) =Θ

( log(n)

n

)

This construction gives a function whose maximum influence is within aΘ(log(n))

factor from the trivial lower bound of 1
n . In the remainder of this section, we close

the gap.

5.3.3 Proof of the KKL Theorem

In this section, we will prove the Kahn-Kalai-Linial (KKL) Theorem which in par-

ticular says that any balanced function f : {−1,1}n → {−1,1} must have a coordi-

nate i with Infi [ f ] ≥Ω(
logn

n ), matching the influence of the tribes function. For

this part, we will follow the exposition by Minzer [Min21].

First, consider a “partial boolean” function f : {−1,1}n → {−1,0,1} and let α :=
Prx∼{−1,1}n [| f (x)| = 1]. Note that the total Fourier weight of such a function is

simply
∑

S⊆[n] f̂ (S)2 = Ex∼{−1,1}n [ f (x)2] =α. Surprisingly, if α is small, then only a

small fraction of the Fourier weight can be on low levels.

2One could also choose s more careful to get a probability very close to 1/2 but this choice will

suffice for us.
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Lemma 5.7. Let f : {−1,1}n → {−1,0,1} be a function with α := Prx∼{−1,1}n [| f (x)| =
1]. Then for any d ∈N,

∑

|S|≤d

f̂ (S)2 ≤
p

3
d ·α5/4

Proof. Since | f (x)| ∈ {0,1} we have the convinient fact that for any p ≥ 1 one has

‖ f ‖E ,p = Ex∼{−1,1}n [| f (x)|p ]1/p =α1/p . Now consider the function f ≤d : {−1,1}n →
R with f ≤d (x) :=

∑
|S|≤d f̂ (S)χS(x) which is the low-degree part of f . Then using

Hölder’s Inequality (Theorem 1.41) and the Bonami Lemma (Theorem 5.4) we

can bound

‖ f ≤d‖2
E ,2 = 〈 f ≤d , f ≤d 〉E

(∗)= 〈 f ≤d , f 〉E
Hölder
≤ ‖ f ≤d‖E ,4 · ‖ f ‖E ,4/3

Bonami
≤

p
3

d ‖ f ≤d‖E ,2︸ ︷︷ ︸
≤‖ f ‖E ,2

·‖ f ‖E ,4/3

=
p

3
d ‖ f ‖E ,2︸ ︷︷ ︸

=α1/2

‖ f ‖E ,4/3︸ ︷︷ ︸
=α3/4

=
p

3
d
α5/4

In (∗) we use that we could write f = f ≤d + f >d with the high degree part f >d and

〈 f ≤d , f >d 〉E = 0 by orthogonality of the character functions.

Now we prove the following statement which basically is a restatement of the

KKL Theorem.

Proposition 5.8. Let f : {−1,1}n → {−1,1} be a function with I [ f ] ≤ K · Var[ f ].

Then there is an index i ∈ [n] with Infi [ f ] ≥ e−Θ(K ).

Proof. Just for the sake of simpler notation, we prove this claim for balanced
functions, i.e. Ex∼{−1,1}[ f (x)] = 0 and so Var[ f ] = 1 — the mechanics of the gen-

eral proof would be the same. Then the assumption says that I [ f ] ≤ K and we

need to find a coordinate i with Infi [ f ] ≥ e−Θ(K ). Note that if K ≥Ω(logn) then

this statement is dominated by using the bound of Ei∼[n][Infi [ f ]] = I [ f ]

n . So one

should think of K as a small quantity between Θ(1) and Θ(logn).

We prove the claim by contradiction and assume that for all i ∈ [n] one has

Infi [ f ] ≤ α := e−CK where we choose C > 0 large enough. For each coordinate

i ∈ [n] we abbreviate the derivative by Fi (x) := Di f (x) = 1
2
·
(

f (xi 7→1)− f (xi 7→−1)
)
.

Since f (x) ∈ {−1,1} we have Fi (x) ∈ {−1,0,1}. Then Prx∼{−1,1}n [|Fi (x)| = 1] = Infi [ f ]



5.3. THE KKL THEOREM 55

and so Lemma 5.7 we can upper bound the low-degree Fourier weight involving

coordinate i by

∑

|S|≤d+1,i∈S

f̂ (S)2 =
∑

S⊆[n]:|S|≤d ,i∉S

f̂ (S ∪ {i })2 Prop 1.26=
∑

|S|≤d

F̂i (S)2 Lem 5.7
≤

p
3

d
Infi [ f ]5/4

(5.1)

Summing over all coordinates we can upper bound the low-degree Fourier weight

by

∑

|S|≤d+1

f̂ (S)2 ≤
1

d +1

n∑

i=1

∑

|S|≤d+1:i∈S

f̂ (S)2 (5.1)
≤

p
3

d

d +1

n∑

i=1

Infi [ f ]5/4 ≤
p

3
d

d +1
α1/4I [ f ]

(5.2)

On the other hand, the high degree Fourier weight can also be bounded by

∑

|S|>d+1

f̂ (S)2 ≤
∑

|S|>d+1

|S|
d +1︸ ︷︷ ︸
≥1

f̂ (S)2 Thm 1.30
≤

I [ f ]

d +1
(5.3)

Combining both gives

1 =
∑

S⊆[n]

f̂ (S)2 (5.2)+(5.3)
≤

p
3

d

d
α1/4I [ f ]+

I [ f ]

d +1

(∗)
≤

(
α1/4−0.1 +

1

Θ(log(1/α))

)
I [ f ]

α=e−CK

≤
(
e−Θ(CK ) +

1

Θ(C K )

)
·K

(∗∗)
< 1

In (∗) we make the choice of d =Θ(log(1/α)) which with an appropriate constant

gives that
p

3
d ≤ 1

α0.1 . Finally in (∗∗) we can choose C large enough to obtain a

contradiction.

Finally we prove the main result of this section:

Theorem 5.9 (Kahn-Kalai-Linial (KKL) Theorem). For any function f : {−1,1}n →
{−1,1} there is a coordinate i ∈ [n] with

Infi [ f ] ≥Ω

( log(n)

n
·Var[ f ]

)

Proof. Again, let Var[ f ] = 1 for simplicity. If I [ f ] ≥ c logn for some constant c > 0,

then Ei∼[n][Infi [ f ]] = I [ f ]

n ≥ c log(n)

n and we are done. On the other hand, if I [ f ] ≤
c logn, then by Prop 5.8 there is a coordinate i with Infi [i ] ≥ e−Θ(c log(n)) ≥ n−0.1 ≥

n
log(n)

for c small enough.
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5.4 Introduction to hypercontractivity

We again abbreviate Vn := { f | f : {−1,1}n →R} as the vector space of all functions

on the n-dimensional hypercube. We make a few definitions:

Definition 5.10. For a (linear) operator M : Vn → Vn and p, q ∈ [1,∞), we define

the p-to-q operator norm as

‖M‖p→q := sup
f ∈Vn

‖M f ‖E ,q

‖ f ‖E ,p

We call M a contraction from ‖ ·‖E ,p to ‖ ·‖E ,q if ‖M‖p→q ≤ 1, i.e. if

‖M f ‖E ,q ≤ ‖ f ‖E ,p ∀ f ∈Vn

If 1 ≤ p < q <∞ and ‖M‖p→q ≤ 1 then M is called hypercontractive.

Recall that by Jensen’s inequality, for 1 ≤ p < q <∞ one has ‖ f ‖E ,p ≤ ‖ f ‖E ,q

but in general this inequality is strict. So in order for an operator M to be hy-

percontractive it must shrink the length of f enough so that the length decreases

even if measured in the stricter norm ‖·‖E ,q that punishes peaks more than ‖·‖E ,p

does.

The only operator that we will be considering for this purpose will be the

noise operator Tρ from Section 1.7. Recall that for −1 ≤ ρ ≤ 1 and x ∈ {−1,1}n

we write y ∼ Nρ(x) as the distribution over y ∈ {−1,1}n with

yi =
{

xi with probability 1
2
+ ρ

2

−xi with probability 1
2
− ρ

2

independently for all coordinates i ∈ [n]. Morever we define Tρ : Vn → Vn as the

linear operator that maps a function f ∈Vn to Tρ f ∈Vn with

Tρ f (x) = E
y∼Nρ (x)

[ f (y)]

Recall that (Tρ f )(x) =
∑

S⊆[n]ρ
|S| f̂ (S) ·χS(x), so the operator indeed shrinks all

Fourier coefficients — but it does not do that at the same rate and it is not ob-

vious what the effect should be on various ‖ · ‖E ,p -norms. To warm up, we give

a hypercontractivity result that can be proven very similar to Bonami’s Lemma

(Theorem 5.4). In fact, if f had all Fourier weight on the same level k, then

Tρ f = ρk f and by Bonami’s Lemma (Theorem 5.4.(ii), f is 9k -reasonable so that

‖Tρ f ‖E ,4 = ρk‖ f ‖E ,4 ≤ ρk
p

3
k‖ f ‖E ,2 implying that ρ = 1p

3
suffices as noise factor.
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Theorem 5.11 ((2,4)-Hypercontractivity Theorem). For any f : {−1,1}n → R one

has

‖T1/
p

3 f ‖E ,4 ≤ ‖ f ‖E ,2

Proof. We abbreviate ρ := 1p
3

from now on. We will prove by induction over n

that

E
x∼{−1,1}n

[
Tρ f (x)4

]
≤ E

x∼{−1,1}n

[
f (x)2

]2
(5.4)

The claim is true with equality for n = 0 when the function f is constant, so sup-

pose n ≥ 1. We write x = (x̄, xn) with x̄ ∈ {−1,1}n−1 and xn ∈ {−1,1}. Pulling out

the variable xn from all terms of f gives f (x) = xn g (x̄)+h(x̄) for two functions

g ,h : {−1,1}n−1 →R.

Then

(Tρ f )(x) = E
ȳ∼Nρ (x̄)

[
E

yn∼Nρ (xn )
[yn]

︸ ︷︷ ︸
=ρxn

g (ȳ)+h(ȳ)
]
= ρxn ·Tρg (x̄)+Tρh(x̄)

Now let x ∼ {−1,1}n be uniform at random. We first verify that the right hand side

of (5.4) is

E

[
f (x)2

]2 = E

[(
xn g (x̄)+h(x̄)

)2]2
(∗)

=
(
E[x2

n]︸ ︷︷ ︸
=1

E

[
g (x̄)2

]
+2E[xn]︸ ︷︷ ︸

=0

E

[
g (x̄)h(x̄)

]
+E

[
h(x̄)2

])2

=
(
E

[
g (x̄)2

]
+E

[
h(x̄)2

])2

On the other hand, the left hand side of (5.4) is

E

[(
Tρ f (x)

)4] = E

[(
xnρTρg (x̄)+Tρh(x̄)

)4
]

(∗∗)= ρ4

︸︷︷︸
≤1

E[x4
n]︸ ︷︷ ︸

=1

E

[(
Tρg (x̄)

)4]+ 6ρ2

︸︷︷︸
=2

E[x2
n]︸ ︷︷ ︸

=1

E

[(
Tρg (x̄)

)2(Tρh(x̄)
)2]+E

[(
Tρh(x̄)

)4]

Cauchy-S.
≤ E

[(
Tρg (x̄)

)4]+2

√
E

[(
Tρg (x̄)

)4]
E

[(
Tρh(x̄)

)4]+E

[(
Tρh(x̄)

)4]

induction
≤ E

[
g (x̄)2

]2 +2E
[
g (x̄)2

]
E

[
h(x̄)2

]
+E

[
h(x̄)2

]2

=
(
E[g (x̄)2]+E[h(x̄)2]

)2 (∗)= E

[
f (x)2

]2

Here in (∗∗) we drop the odd terms as E[xn] = 0 = E[x3
n].
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5.5 The General Hypercontractivity Theorem

In this section, we will prove a hypercontractivity theorem for general parameters

p and q .

5.5.1 Functional analysis

Our goal will be to prove hypercontractivity for parameters 1 ≤ p < q ≤ 2 and

then transfer the result to the parameter ranges p < 2 < q and 2 ≤ p < q . For that

transfer we need to review a few facts from functional analysis. For convinience

we restate Hölder’s inequality (see Theorem 1.41) specialized for functions on the

hypercube:

Theorem 5.12 (Hölder’s Inequality for functions on {−1,1}n). Let p, p ′ ≥ 1 be a

pair with 1
p + 1

p ′ = 1. Then for any f , g ∈Vn one has

| 〈 f , g 〉E | ≤ ‖ f ‖E ,p · ‖g‖E ,p ′

The numbers (p, p ′) with 1
p + 1

p ′ = 1 are also called conjugate (Hölder) indices.

Note that p ′ = p
p−1

is the conjugate index to p.

0

1

2

3

4

0 1 2 3 4

p

(2,2)

(4, 4
3

)

( 4
3

,4)

p
1−p

For example (2,2) are conjugate pairs and (1,∞) are. We also require the follow-

ing fact:

Lemma 5.13. Let p, p ′ ≥ 1 so that 1
p + 1

p ′ = 1. Then ‖ · ‖E ,p is the dual norm to

‖ ·‖E ,p ′ , i.e. for all f ∈Vn ,3

‖ f ‖E ,p = sup
g∈Vn :‖g‖E ,p′=1

〈g , f 〉E

3By compactness of Vn , the supremum is always attained. However it seems more common in

the literature to use sup instead of max in this context.
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We can rephrase Lemma 5.13 as follows: fix any conjugate pair (p, p ′) and

any f ∈ Vn . If we let g ∈ Vn with ‖g‖E ,p ′ = 1 denote the function attaining the

maximum in Lemma 5.13, then

〈 f , g 〉E = ‖ f ‖E ,p ′ · ‖g‖E ,p

In other words, each f ∈ Vn has a dual element g ∈ Vn that satisfies Hölder’s In-

equality with equality.

Proposition 5.14. Let 1 ≤ p ≤ q <∞ and let p ′, q ′ > 1 be their conjugate Hölder

indices, i.e. 1
p + 1

p ′ = 1 and 1
q + 1

q ′ = 1. Then for any fixed 0 ≤ ρ ≤ 1 and C > 0 the

following is equivalent:

(A) One has ‖Tρ f ‖E ,q ≤C‖ f ‖E ,p for all f ∈Vn .

(B) One has ‖Tρ f ‖E ,p ′ ≤C‖ f ‖E ,q ′ for all f ∈Vn .

Proof. By symmetry it suffices to prove that (A) ⇒ (B). First we observe that the

linear operator Tρ is self-adjoint, i.e. for any functions f , g ∈Vn one has

〈Tρ f , g 〉E =
∑

S⊆[n]

ρ|S| f̂ (S)ĝ (S) = 〈 f ,Tρg 〉E

using for both equations Plancharel’s Theorem (Theorem 1.5) and Prop 1.21. Then

‖Tρ f ‖E ,p ′
Lem 5.13= sup

‖g‖E ,p=1

〈g ,Tρ f 〉E

Tρ self-adj.
= sup

‖g‖E ,p=1
〈Tρg , f 〉E

Thm 5.12
≤ sup

‖g‖E ,p=1
‖Tρg‖q︸ ︷︷ ︸
≤C by (A)

‖ f ‖q ′ ≤C‖ f ‖q ′

5.5.2 Hypercontractivity for n = 1

Next, we will show prove hypercontractivity for 1-dimensional random variables.

While this sounds modestly exciting, this is where much of the work needs to be

done. We make the following crucial definition:

Definition 5.15. Let 1 ≤ p ≤ q ≤∞ and 0 ≤ ρ < 1. Let X be a real-valued random

variable with E[|X |q ] <∞. Then X is called (p, q,ρ)-hypercontractive if

E[|a+ρbX |q ]1/q ≤ E[|a+bX |p ]1/p ∀a,b ∈R
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Hypercontractive random variables satisfy a range of nice properties (we leave

the proof as homework).

Proposition 5.16 (Properties of (p, q,ρ)-hypercontractivity). Let X and Y be in-

dependent random variables that are (p, q,ρ)-hypercontractive.

(i) One has E[X ] = 0.

(ii) For any constant c ∈R, c X is (p, q,ρ)-hypercontractive.

(iii) X is (p, q,ρ′)-hypercontractive for all 0 ≤ ρ′ ≤ ρ.

(iv) The sum X +Y is (p, q,ρ)-hypercontractive.

Lemma 5.17 (Two-Point Inequality). Let 1 ≤ p < q ≤ ∞ and let 0 ≤ ρ ≤
√

p−1

q−1
.

Then

(i) The uniform random bit X ∼ {−1,1} is (p, q,ρ)-hypercontractive.

(ii) For f ∈V1 one has ‖Tρ f ‖E ,q ≤ ‖ f ‖E ,p .

Proof. First we argue that for any given triple (p, q,ρ), (i) and (ii) are equivalent.

In fact, any function f ∈V1 is of the form f (X ) = f̂ (;)+X · f̂ ({1}) while Tρ f (X ) =
f̂ (;)+ρX · f̂ ({1}). Then ‖Tρ f ‖E ,q ≤ ‖ f ‖E ,p is equivalent to

E
X∼{−1,1}

[| f̂ (;)+ρX · f̂ ({1})|q ]1/q ≤ E
X∼{−1,1}

[| f̂ (;)+X · f̂ ({1})|p ]1/p

which indeed is the statement of (i) and obviously the reduction works the other

way around.

Now fix a triple (p, q,ρ) where by Prop 5.16.(iii) we may assume that ρ=
√

p−1

q−1
.

We consider three regimes of parameters where we will prove either (i) or (ii) de-

pending which view is more convinient.

• Case 1 ≤ p < q ≤ 2. First we make the observation that it suffices to prove

the inequality ‖Tρ f ‖E ,q ≤ ‖ f ‖E ,p for non-negative functions f since replac-

ing f by the function F (x) := | f (x)| would leave the right hand side invari-

ant while it can only increase the left hand side. Now we switch to the view

of (i). By scaling the pair (a,b) from Def 5.15 it suffices to prove that for any

ε ∈R one has

E
X∼{−1,1}

[|1+ρεX |q ]1/q ≤ E
X∼{−1,1}

[|1+εX |p ]1/p (∗)
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By the non-negativity assumption we may assume |ε| < 14. Then we con-

tinue

(∗) ⇔
(1

2
(1+ρε)q +

1

2
(1−ρε)

)p/q
≤

1

2
(1+ε)p +

1

2
(1−ε)p

(∗∗)
⇔

(
1+

∞∑

k=1

(
q

2k

)
ρ2kε2k

)p/q
≤ 1+

∞∑

k=1

(
p

2k

)
ε2k

(1+t)θ≤1+θt∀t≥0,0≤θ≤1
⇐ 1+

∞∑

k=1

p

q

(
q

2k

)
ρ2kε2k ≤ 1+

k∑

k=1

(
p

2k

)
ε2k

In (∗∗) we apply the Generalized Binomial Theorem (Theorem 1.44) on

both sides separately and use that the odd terms cancel while the even

terms are identical. One can check that
( q

2k

)
,
( p

2k

)
≥ 0. Finally by an elemen-

tary but tedious calculation one can do a term-wise comparison (we refer

to [O’D21], page 287 for details).

Claim. For 1≤ p < q ≤ 2, k ∈N and ρ =
√

p−1

q−1
one has p

q

( q
2k

)
ρ2k ≤

( p
2k

)
.

• Case 2 ≤ p < q. Let p ′ and q ′ be the conjugate indices of p and q , i.e. 1
p +

1
p ′ = 1 and 1

q +
1
q ′ = 1. Note that 1 ≤ q ′ < p ′ ≤ 2. Moreover one has

p−1

q−1
= q ′−1

p ′−1

which means the parameter ρ for the pairs (p, q) and (q ′, p ′) is the same.

From the first case we know that ‖Tρ f ‖E ,p ′ ≤ ‖ f ‖E ,q ′ for all f ∈V1 which by

Prop 5.14 implies that ‖Tρ f ‖q ≤ ‖ f ‖E ,p for all f ∈V1.

• Case p < 2 < q. Set ρ1 :=
√

2−1
q−1

and ρ2 :=
√

p−1

2−1
and note that ρ = ρ1 ·ρ2.

Then

‖Tρ f ‖E ,q = ‖Tρ1Tρ2 f ‖E ,q
(2,q,ρ1)-hypercon.

≤ ‖Tρ2 f ‖E ,2

(p,2,ρ2)-hypercon
≤ ‖ f ‖E ,p

making use if the previous cases.

5.5.3 Lifting to general dimension

Next, we want to prove hypercontractivity for functions in general dimension n.

For that purpose it will be more useful to prove a more general result first which

is more friendly towards a proof by induction.

4We skip the case |ε| = 1 which follows by continuity.
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Theorem 5.18 (Two-Function Hypercontractivity Induction Theorem). Let p, q ≥
1 and 0≤ ρ ≤

√
(p −1)(q −1). Then for any f , g ∈ {−1,1}n →R one has

E
x∼{−1,1}n ,

y∼Nρ (x)

[ f (x) ·g (y)] = 〈 f ,Tρg 〉E ≤ ‖ f ‖E ,p‖g‖E ,q

Proof. We prove the claim by induction over n. First we begin with n = 1, which is

actually the hard case, but fortunately we have done all the tedious work already

in Lemma 5.17. Let p ′ ≥ 1 be the conjugate index to p, i.e. 1
p + 1

p ′ = 1. Note that

p −1 = 1
p ′−1

and by Lemma 5.17, the triple (q, p ′,ρ) satisfies that ‖Tρh‖p ′ ≤ ‖h‖q

for all h ∈Vn . We use this to bound

〈 f ,Tρg 〉E

Hölder
≤ ‖ f ‖E ,p‖Tρg‖E ,p ′

Lemma 5.17
≤ ‖ f ‖E ,p‖g‖E ,q

which completes the induction base case.

Now consider n ≥ 2. We write x = (x̄, xn) and y = (ȳ , yn) where x ∼ {−1,1}n and

y ∼ Nρ(x). Note that (xn , yn) is a ρ-correlated pair and (x̄, ȳ) is also ρ-correlated.

We denote fxn : {−1,1}n−1 → R as the restriction with fxn (x̄) = f (x, xn) where the

last coordinate has been fixed to the value of xn . Then

E
(x,y)

[ f (x) ·g (y)] = E
(xn ,yn )

[
E

(x̄ ,ȳ)

[
fxn (x̄) ·g yn (ȳ)

]]

induction for dim n−1
≤ E

(xn ,yn )

[
‖ fxn‖E ,p‖g yn‖E ,q

]

induction for dim 1
≤ E

xn

[
‖ fxn‖

p
E ,p

]1/p
· E

xn

[
‖gxn‖

q
E ,q

]1/q

= E
x

[
| f (x)|p

]1/p ·E
x

[
|g (x)|q

]1/q

where we apply the inductive hypothesis twice, once for dimension n − 1 and

once for dimension 1.

Finally we can derive the main result of this chapter:

Theorem 5.19 (Hypercontractivity Theorem). Let 1 ≤ p ≤ q ≤ ∞ and 0 ≤ ρ ≤√
p−1

q−1
. Then for any f : {−1,1}n →R one has ‖Tρ f ‖E ,q ≤ ‖ f ‖E ,p .

Proof. Let q ′ be the conjugate index to q , i.e. 1
q + 1

q ′ = 1. Again, q ′ − 1 = 1
q−1

and so we have 0 ≤ ρ ≤
√

(p −1)(q ′−1) as required in Theorem 5.18. Let g with

‖g‖E ,q ′ = 1 be the dual function to Tρ f (see Lemma 5.13). Then

‖Tρ f ‖E ,q = 〈Tρ f , g 〉E

Thm 5.18
≤ ‖ f ‖E ,p ‖g‖E ,q ′

︸ ︷︷ ︸
=1

= ‖ f ‖E ,p
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5.6 Small-set expansion of the hypercube

Next, we provide a simple but important application of hypercontractivity. For

0 ≤ ρ ≤ 1, let the ρ-noisy hypercube be the weighted undirected graph Gρ :=
({−1,1}n ,Eρ) where from each x ∈ {−1,1}n we insert edges to all x′ ∈ {−1,1}n with

weight Pry∼Nρ (x)[x′ = y]. We will show that this graph is a small-set expander
which means that for a set A ⊆ {−1,1}n that only occupies a small fraction of

nodes, almost all neighbors in Gρ are outside of A.

x

x′
Pry∼Nρ (x)[x′ = y]

First we small result that will be useful more than once, so we keep it general.

Lemma 5.20. For any f : {−1,1}n → {−1,0,1} and 0 ≤ ρ ≤ 1 one has 〈 f ,Tρ f 〉E ≤
α2/(1+ρ). where α := Prx∼{−1,1}n [| f (x)| = 1].

Proof. For any p ≥ 1, we have ‖ f ‖E ,p = Ex∼{−1,1}n [| f (x)|p ]1/p = α1/p as | f (x)| ∈
{0,1}. We want to apply Theorem 5.18 and we want to pick a parameter p so that5

ρ =
√

(p −1) · (p −1) which can be rearranged to p = 1+ρ. Then

〈 f ,Tρ f 〉E

Theorem 5.18
≤ ‖ f ‖1+ρ · ‖ f ‖1+ρ =α2/(1+ρ).

Now we can derive the statement on the noisy hypercube:

Theorem 5.21. Let A ⊆ {−1,1}n be any subset of the hypercube. Then for 0 ≤ ρ ≤ 1

one has

Pr
x∼A,y∼Nρ (x)

[y ∈ A] ≤
( |A|

2n

)(1−ρ)/(1+ρ)

Proof. Let α := |A|
2n be the volume of the set A. The proof works by analyzing the

characteristic function 1A : {−1,1}n → {0,1} of the set A. Then using conditional

5One can of course try general parameters p, q with ρ =
√

(p −1)(q −1) and try to optimize.

But it seems the choice of p = q is already optimal.
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probability and Lemma 5.20 we obtain

Pr
x∼A,y∼Nρ (x)

[y ∈ A] =
Prx∼{−1,1}n ,y∼Nρ (x)[1A(x) ·1A (y)]

Prx∼{−1,1}n [x ∈ A]

=
〈1A,Tρ1A〉E

α

Lem 5.20
≤

α2/(1+ρ)

α
=α(1−ρ)/(1+ρ)

5.7 Friedgut’s Junta Theorem

In this section, we prove Friedgut’s Junta Theorem which says that any boolean

function f with very small total influence I [ f ] is close to a junta, which is a func-

tion that only depends on a few coordinates. Before we come to the formal state-

ment and its proof, we make a small detour.

In Section 1.8 we defined the ρ-stable influence of a function f : {−1,1}n → R

as

Inf
(ρ)

i [ f ] := Stabρ[Di f ] = 〈Di f ,TρDi f 〉E =
∑

S⊆[n]:i∈S
ρ|S|−1 f̂ (S)2 (5.5)

Recall that for ρ = 1, this quantity is simply equal to Infi [ f ]. We can prove that for

any function f with f (x) ∈ {−1,1}, the ρ-stable influence is a lot smaller than the

influence itself.

Proposition 5.22. Let f : {−1,1}n → {−1,1}, 0 ≤ ρ ≤ 1 and i ∈ [n] one has

Inf
(ρ)

i [ f ] ≤ Infi [ f ]2/(1+ρ)

Proof. We fix the index i and abbreviate the derivative of f in coordinate direc-

tion i has g (x) := Di f (x) = 1
2
·
(

f (xi 7→1)− f (xi 7→−1)
)
. Since f (x) ∈ {−1,1}, we have

g (x) ∈ {−1,0,1}. Note that Infi [ f ] = Prx∼{−1,1}n [|g (x)| = 1]. Hence we can apply

Lemma 5.20 and get

Inf
(ρ)

i [ f ]
(5.5)= 〈g ,Tρg 〉E

Lem 5.20
≤ Pr

x∼{−1,1}n
[|g (x)| = 1]2/(1+ρ) = Infi [ f ]2/(1+ρ).

Recall that for two functions f , g : {−1,1}n → {−1,1} we denote their distance

as dist( f , g ) := Prx∼{−1,1}n [ f (x) 6= g (x)]. We will also need a simple rounding ar-

gument to make functions {−1,1}-valued. For z ∈ R we define the sign function
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as

sign(z) :=
{
+1 if z ≥ 0

−1 if z < 0

Lemma 5.23. Let f : {−1,1}n → {−1,1} and g : {−1,1}n → R. Define h : {−1,1}n →
{−1,1} by h(x) := sign(g (x)). Then dist( f ,h)≤ ‖ f − g‖2

E ,2.

Proof. We have

dist( f ,h)= E
x∼{−1,1}n

[
1 f (x)6=sign(g (x))

] (∗)
≤ E

x∼{−1,1}n

[
| f (x)− g (x)|2

]
= ‖ f − g‖2

E ,2

where we use in (∗) that ( f (x) 6= sign(g (x))) ⇒| f (x)− g (x)| ≥ 1.

Now we make the formal definition that gives the junta theorem its name:

Definition 5.24. A function f : {−1,1}n →R is called a k-junta if there are coordi-

nates J ⊆ [n] with |J | ≤ k so that for all x ∈ {−1,1}n , the value f (x) only depends

on (xi )i∈J .

Now we can prove the main results of this section. Note that the statement is

only non-trivial if I [ f ] ≤ ε log(n), so one should think of the total influence I [ f ]

as tiny here.

Theorem 5.25 (Friedgut’s Junta Theorem). Let f : {−1,1}n → {−1,1} and 0 < ε≤ 1.

Then there exists a eO(I [ f ]/ε)-junta h : {−1,1}n → {−1,1} with dist( f ,h)≤ ε.

Proof. For a parameter δ> 0 that we decide later, we denote

J :=
{
i ∈ [n] | Infi [ f ] ≥ δ

}

as all the influential coordinates. We define

g (x) :=
∑
S⊆J

f̂ (S) ·χS (x)

which by construction is a |J |-junta, though it is only a function of the form

g : {−1,1}n → R. But the rounded function h : {−1,1}n → {−1,1} with h(x) :=
sign(g (x)) is still a |J |-junta and by Lemma 5.23 we have dist( f ,h)≤ ‖ f −g‖2

E ,2
. So

it suffices to prove that for a suitable choice of parameters one has ‖ f −g‖2
E ,2 ≤ ε.

First, set d := 2I [ f ]

ε and note that similar to the proof of Prop 5.8 one has

∑

|S|>d

f̂ (S)2 ≤
I [ f ]

d
=

ε

2
, (5.6)
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implying that we will be able to ignore the higher order Fourier coefficients.

The main idea of the remaining proof is to analyze the ρ-stable influences for

the coordinates outside of J . Here we can make a choice of say ρ := 1
3

. On one

hand we can upper bound

∑

i∉J
Inf(1/3)

i [ f ]
Prop 5.22

≤
∑

i∉J
Infi [ f ]3/2 ≤

p
δ

∑

i∉J
Infi [ f ]

︸ ︷︷ ︸
≤I [ f ]

≤
p
δ · I [ f ] (5.7)

On the other hand, using the Fourier representation of theρ-stable influence, the

same quantity can be lower bounded as

∑

i∉J
Inf(1/3)

i [ f ]
(5.5)=

∑

i∉J

∑

S⊆[n]:i∈S
(1/3)|S|−1 f̂ (S)2 (5.8)

=
∑

S⊆[n]

|S ∩ J̄ | · (1/3)|S|−1 f̂ (S)2

≥
∑

|S|≤d and |S∩J̄ |≥1

|S ∩ J̄ |︸ ︷︷ ︸
≥1

·(1/3)|S|−1

︸ ︷︷ ︸
≥3−d

f̂ (S)2

≥ 3−d
∑

|S|≤d and |S∩J̄ |≥1

f̂ (S)2

Now the distance between f and g is

‖ f − g‖2
E ,2 ≤

∑

|S|>d

f̂ (S)2

︸ ︷︷ ︸
≤ε/2 by (5.6)

+
∑

|S|≤d and |S∩J̄ |≥1

f̂ (S)2

︸ ︷︷ ︸
≤3d

p
δI [ f ] by (5.7)+(5.8)

≤
ε

2
+32I [ f ]/ε

p
δI [ f ]

!
≤ ε

where the last inequality holds if we chooseδ := eΘ(I [ f ]/ε). Note that I [ f ] ≥
∑

i∈J Infi [J ] ≥
δ|J | and so |J | ≤ eO(I [ f ]/ε) which completes the proof.

We state a simple consequence:

Corollary 5.26. Let f : {−1,1}n → {−1,1} be a function with d := deg( f ) and let

0 < ε≤ 1. Then there exists a eO(d/ε)-junta h : {−1,1}n → {−1,1} with dist( f ,h)≤ ε.

Proof. For a degree d function f the total influence is

I [ f ] =
∑

S⊆[n]

|S| · f̂ (S)2

︸ ︷︷ ︸
≤d · f̂ (S)2

≤ d
∑

S⊆[n]

f̂ (S)2

︸ ︷︷ ︸
=1

≤ d

The claim then follows by applying Theorem 5.25.
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5.8 A generalization of the Bonami Lemma

In the Bonami Lemma (Theorem 5.4.(ii)) we have seen that for any degree-k func-

tion one has ‖ f ‖E ,4 ≤ 3k/2 · ‖ f ‖E ,2. It will be useful to have a generalization to

parameters q other than q = 4, for example in order to prove stronger concen-

tration bounds. Rather than proving these generalizations from scratch, we can

derive them from hypercontractivity.

Theorem 5.27 (Generalized Bonami Lemma). For any function f : {−1,1}n → R

of degree at most k and any q ≥ 2 one has

‖ f ‖E ,q ≤ (q −1)k/2 · ‖ f ‖E ,2

Proof. The original definition of the noise operator Tρ only makes sense if −1 ≤
ρ ≤ 1. But we could agree to define the operator instead by the identity Tρ f (x) =∑

S⊆[n]ρ
|S| f̂ (S)χS(x) which makes sense for all ρ ∈R. While many of the theorems

we have proven for the noise operator only work for −1 ≤ ρ ≤ 1, other properties

still hold. For example for all ρ1,ρ2 ∈R one has that Tρ1Tρ2 f = Tρ1·ρ2 f . Then

‖ f ‖2
E ,q = ‖T

1/
p

q−1
(Tpq−1

f )‖2
E ,q

hypercontr.
≤ ‖Tpq−1

f ‖2
E ,2

=
∑

|S|≤k

(q −1)|S| f̂ (S)2

≤ (q −1)k‖ f ‖2
E ,2

Here we have used the General Hypercontractivity Theorem (Theorem 5.19) with

parameters (2, q), q ≥ 2, which tells us that for any degree-k function g one has

‖T
1/
p

q−1
g‖E ,q ≤ ‖g‖2.

We note that the inequality from Theorem 5.27 can be written out to

E[| f (x)|q ] ≤ (q −1)qk/2 ·E[ f (x)2]q/2

where x ∼ {−1,1}n .

We also prove an inequality for the regime [1,2].

Theorem 5.28 (Generalized Bonami Lemma II). For any function f : {−1,1}n →R

of degree at most k and any 1≤ p ≤ 2 one has

‖ f ‖E ,2 ≤ (e
2
p −1

)k · ‖ f ‖E ,p
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Proof. For the sake of simplicity we consider the case of p = 1, i.e. we prove that

‖ f ‖E ,2 ≤ ek · ‖ f ‖E ,1. We want to compare ‖ f ‖E ,2 with ‖ f ‖E ,1 and ‖ f ‖E ,2+ε where

we determine ε > 0 later. For that purpose, let θ ∈ (0,1) be the unique value so

that
1

2
=

θ

1
+

1−θ

2+ε
as required by Littlewood’s Inequality (Theorem 1.43). One can easily check that

θ = 1
2
· ε

1+ε . Then combining this with the Generalized Bonami Lemma that we

just proved, we obtain

‖ f ‖E ,2

Thm 1.43
≤ ‖ f ‖θE ,1 · ‖ f ‖1−θ

2+ε
Thm 5.27

≤ ‖ f ‖θE ,1 · (1+ε)k(1−θ)/2‖ f ‖1−θ
E ,2

Then rearranging gives

‖ f ‖E ,2 ≤
(
(1+ε)

1−θ
2θ

)k
‖ f ‖E ,1

θ= 1
2 ·

ε
1+ε=

(
(1+ε)

1
ε+

1
2︸ ︷︷ ︸

→e as ε→0

)k
‖ f ‖1

ε→0−→ ek‖ f ‖E ,1

which gives the claim.

We note that other sources give a base of 1p
p−1

instead of exp( 2
p −1) but that

former factor diverges for p → 1.

0

1

2

3

4

0 1 2

p

1p
p−1

exp( 2
p −1)

5.9 Exponential concentration

We already know from a combination of Lemma 5.2 and the Bonami Lemma

(Theorem 5.4) that for every degree-k function f : {−1,1}n →R and any t > 0,

Pr
x∼{−1,1}n

[| f (x)| > t‖ f ‖E ,2] ≤
9k

t 4

But this only gives an error probability that is inverse polynomial in t . For many

application it is desirable to have exponentially small error bounds. This can be

done using the Generalization of Bonami Lemma from Theorem 5.27.
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Theorem 5.29. Let f : {−1,1}n → R be a function of degree at most k. Then for

any t ≥ (2e)k/2 one has

Pr
x∼{−1,1}n

[
| f (x)| ≥ t‖ f ‖E ,2

]
≤ exp

(
−

k

2e
t 2/k

)

Proof. After scaling we may assume that ‖ f ‖E ,2 = 1. Let q ≥ 2 be a parameter that

we determine later. Then for x ∼ {−1,1}n one has

Pr[| f (x)| ≥ t ] = Pr[| f (x)|q ≥ t q ]

Markov
≤ E[| f (x)|q ]

t q

Thm 5.27
≤

(q −1)qk/2

t q
·E[ f (x)2]q/2

︸ ︷︷ ︸
=1

≤
(qk/2

t

)q choice of q
= exp

(
−

k

2
· t 2/k /e︸ ︷︷ ︸

=q

)

Here we can see that we should choose q so that
qk/2

t < 1. We make the choice of
qk/2

t = e−k/2 which is equivalent to q = t 2/k /e . Finally we remember that we need

q ≥ 2 for Theorem 5.27 for which we had made the assumption of t ≥ (2e)k/2.
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Chapter 6

The invariance principle

The goal of this chapter is to prove the invariance principle which says that for

any low degree multilinear polynomial F : Rn → R without influential coordi-

nates and any “nice” function ψ : R→R one has

E
X∼{−1,1}n

[ψ(F (X ))] ≈ E
Y ∼γn

[ψ(F (Y ))]

The usefulness of such a statement is that we can prove facts on boolean func-

tions instead for Gaussians where they might be easier to derive. Here γn is the

n-dimensional (standard) Gaussian distribution with mean 0 and covariance ma-

trix In. Alternatively we will write N (0,Σ) for the Gaussian distribution with mean

0 and covariance matrix Σ; in particular γn = N (0, In).

6.1 Functions in Gaussian Space

First, we need to leave the realm of functions restricted to the boolean hypercube

that we gotten so comfortable with.

Definition 6.1. A function f : Rn → R is a multilinear polynomial of degree at
most d if there are coefficients αS ∈R so that

f (x) =
∑

S⊆[n]:|S|≤d

αS ·χS (x) ∀x ∈R
n

Here by a slight abuse of notation we extend χS(x) =
∏

i∈S xi to the whole

R
n and in reverse for a function f : Rn → R we will use notation such as f̂ (S) =

Ex∼{−1,1}n [ f (x) ·χS (x)]. With this notation it is clear that the coefficients αS must

be equal to f̂ (S) so we can directly write any multilinear polynomial f : Rn → R

as

f (x) =
∑

S⊆[n]

f̂ (S) ·χS (x) ∀x ∈R
n

71
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If we work with an arbitrary function f : Rn → R then for most operations we

need to ensure that integrals are well defined and so we restrict our attention to

the class

L2(Rn ,γn) :=
{

f : Rn →R | f integrable and E
x∼γn

[ f (x)2] <∞
}

Note that any multilinear polynomial and also any continuous bounded function

is anyway contained in L2(Rn ,γn). We can define a (Gaussian expectation) inner
product

〈 f , g 〉γn
:= E

x∼γn
[ f (x) ·g (x)]

for functions f , g : Rn →R. For p ≥ 1, we also define a norm

‖ f ‖γn ,p := E
x∼γn

[
| f (x)|p

]1/p

In many cases these operations coincide with the boolean case:

Lemma 6.2. For any multilinear polynomials f , g : Rn → R one has 〈 f , g 〉γn
=

〈 f , g 〉E .

Proof. By linearity it suffices to consider f =χS and g =χT for S,T ⊆ [n]. Then

〈χS ,χT 〉γn
= E

x∼γn

[∏

i∈S
xi ·

∏

i∈T
xi

]
=

∏

i∈S∩T
E

xi∼γ1

[x2
i ]

︸ ︷︷ ︸
=1

∏

i∈S∆T
E

xi ∼γ1

[xi ]

︸ ︷︷ ︸
=0

=
{

1 if S = T

0 if S 6= T

We can see that the only properties of the Gaussian that was relevant here is that

(i) coordinates are independent, (ii) the mean of each coordinate is 0 and (iii) the

variance of each coordinate is 1.

Note that Lemma 6.2 is not true for arbitrary functions. For example consider

the function f : R→ R with f (x) = xp for p ∈N. Then 〈 f , f 〉E = Ex∼{−1,1}[x2p ] = 1

while 〈 f , f 〉γ1
= Ex∼γ1 [x2p ] = (2p −1)!!.

Lemma 6.3. For any multilinear polynomial f : Rn →R one has ‖ f ‖γn ,2 = ‖ f ‖E ,2.

Proof. Clear because ‖ f ‖2
γn ,2 = 〈 f , f 〉γn

= 〈 f , f 〉E = ‖ f ‖2
E ,2.

Again, this fails to hold for general p-norms. We make the following observa-

tion:
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Lemma 6.4. Let f : Rn → R be a multilinear polynomial and let X1, . . . , Xn ∈ R be

independent random variables so that

E[Xi ] = 0 ∀i ∈ [n] and E[X 2
i ] = 1 ∀i ∈ [n]

Then

E[ f (X )] = f̂ (;) and Var[ f (X )] =
∑

;⊂S⊆[n]

f̂ (S)2

These conditions are in particular satisfied for Gaussians and hence this mo-

tivates to use the following notation:

Definition 6.5. For a multilinear polynomial f : Rn →R we define

Var[ f ] :=
∑

;⊂S⊆[n]

f̂ (S) and Infi [ f ] :=
∑

S⊆[n]:i∈S
f̂ (S)2 ∀i ∈ [n]

6.1.1 Stability and noise operators

A particularly important application of the invariance principle will deal with the

noise operator and stability of functions which we need to generalize to Gaussian

space as well. Recall from Section 1.7 that for any x ∈ {−1,1}n and −1 ≤ ρ ≤ 1,

y ∼ Nρ(x) is a vector in {−1,1}n with independent coordinates and E[xi yi ] = ρ.

We defined Tρ as the operator with (Tρ f )(x) = Ey∼Nρ (x)[ f (y)], i.e. it provides a

noisy version of f . Now, to the Gaussian case.

Definition 6.6. For x ∈R
n we define Nγn ,ρ(x) as the distribution over ρx+

√
1−ρ2g

where g ∼ γn is an independent Gaussian.

We can see that if x ∼ γn and y ∼ Nγn ,ρ(x), then y ∼ γn (i.e. y is Gaussian) and

the correlation of x and y is E[xi yi ] = ρ for all i . For notational convinience, we

denote Gn,ρ as the distribution over such ρ-correlated Gaussian pairs, i.e. (x, y) ∼
Gn,ρ satisfy x, y ∼ γn and E[xi yi ] = ρ for all i ∈ [n]. We define the linear operator

Tγn ,ρ : L2(Rn ,γn) → L2(Rn ,γn) with

(Tγn ,ρ f )(x) := E
y∼Nγn ,ρ(x)

[ f (y)] ∀x ∈R
n

For a function f ∈ L2(Rn ,γn) and −1 ≤ ρ ≤ 1, we define the Gaussian stability as

Stabγn ,ρ[ f ] := E
(x,y)∼Gn,ρ

[ f (x) · f (y)] = 〈Tγn ,ρ( f ), f 〉
γn

We make an observation that will be useful later:
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Lemma 6.7. Let f : Rn →R be a multilinear polynomial and let −1 ≤ ρ ≤ 1. Then

(i) One has (Tρ f )(x) = (Tγn ,ρ f )(x) for all x ∈ {−1,1}n .

(ii) Tγn ,ρ f is again a multilinear polynomial.

(iii) One has Stabγn ,ρ[ f ] = Stabρ[ f ].

Proof. First we verify (i). By linearity of Tρ and Tγn ,ρ it suffices to consider the

case that f (x) =χS (x) for some set S ⊆ [n]. Fix x ∈ {−1,1}n . Then

Tγn ,ρχS (x) = E
y∼Nγn ,ρ(x)

[χS (y)] =
∏

i∈S
E

yi∼Nγ1 ,ρ(xi )
[yi ]

︸ ︷︷ ︸
=ρxi

= ρ|S|χS (x)

which is exactly the same as in the boolean case. For (ii), since Tρ f is a multilin-

ear polynomial, the same must hold for Tγn ,ρ f . For (iii) we use that for multilin-

ear polynomials, Tγn ,ρ and 〈·, ·〉γn are identical to their boolean counterparts.

It is not hard to show the the Gaussian noise operator is a contraction.

Lemma 6.8. For any f : Rn →Rwith ‖ f ‖γn ,1 <∞ and 0≤ ρ ≤ 1, one has ‖Tγn,ρ( f )‖γn ,1 ≤
‖ f ‖γn ,1.

We will also consider sets A ⊆R
n and work with the Gaussian measure

γn(A) := Pr
x∼γn

[x ∈ A]

In order for this quantity to be well-defined, A needs to be measurable.

6.2 The Berry-Esseen Theorem

The most classical form of the invariance principle is the central limit theorem
which says that a sum of many independent random variables converges to a

Gaussian with the same mean and variance. A precise quantitative version of

this fact is as follows:

Theorem 6.9 (Berry-Esseen Theorem). Let X1, . . . , Xn be independent random vari-

ables with E[Xi ] = 0 and
∑n

i=1
σ2

i = 1 where σ2
i := Var[Xi ] and let X :=

∑n
i=1

Xi and

Y ∼ γ1. Then for all u ∈R one has

∣∣Pr[X ≤ u]−Pr[Y ≤ u]
∣∣≤ 0.56 ·

n∑

i=1

E[|Xi |3]
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0.1
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b

b

Pr[X = x]

Distribution of X =
∑n

i=1 Xi where Xi ∼ {± 1p
n

} for n = 16

For example if |Xi | ≤ O( 1p
n

) for all i , then E[|Xi |3] ≤ O(n−3/2) and the right hand

side is of the form O( 1p
n

). There are several ways to prove the Berry Esseen Theo-

rem including Fourier analysis. However, we will use a rather flexible technique

called the replacement method (or hybrid method) even though its result will be

somewhat suboptimal. One can think of the statement of Berry Esseen as saying

that |E[ψ(X )]− E[ψ(Y )]| is small, where ψ(x) := 1x≤u is the characteristic func-

tion of an interval (−∞,u]. Here we will prove a variant of Berry Esseen using a

smooth “test function”ψ instead. In the following statement,ψ′′′ denotes the 3rd

derivative of ψ and ‖ψ′′′‖∞ = supx∈R |ψ′′′(x)| denotes its largest absolute value.

Theorem 6.10. Let X1, . . . , Xn and Y1, . . . ,Yn be independent random variables so

that

E[Xi ] = E[Yi ] ∀i ∈ [n] and E[X 2
i ] = E[Y 2

i ] ∀i ∈ [n]

and set X :=
∑n

i=1
Xi and Y :=

∑n
i=1

Yi . Then for any function ψ : R → R with

continuous ψ′′′ one has

∣∣
E[ψ(X )]−E[ψ(Y )]

∣∣≤ 1

6
‖ψ′′′‖∞ ·γ

where γ :=
∑n

i=1
(E[|Xi |3]+E[|Yi |3]).

Proof. For t ∈ {0, . . . ,n} we consider the random variable

Ht := Y1 + . . .+Yt +X t+1 + . . .+Xn .

One can think of Ht as a hybrid or mixture of the X and the Y -random variables

where H0 = X and Hn = Y . It is not hard to see that it suffices to upper bound the

error made in any step t .

Claim I. For each t one has |E[ψ(Ht )]−E[ψ(Ht−1)]| ≤ 1
6
‖ψ′′′‖∞ ·(E[|X t |3]+E[|Yt |3]).

Proof of Claim I. We abbreviate the random variable

U := Y1 + . . .+Yt−1 +X t+1 + . . .+Xn
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which leaves out the t th summand. Note that X t and Yt are independent from U
and Ht−1 =U +X t and Ht =U +Yt . Recall that the 2nd order Taylor expansion of

ψ at point U is

ψ(U +Z ) =ψ(U )+ψ′(U ) ·Z +
1

2
ψ′′(U ) ·Z 2 +

1

6
ψ′′′(VU ,Z ) ·Z 3

where VU ,Z is a point in the interval between U and U + Z . Applying this twice

gives

∣∣E[ψ(Ht )]−E[ψ(Ht−1)]
∣∣ =

∣∣E[ψ(U +Yt )]−E[ψ(U +X t )]
∣∣

Taylor
=

∣∣∣E
[
ψ(U )+ψ′(U )Yt +

1

2
ψ′′(U )Y 2

t +
1

6
ψ′′′(VU ,Yt )Y 3

t

]

−E

[(
ψ(U )+ψ′(U )X t +

1

2
ψ′′(U )X 2

t +
1

6
ψ′′′(VU ,Xt )X 3

t

)]∣∣∣
(∗)=

1

6

∣∣∣E
[
ψ′′′(VU ,Yt ) ·Y 3

t −ψ′′′(VU ,Xt ) ·X 3
t

]∣∣∣

≤
1

6
‖ψ′′′‖∞ ·

(
E[|Y 3

t |]+E[|X 3
t |]

)

In (∗) we have used that E[X t ] = E[Yt ] and E[X 2
t ] = E[Y 2

t ] which causes the con-

stant, linear and quadratic terms to cancel.

Now summing over the error terms of all n steps we get

∣∣
E[ψ(X )]−E[ψ(Y )]

∣∣ =
∣∣∣E

[ n∑
t=1

(ψ(Ht )−ψ(Ht−1))
]∣∣∣

≤
n∑

t=1

∣∣E[ψ(Ht )]−E[ψ(Ht−1)]
∣∣

Claim I
≤

‖ψ′′′‖∞
6

·
n∑

i=1

(
E[|Xi |3]+E[|Yi |3]

)

We want to derive at least a weak version of the Berry Esseen Theorem from

this result. For that purpose we need a smooth approximation of the indicator

function 1x≤u .

Lemma 6.11. For any u ∈R
n and δ> 0 there is a function ψ : R→ [0,1] so that ψ′′′

is continuous with ‖ψ′′′‖∞ ≤O( 1
δ3 ) so that

ψ(x) =
{

1 if x ≤ u −δ

0 if x ≥ u +δ
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1

uu −δ u +δ

ψ

x

Proof. Define the symmetric function ρ : R→R≥0 with

ρ(x) :=
{

exp(− 1
1−x2 ) if −1< x < 1

0 otherwise

0.2

0.4

0 1−1

ρ(x)

x

One can verify by induction that for any k ∈N, the kth derivative of ρ on (−1,1) is

of the form ρ(k)(x) = pk (x)

(1−x2)2k ·ρ(x) where pk is some polynomial. In particular all

derivatives are smooth and ‖ρ(k)‖∞ ≤ Ck for some constant k. We write x ∼ ρ if

we sample x according to density function ρ̄(x) := ρ(x)

ρ(R)
. Any such sample has |x| ≤

1. The definition of our smooth test function is then given by the convolution of

1≤u with ρ̄, i.e.

ψ(x) := Pr
g∼ρ

[
u +δg ∈ [−∞, x]

]
= (1≤u ∗ ρ̄)(x)

which indeed has ‖ψ′′′‖∞ ≤O( 1
δ3 ).

Theorem 6.12 (Weak Berry-Esseen Theorem). Let X1, . . . , Xn be independent ran-

dom variables with E[Xi ] = 0 and
∑n

i=1σ
2
i = 1 where σ2

i := Var[Xi ] and let X :=∑n
i=1 Xi and Y ∼ γ1. Then for all u ∈R one has

∣∣Pr[X ≤ u]−Pr[Y ≤ u]
∣∣≤O(γ1/4)

where γ :=
∑n

i=1E[|Xi |3].
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Proof. Let ψ be the smooth approximation to the indicator function 1x≤u from

Lemma 6.11 where the transition from 1 to 0 is between u −δ and u and we de-

termine the parameter δ > 0 later. For symmetry reasons it suffices to consider

the case where Pr[Y ≤ u] is the larger probability. Then

Pr[Y ≤ u]−Pr[X ≤ u] ≤ Pr[Y ≤ u −δ]−Pr[X ≤ u]+Pr[u −δ≤ Y ≤ u]︸ ︷︷ ︸
≤δ

≤ |E[ψ(Y )]−E[ψ(X )]|+δ

Thm 6.10
≤ O

( γ

δ3

)
+δ≤O(γ4)

where the last inequality follows by setting δ := γ4. Note that we have omitted the

3rd moment contribution from the Gaussian part, but splitting Y =
∑n

i=1 Yi with

Yi ∼σiγ1 we may see that E[|Yi |3] ≤O(E[|Xi |3]) no matter how Xi looks like.

We want to conclude this section by stating a multi-dimensional Berry-Esseen

Theorem without proof for later reference:

Theorem 6.13 (Multidimensional Berry Esseen). Let X1, . . . , Xn ∈ R
d be indepen-

dent random vectors with E[Xi ] = 0 for all i ∈ [n]. Set X := X1 + . . .+ Xn and as-

sume that Σ := Cov[X ] = E[X X T ] has full rank and draw Y ∼ N (0,Σ). Then for

any convex set U ⊆R
d one has

∣∣Pr[X ∈U ]−Pr[Y ∈U ]
∣∣≤O(d 1/4γ)

where γ :=
∑n

i=1E
[‖Σ−1/2 Xi‖3

2].

6.3 The invariance principle

Now we come to the main topic of this chapter, which is the statement and proof

of the invariance principle. Recall that a random variable X is B-reasonable if

E[X 4] ≤ B ·E[X 2]2. If we revisit the statement and proof of Bonami’s Lemma (The-

orem 5.4) then we can quickly see that there is very little about the hypercube

that is being used. In fact, the exact same proof also gives the following more

general statement:

Theorem 6.14 (Bonami Lemma on R
n). Let F : Rn → R be a multilinear polyno-

mial with degree at most d . Then for any independent random variables X1, . . . , Xn ∈
R with

E[Xi ] = 0, E[X 2
i ] = 1, E[X 3

i ] = 0, E[X 4
i ] ≤ 9 ∀i ∈ [n],

the random variable F (X ) is 9d -reasonable.
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We give a name to the property that makes Bonami’s Lemma work:

Definition 6.15. We say that a vector of independent random variables X1, . . . , Xn

is nice if

E[Xi ] = 0, E[X 2
i ] = 1, E[X 3

i ] = 0, E[X 4
i ] ≤ 9 ∀i ∈ [n]

Theorem 6.16 (Basic Invariance Principle). Let F : Rn → R be a multilinear poly-

nomial of degree at most d . Let X = (X1, . . . , Xn) and Y = (Y1, . . . ,Yn) both be

random vectors with independent coordinates that are nice (see Def 6.15). Then

for any function ψ : R→R with continuous ψ′′′′ one has

∣∣
E[ψ(F (X ))]−E[ψ(F (Y ))]

∣∣≤ ‖ψ′′′′‖∞
12

·9d ·
n∑

i=1

Infi [F ]2

Proof. We use a similar hybrid argument as in the proof of Theorem 6.10. For

t ∈ {0, . . . ,n} we define

Ht := F (Y1, . . . ,Yt , X t+1, . . . , Xn)

so that again H0 = F (X ) and Hn = F (Y ). Again we account the error made by a

single swap:

Claim. For any t one has |E[ψ(Ht−1)]−E[ψ(Ht )]| ≤ ‖ψ′′′′‖∞
12

·9d · Inft [F ]2.
Proof of Claim I. We can pull out the t-th variable and write

F (x) =
∑

|S|≤d

F̂ (S)χS (x) =
( ∑

|S|≤d :t∉S

F̂ (S)χS (x)
)

︸ ︷︷ ︸
=:A(x1 ,...,xt−1 ,xt+1 ,...,xn )

+xt ·
( ∑

|S|≤d :t∈S

F̂ (S)χS\{t}(x)
)

︸ ︷︷ ︸
=:B(x1 ,...,xt−1 ,xt+1 ,...,xn )

Then we define the random variables

U := A(X1, . . . , X t−1,Yt+1, . . . ,Yn) and D := B(X1, . . . , X t−1,Yt+1, . . . ,Yn)

so that

Ht−1 =U +D ·X t and Ht =U +D ·Yt

Crucially note that (U ,D) are independent from X t and Yt (but of course U ,D
themselfs are not necessarily independent). Next, the 3rd degree Taylor approxi-

mation of ψ at U is

ψ(U +Z ) =ψ(U )+ψ′(U ) ·Z +
1

2
ψ′′(U ) ·Z 2 +

1

6
ψ′′′(U ) ·Z 3 +

1

24
ψ′′′′(VU ,Z ) ·Z 4
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where VU ,Z is a point on the segment between U and U +Z . Now we can bound

|E[ψ(Ht−1)]−E[ψ(Ht )]|
=

∣∣E[ψ(U +D ·X t )]−E[ψ(U +D ·Yt )]
∣∣

Taylor
=

∣∣∣ψ(U )+ψ′(U ) ·D X t +
1

2
ψ′′(U ) ·D2 X 2

t +
1

6
ψ′′′(U ) ·D3 X 3

t +
1

24
ψ′′′′(VU ,DXt ) ·D4 X 4

t

−
(
ψ(U )+ψ′(U ) ·DYt +

1

2
ψ′′(U ) ·D2Y 2

t +
1

6
ψ′′′(U ) ·D3Y 3

t +
1

24
ψ′′′′(VU ,DYt ) ·D4Y 4

t

)∣∣∣

=
1

24

∣∣∣E
[
ψ′′′′(VU ,DXt ) ·D4 X 4

t −ψ′′′′(VU ,DYt ) ·D4Y 4
t

]∣∣∣

≤
‖ψ′′′′‖∞

24
·E[D4] ·

(
E[X 4

t ]︸ ︷︷ ︸
≤9

+E[Y 4
t ]︸ ︷︷ ︸

≤9

)

Subclaim I.A
≤

‖ψ′′′′‖∞
12

·9d · Inft [F ]2

Here we use that E[D X t ] = E[D]E[X t ] by independence (similar for Yt and other

powers) and we also use that E[X t −Yt ] = 0, E[X 2
t −Y 2

t ] = 0, E[X 3
t −Y 3

t ] so that

all except the 4th order terms cancel. In the last step we bound E[D4] with the

following argument:

Subclaim I.A. One has E[D4] ≤ 9d−1 · Inft [F ]2.
Proof of Subclaim I.A. Let us write Z := (X1, . . . , X t−1,Yt+1, . . . ,Yn) ∈ R

n−1 and re-

call that D = B(Z ) where B is a multilinear polynomial of degree at most d − 1.

Hence we may apply the Bonami Lemma (Theorem 6.14) and get

E
Z

[B(Z )4] ≤ 9d−1
E[B(Z )2]2 = 9d−1

( ∑

|S|≤d :t∈S

F̂ (S)2
)2

= 9d−1 · Inft [F ]2

Then again summing over all t gives

∣∣
E[ψ(F (X ))]−E[ψ(F (Y ))]

∣∣ ≤
n∑

t=1

∣∣
E[ψ(Ht−1)]−E[ψ(Ht )]

∣∣

Claim I
≤

n∑
t=1

‖ψ′′′′‖∞
12

·9d · Inft [F ]2

Recall that a functionψ : R→R is called c-Lipschitz if |ψ(t1)−ψ(t2)| ≤ c|t1−t2|
for all t1, t2 ∈R. We can also give a guarantee for Lipschitz test functions.

Lemma 6.17. Let F : Rn → R be a multilinear polynomial of degree at most d
and assume additionally that Var[F ] ≤ 1 and Infi [F ] ≤ ε for all i ∈ [n]. Let X =
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(X1, . . . , Xn) and Y = (Y1, . . . ,Yn) both be random vectors with independent coor-

dinates that are nice (see Def 6.15). Then for any c-Lipschitz function ψ : R→ R

one has ∣∣
E[ψ(F (X ))]−E[ψ(F (Y ))]

∣∣≤O(c) ·2d ·ε1/4

Proof. After scaling we may assume that c = 1. Let η > 0 be a parameter that we

determine later. As in Lemma 6.11 we can can construct a smooth approximation

ψ̃ : R→R so that ‖ψ̃′′′′‖∞ ≤O( 1
η3 ) while (using Lipschitzness of ψ) one has |ψ(t )−

ψ̃(t )| ≤ η for all t ∈R. From the assumptions we know that

n∑

i=1

Infi [F ]2 ≤ ε
n∑

i=1

Infi [F ] = ε
n∑

i=1

∑

|S|≤d :i∈S

F̂ (S)2

︸ ︷︷ ︸
≤Var[F ]≤1

|S|︸︷︷︸
≤d

≤ εd

Hence we can apply the Invariance Principle (Theorem 6.16) and obtain

∣∣
E[ψ(F (X ))]−E[ψ(F (Y ))]

∣∣≤ η+
∣∣
E[ψ̃(F (X ))]−E[ψ̃(F (Y ))]

∣∣≤ η+O
(εd ·9d

η3

)

Then setting η := (d9dε)1/4 gives the claim.

6.4 Comparison inequality between the boolean and

the Gaussian case

Now, let us focus on comparing random variables F (x) and F (y) where x ∼ {−1,1}n

and y ∼ γn as this will be main application of the invariance principle. All state-

ments of the invariance principle that we developed so far have the huge disad-

vantage that they depend on the degree of the multilinear polynomial F . Dealing

with this disadvantage will be the topic of this section. For a multilinear polyno-

mial F (x) =
∑

S⊆[n] F̂ (S)χS (x) and k ∈ Z≥0 we write F≤k (x) :=
∑

|S|≤k F̂ (S)χS(x) as

the low degree part and F>k (x) :=
∑

|S|>k F̂ (S)χS (x) as the high degree part. First

we derive the (unsurprising) fact that the error in the invariance principle is small

if the high degree part has small norm.

Lemma 6.18. Let F : Rn → R be a multilinear polynomial with Var[F ] ≤ 1 and

let k ∈ N and ε > 0 so that Infi [F≤k ] ≤ ε for all i ∈ [n]. Then for any c-Lipschitz

function ψ : R→R one has

∣∣∣ E
x∼{−1,1}n

[ψ(F (x))]− E
y∼γn

[ψ(F (y))]
∣∣∣ ≤O(c) ·

(
2kε1/4 +‖F>k‖E ,2

)
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Proof. After shifting we may assume that ψ(0) = 0. Recall that F = F≤k +F>k is

the split of F into low degree and high degree parts. Then we can bound
∣∣∣ E

x∼{−1,1}n
[ψ(F (x))]− E

y∼γn
[ψ(F (y))]

∣∣∣

≤
∣∣∣ E

x∼{−1,1}n
[ψ(F≤k (x))]− E

y∼γn
[ψ(F≤k (y))]

∣∣∣
︸ ︷︷ ︸

≤O(c)·2kε1/4 by Lem 6.17

+ E
x∼{−1,1}n

[|ψ(F>k (x))|]+ E
y∼γn

[|ψ(F>k (y))|]

≤ O(c) ·2kε1/4 +c E
x∼{−1,1}n

[
|F>k (x)|2

]1/2 +c E
y∼γn

[
|F>k (y)|2

]1/2

Lem 6.3= O(c)2kε1/4 +2c‖F>k‖E ,2

Here we use that ψ is c-Lipschitz and ψ(0) = 0 so that |ψ(t )| ≤ ct for all t . More-

over we use that by Jensen’s inequality, for any random variable X one has E[|X |] ≤
E[X 2]1/2.

Now, we can prove that using a noisy version of F , we can remove the depen-

dence on the degree. Here we remind the reader that by Lemma 6.7, for multilin-

ear polynomials, the operators Tρ and Tγn ,ρ are the same.

Lemma 6.19. Let 0< ε≤ 1 and 0 < δ≤ 1
20

. Let F : Rn →R be a multilinear polyno-

mial with Var[F ] ≤ 1 and Infi [F ] ≤ ε for all i ∈ [n]. Then
∣∣∣ E

x∼{−1,1}n
[ψ(T1−δF (x))]− E

y∼γn
[ψ(T1−δF (y))]

∣∣∣≤O(c) ·εδ/3

Proof. We define function H : Rn → R with H(x) := T1−δF (x) which again is a

multilinear polynomial with Var[H] ≤ Var[F ] ≤ 1 and Infi [H] ≤ Infi [F ] ≤ ε. Let

k ≥ 0 be a parameter that we determine later. The norm of the high degree part

of H is

‖H>k‖2
E ,2 =

∑

|S|>k

Ĥ(S)2 Prop 1.21=
∑

|S|>k

F̂ (S)2

︸ ︷︷ ︸
≤Var[F ]≤1

·(1−δ)2|S| ≤ exp(−2δk),

crucially using the fact that the noise operator T1−δ dramatically shrinks the high

degree Fourier coefficients. Then applying Lemma 6.18 to H we get
∣∣∣ E

x∼{−1,1}n
[ψ(H(x))]− E

y∼γn
[ψ(H(y))]

∣∣∣ ≤ O(c) ·
(
2kε1/4 +‖H>k‖E ,2

)

≤ O(c) ·
(
2kε1/4 +exp(−δk)

)

k:= 1
3 ln(1/ε)

≤ O(c) ·εδ/3

making an appropriate choice for k that balances both error terms.
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Extending a definition from Section 1.8 we can define the ρ-stable influence

of a multilinear polynomial F as Inf
(ρ)

i [F ] =
∑

S⊆[n]:i∈S ρ
|S|−1F̂ (S)2. The reader may

note that in Lemma 6.19 one could have replaced the assumption of Infi [F ] ≤ ε

by the weaker assumption that Inf(1−δ)
i [F ] ≤ ε as we still would have been able

to infer that Infi [H] ≤ Inf(1−δ)
i [F ] ≤ ε. This weaker assumption is usually phrased

that F has no (ε,δ)-notable coordinates.
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Chapter 7

The Majority is Stablest Theorem

7.1 The Majority Function

We want to revisit a topic from the introductory chapter (see Section 1.7 and Sec-

tion 6.1.1). We remind outselfs that the stability of a function f : {−1,1}n → R for

parameter −1 ≤ ρ ≤ 1 is

Stabρ[ f ] = E
x∼{−1,1}n ,y∼Nρ (x)

[ f (x) · f (y)] = 〈Tρ f , f 〉E

where Nρ(x) is the distribution over {−1,1}n with independent coordinates so

that Ey∼Nρ (x)[xi yi ] = ρ. The question that we want to answer is which function

f : {−1,1}n → {−1,1} maximizes the stability Stabρ[ f ] in the regime 0 ≤ ρ ≤ 1.

Clearly for a constant function the stability is 1, so let us restrict to functions

f : {−1,1}n → {−1,1} with Ex∼{−1,1}n [ f (x)] = 0. Then for any dictatorship function

f (x) = xi one has Stabρ[ f ] = Ex∼{−1,1}n ,y∼Nρ (x)[xi yi ] = ρ. We can further restrict

our consideration to functions where all coordinates have small influence to rule

out dictatorship functions as well. It turns out that then the problem becomes

rather non-trivial. First we discuss one particular function that is of fundamental

importance in this context.

For odd n, we consider the majority function Majn : {−1,1}n → {−1,1} as

Majn(x) := sign
( 1
p

n

n∑

i=1

xi

)
=

{
1 if

∑n
i=1 xi > 0

−1 if
∑n

i=1
xi < 0

Of course one could drop the scalar 1p
n

without affecting the definition, but this

normalization will be convinient for us later. As we already mentioned in Sec-

tion 5.3.1, Majn is symmetric under permuting the coordinates and Infi [Majn] =
Θ( 1p

n
) for all coordinates i . It will be interesting to determine the stability of the

majority function.

85
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Theorem 7.1. For any −1≤ ρ ≤ 1 one has Stabρ[Majn] = 1− 2
πarccos(ρ)±o(1).

1

−1

1−1

ρ 1− 2
πarccos(ρ)

Proof. We will reduce this question on boolean functions to the Gaussian case.

LetDρ be the distribution over ρ-correlated pairs (x, y)∈ {−1,1}2 where x ∼ {−1,1}

and y ∼ Nρ(x). We draw X1, . . . , Xn ∼ 1p
n
Dρ and set X :=

∑n
i=1 Xi ∈ R

2. Then we

have the covariance matrices

E[Xi X T
i ] =

1

n

(
1 ρ

ρ 1

)
and E[X X T ] =

(
1 ρ

ρ 1

)

To avoid confusion we write the vector as X =
(X (1)

X (2)

)
. We draw

Y ∼ N
(

0,

(
1 ρ

ρ 1

))

which is a 2-dimensional random Gaussian that has the same mean and covari-

ance matrix as X . Let Q :=R
2
≥0 be the positive orthant.

Q

−Q

R
2

Then

Stabρ[Majn] = E[sign(X (1)) ·sign(X (2))]

= 2 Pr[sign(X (1)) = sign(X (2))]−1

= 2 Pr[X ∈Q or X ∈−Q]−1

= 4 Pr[X ∈Q]−1

Thm 6.13= 4 Pr[Y ∈Q]−1±o(1)

Sheppard= 1−
2

π
arccos(ρ)
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In order to apply the multidimensional Berry Esseen Theorem (Thm 6.13) we use

that the orthant Q is convex. In the very last step we use the classic Sheppard’s

Formula, see Lemma 7.2.

We also prove Sheppard’s Formula which we just used:

Lemma 7.2 (Sheppard’s Formula). Let −1 ≤ ρ ≤ 1. One has

Pr
[
Y ∈R

2
≥0

]
=

1

2
−

arccos(ρ)

2π
where Y ∼ N

(
0,

(
1 ρ

ρ 1

))

Proof. We generate the Gaussian Y as follows: Let u1,u2 ∈ S1 be two unit vectors

in R
2 with inner product 〈u1,u2〉 = ρ. Then draw a standard Gaussian g ∼ γ2 and

let Y1 = 〈g ,u1〉 and Y2 = 〈g ,u1〉. Let θ be the angle between the vectors u1 and u2,

i.e. cos(θ) = ρ. By rotational symmetry of the Gaussian we can see that there is

an angle of π−θ in which g needs to fall in order to satisfy the event that Y ≥ 0.

0
u1

u2

θ

θ

Hence

Pr[Y ≥ 0] =
π−θ

2π
=

1

2
−

arccos(ρ)

2π

We hope that the reader can appreciate how simple the analysis of the stabil-

ity for majority function was once we transferred the question to the Gaussian

setting. We want to prove that the majority function indeed maximizes the sta-

bility among all balanced functions with no influencial coordinate. In order to

do so we will first prove the analogue in the Gaussian setting and then transfer it

back.

7.2 Borell’s Isoperimetric Theorem

Recall that in Section 6.1.1 we defined (x, y) ∼Gn,ρ to beρ-correlated n-dimensional

Gaussians. We make the following definition.
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Definition 7.3. For A ⊆R
n and δ ∈R we define the rotational sensitivity of A at δ

as

RS A(δ) := Pr
(x,y)∼Gn,cos(δ)

[1A(x) 6= 1A(y)]

If R AA(δ) is small and |δ| ≈ 0, then this means that for correlated Gaussians

(x, y) the events x ∈ A and y ∈ A are strongly correlated, meaning the Gaussian

surface of A is small.

A
x

y

The following property will be important:

Theorem 7.4 (Subadditivity of Rotational Sensitivity). For any set A ⊆R
n and any

δ1, . . . ,δℓ ∈R one has

RS A

( ℓ∑

i=1

δi

)
≤

ℓ∑

i=1

RS A(δi )

Proof. It suffices to prove the result for ℓ= 2 and then apply induction. Draw two

independent Gaussians g ,h ∼ γn and for θ ∈R define the interpolation

z(θ) := cos(θ) ·g + sin(θ) ·h

As cos(θ)2 + sin(θ)2 = 1, we have that z(θ) ∼ γn for all θ. For distinct θ,θ′ ∈ R the

Gaussians have a correlation of

E[z(θ)1 · z(θ′)1] = cos(θ)cos(θ′)+ sin(θ)sin(θ′) = cos(θ′−θ)

That means for any δ and θ we have RS A(δ) = Pr[1A(z(θ)) 6= 1A(z(θ+δ))]. Then

using this fact with the union bound we obtain

RS A(δ1 +δ2) = Pr
[

1A(z(δ1 +δ2)) 6= 1A(z(0))
]

≤ Pr
[

1A(z(0)) 6= 1A(z(δ1))
]
+Pr

[
1A(z(δ1)) 6= 1A(z(δ1 +δ2))

]

= RS A(δ1)+RS A(δ2)

Now we can prove that in Gaussian space, indeed no balanced function has a

higher stability than a majority function (or any indicator function of a halfspace

through the origin). We recall that we had defined Stabγn ,ρ[ f ] := E(x,y)∼Gn,ρ
[ f (x) ·

f (y)] in Section 6.1.1.
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Theorem 7.5 (Borell’s Theorem — Majority is Stablest in Gaussian Space). Let

f : Rn → [−1,1] and Ex∼γn [ f (x)] = 0. Then for any 0 < ρ < 1 one has

Stabγn ,γ[ f ] ≤ 1−
2

π
arccos(ρ)

Proof. We will only prove the statement for cos(θ) = ρ where θ = π
2ℓ with ℓ ∈ N.

Still these are infinitely many ρ’s that cover our later application. First we want to

argue that we can restrict our attention to functions f : Rn → {−1,1}. To see this,

let Fn := { f ∈ R
n → [−1,1] : Ex∼γn [ f (x)] = 0} be the space of balanced bounded

functions. Note that

Stabγn ,ρ[ f ] = 〈Tγn ,ρ f , f 〉
γn

= ‖Tγn ,
p
ρ f ‖2

γn ,2

As Tγn ,
p
ρ is linear, we know that the map Φ : Fn → R≥0 with Φ( f ) := Stabγn ,ρ[ f ]

is convex. Hence a maximizer should be attained at an extreme point1 which

would be of the form f : Rn → {−1,1}. Then we can set A := {x ∈R
n | f (x) = 1} and

because f was balanced we have γn(A) = 1
2

and it suffices to prove the following:

Claim I. Let A ⊆R
n be a set with γn(A) = 1

2
. Then for θ = π

2ℓ ,

Pr
(x,y)∼Gn,cos(θ)

[1A(x) 6= 1A(y)] ≥
θ

π

Proof of Claim I. Using the subadditivity of RS A we have

Pr
(x,y)∼Gn,cos(θ)

[1A(x) 6= 1A(y)] = RS A

( π

2ℓ

)
Thm 7.4

≥
1

ℓ
·RS A

(π
2

)

=
1

ℓ
· Pr

x,y∼γn
indep.

[
1A(x) 6= 1A(y)

]
=

1

ℓ
·

1

2
=

θ

π

as for a set A with γn(A) = 1
2

, one has that 1A(x) 6= 1A(y) with probability 1/2

when x and y are independent Gaussians.

A minor modification of the argument (adjusting the balance condition and

replacing the probability of 1/2) gives the following:

Corollary 7.6 (Variant of Borell’s Theorem). Let f : Rn → [−1,1] andµ := Ex∼γn [ f (x)].

Then for any 0 < ρ < 1 one has

Stabγn ,ρ[ f ] ≤ 1−
2

π
arccos(ρ)+O(µ)

We leave the details as an exercise. See the textbook [O’D21] for the tight

bound in terms of µ.

1We generously skip any compactness issue here.
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7.3 Majority is stablest

In this section we will finally prove the Majority is Stablest Theorem. But first we

show an auxiliary result that bounds the change of Stabρ[ f ] when we vary ρ.

Lemma 7.7. For any f : {−1,1}n →R and 0< ρ < 1 one has | d
dρ

Stabρ[ f ]| ≤ 1
1−ρ Var[ f ].

Proof. Writing out the Fourier representation of stability from Prop 1.22 we have

∣∣∣ d

dρ
Stabρ[ f ]

∣∣∣
linearity of
derivative=

∑

S⊆[n]

f̂ (S)2 d

dρ
ρ|S|

︸ ︷︷ ︸
=|S|·ρ|S|−1

=
∑

S⊆[n]

|S|ρ|S|−1

︸ ︷︷ ︸
≤ 1

1−ρ

f̂ (S)2 ≤
1

1−ρ
Var[ f ]

Here we use that k ·ρk−1 ≤ 1
1−ρ for all 0 < ρ < 1 and k ∈Z≥0.

Now to the main result:

Theorem 7.8 (Majority is stablest – Mossel, O’Donnell, Oleszkiewicz [MOO10]).

Let 0 ≤ ρ < 1. For any function f : {−1,1}n → [−1,1] with Ex∼{−1,1}n [ f (x)] = 0 and

Infi [ f ] ≤ ε for all i ∈ [n], one has

Stabρ[ f ] ≤ 1−
2

π
arccos(ρ)+O

( loglog 1
ε

log 1
ε

)
·

1

1−ρ

Proof. We appreviate φ(ρ) := 1− 2
π

arccos(ρ). Let 0 < δ ≤ 1
20

be a parameter that

we decide later. Eventually we will make use the invariance principle from Lemma 6.19.

For that purpose define an auxiliary function h : Rn →R with

h(x) := T1−δ f (x) ∀x ∈R
n

One can think of this as a minimally smoothed version of f . In fact the stability

of f and h is very close so that instead we may analyze h.

Claim I. One has |Stabρ[h]−Stabρ[ f ]| ≤ 2δ
1−ρ .

Proof of Claim I. We use the Fourier representation of stability from Prop 1.22 to

write

Stabρ[h] =
∑

S⊆[n]

ρ|S| �T1−δ f (S)2 =
∑

S⊆[n]

(ρ · (1−δ)2)|S| f̂ (S)2 = Stabρ(1−δ)2 [ f ]
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Then using the bound on the derivative of stability from Lemma 7.7 we can bound

|Stabρ(h)−Stabρ( f )| ≤
∫ρ

ρ(1−δ)2

∣∣∣ d

d t
Stabt [ f ]

∣∣∣
︸ ︷︷ ︸

≤ 1
1−ρ Var[ f ]

d t

Lem 7.7
≤ ρ︸︷︷︸

≤1

·(1− (1−δ)2)︸ ︷︷ ︸
≤2δ

·
1

1−ρ
Var[ f ]︸ ︷︷ ︸

≤1

≤
2δ

1−ρ

Here we use that Var[ f ] ≤ 1 as | f (x)| ≤ 1 for all x ∈ {−1,1}n .

Later we will use the invariance principle in the following form:

Claim II. For any O(1)-Lipschitz function ψ : R → R one has |Ey∼γn [ψ(h(y))] −
Ex∼{−1,1}n [ψ(h(x))]| ≤O(εδ/3).
Proof of Claim II. Simply apply Lemma 6.19.

If our remaining goal is to upper bound Stabρ[h] then one might be tempted

to assume that Borell’s Theorem (Theorem 7.5) immediately gives that Stabγn ,ρ[h] ≤
φ(ρ). But Theorem 7.5 requires that the function is bounded between −1 and 1

on the whole R
n which may not be true (even though indeed |h(x)| ≤ 1 for all

x ∈ {−1,1}n). The way to work around this is to cut the function off outside of the

interval [−1,1] and account for the error using the invariance principle.

First we define the truncation

Trunc(t ) :=





t if 0 ≤ t ≤ 1

0 if t < 0

1 if t > 1

0

1

0 1 2

t

Trunc(t )

which is a 1-Lipschitz function. Then the overall approach that does work is to

bound

Stabρ[ f ]
Claim I
≤ Stabρ[h]+

2δ

1−ρ

h multilin.= Stabγn ,ρ[h]+
2δ

1−ρ

≤ Stabγn ,ρ[Trunc(h)]︸ ︷︷ ︸
≤φ(ρ)+O(εδ/3) (∗)

+
∣∣Stabγn ,ρ[h]−Stabγn ,ρ[Trunc(h)]

∣∣
︸ ︷︷ ︸

≤O(εδ/3) (∗∗)

+
2δ

1−ρ

≤ φ(ρ)+O(εδ/3)+
2δ

1−ρ

Then choosing a δ that balances the error terms (e.g. δ := 3
loglog(1/ε)

log1/ε
) gives the

statement of the theorem. It remains to justify the inequalities claimed in (∗)

and (∗∗). Towards this goal we prove the following:
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Claim III. One has Ey∼γn [|h(y)−Trunc(h(y))|] ≤O(εδ/3).
Proof of Claim III. We define distA(t ) as the distance of t to the nearest point in a

set A. This always gives a 1-Lipschitz function. In particular we are going to use

the function dist[0,1].

1

0 1 2−1

t

dist[0,1](t )

Then using the invariance principle we can bound

E
y∼γn

[∣∣h(y)−Trunc(h(y))
∣∣] =

∣∣∣ E
y∼γn

[dist[0,1](h(y))]− E
x∼{−1,1}n

[dist[0,1](h(x))]

︸ ︷︷ ︸
=0 since 0≤h(x)≤1 for x∈{0,1}n

∣∣∣

Claim II
≤ O(εδ/3)

as for any fixed y one has |h(y)−Trunc(h(y))| = dist[0,1](h(y)).

We recall that f is balanced and so h is balanced which (since h is multilinear)

also implies that Ey∼γn [h(y)] = 0. Hence by Claim III, Ey∼γn [Trunc(h(y))] has to

be small and we can apply the variant of Borell’s Theorem (see Cor 7.6) to obtain

Stabγn ,ρ[Trunc(h(y))]
Lem 7.6
≤ φ(ρ)+O

(∣∣∣ E
y∼γn

[
Trunc(h(y))

]∣∣∣
)

Claim III
≤ φ(ρ)+O(εδ/3)

Hence we have proven (∗).

Next, we want to show (∗∗). We define the square function Sq : R→R

Sq(t ) :=





t 2 if 0 ≤ t ≤ 1

0 if t < 0

1 if t > 1

0

1

0 1 2

t

Sq(t )

It will be useful to note that for any function g : Rn →R one has

Stabγn ,ρ[g ] = 〈Tγn ,
p
ρg ,Tγn ,

p
ρg 〉

γn
= E

y∼γn

[
Sq(Tγn ,

p
ρg (y))

]
(7.1)
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We apply (7.1) for functions g = h and g = Trunc(h) and get
∣∣Stabγnρ[h]−Stabγn ,ρ[Trunc(h)]

∣∣
(7.1)=

∣∣∣ E
y∼γn

[
Sq

(
Tγn ,

p
ρ(h(y))

)]
− E

y∼γn

[
Sq

(
Tγn ,

p
ρ(Trunc(h(y)))

)]∣∣∣

Sq 2-Lipschitz
≤ 2

∣∣∣ E
y∼γn

[
Tγn ,

p
ρh(y)

]
− E

y∼γn

[
Tγn ,

p
ρ(Trunc(h(y)))

]∣∣∣
Lem 6.8
≤ 2

∣∣∣ E
y∼γn

[h(y)]− E
y∼γn

[
Trunc(h(y))

]∣∣∣

Claim III
≤ O(εδ/3)

Here we use that the Gaussian noise operator Tγn ,
p
ρ is linear and a contraction

as we know from Lemma 6.8. This shows (∗∗) and concludes the proof.

The assumption of Infi [ f ] ≤ ε for all i , can be replaced by the weaker assump-

tion that f has no (ε,δ)-notable coordinates, see the remark after the proof of

Lemma 6.19. We want to record two variants for later use.

Theorem 7.9 (Majority is Stablest II). For any 0 ≤ ρ < 1 and η > 0 there are ε > 0

and d ∈N so that the following holds: For any function f : {−1,1}n → [−1,1] with

Ex∼{−1,1}n [ f (x)] = 0 and Inf≤d
i [ f ] ≤ ε for all i ∈ [n], one has

Stabρ[ f ] ≤ 1−
2

π
arccos(ρ)+η

Proof. For a cleaner notation assume that the assumption is that Inf≤d
i [ f ] ≤ ε

2
(so

we do not need to introduce more constants). Using that assumption we can see

that for any δ> 0 one has

Inf(1−δ)
i [ f ] =

∑

S⊆[n]:i∈S
(1−δ)|S| f̂ (S)2 ≤

∑

|S|≤d :i∈S

f̂ (S)2

︸ ︷︷ ︸
≤Inf≤d

i [ f ]≤ε/2

+
∑

|S|>d

f̂ (S)2

︸ ︷︷ ︸
≤1

exp(−δ|S|)︸ ︷︷ ︸
≤ε/2

≤ ε

if we choose d := ln( 2
ε )

δ . By the remark from above, Theorem 7.8 already applies if

Inf(1−δ)
i [ f ] ≤ ε where the choice of δ depends on ε.

For the regime −1 < ρ ≤ 0 we can also obtain a lower bound on the stability:

Theorem 7.10 (Majority is Stablest III). For any −1 < ρ ≤ 0 and η > 0 there are

ε> 0 and d ∈N so that the following holds: For any function f : {−1,1}n → [−1,1]

with Inf≤d
i [ f ] ≤ ε for all i ∈ [n], one has

Stabρ[ f ] ≥
2

π
arccos(−ρ)−1−η= 1−

2

π
arccos(ρ)−η
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Proof. Let fodd : {−1,1}n →R be the function with

fodd(x) :=
1

2
( f (x)− f (−x)) ∀x ∈ {−1,1}n

which is also called the odd part of the function f . By definition we know that

| fodd(x)| ≤ 1 for all x because also | f (x)| ≤ 1 for all x. Moreover, fodd is balanced

(even if f was not). We can verify that the Fourier expansion of fodd is simply

fodd(x) =
1

2

∑

S⊆[n]

f̂ (S) ·
(
χS (x)−χS (−x)

)
︸ ︷︷ ︸

=0 if |S| even,
=2χS (x) if |S| odd

=
∑

S⊆[n]:|S| odd

f̂ (S) ·χS (x) (∗)

from which we also know that Inf≤d
i [ fodd] ≤ Inf≤d

i [ f ] for all i . Then

Stabρ[ f ]
Prop 1.22=

∑

S⊆[n]

ρ|S| f̂ (S)2

≥ −
∑

S⊆[n]:|S| odd

(−ρ)|S| f̂ (S)2

Prop 1.22+(∗)= −Stab−ρ[ fodd]
Thm 7.8

≥ −
(
1−

2

π
arccos(−ρ)+η

)

where we apply the Majority is Stablest II Theorem to the function fodd. For the

alternative representation one can use that arccos(−ρ) =π−arccos(ρ).



Chapter 8

Hardness of Approximation II — The

Unique Games Conjecture and

Hardness for MaxCut

For the MAXCUT problem we are given a weighted undirected graph G = (V ,E , w)

and the goal is to find a cut S ⊆V that maximizes w(δ(S)) :=
∑

e∈E :|e∩S|=1 we which

is the weight of the edges with end points in different sides of the cut. We denote

val(G , w) as the value of the optimum solution, i.e. the maximum weight of edges

separated by any cut.

After Chapter 4, this is the second part on hardness of approximation in which

we prove an optimum hardness result for MAXCUT, assuming the so-called Unique
Games Conjecture (UGC). In particular we prove that assuming UGC, there is no

polynomial time algorithm that finds a (αGW + ε)-approximation for MAXCUT

where αGW ≈ 0.878 is the approximation ratio of the Goemans Williamson SDP

rounding algorithm [GW95]. The crucial ingredient for this hardness proof will

be the Majority is Stablest Theorem that we have just proven in the previous

chapter. The presentation here follows the notes of Minzer [Min22] as well as

O’Donnell’s book [O’D21].

8.1 The Unique Games Conjecture

We have introduced the label cover problem in Section 4.1.3 as an NP-hard prob-

lem which served as a starting point to derive hardness for 3LIN2. We recall that

a label cover instance is of the form Ψ = (G ,ΣL,ΣR , (Φe )e∈E ) where G = (L∪̇R ,E )

is a bipartite graph, V := L ∪R , Σ := ΣL ∪ΣR and for every edge e = (u, v) ∈ E we

have a function Φe : ΣL → ΣR which is satisfied by an assignment A : V → Σ if

95
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Φe (A(u)) = A(v). Using the PCP Theorem and the Parallel Repetition Theorem,

we know that for any ε> 0 distinguishing the cases of val(Ψ) = 1 and val(Ψ) ≤ ε is

NP-hard. In this chapter we will introduce a special case of label cover where the

maps Φe are bijections rather than arbitrary maps.

Definition 8.1. A Unique Games instance is of the form Ψ = (G ,ΣL,ΣR , (Φe )e∈E )

where G = (V = L∪̇R ,E ), |ΣL | = |ΣR | and all functions Φe are bijective. An assign-

ment A : V → Σ satisfies an edge e = (u, v) ∈ E if Φe (A(u)) = A(v). The goal is to

find an assignment A that maximizes the number of satisfied constraints.

L R

e

graph G

ΣL ΣR

possible map Φe

If val(Ψ) = 1, then a satisfying assignment A can be found in polynomial time.

The reason is that once we know one value A(u), this uniquely determines all

assignment values in the connected component of G that contains u. But similar

to 3LIN2 this argument does not work if say val(Ψ) ≤ 1−ε for some constant ε> 0.

So the following is being conjectured:

Conjecture 1 (Unique Games Conjecture; Khot [Kho02]). For all ε > 0, there is
a k ∈ N so that UNIQUEGAMES [1−ε,ε] is NP-hard for instances with alphabet size
|Σ| ≤ k where the graph G is regular.

Here regular means that all vertices v ∈ L ∪R have the same degree. In par-

ticular this implies that |L| = |R|. The assumption that vertices in G need to have

regular degree is not actually part of the original Unique Games Conjecture but

it would follow from it by standard techniques, hence we add it here for con-

vinience. The Unique Games conjecture has been open for over two decades

and we will justify the interest in it by an deriving optimum inapproximability for

maxcut from it. We should note that non-trivial algorithms exist for the Unique

Games problem. In particular given any instance Ψ with val(Ψ) ≥ 1−ε by round-

ing a semidefinite program one can find an assignment satisfying a 1−Θ(
√
ε log(k))

fraction of constraints [CMM06].
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8.2 The reduction from Unique Games to MaxCut

We will first describe the reduction from a Unique Games instance to MaxCut and

then prove soundness and completeness over the following two sections. Recall

that for −1 ≤ ρ ≤ 1 and x ∈ {−1,1}n , y ∼ Nρ(x) provides random vector in {−1,1}n

with independent coordinates so that E[yi ] = ρ ·xi . Also recall that for a function

f : {−1,1}n → R, the stability is Stabρ[ f ] = Ex∼{−1,1}n ,y∼Nρ (x)[ f (x) · f (y)]. We refer

to Section 1.7 for details.

Now consider a Unique Games instance Ψ= (G ,ΣL ,ΣR , (Φe )e∈E ) where we as-

sume the bipartite graph G to be regular and fix a parameter −1 ≤ ρ ≤ 0. We

define a maxcut instance G ′ = (V ′,E ′) with weights w ′ : E ′ →R≥0 that has vertices

V ′ := L × {−1,1}ΣL , corresponding to variables fu(x) ∈ {−1,1} for u ∈ L and x ∈ ΣL .

We now generate an edge via a random process and the weight of the edge will be

the probability/density that the edge is being generated: we pick a uniform node

v ∈ R on the right side. Then we pick two uniform random neighbors u,u′ ∈ N (v).

We draw x ∼ {−1,1}ΣR and y ∼ Nρ(x). We insert the edge

(
(u,Φu,v (x)), (u′,Φu′ ,v (y))

)
∈ E ′

u

u′

v

L R

graph G

x

y

∈ E ′

visualization for case that Φu,v ,Φu′,v are the identity

part of graph G ′

Note that the original label cover graph G is bipartite and maxcut has a trivial

optimal solution for bipartite graphs. Hence the construction of G ′ at least passes

the sanity check of not being bipartite. It might not yet be obvious what function

the noise parameter ρ has. Formally we will prove:

Theorem 8.2 (Analysis of reduction). For all −1≤ ρ ≤ 0 and δ> 0, there is a small

enough η > 0 so that for any Unique Games instance Ψ, the weighted graph

(G ′, w ′) constructed above satisfies:

• Completeness. val(Ψ) ≥ 1−η=⇒ val(G ′, w ′) ≥ 1
2

(1−ρ)−δ.
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• Soundness. val(Ψ) ≤ η=⇒ val(G ′, w ′) ≤ 1
πarccos(ρ)+δ.

8.3 Completeness

We will first prove completeness.

Lemma 8.3 (Completeness of reduction). Let η> 0. If val(Ψ) ≤ 1−η, then val(G ′, w ′) ≥
1
2

(1−ρ)−2η.

Proof. Let A : L ∪R → Σ denote the Unique Games assignment satisfying a 1−η

fraction of edges. Define functions { fu}u∈L with

fu(x) := xA(u) ∀u ∈ L ∀x ∈ {−1,1}ΣL

Note that these functions correspond to the dictatorship functions induced by

the labeling. The good cut in G ′ is given by the set U := {(u, x) : fu(x) = 1}. In

order to analyze the value of that cut, consider the random process that generates

the edges in E ′. By regularity, both of the edges (u, v) and (u′, v) are uniform

random choices from E , hence with probability at least 1− 2η, A satisfies both

edges (u, v), (u′, v). Now condition on this outcome.

W.l.o.g. assume that the maps Φu,v and Φu′ ,v are bijections. Then there is a

single symbol i so that A(u) = i = A(u′). Then both vertices (u, x) and (u′, y) will

end up on different sides of the cut with probability

Pr
y∼Nρ (x)

[xi 6= yi ] =
1

2
(1−ρ)

which gives the claim.

8.4 Soundness

Analyzing the soundness however will take a lot more effort and some heavy

Fourier analysis machinery. For the soundness direction we need to turn a cut

into a good unique games assignment. Recall that the constructed graph G ′ has

vertices V ′ := L × {−1,1}ΣL . But instead of thinking of a cut as the set U ⊆ V ′ we

will rather work with the functions fu : {−1,1}ΣL → {−1,1} so that U = {(u, x) ∈V ′ :

fu(x) = 1}.

If these functions have significant Fourier coefficients | f̂u(S)| for small |S|
where S ⊆ ΣL, then similar to the argument in Prop 4.20 we would be again opti-

mistic that we could extract a good assignment for A(u) by sampling from such a
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set S. So the difficult case would be where we have no significant Fourier weight

on the lower levels and we expect that there cannot be any good unique games

solution. Now for the sake of argument imagine all the functionsΦe are identities

and the functions fu := f are all identical. Then the value of the maxcut solution

would be

Pr
x∼{−1,1}ΣL ,

y∼Nρ (x)

[ f (x) 6= f (y)]

Proving that this is less than the value of 1
2

(1−ρ) obtained for the completeness

case is exactly what is done by the Majority is Stablest Theorem.

Proposition 8.4 (Soundness of reduction). Fix −1 ≤ ρ ≤ 0 and Ψ. Suppose there

is a cut U ⊆ V ′ in the constructed graph (G ′, w ′) of value 1
π

arccos(ρ)+δ. Then

val(Ψ) ≥ c(δ,ρ) > 0.

Proof. Let { fu}u∈L with fu : {±1}ΣL → {±1} be the functions representing the cut,

i.e. U = {(u, x) : fu(x) = 1}. For a bijective function Φ : ΣL → ΣR and x ∈ {−1,1}ΣR

we write Φ
−1(x) = (xΦ−1(i ))i∈ΣR ∈ {−1,1}ΣL as the vector with permuted coordi-

nates. Similarly for a set S ⊆ΣR , Φ−1(S) = {Φ−1(i ) : i ∈ S} gives the permutation of

the elements in S. Recall that we only have functions fu defined for vertices u on

the left side. However, we want to extend those functions to the right side. We set

gv (x) := E
u∼N(v)

[
fu(Φ−1

u,v (x))
]

∀v ∈R ∀x ∈ΣR

Intuitively, v ∈ R obtains its function values by averaging over the values of its

neighbors. Note that gv : {−1,1}ΣR → [−1,1] is in general not a boolean function.

First we can relate the value of the cut to the stability of those functions gv .

Claim I. One has w ′(δG ′(U )) = 1
2

(1−Ev∼R [Stabρ(gv )]).
Proof of Claim I. As in the reduction, let v ∼ R , then u,u′ ∼ N (v), x ∼ {−1,1}ΣR

and y ∼ Nρ(x) independently. It will be useful to also draw ν∼ Nρ(1) ∈ {−1,1}ΣR

independently. We note that y has the same distribution as x⊙ν. We use this fact
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to write

w ′(δG ′(U )) = Pr
v,u,u′ ,x,y

[
fu(Φ−1

u,v (x)) 6= fu′ (Φ−1
u,v (y))

]

= Pr
v,u,u′ ,x,ν

[
fu(Φ−1

u,v (x)) 6= fu′(ν⊙Φ
−1
u′ ,v (x))

]

=
1

2

(
1− E

v,u,u′ ,x,ν

[
fu(Φ−1

u,v (x)) · fu′ (ν⊙Φ
−1
u′ ,v (x))

])

=
1

2

(
1− E

v,x,ν

[
E

u∼N(v)

[
fu(Φ−1

u,v (x))
]

︸ ︷︷ ︸
=gv (x)

· E
u′∼N(v)

[
fu′ (ν⊙Φ

−1
u′ ,v (x))

]

︸ ︷︷ ︸
=gv (ν⊙x)

])

=
1

2

(
1−E

v

[
E

x,ν

[
gv (x) ·gv (ν⊙x)

]])

=
1

2

(
1−E

v

[
Stabρ(gv )

])

Next, we prove that the Fourier coefficients of gv are simply the averages of the

Fourier coefficients of fu with u ∈ N (v) (actually this is a simple consequence of

the linearity of the Fourier coefficients).

Claim II. For v ∈R and S ⊆ΣR , one has ĝv (S) = Eu∼N(v)[ f̂u(Φ−1
u,v (S))].

Proof of Claim II. We can write

ĝv (S) = E
x∼{±1}ΣR

[
gv (x) ·χS (x)

]
= E

u∈N(v)

[
E

x∼{±1}ΣR

[
fu(Φ−1

u,v (x)) ·χS (x))
]]

= E
u∼N(v)

[
E

y∼{±1}ΣL

[
fu(y) ·χ

Φ
−1
u,v (S)(y)

]]
= E

u∼N(v)

[
f̂u(Φ−1

u,v (S))
]

From Claim I, we know that

E
v∼R

[
Stabρ(gv )

]
= 1−2w ′(δG ′(U )) ≤ 1−

2

π
arccos(ρ)−2δ

We call a vertex v ∈ R good if Stabρ(gv ) ≤ 1− 2
πarccos(ρ)−δ and we denote Rgood ⊆

R as the good vertices. By the Reverse Markov inequality (Lem 1.37) and the fact

that stability is in [−1,1], we know that |Rgood| ≥ δ
2
|R| and so it suffices to find

an assignment that satisfies a constant fraction of edges incident to good ver-

tices. We fix values for d and τ that in the Majority is Stablest III Theorem (The-

orem 7.10) work for parameters ρ and η := δ/2. That means for any function

f : {−1,1}n → [−1,1] with Inf≤d
i [ f ] ≤ τ for all i ∈ [n], one has1

Stabρ[ f ] ≥ 1−
2

π
arccos(ρ)−

δ

2

1Being picky one could say that we actually use that the majority function is least stable in the

regime −1 ≤ ρ ≤ 0.
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Claim III. For each v ∈ Rgood there is an i ∈ΣR so that Inf≤d
i [gv ] ≥ τ.

Proof of Claim III. If there was no such i , then the Majority is Stablest Theorem

would give that Stabρ(gv ) ≥ 1− 2
π

arccos(ρ)−δ/2 which is a contradiction.

For u ∈ L and v ∈ R , let

Listτ(u) :=
{
i ∈ΣL | Inf≤d

i [ fu] ≥ τ
}

and Listτ(v) :=
{
i ∈ΣR | Inf≤d

i [gv ] ≥ τ
}

be the list of influential coordinates. From Claim III and Lemma 1.34 we know

that 1 ≤ |Listτ(v)| ≤ d
τ for each v ∈Rgood. So sampling from Listτ(v) will be a good

idea to get labellings for vertices in Rgood. But we still need to find suitable labels

for the left hand side L, but fortunately there is some consistency in the influen-

tial coordinates between both sides.

Claim IV. For v ∈Rgood and i ∈ΣR with Inf≤d
i [gv ] ≥ τ one has Pru∼N(v)[Inf≤d

Φ
−1
u,v (i )

[ fu] ≥
τ
2

] ≥ τ
2

.
Proof of Claim IV. In order to simplify notation, let us assume w.l.o.g. that all the

maps Φu,v for u ∈ N (v) are identities. Then

E
u∼N(v)

[Inf≤d
i [ fu]] = E

u∼N(v)

[ ∑

|S|≤d ,i∈S

f̂u(S)2
]
=

∑

|S|≤d ,i∈S
E

u∼N(v)

[
f̂u(S)2

]

Jensen
≥

∑

|S|≤d ,i∈S

(
E

u∼N(v)
[ f̂u(S)]

︸ ︷︷ ︸
=ĝu (S)

)2
= Inf≤d

i [gu] ≥ τ

Then by Reverse Markov (Lem 1.37) one has Pru∼N(v)[Inf≤d
i [ fu] ≥ τ

2
] ≥ τ which

gives the claim.

Now we can define partial assignment A : L ∪Rgood → Σ that satisfies a con-

stant fraction of edges. For v ∈ Rgood, select any A(v) ∈ Listτ(v) (which exists by

Claim III). For u ∈ L, draw A(u) ∼ Listτ/2(u) uniformly (or set A(u) arbitrary if

Listτ/2(u) =;).

Claim VI. For each v ∈ Rgood, PrA,u∼N(v)[(u, v) satisfied by A] ≥ τ
2
· τ

2d .
Proof of Claim VI. We abbreviate i := A(v). First we draw u ∼ N (v), then with

probability at least τ
2

we have Inf≤d
j [ fu] ≥ τ

2
for j :=Φ

−1
u,v (i ). We condition on this

event. Then Pr[A(u) = j ] = 1
|Listτ/2( fu )| ≥

τ
d/2

. Combining both probabilities gives

the claim.

Finally, the assignment A will satisfy a δ
2
· τ

2
· τ

2d fraction of edges.

8.5 Conclusion

Now choosing an optimum value for the parameter ρ, we can derive an optimal

hardness for MAXCUT.
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Theorem 8.5. Assume the Unique Games Conjecture holds. Then for any ε > 0,

finding a MAXCUT approximate solution withinαGW −ε is NP-hard where αGW ≈
0.878 is the same constant as in the Goemans-Williamson SDP rounding algo-

rithm.

Proof. Combining the result from Lemma 8.3 and Proposition 8.4 we obtain the

following. For all −1 ≤ ρ ≤ 0 and δ > 0, there is a small enough η > 0 so that the

reduction from Section 8.2 satisfies:

(A) val(Ψ) ≥ 1−η=⇒ val(G ′, w ′) ≥ 1
2

(1−ρ)−δ.

(B) val(Ψ) ≤ η=⇒ val(G ′, w ′) ≤ 1
π

arccos(ρ)+δ.

We can make the constant δ as small as desired, hence it remains to maximize

the ratio of
1
2 (1−ρ)

1
πarccos(ρ)

over −1 ≤ ρ ≤ 0. The minimizer is ρ∗ ≈−0.6891 with a value

of approximately 0.8785.

0.2
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Chapter 9

Induced subgraphs of hypercubes

In this chapter we discuss a beautiful result by Huang [Hua19]. For an undirected

graph G = (V ,E ) and a subset of vertices S ⊆ V , we write G[S] := (S,E [S]) as the

(vertex) induced subgraph with edgeset E [S] := {e ∈ E | e ⊆ S}. We also write ∆(G)

as the maximum degree of the graph G . This chapter deals with the hypercube
graph Gn := ({−1,1}n ,En) where {x, y} ∈ En if the Hamming distance between x
and y is exactly 1.

{−1,1}n

graph Gn for n = 3

We note that the degree of every vertex in Gn is exactly n. We are wondering how

small the maximum degree ∆(Gn[S]) of a sizable subset S ⊆ {−1,1}n could be. For

example if S := {x ∈ {−1,1}n | |ones(x)| is even} then G[S] contains no edge at all

and so ∆(G[S]) = 0 and for odd n one has |S| = 2n−1. Interestingly as soon as S is

one element larger it must contain a lot of edges:

Theorem 9.1. Let S ⊆ {−1,1}n with |S| > 2n−1. Then ∆(Gn[S]) ≥
p

n.

This bound is tight for infinitely many n, see [HKP11]. Despite being a claim

on the hypercube, the proof uses linear algebraic arguments rather than Fourier

analysis.

103
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9.1 Linear algebra background

For a symmetric matrix A ∈ R
n×n and I ⊆ [n], AI ,I ∈ R

|I |×|I | is the principal sub-
matrix with entries (AI ,I )i j = Ai j for i , j ∈ I .

A =
AI ,I

I

I

Any symmetric n × n matrix A has only real Eigenvalues which we denote by

λ1(A) ≥ . . . ≥ λn(A). We denote the singular values (which are the absolute val-

ues of the Eigenvalues) by σ1(A) ≥ . . . ≥σn(A) ≥ 0. If A has all Eigenvalues in the

interval [a,b] then also a principal submatrix must have all Eigenvalues in [a,b].

In fact, the following more precise relationship is known:

Lemma 9.2 (Cauchy-Interlacing Theorem). Let A ∈ R
n×n be a symmetric matrix

with a principal submatrix B := AI ,I where I ⊆ [n]. Then

λi (A) ≥λi (B) ≥λi+n−|I |(A) ∀i = 1, . . . , |I |

We also need the following:

Lemma 9.3. For any symmetric matrix A ∈ [−1,1]n×n there is a row i ∈ [n] with

|supp(Ai )| ≥σ1(A).

Proof. Let λ ∈ R be the Eigenvalue with largest absolute value and let v ∈ R
n be

the corresponding Eigenvector. Let i ∈ [n] be a row index with |vi | = ‖v‖∞. Then

|λ| · |vi |
v Eigenvector

= |(Av)i | ≤
n∑

j=1

|Ai j |
︸ ︷︷ ︸
≤|supp(Ai )|

|v j |︸︷︷︸
≤|vi |

≤ |supp(Ai )| · |vi |

Rearranging gives the claim.

9.2 The adjacency matrix of the hypercube graph

For an undirected graph G = (V ,E ), the adjacency matrix is the symmetric matrix

A ∈ {0,1}V ×V with Ai j = 1 ⇔ {i , j } ∈ E . We also write AG if we want to emphasize
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the graph. For a matrix A ∈ R
m×n we write |A| ∈ R

m×n as the matrix with entries

|A|i j := |Ai j |.

Proposition 9.4. Recursively define a matrix An ∈ {−1,0,1}2n×2n
with

A1 :=
(
1 0

0 1

)
, and An :=

(
An−1 I2n−1

I2n−1 −An−1

)
for n ≥ 2

Then

(A) |An | is the adjacency matrix of Gn .

(B) An has 2n−1 many Eigenvalues
p

n and 2n−1 many Eigenvalues −
p

n.

Proof. For (A) we can imagine to construct the hybercube graph Gn by taking

two copies of Gn−1 and inserting edges {(x,−1), (x,+1)} for x ∈ {−1,1}n−1. This

is exactly the recursive definition of |An |. In order to prove (B) we first show the

following:

Claim I. For all n ∈N one has A2
n = nI2n .

Proof of Claim. We prove the claim by induction over n where the base case n = 1

is trivial. For the induction step we have

A2
n =

(
A2

n−1 + I2n−1 0

0 A2
n−1 + I2n−1

)
induction=

(
nI2n−1 0

0 nI2n−1

)
= nI2n

That means all Eigenvalues of A2
n are n and hence the Eigenvalues of An must

be of the form ±
p

n. Since Tr[An] = 0, there must be an equal number of +
p

n
Eigenvalues and −

p
n Eigenvalues.

9.3 The main proof

Now we can give the proof of the main result:

Proof of Theorem 9.1. Let A := An be the matrix constructed in Prop 9.4 which

has the property that |A| is the adjacency matrix of Gn. Let S ⊆ {−1,1}n be a subset

of the hypercube vertices with S > 2n−1. Consider the principal submatrix B :=
AS,S (and note that |B | is the adjacency matrix of the induced subgraph Gn[S]). By

Prop 9.4.(B), half the Eigenvalues of A are +
p

n and so by the Cauchy-Interlacing-

Theorem we have λ1(B) ≥
p

n. Then by Lemma 9.3 there is a row i ∈ S with

|δG[S](i )| = |supp(Bi )| ≥
p

n.
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9.4 The Sensitivity of Boolean Functions

We also want to show an interesting application of [Hua19]. Recall that for a func-

tion f : {−1,1}n →R we denote its degree as deg( f ) := max{|S| : f̂ (S) 6= 0}. In other

words, deg( f ) is the maximum degree of f , when considering it as a multilinear

polynomial. We make some new definitions:

Definition 9.5. For f : {−1,1}n → {−1,1} we define the sensitivity at x ∈ {−1,1}n as

s( f , x) :=
∣∣{i ∈ [n] : f (x) 6= f (x⊕i )

}∣∣

where x⊕i is the vector x with the i th bit flipped. The sensitivity of f is then

s( f ) := max
x∈{−1,1}n

s( f , x)

In other words, the sensitivity tells us how many Hamming neighbors may

have a different function value. A consequence of Huang’s work [Hua19] is the

following (where the connection had been known before due to Gotsman and

Linial [GL92]).

Theorem 9.6. For any boolean function f : {−1,1}n → {−1,1} one has s( f ) ≥
√

deg( f ).

Proof. We first prove the claim for the case that the function has the maximum

possible degree of n:

Claim I. If f : {−1,1}n → {−1,1} has deg( f ) = n, then s( f ) ≥
p

n.
Proof of Claim I. The assumption tells us that f̂ ([n]) 6= 0. So suppose w.l.o.g. that

f̂ ([n]) > 0. Consider the function g : {−1,1}n → {−1,1} with g (x) := f (x) ·χ[n](x).

Then Ex∼{−1,1}n [g (x)] = Ex∼{−1,1}n [ f (x) ·χ[n](x)] = f̂ ([n]) > 0. That means if we

define S := {x ∈ {−1,1}n : g (x) = 1} then |S| > 2n−1. By Theorem 9.1 we can fix

a point x ∈ S that has at least
p

n Hamming neighbors in S. Consider one such

neighbor x⊕i ∈ S. Then

f (x) ·xi ·χ[n]\{i }(x) = g (x) = 1 = g (x⊕i ) = f (x⊕i ) · (−xi ) ·χ[n]\{i }(x)

which can be rearranged to f (x) 6= f (x⊕i ). Hence s( f , x) ≥
p

n.

Now back to the main claim. Consider a function f : {−1,1}n → {−1,1}. Let

S ⊆ [n] be one of the sets where f attains the degree, i.e. |S| = deg( f ) and f̂ (S) 6= 0.

Fix an arbitrary z ∈ {−1,1}[n]\S and consider the restriction fS|z : {−1,1}S → {−1,1}

with fS|z(x) := f (x, z) for x ∈ {−1,1}S . From Prop 1.13 we know that

f̂S|z(S) =
∑

T⊆[n]\S
f̂ (S ∪T )︸ ︷︷ ︸
=0 for T 6=;

χT (z) = f̂ (S) 6= 0

That means deg( fS|z) = |S| = deg( f ). Then by Claim I, s( f ) ≥ s( fS|z) ≥
√

deg( f ).
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We will discuss more relationships between sensitivity and the degree of boolean

functions in the following Chapter 10.
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Chapter 10

Bounded low-degree functions and

the Aaronson-Ambainis Conjecture

In this chapter we want to study functions of the form f : {−1,1}n → [−1,1], mean-

ing they are bounded but do not neccessarily have values in {−1,1}. In particular,

we will be interested in functions that additionally have low degree. Aaronson

and Ambainis [AA14] came across such functions in the context of the query com-
plexity of quantum computers. They made the conjecture that any low degree

bounded function must have an influential variable:

Conjecture 2 (Aaronson-Ambainis [AA14]). Any function f : {−1,1}n → [−1,1] of
degree d has a coordinate i ∈ [n] so that

Infi [ f ] ≥ poly
(Var[ f ]

d

)

We recall from Section 1.9 and Section 1.8 that variance and influence can be

expressed as

Var[ f ] =
∑

;⊂S⊆[n]

f̂ (S)2 and Infi [ f ] =
∑

S⊆[n]:i∈S
f̂ (S)2

We also recall that the total influence of a function f is I [ f ] :=
∑n

i=1 Infi [ f ] and

we abbreviate the maximum influence by Infmax[ f ] := maxi∈[n] Infi [ f ]. For later

use we record the fact that low degree bounded functions have a small total in-

fluence:

Lemma 10.1. For any degree-d function f : {−1,1}n → [−1,1] one has I [ f ] ≤ d .

Proof. We verify that

I [ f ]
Thm 1.30=

∑

S⊆[n]

|S| · f̂ (S)2 ≤ d
∑

S⊆[n]

f̂ (S)2 Parsival= d E
x∼{−1,1}n

[ f (x)2

︸ ︷︷ ︸
≤1

] ≤ d

109
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Naively, say for d = O(1), just by accounting the Fourier weights it would ap-

pear possible that I [ f ] =Θ(1) (equivalently Var[ f ] =Θ(1)) and Infi [ f ] =Θ( 1
n ) for

all i . Hence it has to be the boundedness that enforces limitations on how the

Fourier weight can be distributed. To illustrate the issue, let us consider the case

of d = 1 with a linear function f (x) =
∑n

i=1 ai xi so that | f (x)| ≤ 1 for all x ∈ {−1,1}n .

The variance of such a function is Var[ f ] = ‖a‖2
2 and the maximum influence is

‖a‖2
∞. As the function is bounded by 1, we know that ‖a‖1 ≤ 1. On the other hand,

Generalized Cauchy-Schwarz gives that ‖a‖2
2 ≤ ‖a‖1‖a‖∞ which can be used to

derive

Infmax[ f ] = ‖a‖2
∞ ≥

‖a‖4
2

‖a1‖2
1

‖a‖1≤1
≥ Var[ f ]2

We conclude that Conjecture 2 is indeed true1 for d = 1. On the other hand, we

can make the observation that while the maximum function value is maxx∈{−1,1} | f (x)| =
‖a‖1, the average value is rather Ex∼{−1,1}n [| f (x)|] ≍ ‖a‖2. That means, the proof

has to necessarily make use of function values that are extremely rare.

At the time of this writing, the Aaronson-Ambainis Conjecture is still open.

Inspired by the terrific survey of Backurs [Bac12] we would like to explain the

state of the art of what is known towards this conjecture. In particular we discuss

the following results:

• We explain the original motivation by Aaronson and Ambainis [AA14] in

the area of quantum computing and how their conjecture implies that bounded

low degree polynomials have a low average query complexity (see Section 10.1).

• We prove that Conjecture 2 is true for functions f : {−1,1}n → {−1,1}. For

that purpose we take a detour and prove that low degree functions have

low depth decision trees. In a second step, we then prove that decision trees

have influential variables.

• We prove the currently best known bound for functions f : {−1,1}n → [−1,1]

which are only exponential, rather than polynomial. To be precise, one has

Infmax[ f ] ≥
p

Var[ f ]

C d for a universal constant C > 0.

• Finally, we reproduce a recent result by Lovett and Zhang [LZ23] which

shows that the ε-fractional block sensitivity of a degree-d function f : {−1,1}n →
[−1,1] is at most poly

(
d , 1

ε , log(n)
)
.

1The reader may note that for a := ( 1
n , . . . , 1

n ) one has Infmax[ f ] = 1
n2 and Var[ f ] = 1

n and so the

exponent of 2 cannot be improved even if the degree is d = 1.
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10.1 Average query complexity of bounded functions

We begin by describing a “classical” consequence that an affirmative answer to

Conjecture 2 would bring; in the next Section 10.2 we will then explain how this

insight can be used in the context of quantum computing.

Consider a function f : {−1,1}n → [−1,1]. We want to study algorithms that

know the function f , but only have adaptive query access to the input x∗ ∈ {−1,1}n .

In other words, the algorithm produces a sequence i1, . . . , iq ∈ [n] of indices and

receives the bits x∗
i1

, . . . , x∗
iq
∈ {−1,1}. Here adaptive means that the choice of the

index i j may depend on the outcomes of the bits x∗
i1

, . . . , x∗
i j−1

.

input x∗:

V π(x,u)
q queries

algorithm

x∗
i1

x∗
i2

x∗
iq

. . .

At the end the algorithm should output a number that is close to f (x∗) (without

having seen all the input x∗). Clearly, some structure is needed for the function f
if we want to make sense out of a lot less than n queried bits. And in fact, Aaron-

son and Ambainis [AA14] have proven that for bounded low-degree functions few

queries suffice on average. We would like to emphasize that this is indeed only

true for an average input.

Theorem 10.2 ([AA14]). Assume the Aaronson-Ambainis Conjecture 2 is true. Then

for any degree-d function f : {−1,1}n → [−1,1] and any ε> 0 there is an algorithm

A that makes poly(d , 1
ε ) many adaptive queries before producing an output so

that

Pr
x∗∼{−1,1}n

[| f (x∗)− A(x∗)| > ε] ≤ ε

Proof. The algorithm that we will be using is as follows:

ALGORITHM A
Input: Degree-d function f : {−1,1}n → [−1,1]. Query access to ran-

dom input x∗ ∼ {−1,1}n

Output: Estimate on f (x∗)

(1) If Var[ f ] ≤ ε4 then return f̂ (;) = Ex∼{−1,1}n [ f (x)].

(2) Select an index i ∈ [n] with Infi [ f ] ≥ δ := poly(d/ε).

(3) Query x∗
i .

(4) Recurse on the function f{i }|x∗
i

: {−1,1}n−1 → [−1,1] which is the

restriction of f on {i } using x∗
i .
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We will now prove by induction over n that the algorithm works. First consider

the case that Var[ f ] ≤ ε4 so that we terminate immediately in (1). In that case, as

the input is random, its expected error is

E
x∗∼{−1,1}n

[| f (x∗)− f̂ (;)|] ≤ E
x∗∼{−1,1}n

[| f (x∗)− f̂ (;)|2]1/2 = Var[ f ]1/2 ≤ ε2

using Jensen’s inequality (Theorem 1.40). Hence Prx∗∼{−1,1}n [| f (x∗)− f̂ (;)| ≥ ε] ≤
ε by Markov’s inequality. That means the algorithm is indeed making more than

an ε-error on at most an ε-fraction of inputs. Similarly, if the algorithm recurses,

then it recurses on the correct “subcube” and the non-queried input is still uni-

form.

Hence, it only remains to prove that the algorithm indeed terminates after at

most poly(d , 1
ε ) many recursions. As we only recurse in (2) when Var[ f ] > ε4,

by the Aaronson-Ambainis Conjecture 2, there must be some index i so that

Infi [ f ] ≥ δ where δ = poly(d/ε). Now, instead of considering the variance, we

analyze how the total influence of the function changes. Recall that the original

function has I [ f ] ≤ deg( f ) ≤ d by Lemma 10.1. Consider the very first recursion

on some coordinate i . As the queried input is assumed to be random, the total

influence of the next function is

E
x∗

i ∼{−1,1}
[I [ f{i }|x∗

i
]]

Thm 1.30.(ii)=
∑

S⊆[n]

|S| · E
x∗

i ∼{−1,1}
[�f{i }|x∗

i
(S)2]

Prop 1.14.(d)=
∑

S⊆[n]\{i }

|S| · ( f̂ (S)2 + f̂ (S ∪ {i })2)

=
∑

S⊆[n]

|S| · f̂ (S)2 −
∑

S⊆[n]:i∈S
f̂ (S)2

︸ ︷︷ ︸
=Infi [ f ]≥δ

≤ I [ f ]−δ

More intuitively, each set S ⊆ [n] with i ∈ S contributes |S|· f̂ (S)2 to the total influ-

ence of f but only (|S|−1) · f̂ (S)2 to the expected total influence of the next func-

tion and the difference when accumulated over all sets is indeed the influence of

i . We can conclude that the expected number of iterations until the algorithm

terminates is at most
I [ f ]

δ
≤ d

δ
and the probability to not have terminated after d

εδ

iterations is at most2 ε by Markov’s inequality.

We should note that the algorithm is deterministic as long as we assume that

variances, influences and expectations can be computed for all restrictions. We

also note that Theorem 10.2 could be rephrased as the statement that any func-

tion f : {−1,1}n → [−1,1] has a decision tree of depth at most poly(d/ε) so that the

expected error (on average over the inputs) is at most ε.

2We can modify the algorithm and agree to return 0 if the number of recursions have exceeded

our limit which lets us incur another ε.
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10.2 Query complexity for quantum computers

Now we come to the application to quantum computing that was the motiva-

tion of Aaronson and Ambainis [AA14]. Again, there is some input x ∈ {−1,1}n

but now we have a quantum computer that has query access to the input. It is

beyond the scope of these notes to explain the query model of quantum com-

puting, but a very readable introduction can be found in the survey of Buhrman

and de Wolf [Bd02]. For a more extensive introduction to quantum computing

in general we recommend the popular textbook of Nielsen and Chuang [NC00].

Quantum algorithms are inherently randomized and after making some number

q of queries to the input x, the algorithm accepts with some probability Q(x).

This gives us a function Q : {−1,1}n → [0,1] that represents the acceptance prob-

ability of the quantum algorithm. The only fact on quantum computers that we

then need is the following result by Beals at al.

Theorem 10.3 ([BBC+01]). Suppose a quantum algorithm makes q many queries

to an input x ∈ {−1,1}n . Then the acceptance probability Q : {−1,1}n → [0,1] is a

multi-linear real polynomial with deg(Q) ≤ 2q .

Then combining this fact with Theorem 10.2 we can conclude:

Theorem 10.4. Assume the Aaronson-Ambainis Conjecture 2 is true. Suppose a

quantum algorithm makes q queries to an input x ∈ {−1,1}n and let Q(x) ∈ [0,1]

be the acceptance probability on input x. Then there is a classical algorithm A
that makes poly(q, 1

ε ) many queries and satisfies

Pr
x∼{−1,1}n

[|Q(x)− A(x)| ≥ ε] ≤ ε

We would like to emphasize that the classical algorithm is only able to approx-

imate the answer on average over the inputs. Also, the algorithm would need to

have access to the polynomial Q and be able to compute variances and influ-

ences for restrictions.

10.3 Decision trees

The material from this section is mainly taken from the survey of Buhrman and

de Wolf [Bd02]. A decision tree is a binary tree with a distinguished root in which

each interior node is labeled with a variable from x1, . . . , xn and each leaf is la-

beled with an output from {−1,1}. Moreover, each edge is labeled with a num-

ber −1 or +1. Given an input x∗ ∈ {−1,1}n , we can follow the unique path from
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the root to a leaf where at an interior node labeled with xi we take the −1 arc

if x∗
i = −1 and otherwise the +1 arc. The decision tree then defines a function

f : {−1,1}n → {−1,1} where the function value f (x∗) corresponds to the label of

the leaf that we reach on input x∗. We are free to query the variables in any order.

−1 +1

−1 +1 −1 +1

decision tree of depth 2

x1

x2 x3

+1 −1 −1 +1

The depth of a decision tree is the maximum length of a root-leaf path (in terms

of number of edges). Note that in a minimal decision tree, we would never query

the same variable twice. Typically one is interested in either minimizing the

depth or the size of a decision tree. For our purposes here, it is the depth that

matters:

Definition 10.5. For a function f : {−1,1}n → {−1,1}, the decision tree complexity
is

D( f ) := min
{
depth(T ) | T is a decision tree computing f

}

One can interpret D( f ) as the number of variables that need to be queried in

order to determine the function value f (x). Clearly, some functions need deci-

sion trees of high depth. For example for the parity function f (x) =
∏n

i=1
xi we

always need to query all variables and so D( f ) = n. Also by a counting argument

one can easily estimate that a random function f would have D( f ) ≥ n(1−o(1)).

10.3.1 Sensitivity and block sensitivity

We want to introduce other complexity measures for a function f that turn out

to be closely related to D( f ). Recall that for point x ∈ {−1,1}n and i ∈ [n], we

denote the vector with the i th bit flipped by x⊕i = (x1, . . . , xi−1,−xi , xi+1, . . . , xn).

We recall a definition that we had earlier given in Sec 9.4.

Definition 10.6. For a function f : {−1,1}n → {−1,1}, the sensitivity at x ∈ {−1,1}n

is the number of hamming neighbors with different function values, i.e.

s( f , x) := |{i ∈ [n] : f (x) 6= f (x⊕i )}|

The sensitity of f itself is s( f ) := maxx∈{−1,1}n s( f , x).
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Next, we introduce a generalization of this quantity. For a set S ⊆ [n], we

define x⊕S as the vector x where precisely the signs of the entries in S are flipped.

In particular x and x⊕S differ in exactly |S| many coordinates.

1 1 1 1 1 1x =

x⊕S = 1 −1−1−1 1 1

S

Definition 10.7. For a function f : {−1,1}n → {−1,1}, the block sensitivity at x ∈
{−1,1}n , denoted by bs( f , x) is the maximum number b so that there are disjoint

sets B1, . . . ,Bb ⊆ [n] so that f (x) 6= f (x⊕Bi ) for all i = 1, . . . ,b. The block sensitivity
of f itself is again bs( f ) := maxx∈{−1,1}n bs( f , x).

B1 B2 B3 B4

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1x =

x⊕B1 =

x⊕B2 =

x⊕B3 =

x⊕B4 =

−1−1−1

−1−1

−1

−1−1−1

It is not hard to see that s( f ) ≤ bs( f ). In the following chapters we want to elab-

orate that also bs( f ) can be bounded by a polynomial in s( f ). First, we need to

take a detour and discuss a method to lower bound the degree of a polynomial.

10.4 Lower bounds on the degree of a polynomial

In this section we want to discuss methods to prove lower bounds on the degrees

of polynomials.

10.4.1 Univariate polynomials

Even though the functions f : {−1,1}n → R that we are interested in are multi-

variate polynomials, we begin the discussion with the univariate case. A very

classic result is the following which relates the derivative, range and degree of a

polynomial:
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Theorem 10.8 (Markov brothers’ inequality (1890s)). For a univariate polynomial

p : R→R of degree d , one has

max
−1≤x≤1

|p ′(x)| ≤ d 2 · max
−1≤x≤1

|p(x)|

This means that if a polynomial stays in some range over a longer interval and

we have a lower bound on the derivative, then this implies a lower bound on the

degree.

1−1

x∗

p

x

polynomial p with x∗ ∈ [−1,1] maximizing |p ′(x∗)|

In fact, an inequality can be proven more generally for the k-th derivative in

which case it states that

max
−1≤x≤1

|p(k)(x)| ≤ d 2k · max
−1≤x≤1

|p(x)|

(here we slightly simplified the dependence compared to the tight actual inequal-

ity).

However, for our purpose it will be more convinient to use a variant where

only the function values on a discrete set of points matter. Also, we stretch the

interval of consideration from [−1,1] to [0,n].

Theorem 10.9 (Ehlich and Zeller [EZ64], Rivlin and Cheney [RC66]). Let p : R→R

be a univariate polynomial and let b0 ≤ p(i ) ≤ b1 for all i ∈ {0, . . . ,n}, β := b1 −b0

and γ := maxx∈[0,n] |p ′(x)|. Then

deg(p) ≥

√√√√n ·
1

1+ β
γ

If 0 ≤ γ
β ≤ 1, then deg(p) ≥

√
γn
2β .
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b0

b1

β

0 n

p

10.4.2 Symmetrization of multi-variate polynomials

The idea is to apply the degree lower bound for univariate polynomials to the

multi-variate case. In order to do so we need to be able to turn a multivariate

polynomial into a univariate one. The first step is to symmetrize the polynomial:

Definition 10.10. Given a function f : {−1,1}n → R, the symmetrization is the

function fsym : {−1,1}n →R defined by

fsym(x) := E
π:[n]→[n]

[ f (xπ(1), . . . , xπ(n))]

where the expectation is over a uniform random permutation π.

For example the function f (x1, x2, x3) = x1 −x2x3 +1 has the symmetrization

fsym(x1, x2, x3) =
x1 +x2 +x3

3
−

x1x2 +x2x3 +x1x3

3
+1

We summarize a few properties of the symmetrization:

Lemma 10.11. Let f : {−1,1}n →R be any function. Then

(a) If | f (x)| ≤ 1 for all x ∈ {−1,1}n , then also | fsym(x)| ≤ 1 for all x ∈ {−1,1}n .

(b) One has deg( fsym) ≤ deg( f ).

Proof. The symmetrization is obtained by averaging which implies (a). For (b)

we observe that
�fsym(S) = E

T∼([n]
|S|)

[ f̂ (T )]

and so the degree cannot increase when symmetrizing.

Once we have symmetrized a function it is easy to express it as a univariate

polynomial:
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Lemma 10.12 (Minsky and Papert [MP69]). For any function f : {−1,1}n → R

there is a univariate polynomial p : R → R with p(
∑n

i=1 xi ) = fsym(x) for all x ∈
{−1,1}n and deg(p) = deg( fsym) ≤ deg( f ).

Sketch. To keep the notation simple, let us verify the case of d = 2. The full argu-

ment can be proven by induction, see the survey of Buhrman and de Wolf [Bd02]

for details. We can write any degree-2 polynomial as p(y) = a0+a1 y+a2 y2. Then

for x ∈ {−1,1}n one has

p
( n∑

i=1

xi

)
= a0 +a1

n∑

i=1

xi +a2

( n∑

i=1

xi

)2

= a0 +a1

n∑

i=1

xi +2a2

∑

1≤i< j≤n
xi x j +a2

n∑

i=1

x2
i︸︷︷︸

=1

= (a0 +na2)+a1

n∑

i=1

xi +2a2

∑

1≤i< j≤n
xi x j

Then the map T (a0, a1, a2) = (a0 +na2, a1,2a2) is linear and bijective and so we

can express any symmetric polynomial of degree at most d = 2 on {−1,1}n with

it.

10.4.3 Degree lower bounds for polynomials on the hypercube

Next, we want to explain how to use symmetrization to make the degree lower

bound from Theorem 10.9 work for functions on the hypercube. While this is in

preparation of the Theorem of Nisan and Szegedy, we keep it rather general. By

some abuse of notation, let us define Hℓ := {x ∈ {−1,1}n | 1
2

(n +
∑n

i=1
xi ) = ℓ} as

the ℓth Hamming level of the hypercube. Admittedly at this point it would have

been more natural to work with the {0,1}n-cube. Anyway, we use this notation so

that the levels are 0, . . . ,n (rather than every other integer between −n and n).

Theorem 10.13. Let f : {−1,1}n → [−1,1] be a function so that there are two dis-

tinct Hamming levels a,b ∈ {0, . . . ,n} on which f has the same function value on

all points, i.e. for ℓ ∈ {a,b} one has

x, y ∈Hℓ =⇒ f (x) = f (y)

Then deg( f ) ≥
√
γn/4 where γ := | f (x(a))− f (x(b))|

|a−b| for x(a) ∈Ha and x(b) ∈Hb .

Proof. The assumption means that on the points inHa∪Hb , the function f coin-

cides with its symmetrization. Let p be the corresponding univariate polynomial
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from Lemma 10.12, applied with a shift and scaling so that

p
(n +

∑n
i=1 xi

2

)
= fsym(x) ∀x ∈ {−1,1}n

while for ℓ ∈ {a,b} and x ∈Hℓ one has p(ℓ) = f (x). With the shift, the relevant

values for p corresponding to levels of the hypercube are p(0), p(1), . . . , p(n). We

also note that |p(ℓ)| ≤ 1 for all ℓ= 0, . . . ,n since | f (x)| ≤ 1 for all x, making use of

Lemma 10.11.(a).

p(0)

p(1)

p(2) p(3)

Next, there is a point z between a and b so that |p ′(z)| ≥ |p(a)−p(b)|
|a−b| = γ. Applying

Theorem 10.9 with parameters γ and β := 2, we obtain a degree lower bound of

deg( f ) ≥ deg(p)
Thm 10.9

≥
√

γn

4

10.5 The Theorem of Nisan and Szegedy

Now we have everything in place in order to prove the result of Nisan and Szegedy [NS92]

which says that any low degree boolean function has low block sensitivity.

Theorem 10.14 (Nisan and Szegedy [NS92]). For any f : {−1,1}n → {−1,1} one has

bs( f ) ≤ 2 deg( f )2.

Proof. Let b := bs( f ) be the block sensitivity of f and assume by symmetry rea-

sons that it is attained at point x := 1. Let B1, . . . ,Bb ⊆ [n] be the correspond-

ing disjoint subsets. Again, by symmetry we may assume that the coordinates

are sorted in the order of B1, . . . ,Bb followed by all remaining coordinates. We

write 1Bi as the all-ones vector with |Bi | many entries. We define a new function

g : {−1,1}b → {−1,1} by letting

g (y1, . . . , yb) := f (y1 ·1B1 , . . . , yb ·1Bb ,1, . . . ,1).
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We note that g (1) = f (1) and because of the definition of block sensitivity one has

g (1⊕i ) = f (1⊕Bi ) 6= f (1) = g (1) for all i . That means the function g has a value of

f (1) on Hamming level n and a value of − f (1) on every point of Hamming level

n −1. Then applying Theorem 10.13 with γ := 2 we have

deg( f ) ≥ deg(g )≥
p

b/2

This closes the last part in the proof that indeed both notions of sensitivity as

well as the degree are polynomially related.

Corollary 10.15. For any f : {−1,1}n → {−1,1} one has

√
deg( f )

(1)
≤ s( f )

(2)
≤ bs( f )

(3)
≤ 2 deg( f )2

Proof. We have proven (1) in Theorem 9.6 by combining the breakthrough of

Huang [Hua19] with a reduction of Gotsman and Linial [GL92]. For (2) one can

use that even pointwise s( f , x) ≤ bs( f , x) by defining B1, . . . ,Bb as the singletons i
where f (x) 6= f (x⊕i ). Finally, (3) is Theorem 10.14 due to Nisan and Szegedy [NS92].

10.6 Low degree boolean functions have low depth de-

cision trees

In this section, we want to prove that any function f : {−1,1}n → {−1,1} satisfies

that D( f ) ≤O(deg( f )4). In other words, any boolean function has a decision tree

of depth at most O(deg( f )4). Again, we rely on the survey of Buhrman and de

Wolf [Bd02]. First we obtain a simple lemma that will allow is to find function

value “flips”.

Lemma 10.16. Let f : {−1,1}n → {−1,1}, let S ⊆ [n] be any inclusion-wise maximal

set so that f̂ (S) 6= 0 and let x ∈ {−1,1}n . Then there is a set J ⊆ S so that f (x⊕J ) 6=
f (x).

x =
( )

x⊕J =
( )

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1−1 −1

J S [n]
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Proof. Consider the function g : {−1,1}S → {−1,1} with g := fS|x[n]\S , i.e. g is ob-

tained by restricting f to S using x[n]\S . Then by Prop 1.13, the Fourier coefficient

of the restriction for the “top-level” set S itself is

ĝ (S)=
∑

T⊆[n]\S
f̂ (S ∪T )︸ ︷︷ ︸
=0 for T 6=;

·χT (x) = f̂ (S)

using the maximality of S. In particular ĝ (S) 6= 0 and so the function g cannot

be constant. Hence the function value of g cannot be equal to g (xS) everywhere.

Then denote x⊕J
S as any such point so that g (xS) 6= g (x⊕J

S ). That settles the claim.

Consider a set family F ⊆ 2[n]. A standard notion in combinatorics is the one

of a transversal or hitting set for F , which is a subset U ⊆ [n] so that U ∩S 6= ; for

all S ∈F .

U
Set family F with hitting set U

Crucially we can prove that for a boolean function the maximum cardinality Fourier

support has a small hitting set.

Lemma 10.17. For f : {−1,1}n → {−1,1} with d := deg( f ), let F := {S ⊆ [n] | f̂ (S) 6=
0 and |S| = d} be the maximum cardinality Fourier support. Then F admits a

hitting set of size O(d 3).

Proof. Let M := {S1, . . . ,Sk} ⊆F be any maximal hypergraph matching in F , i.e.

the sets S1, . . . ,Sk are disjoint and no other set from F could be added without

destroying that property. We fix x ∈ {−1,1}n arbitrarily. By Lemma 10.16 there are

subsets Ji ⊆ Si for all i = 1, . . . ,k so that f (x⊕Ji ) 6= f (x). Then by the definition of

block sensitivity and Lemma 10.14 we know that k ≤ bs( f ) ≤ O(d 2). Hence, the

set U := S1 ∪ . . .∪Sk is a hitting set for F of size |U | ≤O(d 3).

Finally we can prove that any degree-d boolean function has a decision tree

of depth at most O(d 4).

Theorem 10.18. For any f : {−1,1}n → {−1,1} one has D( f ) ≤O(deg( f )4).
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Proof. Let x ∈ {−1,1}n be an unknown input so that we have to determine f (x)

by querying at most O(d 4) many variables.

Let U ⊆ [n] be the set from Lemma 10.17 which is a hitting set for the size-d
sets in the Fourier support of f . Recall that |U | ≤ O(d 3). We can query all values

of x in U . Consider the restriction fd−1 : {−1,1}n → {−1,1} obtained by fixing all

variables in U accordingly. Then deg( fd−1) ≤ d −1 (see Prop 1.13). We repeat the

argument with fd−1 until we reach a function of degree 0. This requires a total

number of O(d 4) queries.

Clearly a function f : {−1,1}n → {−1,1} depends on at most 2D( f ) ≤ 2O(deg( f )4)

many variables. We would like to point out that there are functions whose num-

ber of non-redundant variables is exponential in D( f ). One such example is the

address function. For x ∈ {−1,1}k , let bin(x) ∈ {1, . . . ,2k } be the number repre-

sented by the bits in x. Define f : {−1,1}k+2k → {−1,1} with f (x, y) := ybin(x). In

other words, the function returns the entry of y that is indexed by x. One can

observe that f depends on all variables while D( f ) ≤ k +1.

10.7 Every decision tree has an influential variable

As mentioned above, any degree-d function f : {−1,1}n → {−1,1} without redun-

dant variables satisfies that n≤ 2O(d4). Moreover, we know that Infmax[ f ] ≥Ω(
log(n)

n )·
Var[ f ] by the KKL Theorem 5.9, and so we can already conclude an exponential

bound for the Aaronson-Ambainis problem for boolean functions. Goal of this

section is to prove a polynomial bound instead (again, only for boolean func-

tions). The result that we will be discussion is due to O’Donnell, Saks, Schramm

and Servedio [OSSS05].

First, we provide alternative expressions for variance and influence for boolean

functions that will come in handy.

Lemma 10.19. For a boolean function f : {−1,1}n → {−1,1} one has

Var[ f ] = E
x,y∼{−1,1}n

[| f (x)− f (y)|] and Infi [ f ] = E
(x,y)∼Ωi

[| f (x)− f (y)|]

where Ωi is the distribution over pairs (x, y) where x ∼ {−1,1}n is uniform and

y j = x j for all j 6= i and yi ∼ {−1,1} independently.
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Proof. We draw x, y ∼ {−1,1}n independently. Then the variance is

Var[ f ]
Def 1.35= E[ f (x)2]−E[ f (x)]2

=
1

2

(
E[ f (x)2]−2E[ f (x)]E[ f (y)]+E[ f (y)]2

)

=
1

2
E[( f (x)− f (y))2

︸ ︷︷ ︸
∈{0,4}

] = E[| f (x)− f (y)|︸ ︷︷ ︸
∈{0,2}

]

Moreover, drawing (x, y) ∼Ωi , the influence of variable i is

Infi [ f ]
Lem 1.28= Pr[ f (x) 6= f (x⊕i )] = 2 Pr[ f (x) 6= f (y)] = E[| f (x)− f (y)|︸ ︷︷ ︸

∈{0,2}

]

For a decision tree T , and variable i we define

pi (T ) := Pr
x∗∼{−1,1}n

[
variable xi is queried when evaluating x∗]

In particular if T has depth D then the expected number of queried variables

is
∑n

i=1
pi (T ) ≤ D. We prove the following inequality that relates variance and

influences:

Theorem 10.20. Let f : {−1,1}n → {−1,1} be a boolean function that is computed

by decision tree T . Then

Var[ f ] ≤
n∑

i=1

pi (T ) · Infi [ f ]

Proof. Consider two independent random inputs x∗, y∗ ∼ {−1,1}n . On input x∗,

the computation of f (x∗) follows a random path in the tree T . Let xi1 , . . . , xid be

the variables that are being queried on this path. Note that the indices i1, . . . , id

as well as length d of the path are random variables that depend on x∗. For t ≥ 0,

let u(t) ∈ {−1,1}n be the vector with

u(t)
i =

{
x∗

i if i ∈ {it+1, it+2, . . . , id }

y∗
i otherwise

meaning that the variables on the evaluation path after step t are taken from

x∗; everything else is from y∗. In particular for any t ≥ d one has u(d) = y∗ and

while in general u(0) 6= x∗, one still has f (u(0)) = f (x∗) because all values on the

computation path are taken from x∗ in this case. So, one can think of u(t) as an

interpolation between x∗ and y∗.
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y∗
j

y∗
i1

y∗
i2

...

y∗
it

x∗
it+1

...

x∗
id

Visualization of u(t). Note that the

decision tree eval. path is w.r.t. x∗ instead

Then we can rewrite the variance using the triangle inequality and the inter-

polation from above as

Var[ f ]
Lem 10.19= E

x∗,y∗∼{−1,1}n
[| f (x∗)− f (y∗)|]

triangle ineq.
≤

∑
t≥1

E[| f (u(t))− f (u(t−1))|]

=
∑
t≥1

n∑

i=1

Pr[it = i ] ·E[| f (u(t))− f (u(t−1))| | it = i ]︸ ︷︷ ︸
=Infi [ f ] by Claim I

=
n∑

i=1

Infi [ f ] ·
∑
t≥1

Pr[it = i ]

︸ ︷︷ ︸
=pi (T )

Hence it remains to prove the following:

Claim I. Fix i ∈ [n] and t ≥ 1. Then E[| f (u(t))− f (u(t−1))| | it = i ] = Infi [ f ].
Proof of Claim I. We fix outcomes X := (x∗

1 , . . . , x∗
it−1

) so that in iteration t the de-

cision tree (on input of x∗) queries the i th variable, i.e. indeed it = i . It suffices to

prove that then E[| f (u(t))− f (u(t−1))| | X ] = Infi [ f ]. We note that the vector u(t−1)

contains the variables y∗
i1

, . . . , y∗
it−1

instead, which are independent from X . In

particular, the vector u(t−1) is still uniformly from {−1,1}n even under condition-

ing on X . The vector u(t) differs from u(t−1) only in coordinate it = i . Moreover

we make the observation that u(t−1) contains x∗
i and the vector u(t−1) contains
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y∗
i . Hence we may conclude that3 (u(t−1),u(t))|X ∼Ωi . Then

E[| f (u(t))− f (u(t−1))| | X ] = E
(x,y)∼Ωi

[| f (x)− f (y)|] Lem 10.19= Infi [ f ]

Now, as a consequence, each low degree function with low decision tree com-

plexity must have an influential variable.

Theorem 10.21. Any function f : {−1,1}n → {−1,1} with degree d := deg( f ) has a

variable i with

Infi [ f ] ≥
Var[ f ]

D( f )
≥Ω

(Var[ f ]

d 4

)

Proof. We denote Infmax[ f ] := maxi∈[n] Infi [ f ] as the maximum influence of any

variable. Let T be the decision tree that has depth D( f ) ≤ O(d 4), according to

Theorem 10.18. As never more than D( f ) many variables are being queried, we

have

Var[ f ] ≤
n∑

i=1

pi (T )

︸ ︷︷ ︸
≤D( f )

· Infi [ f ]︸ ︷︷ ︸
≤Infmax[ f ]

≤ D( f ) · Infmax[ f ]

Rearranging gives the claim.

10.8 Maximum values of functions with significant lin-

ear part

We will now switch gears and focus our attention on functions of the form f :

{−1,1}n →Rwhich are much less understood and less structured than their boolean

special cases. Much of what we know is from the work of Dinur, Friedgut, Kindler

and O’Donnell [DFKO06]. Most of their work deals with probability estimates for

anti-concentration of degree-d functions. Instead we will here focus on simply

proving that maxx∈{−1,1}n | f (x)| is large depending on variance, maximum influ-

ence and degree. This loss of generality will allow us a much simpler proof where

we deviate quite a bit from the original.

3One subtle aspect that might lead to confusion is the following: the indices i1, . . . , id are de-

fined dependent on the decision tree path for input x∗. On the other hand, in this claim we

account the change arising from the vectors u(t ) whose decision tree paths are not even consid-

ered.
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First, we need another result that deals with univariate polynomials. For a

univariate degree-d polynomial p : R→R, it is a century old fact, that p vanishes

on at most d points. One can even quantify this and provide d +2 points so that

any degree-d polynomial has a significant value on at least one of those points,

compared to its linear coefficient.

Lemma 10.22. For any odd d ∈Z≥0 there is a set P ⊆ [−1
2

, 1
2

] of size |P | ≤ d +2 so

that the following holds: let p(x) :=
∑d

i=0
ai xi be a degree-d polynomial. Then

there is an x∗ ∈P so that |p(x∗)| ≥ |a1|
2d+2

.

For details, we again refer to [DFKO06]. We just would like to point out that

this lemma can be derived from extremal properties of the Chebychev polyno-

mial. Here, for d ∈ Z≥0 the dth Chebychev polynomial is the unique degree-d
polynomial Cd (x) so that

Cd (x) := cos(d ·arccos(x)) ∀x ∈ [−1,1]

Then the points in P satisfying Lem 10.22 are the d +2 extrema that Cd+1 has on

the interval [−1,1], scaled by a factor of 1/2.

1

−1

1−1

b

b

b

b

b

b

b

b

b

8th Chebychev polynomial C8(x) with extrema

x

For a linear function f (x) =
∑n

i=1
ai xi we can maximize | f (x)| by simply picking

xi := sign(ai ) and obtain a function value of f (x) = ‖a‖1. Quite surprisingly, we

obtain almost the same bound if arbitrary other Fourier coefficients are present.

Theorem 10.23. Let f : {−1,1}n → R be a degree-d function with linear coeffi-

cients ai := f̂ ({i }) for i = 1, . . . ,n. Then

max
x∈{−1,1}n

| f (x)| ≥
‖a‖1

C d
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where C > 0 is a universal constant.

Proof. For symmetry reasons we may assume that ai ≥ 0 for all i = 1, . . . ,n. For

−1 ≤ ρ ≤ 1, recall that x ∼ Nρ(1) gives a random vector x ∈ {−1,1}n with indepen-

dent coordinates so that Ex∼Nρ (1)[xi ] = ρ for all i . In other words, x is a biased

random vector. Consider

g (ρ) := E
x∼Nρ (1)

[ f (x)] =
∑

S⊆[n]

f̂ (S) ·
∏

i∈S
E

x∼Nρ (1)
[xi ]

︸ ︷︷ ︸
=ρ

=
d∑

k=0

ρk ·
( ∑

|S|=k

f̂ (S)
)

We note that g is a univariate polynomial with variable ρ and its linear coeffi-

cient is
∑n

i=1 f̂ ({i }) = ‖a‖1. Hence by Lemma 10.22, there exists a value ρ∗ so that

|g (ρ∗)| ≥Θ(‖a‖1

d ). Then there has to be at least one outcome x∗ ∈ {−1,1}n so that

| f (x∗)| ≥ |g (ρ∗)| ≥Θ(‖a‖1

d ). That settles the claim.

10.9 Maximum values of arbitrary functions

We continue our discussion of [DFKO06]. The next goal is to be able to lower

bound maxx∈{−1,1}n | f (x)| for an arbitrary function f that may not even have any

linear part. First we prove a lemma that will be useful:

Lemma 10.24. Let f : {−1,1}n →R be a function of degree at most d . Then

E
x∼{−1,1}n

[| f (x)|] ≥ 2−Θ(d)
E

x∼{−1,1}n
[ f (x)2]1/2

Proof. First we prove the following useful fact:

Claim I. For all t > 0 and z ∈R one has |z| ≥ t z2 − t 3z4.
Proof of Claim I. If |z| ≤ 1

t then |z| ≥ t z2 and the claim is true. If |z| ≥ 1
t , then

t z2 − t 3z4 ≤ 0.

|z|

t z2 − t 3z4

z

1
t−1

t
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The claim is invariant under scaling f , hence we may assume that Ex∼{−1,1}n [ f (x)2] =
1. We abbreviate X := f (x) where x ∼ {−1,1}n . Then we know that X is 9d -

reasonable. For t > 0 we have

E[|X |]
Claim I
≥ t E[X 2]︸ ︷︷ ︸

=1

−t 3
E[X 4]︸ ︷︷ ︸
≤9d

≥ t − t 39d t :=2−Θ(d )

≥ 2−Θ(d)

Now to the main result:

Theorem 10.25. For any degree-d function f : {−1,1}n →R one has

max
x∈{−1,1}n

| f (x)| ≥
Var[ f ]

C d
√

Infmax[ f ]

where C > 0 is a large enough universal constant.

Proof. By a bucketing argument, there must be some s ≥ 1 so that the familyF :=
{S ⊆ [n] : 2s−1 ≤ |S| < 2s} has a Fourier weight of at least

∑
S∈F f̂ (S)2 ≥ Var[ f ]

2log(d)
. Our

strategy is to show that a suitable random restriction has a high level-1 weight

(just counting sets in F that collapse to singletons). Then we can apply Theo-

rem 10.23 and the claim follows.

We consider the following random experiment: We choose a subset U ⊆ [n]

so that independently for all coordinates Pr[i ∈ U ] = 2−s . After that we draw

y ∼ {−1,1}[n]\U and consider g : {−1,1}n → R as the restriction of f to U using

y , just that we left the coordinates [n] \U in the domain of g which will be nota-

tionally convinient. We recall from Prop 1.13 that the Fourier expansion of such

a restriction is

g (x) =
∑

S⊆U
χS(x)

∑

T⊆[n]\U
f̂ (S ∪T )χT (y)

︸ ︷︷ ︸
=ĝ (S)

(10.1)

First we prove that g will have a significant linear part.

Claim I. One has EU [
∑n

i=1Ey [ĝ ({i })2] ≥Ω(
Var[ f ]

log(d)
).

Proof of Claim I. Using Prop 1.14.(d) we know that

E
U

[ n∑

i=1

E
y

[ĝ ({i })2]
]

= E
U

[ n∑

i=1

∑

T⊆[n]\U
f̂ ({i }∪T )2

]

≥
∑

S∈F
f̂ (S)2 ·Pr

U
[|S ∩U | = 1]

︸ ︷︷ ︸
≥Ω(1)

≥Ω

(Var[ f ]

log(d)

)
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Here we use that for any set S ∈F one has Pr[|S ∩U | = 1] =
∑

i∈S Pr[S ∩U = {i }] =
|S| ·2−s · (1−2−s )|S|−1 ≥Ω(1) as 2s−1 ≤ |S| < 2s .

Let us fix a set U that attains (or exceeds) the expectation in Claim I. We ab-

breviate µi := Ey [ĝ ({i })2] and µmax := maxi=1,...,n µi . A useful bound is that

µi = E
y

[ĝ ({i })2] =
∑

T⊆[n]\U
f̂ ({i }∪T )2 ≤

∑

S⊆[n]:i∈S
f̂ (S)2 = Infi [ f ] (10.2)

and consequently µmax ≤ Infmax[ f ]. A crucial observation is that the function

y 7→ ĝ ({i }) has degree at most d . Hence

E
y

[ n∑

i=1

|ĝ ({i })|
]

Lem 10.24
≥ 2−Θ(d)

n∑

i=1

p
µi

≥ 2−Θ(d)
n∑

i=1

µip
µmax

Claim I
≥

2−Θ(d)

Θ(log(d))

Var[ f ]
p
µmax

≥
Var[ f ]

2Θ(d)
√

Infmax[ f ]

Now fix any outcome of y attaining this expectation. We abbreviate the linear

coefficients as ai := ĝ ({i }). Then applying Theorem 10.23 gives

max
x∈{−1,1}n

| f (x)|
g restriction of f

≥ max
x∈{−1,1}n

|g (x)|
Theorem 10.23

≥
‖a‖1

C d
≥

Var[ f ]

2O(d)
√

Infmax[ f ]

as claimed.

One can rearrange the statement of Theorem 10.25 to provide an exponential

(rather than polynomial) bound for the Aaronson-Ambainis problem:

Corollary 10.26. For any degree-d function f : {−1,1}n → [−1,1] one has Infmax[ f ] ≥
Var[ f ]2

C d where C > 0 is a universal constant.

Proof. Rearranging

1 ≥ max
x∈{−1,1}n

| f (x)|
Thm 10.25

≥
Var[ f ]

C d
√

Infmax[ f ]

gives the claim.

The reader might already suspect that the Aaronson-Ambainis conjecture ap-

pears to be equivalent to finding large function values depending on variance

and influence. We can make that explicit:
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Conjecture 3. There are small enough constants C0,δ> 0 and a large enough con-
stant C1 > 0 so that for any degree-d function f : {−1,1}n →R one has

max
x∈{−1,1}n

| f (x)| ≥C0
Var[ f ]1/2+δ

dC1 · Infmax[ f ]δ

Every function f has an x ∈ {−1,1}n with | f (x)| ≥ Var[ f ]1/2, hence the goal is

to beat this trivial bound.

Lemma 10.27. Conj 2 ⇔ Conj 3.

10.10 Bounded low degree functions are close to jun-

tas

The proof of Theorem 10.25 is somewhat flexible and would allow to modify the

function f . In particular it can provide the following:

Theorem 10.28. Let f : {−1,1}n → R be a function of degree at most d and for a

set I ⊆ [n] of variables, we let h(x) :=
∑

S⊆[n]:S∩I 6=; f̂ (S) ·χS (x). Then

max
x∈{−1,1}n

| f (x)| ≥
Var[h]

C d
√

Infmax[h]

where C > 0 is a large enough universal constant.

We note that the way that h is defined one has Infi [h] = Infi [ f ] for all i ∈ I
and 0 ≤ Infi [h] ≤ Infi [ f ] for i ∉ I . The proof of Theorem 10.25 can be modified by

changing the definition of F to F := {S ⊆ [n] : 2s−1 ≤ |S∩I | < 2s} and sampling co-

ordinates U ⊆ I independently with probability 2−s . Then set µmax := maxi∈I µi ≤
Infmax[h]. We leave further details of the modification to the interested reader.

We recall that a function f that only depends on at most k coordinates is

called a k-junta (see Def 5.24). We also recall that dist( f , g ) = Ex∼{−1,1}n [( f (x)−
g (x))2] denotes the distance between two functions. The work of Dinur, Friedgut,

Kindler and O’Donnell [DFKO06] also contains the following result:

Theorem 10.29. Let f : {−1,1}n → [−1,1] be a function so that

∑

|S|>k

f̂ (S)2 ≤ exp
(
−Θ

(k2 log(k)

ε

))

for some k ∈N and some ε> 0. Then there is a 2O(k)/ε2 junta g : {−1,1}n → R so

that dist( f ,h)≤ ε.
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We will not prove this result in full generality here, but we prove the special

case where the function f has low degree (rather than very low Fourier weight

above some level).

Theorem 10.30. Let f : {−1,1}n → [−1,1] be a function of degree at most d . Then

for any ε > 0, there is a 2O(d)/ε2-junta h : {−1,1}n → R so that dist( f ,h) ≤ ε. In

particular there is a set J ⊆ [n] of size |J | ≤ 2O(d)/ε2 so that
∑

S⊆[n]:S 6⊆J f̂ (S)2 ≤ ε.

Proof. We abbreviate the influential coordinates of f as

J :=
{

i ∈ [n] | Infi [ f ] ≥
ε2

C 2d

}

where C > 0 is the same constant as in Theorem 10.28. Since
∑n

i=1 Infi [ f ] ≤ d we

know that |J | ≤ dC 2d

ε2 (see Lemma 1.34). We set g (x) :=
∑

S⊆J f̂ (S)χS(x) which by

definition is a |J |-junta and let h := f − g =
∑

S:S 6⊆J f̂ (S)χS be the error that we are

making by this approximation. Then dist( f , g ) =
∑

S:S 6⊆J f̂ (S)2 = Var[h]. Hence it

remains to prove that indeed Var[h] ≤ ε. By construction, h has degree at most d

and Infmax[h] < ε2

C 2d . Then applying Theorem 10.28 to f and h (with I := [n] \ J )

we have

1≥ max
x∈{−1,1}n

| f (x)|
Thm 10.28

≥
Var[h]

C d
√

Infmax[h]
≥

Var[h]

C d
√

ε2

C 2d

=
Var[h]

ε

Then rearranging gives the claim.

The reader may note the similarity of Theorem 10.30 with Friedgut’s Junta

Theorem (Theorem 5.25).

10.11 Block sensitivity of bounded functions

In this section we want to discuss a result by Backurs and Bavarian [BB14] which

proves that the Theorem of Nisan and Szegedy (Theorem 10.14) can be extended

from boolean functions to bounded functions. In the exposition we follow the

work of Filmus, Hatami, Keller and Lifshitz [FHKL15] which provides an improved

bound with a short proof.

In Chapter 1.8 we have discussed the derivative operator for multi-linear poly-

nomials. Of course that notion can be generalized. Let P : Rn → R be a differen-

tiable function. Then the gradient at point x∗ ∈R
n is

∇P (x∗) :=
( ∂P

∂x1
(x∗), . . . ,

∂P

∂xn
(x∗)

)
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Note that for a multilinear polynomial f : {−1,1}n → R, the coordinates of the

gradient correspond to the operator Di from Definition 1.25, i.e. (∇ f (x∗))i =
Di f (x∗) for i = 1, . . . ,n and any x∗ ∈ {−1,1}n . The Theorem of Markov (Theo-

rem 10.8) can be generalized to the multivariate case as follows:

Theorem 10.31 (Sarantopolous 1991 [Sar91]). Let K ⊆R
n be a symmetric convex

body and let P be a degree-d polynomial4 so that |P (x)| ≤ 1 for all x ∈K . Then

| 〈∇P (x), y〉 | ≤ min
{

d 2, d√
1−‖x‖2

K

}
∀x, y ∈K

The 2nd term d/
√

1−‖x‖2
K simply means that one has a better bound in the

deep interior of K and only close the boundary, the term d 2 is better. For our pur-

pose here, the uniform d 2 term will suffice. The reader may note that in the uni-

variate case with K = [−1,1] and a choice of y := 1, the Theorem of Sarantopolous

indeed coincides with the Markov Brother’s inequality. We will not prove this re-

sult in full here, but we want give a proof of a weaker result to showcase how to

reduce such a claim to the 1-dimensional case.

Proof sketch for Theorem 10.31. We assume that x, y ∈ 1
2

K , that means they are

sufficiently deep inside K and we want to prove a bound of the form | 〈∇P (x), y〉 | ≤
O(d 2). Consider the univariate polynomial Q : R→R with

Q(t ) := P ((1− t 2)x + t y)

One can check that for all −1≤ t ≤ 1 one has ‖(1− t 2)x+ t y‖K ≤ 1
2

(|1− t 2|+|t |) ≤ 1

and so |Q(t )| ≤ 1 for −1 ≤ t ≤ 1. Also, note that the degree of Q is at most 2d . Next,

one can verify that its derivative is Q ′(t ) = 〈∇P ((1− t 2)x + t y), y −2t x〉.

x

y
0

K

curve (1− t 2)x + t y
for −1 ≤ t ≤ 1

Hence inspecting the derivative at t = 0 and applying the univariate Markov broth-

ers’ inequality (Theorem 10.8) to Q one has

| 〈P (x), y〉 | = |Q ′(0)| ≤O(d 2)

4Not necessarily multilinear!
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Recall that x⊕i is the vector x with the i th bit flipped and xi→b is the vector

with the i th bit set to b ∈ {−1,1}. We will prove the following:

Theorem 10.32. For any degree d-function f : {±1}n → [−1,1] and any x ∈ {−1,1}n

one has
n∑

i=1

| f (x)− f (x⊕i )| ≤O(d 2)

Proof. For the remainder of this proof, we consider f as the extension f : Rn →R

with f (x) =
∑

S⊆[n] f̂ (S) ·χS (x). Our strategy is to apply Theorem 10.31 to f with

K := [−1,1]n . First, we note that any multilinear function over [−1,1]n , attains its

maximum at one of the extreme points in {−1,1}n . Hence we know that | f (x)| ≤ 1

for x ∈ [−1,1]n . It will be useful to note that the gradient of f at x has coordinates

(∇ f (x))i = Di f (x)
Def 1.25=

1

2
( f (xi→1)− f (xi→−1))

Then for any x ∈ {−1,1}n , making a choice of y ∈ {−1,1}n with yi := sign((∇ f (x))i )

we obtain

1

2

n∑

i=1

| f (x)− f (x⊕i )| =
1

2

n∑

i=1

| f (xi→1)− f (xi→−1)|

=
n∑

i=1

|(∇ f (x))i |
choice of y

= |〈∇ f (x), y〉 |
Thm 10.31

≤ d 2

We have defined the notion of block sensitivity for boolean functions f : {−1,1}n →
{−1,1} in Def 10.7. Now we extend the notion to arbitrary functions.

Definition 10.33. Let f : {−1,1}n → R. Then the block sensitivity of f at a point
x ∈ {−1,1}n is

bs( f , x) :=
1

2
max

disjoint
B1,...,Bk⊆[n]

k∑

i=1

| f (x)− f (x⊕Bi )|

Again, bs( f ) := maxx∈{−1,1}n bs( f , x) is the block sensitivity of the function itself.

Here, the factor 1
2

is inconsequential but we insert it to be consistent with

Def 10.7 when restricted to boolean functions. Now we can also derive a bound

on the block sensitivity of bounded functions:
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Theorem 10.34. For every degree-d function f : {−1,1}n → [−1,1], one has bs( f ) ≤
O(d 2). In other words, for every x ∈ {−1,1}n and any disjoint sets B1, . . . ,Bk ⊆ [n]

one has
k∑

i=1

| f (x)− f (x⊕Bi )| ≤O(d 2)

Proof. We use the same trick as in the proof of Theorem 10.14. Assume w.l.o.g.

that x := 1. By symmetry we may assume that the coordinates are sorted in the

order of B1, . . . ,Bk followed by all remaining coordinates. Define a new function

g : {−1,1}k → [−1,1] by letting

g (y1, . . . , yk) := f (y1 ·1B1 , . . . , yk ·1Bk ,1, . . . ,1).

We observe that g has degree at most d with g (1) = f (1) and g (1⊕i ) = f (1⊕Bi ).

The claim follows then by applying Theorem 10.32 to the function g .

10.12 Transversals and packings

For the remainder of this chapter, our goal is to reproduce a recent result by

Lovett and Zhang [LZ23] on low degree boolean functions. In order to prepare for

this, we make an excursion to introduce some concepts and tools from combina-

torics, borrowing from Chapter 10 in the excellent textbook of Matousek [Mat02].

Consider a set family F ⊆ 2[n]. A set I ⊆ [n] is called a transversal5 if S ∩ I 6= ;
for all S ∈F , that means if I intersects all sets in F (see also Sec 10.6). Then the

minimum size of such a transversal is called the transversal number

τ(F ) := min
{
|I | : I is a transversal for F

}

We also introduce a fractional relaxation. We say that x ∈ R
n
≥0 is a fractional

transversal if ∑

i∈S
xi ≥ 1 ∀S ∈F

We abbreviate

τ∗(F ) := min
{

1T x | x is fractional transversal
}

We define the packing number as

ν(F ) := max
{
k | ∃ disjoint S1, . . . ,Sk ∈F

}

5A different term for the same object is hitting set.
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Again, a vector y ∈R
F
≥0 is a fractional packing if

∑

S∈F :i∈S

yS ≤ 1 ∀i ∈ [n]

We reproduce a picture from Matousek’s book:

i ∈F

set family F with ν(F ) = 1, ν∗(F ) = 3
2
= τ∗(F ), and τ(F ) = 2

In fact, it is not a coincidence that the fractional packing and transversal num-

bers are the same.

Lemma 10.35. For any set family F ⊆ 2[n] one has ν(F ) ≤ ν∗(F ) = τ∗(F ) ≤ τ(F ).

Proof. The only non-obvious step is the equality. Let A ∈ {0,1}F×n be the inci-

dence matrix of the set system with entries AS,i = 1 iff i ∈ S. Then

τ∗(F ) = min
{

1T x | Ax ≥ 1; x ∈R
n
≥0

} LP duality
= max

{
1T y | yT A ≤ 1; y ∈R

F
≥0

}
= ν∗(F )

using that the two linear programs are dual to each other.

We should note that the integrality gap can be huge:

Example 10.36. Let 0 < ε < 1. Consider the set system F := {S ⊆ [n] | |S| = εn}.

Then any transversal must contain at least τ(F )≥ (1−ε)n many elements. On the

other hand, picking every element uniformly to an extend of 1
εn gives a fractional

transversal of cost τ∗(F ) = 1
ε .

In the following, a probabilistic perspective can be useful. For a set family F

we denote D∗(F ) as the distribution representing the scaled fractional packing

corresponding to ν∗(F ), i.e. D∗(F ) is a distribution over F so that

Pr
S∼D∗(F )

[i ∈ S] ≤
1

τ∗(F )
∀i ∈ [n].

If we have a random set T then we will say that it is a t-packing if the probabilities

scaled by t are a packing, i.e. if no element appears in T with probability more

than 1
t . In particular, S ∼D∗(F ) is a τ∗(F )-packing by construction.

We can construct a new set system out ofF that has a higher fractional transver-

sal number:
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Lemma 10.37. Let F be a set family and let k ∈N. Define

F ′ :=
{ ⋃

1≤i< j≤k
(Si ∩S j ) | S1, . . . ,Sk ∈F

}

Then

τ∗(F ′) ≥
(τ∗(F )

k

)2

More generally, drawing S1, . . . ,Sk ∼D∗(F ) independently, the random set
⋃

1≤i< j≤k (Si∩
S j ) is a (τ

∗(F )
k )2-packing.

Proof. We sample S1, . . . ,Sk ∼ D∗(F ) independently and consider the random

set

T :=
⋃

1≤i< j≤k
(Si ∩S j )

We note that T ∈ F ′ and so T denotes a distribution over F ′. For each element

ℓ ∈ [n] one has

Pr[ℓ ∈ T ] ≤
∑

1≤i< j≤k

Pr[ℓ ∈ Si ]︸ ︷︷ ︸
≤1/t

·Pr[ℓ ∈ S j ]︸ ︷︷ ︸
≤1/t

≤
(k

t

)2

Then indeed T is a ( t
k )2-packing and so ( t

k )2 ≤ ν∗(F ′) = τ∗(F ′).

We would like to point out that while the statement of Lemma 10.37 holds

true for any k, at least the first part will be vacuous if k is too small. For example if

k ≤ ν(F ), then there are k disjoint sets inF and;∈F ′. This causes that τ∗(F ′) =
∞.

Lemma 10.38. Let F ,G ⊆ 2[n] be two set systems. Then

Pr
S∼D∗(F )

[S ∈ G] ≤
τ∗(G)

τ∗(F )

More generally, if random set T ⊆ [n] is a t-packing, then Pr[T ∈ G] ≤ τ∗(G)
t .

Proof. Let y ∈ [0,1]F be the fractional packing with value
∑

S∈F yS = t . Then the

restriction to G is again a feasible fractional packing (this time for G) and we can

write

Pr[S ∈ G] =
1

t

∑

S∈G
yS

︸ ︷︷ ︸
≤ν∗(G)

≤
ν∗(G)

t
=

τ∗(G)

t
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10.13 The result of Lovett and Zhang

Now back to functions f : {−1,1}n → R. For a point x ∈ {−1,1}n , the set system

that we are interested in is the family of ε-sensitive blocks

Sε( f , x) :=
{
S ⊆ [n] : | f (x)− f (x⊕S )| ≥ ε

}

In other words, these are the blocks of coordinates that one can flip at x to change

the function value by at least ε. Now, fix x ∈ {−1,1}n and ε > 0. We observe that,

if there are disjoint sets S1, . . . ,Sk ∈Sε( f , x), then this gives a lower bound of εk/2

on the block sensitivity of f at x. This has the following consequence:

Lemma 10.39. For a bounded function f : {−1,1}n → [−1,1] of degree at most d ,

one has ν(Sε( f , x)) ≤O( d2

ε ).

Proof. We have
ε

2
·ν(Sε( f , x)) ≤ bs( f , x) ≤O(d 2)

using Theorem 10.34 in the last step.

So the packing number of the set system Sε( f , x) is surprisingly small. On

the other hand, the integrality gap — at least between fractional and integral

transversal number — can still be huge.

Example 10.40. Consider the function f : {−1,1}n → [−1,1] with f (x) := 1
n

∑n
i=1 xi .

Then f has degree 1. For x ∈ {−1,1}n and S ⊆ [n] one has | f (x)− f (x⊕S )| ≤ 2|S|
n .

Hence any S ∈ Sε( f , x) must have size |S| ≥ εn
2

. Then τ∗(Sε( f , x)) = Θ( 1
ε

). On

the other hand, we have τ(Sε( f , x)) ≥ (1−2ε)n. To see this, suppose I ⊆ [n] is a

transversal of size (1−2ε)n. Then there are indices S ⊆ [n]\ I with |S| ≥ εn so that

xi is the same value for all i ∈ S. Then | f (x)− f (x⊕S )| ≥ ε and hence I was not a

transversal.

Surprisingly, Lovett and Zhang can prove that for a bounded degree-d func-

tion f and any point x, the fractional transversal number τ∗(Sε( f , x)) is bounded

by a polynomial in d , 1
ε and log(n). For that purpose, we abbreviate

F BSε( f ) := max
x∈{−1,1}n

τ∗(Sε( f , x))

which is also called the fractional block sensitivity.

We prove the following technical lemma:

Lemma 10.41. Let f : {−1,1}n → [−1,1] be a degree d-function. Suppose we have

0 < ε′ ≤ ε
3
≤ 1

3
so that F BSε′( f ) ≤ F BSε( f )4/3. Then F BSε( f ) ≤ poly(d , 1

ε ).
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Proof. We abbreviate t := F BSε( f ) ≥ 1 so that t ′ := F BSε′ ( f ) ≤ t 4/3. We note that

the set family Sε( f , x) shrinks as the parameter ε grows and hence also the quan-

tity F BSε( f ) is decreasing in ε. Then what the assumption says is that we have a

value of ε at which the decrease has not been too dramatic.

1

n

0 1εε′

t
t ′ ≤ t 4/3

ε

F BSε( f )

From now on, we fix the point x ∈ {−1,1}n so that F BSε( f ) is attained at x. It

will be convinient to abbreviate the set systems F := Sε( f , x) and F ′ := Sε′( f , x).

Again, by monotonicity we have F ⊆ F ′. Our proof strategy is to use the set

system F to construct t const many disjoint sets that will end up in Sε′( f , x′) for a

certain choice of x′. Then Lemma 10.39 will provide an upper bound on t .

Let k be a parameter that we determine later. We sample sets S1, . . . ,Sk ∼
D∗(F ) independently and define the random set

T :=
⋃

1≤i< j≤k
(Si ∩S j )

Next, set

S ′
i := Si \ T = Si \

⋃
j∈[k]\{i }

S j

By construction, the sets S ′
1, . . . ,S ′

k are pairwise disjoint, but we can’t be sure that

the function values of f (x⊕Si ) would differ enough from f (x).
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S1 S2 S3

T

S ′
1 S ′

2 S ′
3

[n] =

[n] =

[n] =

On the other hand, while the sets S1, . . . ,Sk are not disjoint, we know that flipping

the coordinates in them changes the function value by at least ε. So the goal is to

limit the effect of flipping the coordinates in T as Si and S ′
i only differ in T . And

indeed, T is sufficiently random that the effect of flipping T will be sufficiently

small. The main technical work lies in the following:

Claim I. For all i ∈ [k] one has Pr[| f (x⊕T )− f (x⊕T⊕S ′
i )| ≥ ε′] ≥ 1−2δwhereδ := k2

t2/3 .
Proof of Claim I. The distributionD∗(F ) is a t-packing and hence by Lemma 10.37,

the random variable T is a ( t
k )2-packing. Then using Lemma 10.38 we have

Pr[T ∈F ′]
Lem 10.38

≤
τ∗(F ′)

(t/k)2
≤

t ′ ·k2

t 2

t ′≤t4/3

≤
k2

t 2/3
= δ

By the definition of F ′ =Sε′( f , x), this means that

Pr
T

[| f (x)− f (x⊕T )| ≥ ε′] ≤ δ (∗)

Next, we define

Ri :=
( ⋃

1≤ j< j ′≤k:i∉{ j , j ′ }
S j ∩S j ′

)
\ Si = T \ Si

We have Ri ⊆ T and so also Ri is a ( t
k )2-packing (and this is also true for Ri condi-

tioned on any fixed outcome of Si ). Hence fixing the outcome of Si we have

Pr[Ri ∈Sε′( f , x⊕Si ) | Si ] ≤
τ∗(Sε′( f , x⊕Si ))

(t/k)2
≤

t ′ ·k2

t 2
≤ δ

And so we have

Pr
T,Ri

[| f (x⊕Si )− f (x⊕Si⊕Ri )| ≥ ε′ | Si ] ≤ δ (∗)

Then as Si∆Ri = Si∆(T \ Si ) = Si ∪T = S ′
i∆T one has

Pr[| f (x⊕Si )− f (x⊕S ′
i⊕T )| ≥ ε′] ≤ δ (∗∗)
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The samples Si come from F and so we always have | f (x)− f (x⊕Si )| ≥ ε. That

means if (∗) and (∗∗) happen (which is with probability at least 1−2δ), then we

have

| f (x⊕T )− f (x⊕T⊕S ′
i )| ≥ | f (x)− f (x⊕Si )|︸ ︷︷ ︸

≥ε≥3ε′

−| f (x)− f (x⊕T )|︸ ︷︷ ︸
≤ε′

−| f (x⊕Si )− f (x⊕S ′
i ⊕T )|︸ ︷︷ ︸

≤ε′

≥ ε′

Now we go back to the main proof. We choose k := 1
2

t 1/3 so that δ = 1/4. By

Claim I there must be an outcome of S1, . . . ,Sk so that the index set I := {i ∈ [k] |
| f (x⊕T )− f (x⊕T⊕S ′

i )| ≥ ε′} has size |I | ≥ k
2

. In other words, there is an outcome for

T so that

Θ(t 1/3) =
k

2

!
≤ ν(Sε′( f , x⊕T ))

Lem 10.39
≤ O

( d

ε2

)

Rearranging for t then gives the claim.

Theorem 10.42. For any function f : {−1,1}n → [−1,1] of degree at most d and

any x ∈ {−1,1}n one has

τ∗(Sε( f , x)) ≤ poly
(
d ,

1

ε
, log(n)

)

Proof. Fix an 0< ε< 1. The condition F BSε/3( f ) ≤ F BSε( f )4/3 from Lemma 10.41

might not be satisfies. But w.l.o.g. 2 ≤ F BSε( f ) ≤ n and starting at 2, it takes only

Θ(loglogn) times taking the 4
3

th power until we would exceed n. Hence for some

index ℓ≤O(loglogn) the condition will be satisfied for ε′ := ε·3−ℓ ≥ ε/polylog(n).

Then

F BSε( f )
monotonicity

≤ F BSε′( f ) ≤ poly
(
d ,

1

ε′

)
≤ poly

(
d ,

1

ε
, logn

)

10.14 Geometric properties of bounded low degree func-

tions

We want to present another result from the same paper [LZ23]. For p ≥ 1 and a

compact set A ⊆R
n we write

dp (x, A) := min
{
‖x − y‖p : y ∈ A

}

as the minimum Lp -distance of a point x to A. For two compact sets A,B ⊆ R
n

we also write

dp (A,B) := min
{
‖x − y‖p : x ∈ A, y ∈ B

}
.
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Here, we will be exclusively consider the cases p ∈ {1,2,∞}. A rather powerful

result to bound distances on the hypercube is due to Talagrand. For a set A ⊆
{−1,1}n , we write µn(A) := |A|

2n as the uniform measure w.r.t. to the hypercube

points. Moreover conv(A) denotes the convex hull of A, i.e. the unique smallest

convex set containing A.

Theorem 10.43 (Talagrand [Tal95]). Let A ⊆ {−1,1}n be non-empty. Then

E
x∼{−1,1}n

[
exp

( 1

16
·d2(x,conv(A))2

)]
≤

1

µn(A)
.

conv(A)

x ∈ {−1,1}n

d2(x,conv(A))

Arguably, we are not doing justice to this inequality, which holds in much more

generality for arbitrary product spaces. A very readable account can be found

in the textbook by Alon and Spencer [AS16]. In particular by Jensen’s inequality,

this implies that Ex∼{−1,1}n [d2(x,conv(A))] ≤ O(
√

ln 1
µn (A)

). Another variation of

Talagrand’s Theorem is as follows:

Corollary 10.44. Let X ,Y ⊆ {−1,1}n . Then

µn(X ) ·µn(Y ) ≤ exp
(
−

1

16
d2(X ,conv(Y ))2

)

That means for two well separated sets, at least one must be very small. Now,

back to functions f : {−1,1}n → [−1,1] of degree at most d . Suppose that the

variance of such function is Var[ f ] =Θ(1) and Ex∼{−1,1}n [ f (x)] = 0. Then for some

constant6 ε=Θ(1), both sets

X :=
{

x ∈ {−1,1}n | f (x) ≥ ε
}

and Y :=
{

x ∈ {−1,1}n | f (x) ≤−ε
}

have a measure of µn(X ),µn(Y ) ≥ ε. Then by Talagrand’s inequality, the average

Euclidean distance is Ex∼X [d2(x,conv(Y ))] ≤O(1). The Euclidean ball B n
2 has the

6One can make this formal as follows. Claim: Let X ∈ [−1,1] be a random variable with Pr[X ≥
E[X ]+ ε] ≤ ε. Then Var[X ] ≤ 12ε. Proof. After shifting we may assume that −2 ≤ X ≤ 2 with

E[X ] = 0. Then Var[X ] = E[X 2]≤ 2E[|X |] = 4E[max{X ,0}] ≤ 4 · (ε ·2+1 ·ε) ≤ 12ε.
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same volume as the scaled cube Θ( 1p
n

) ·B n
∞. So intuitively, one might then think

that Ex∼X [d∞(x,conv(Y ))] ≤ O( 1p
n

) should hold as well. But this is very wrong

and the opposite is true — the L∞-distance is surprisingly large!

Lemma 10.45. Consider a function f : {−1,1}n → [−1,1] of degree d , a point x ∈
{−1,1}n and a parameter ε> 0. Let Y := {y ∈ {−1,1}n : | f (x)− f (y)| ≥ ε}. Then

d∞(x,conv(Y )) ≥
1

poly(d , 1
ε

, log(n))

Proof. We abbreviate the sensitive blocks by F := Sε( f , x) and let t := τ∗(F )

be the fractional transversal number. Recall that t ≤ poly(d , 1
ε , log(n)) by Theo-

rem 10.42. Note that Y = {x⊕S : S ∈F }. Let z ∈ [0,1]n be the fractional transversal

of value t , i.e.
∑

i∈S zi ≥ 1 for all S ∈F and
∑n

i=1
zi = t . Then π := z

t is a distribu-

tion over coordinates [n]. Let y ∈ conv(Y ) be the point attaining d∞(x,conv(Y )).

Since y is the in convex hull of points in Y , there must be a distribution µ over

sets F so that ES∼µ[x⊕S ] = y .

conv(Y )

y

x

Then

‖x − y‖∞ ≥ E
i∼π

[|xi − yi |]
(∗)= E

i∼π

[
E

S∼µ

[
|xi − (x⊕S )i |

]]
= 2 E

S∼µ

[
E

i∼π
[1i∈S ]

︸ ︷︷ ︸
≥1/t

]
≥

1

2t

In (∗) it may appear that we have misused linearity of expectation for the non-

linear function |·|. But for every fixed i , the quantity xi −(x⊕S )i ∈ {−2,0,2} has the

same sign for all S and hence linearity can indeed be used.

So we know that for any degree-d function f , the fractional transversal num-

ber τ∗(Sε( f , x)) is quite small. Thinking back to Example 10.40 one could get the

suspicion that this could simply mean that the sets in Sε( f , x) are very large. We

give another result of Lovett and Zhang that this is not the case. In contrast, for a

constant fraction of points x, the family Sε( f , x) must contain some set of size at

most poly(d , 1
ε , log(n)). First we make a useful definition.

Definition 10.46. Let f : {−1,1}n → R. We say that a point x ∈ {−1,1}n is (r,ε)-
sensitive if there is a set of coordinates S ⊆ [n] with |S| ≤ r so that | f (x)− f (x⊕S )| ≥
ε.
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We need a small lemma7. For two sets A,B ⊆ R
n , we denote A +B := {a +b |

a ∈ A,b ∈ B} as their Minkowski sum. For 1 ≤ p ≤∞ we abbreviate B n
p := {x ∈R

n |
‖x‖p ≤ 1} as the unit ball w.r.t. the norm ‖ ·‖p .

Lemma 10.47. Let x ∉ (sB n
∞+ r B n

1 ). Then ‖x‖2 >
p

sr .

Proof. Let L := {i ∈ [n] | |xi | ≥ s} be the large indices and S := [n] \ L be the small
indices. We can prove the following:

Claim I.
∑

i∈L |xi | > r .

Proof of Claim I. Suppose not. We split x = xL + xS where xL ∈ R
n inherits all the

large coordinates of x and is 0 elsewhere; similar we define xS . Then xS ∈ sB n
∞

be definition of S and xL ∈ r B n
1 because we assume that

∑
j∈L |xi | ≤ r . Then x ∈

(sB n
∞+ r B n

1 ) which is a contradiction.

We conclude the main claim by writing

‖x‖2
2 ≥

∑

i∈L
x2

i ≥ s
∑

i∈L
|xi |

︸ ︷︷ ︸
>r

Claim I
> sr

Geometrically one can understand Lemma 10.47 as the fact that the symmet-

ric convex body sB n
∞+ r B n

1 contains a Euclidean ball of radius
p

sr .

0
sB n

∞
+ 0

r B n
1

= 0

p
sr

sB n
∞+ r B n

1

In our particular case with points on the hypercube. the ‖ · ‖1-distance will be

attained at a vertex on the convex hulll.

Lemma 10.48. For x ∈ {−1,1}n and Y ⊆ {−1,1}n one has d1(x,Y ) = d1(x,conv(Y )).

7The argument we use here provides a slightly better bound compared to [LZ23].
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Proof. By a slight abuse of notation, let us think of Y also as an n ×m matrix

whose columns are the points in the set Y . Moreover, let ∆m := conv{e1, . . . ,em}

be the m-dimensional simplex. Then we can write the distance as

d1(x,conv(Y )) = min
{ n∑

i=1

|xi −〈Yi ,λ〉 | : λ ∈∆m

}

Since all points involved have ±1 coordinates, the sign of xi −〈Yi ,λ〉 is the same

for all λ ∈ ∆m . Hence, the | · | can be replaced by a multiplication with ±1. Then

objective function is linear and there is an optimum solution which is an extreme

point of ∆m .

Then this gives us a convinient variant of Lemma 10.47:

Lemma 10.49. For all x ∈ {−1,1}n and Y ⊆ {−1,1}n one has d2(x,conv(Y )) ≥ 1
2

(
d∞(x,conv(Y )

)
·

d1(x,Y ))1/2.

Proof. Let y ∈ conv(Y ) be the point attaining d2(x,conv(Y )). Then ‖x − y‖∞ ≥
s := d∞(x,conv(Y )) and ‖x−y‖1 ≥ r := d1(x,conv(Y )) = d1(x,Y ) by Lemma 10.48.

Phrased differently x − y does not lie in the interior of 1
2

(sB n
∞+ r B n

1 ) and so ‖x −
y‖2 ≥ 1

2

p
r s.

Theorem 10.50. For a large enough constant C > 0 the following holds. Let f :

{−1,1}n → [−1,1] be a function of degree at most d and variance Var[ f ] ≥ Cε.

Then at least an ε-fraction of points x ∈ {−1,1}n is (r,ε)-sensitive where r :=
poly(d , 1

ε , log(n)).

Proof. W.l.o.g. assume that E[ f ] = 0. Choosing C big enough we know that Prx∼{−1,1}n [ f (x) ≥
ε] ≥ 2ε. For a large enough parameter r := poly(d , 1

ε , log(n)), consider the sets

X :=
{

x ∈ {−1,1}n : f (x) ≤−ε
}

Y :=
{

x ∈ {−1,1}n : f (x) ≥ ε and x is (r,ε)-insensitive
}

In particular Y contains points where one cannot change the function value by

≥ ε by flipping only r bits. If µn(Y ) ≤ ε, then the points x with f (x) ≥ ε that are

(r,ε)-sensitive have a measure of at least 2ε−ε= ε and we are done. So suppose

for the sake of contradiction that µn(Y ) ≥ ε. We also know that µn(X ) ≥ ε.

By Lemma 10.45 we know that for any x ∈ X , d∞(x,conv(Y )) ≥ s where s :=
1

poly(d , 1
ε ,log(n))

since the function values in X and Y differ by more than ε. From Y

one cannot flip r coordinates and end up in X , which means that d1(x,Y ) ≥ r for

all x ∈ X . Then we can compare to the ‖ · ‖2-distance between X and Y (which
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has to be small by Talagrand) and obtain that

Θ

(√
ln

(
1
ε

)) Cor 10.44
≥ d2(X ,conv(Y ))

Lem 10.49
≥

1

2

(
d∞(X ,conv(Y ))︸ ︷︷ ︸

≥s

·d1(X ,Y )︸ ︷︷ ︸
≥r

)1/2 Lem 10.45
≥

1

2

p
sr

which is a contradiction for a suitable choice of r := poly(d , 1
ε

, log(n)).
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Chapter 11

The Bohnenblust-Hille Inequality

Littlewood’s 4/3 inequality and its generalization, the Bohnenblust-Hille inequal-

ity [BH31] are important results in mathematical analysis. We will discuss their

proofs and show applications to the Aaronson-Ambainis conjecture and learning

of low-degree functions. To keep the notation simple, we will only cover those in-

equalities for functions f : {−1,1}n →R on the hypercube even though they apply

in much more generality.

11.1 Preliminaries

First we review some notation. As before, for any p ≥ 1 and any function f :

{−1,1}n → R we define a norm ‖ f ‖E ,p = (Ex∼{−1,1}n [| f (x)|p ])1/p . On the other

hand, without the expectation the norm is just a sum, i.e. ‖ f ‖p = (
∑

x∈{−1,1}n | f (x)|p )1/p .

For us important will be the maximum function value of ‖ f ‖∞ := maxx∈{−1,1}n | f (x)|.
We also use the notation ‖̂ f ‖̂p := (

∑
S⊆[n] | f̂ (S)|p )1/p for the corresponding norm

of the Fourier coefficients. We know that the balls B n
p are getting larger as p in-

creases, e.g. B n
1 ⊆ B n

2 ⊆ B n
∞. In reverse, this implies the following:

Lemma 11.1. For any vector x ∈R
n , the function p 7→ ‖x‖p is decreasing in p.

We will also use a version of the Generalized Bonami Lemma from Chapter 5

which we restate for convinience.

Theorem (Theorem 5.28 — Generalized Bonami Lemma II). For any function f :

{−1,1}n →R of degree at most k and any 1≤ p ≤ 2 one has

‖ f ‖E ,2 ≤ (e
2
p −1

)k · ‖ f ‖E ,p

147
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Next, we want to work towards a matrix sum inequality that will be crucial for

our proof of the Bohnenblust-Hille Inequality. First we prove a helper lemma that

allows us to swap the summation order as long as we move the larger exponent

inside.

Lemma 11.2. For any B ∈R
m×n
≥0 and 1 ≤ p ≤ s one has

( m∑

i=1

( n∑

j=1

B p
i j

) s
p
) p

s ≤
n∑

j=1

( m∑

i=1

B s
i j

) p
s

Proof. We can write

( m∑

i=1

( n∑

j=1

B p
i j

) s
p
) p

s
s
p ≥1

=
∥∥∥

n∑

j=1

(
B p

i j

)
i∈[m]

∥∥∥ s
p

triangle inequ.
≤

n∑

j=1

∥∥∥
(
B p

i j

)
i∈[m]

∥∥∥ s
p

=
n∑

j=1

m∑

i=1

(
B

p· s
p

i j

) p
s

where we use that ‖ ·‖ s
p

is a norm so that the triangle inequality can be used.

Now we come to the crucial matrix sum lemma. For a parameter k ≥ 1 we

define exponents pk := 2k
k+1

. We can define those for any real k ≥ 1, though later

we only need the values pk for integer k. The pk ’s give an increasing sequence of

exponents that approaches 2 as k →∞. But the power of the Bohnenblust-Hille

Inequality will lie in the fact that pk < 2. It will also be useful to keep the identity

pk/2 = 2(k/2)
k/2+1

= 2k
k+2

in mind.

0

1

2

0 1 2 3 4 5 6 7 8

k

pk = 2k
k+1

Now we can prove the matrix sum inequality which due to Defant, Popa and

Schwarting [DPS10], extending work of Blei [Ble01].

Lemma 11.3. Let A ∈R
m×n be a matrix and let k > 0. Then

( m∑

i=1

n∑

j=1

|Ai j |pk

) 1
pk ≤

( m∑

i=1

‖Ai‖
pk/2

2

) 1
2pk/2

( n∑

j=1

‖A j ‖pk/2

2

) 1
2pk/2
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Proof. W.l.o.g. we assume that Ai j ≥ 0 for all i , j . We abbreviate α := 1
2

pk . For

any p > 1, we define p∗ := p
p−1

> 1 as the Hölder conjugate which is the unique

value so that 1
p + 1

p∗ = 1, see again Section 5.5.1.

Now, let p, s > 1 be two parameters that we determine later. Then

m∑

i=1

n∑

j=1

Apk
i j =

m∑

i=1

( n∑

j=1

Aα
i j · Aα

i j

)
(11.1)

Hölder
≤

m∑

i=1

(( n∑

j=1

Aαp
i j

) 1
p ·

( n∑

j=1

Aαp∗

i j

) 1
p∗

)
(11.2)

Hölder
≤

( m∑

i=1

( n∑

j=1

Aαp
i j

) s
p
) 1

s ·
( m∑

i=1

( n∑

j=1

Aαp∗

i j

) s∗
p∗

) 1
s∗

(11.3)

Lem 11.2
≤

( m∑

i=1

( n∑

j=1

Aαp
i j

) s
p
) 1

s ·
( n∑

j=1

( m∑

i=1

Aαs∗

i j

) p∗
s∗

) 1
p∗

(11.4)

Here in line (11.2) we apply Hölder’s inequality with exponents (p, p∗) to the in-

ner terms. Then in (11.3) we apply Hölder’s inequality again but with exponents

(s, s∗) applied to the outer terms. Finally in line (11.3) we bound the right hand

side factor using Lemma 11.2 keeping in mind that we will need that s∗ ≥ p∗ ⇔
s ≤ p.

It then remains to pick the parameters p, p∗, s, s∗ so that the outcome in (11.4)

matches the expression in our claim. In fact, by symmetry we can see that we

will need to set p = s∗ and p∗ = s. Next, we want an inner exponent of
pk
2
·p =

α · p = 2 which means that we should set p = 4
pk

= s∗. Then by definition of

pk , the conjugate is s := p∗ = p
p−1

= 2(k+1)
k+2

= 2pk/2

pk
. We note that conviniently,

s
p = p∗

s∗ = 2pk/2

pk
· pk

4
= pk/2

2
< 1. Hence we can rewrite (11.1)+(11.4) to

m∑

i=1

n∑

j=1

Apk
i j ≤

( m∑

i=1

( n∑

j=1

A2
i j

) pk/2
2

) pk
2pk/2 ·

( n∑

j=1

( m∑

i=1

A2
i j

) pk/2
2

) pk
2pk/2

which was exactly the claim (after taking the pk-th root).

11.2 Littlewood’s 4/3 Inequality

To warm up, we prove Littlewood’s 4/3 Inequality. Luckily, the bulk of the techni-

cal work has already been taken care of in Lemma 11.3. We note that functions

of the form f (x, y) = xT Ay are also called bilinear forms. In our usual Fourier

analytic notation this means that each set S with f̂ (S) 6= 0 has (i) |S| = 2 and (ii) S
contains exactly one of the x-variables and one of the y-variables.
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Theorem 11.4 (Littlewood’s 4/3 inequality [LIT30]). For A ∈R
m×n , let f : {−1,1}m+n →

R be the function with f (x, y) = xT Ay . Then

( m∑

i=1

n∑

j=1

|Ai j |4/3
)3/4

≤C · ‖ f ‖∞

where C > 0 is a universal constant.

Proof. After scaling we may assume that ‖ f ‖∞ = 1. Then applying Lemma 11.3

with k = 2 one has p2 = 4
3

and p1 = 1 so that

( m∑

i=1

n∑

j=1

|Ai j |4/3
)3/4

≤
( m∑

i=1

‖Ai‖2

)1/2( n∑

j=1

‖A j ‖2

)1/2

By symmetry, it remains to prove the following:

Claim I. One has
∑m

i=1‖Ai‖2 ≤O(1).
Proof of Claim I. We can write

m∑

i=1

‖Ai‖2 ≍
m∑

i=1

E
y∼{−1,1}n

[| 〈Ai , y〉 |]

= E
y∈{−1,1}n

[ m∑

i=1

max
xi ∈{−1,1}

xi 〈Ai , y〉
]
= E

y∼{−1,1}n

[
max

x∈{−1,1}m
f (x, y)

]
≤ 1

using Khintchine’s inequality and the fact that f is bounded.

11.3 The Bohnenblust-Hille Inequality

Now we come to the central part of this chapter, the Bohnenblust-Hille Inequal-

ity which generalizes Littlewood’s 4/3-Inequality. A function f : {−1,1}V → R is

called k-multilinear if there is a partition of V =V1∪̇ . . .∪̇Vk so that

|Vi ∩S| = 1 ∀i ∈ [k] ∀S ⊆V with f̂ (S) 6= 0

In other words, for each block i , the function is linear in the variables xVi .

For our purpose it will be notationally cleaner to write such a k-multilinear

function as f : {−1,1}nk → R with k blocks of exactly n variables. Then each

monomial can be indexed by a vector i = (i1, . . . , ik ) ∈ [n]k . For x = (x(1), . . . , x(k)) ∈
{−1,1}nk (i.e. x( j ) ∈ {−1,1}n for each j ∈ [k]) we then write the characters as

χi (x) = x(1)
i1

· . . . ·x(k)
ik
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In particular a k-multilinear function f : {−1,1}nk →R can be written as its Fourier

expansion

f (x) =
∑

i1,...,ik∈[n]

f̂ (i1, . . . , ik ) ·x(1)
i1

· . . . ·x(k)
ik

=
∑

i∈[n]k

f̂ (i ) ·χi (x)

for x = (x(1), . . . , x(k)) ∈ {−1,1}kn .

Then the Bohnenblust-Hille Inequality is as follows:

Theorem 11.5 (Bohnenblust-Hille Inequality [LIT30]). For any k-multilinear func-

tion f : {−1,1}nk →R and any p ≥ 2k
k+1

one has

‖̂ f ‖̂p =
( ∑

i1,...,ik∈[n]

| f̂ (i1, . . . , ik )|p
)1/p

≤Ck · ‖ f ‖∞

Here one can pick Ck . k log2(e) ≤ k3/2.

We should mention that the polynomial bound on Ck is due to Pellegrino

and Seoane-Sepúlveda [PSS12]. For the proof, we will follow the exposition of

Montanaro [Mon12]. From Lemma 11.1 we know that ‖̂ f ‖̂p is decreasing in p

and so it suffices to prove the claim for p = 2k
k+1

. One can replace a given k by the

nearest larger power of 2 which only changes Ck by a constant. We can also scale

f so that ‖ f ‖∞ ≤ 1. Then the exact statement that we prove is then the following:

Proposition 11.6 (Bohnenblust-Hille Inequality II [LIT30]). For any k-multilinear

function f : {−1,1}nk → [−1,1] and any k ≥ 1 that is a power of 2 one has

‖̂ f ‖̂pk ≤Ck

where Ck ≤ k log2(e) ≤ k1.45 and pk := 2k
k+1

.

Proof. We prove the claim by induction. For k = 1 we have p1 = 1 and the in-

equality is of the form
∑

i∈[n] | f̂ (i )| ≤ C1 which is true for C1 = 1 as ‖ f ‖∞ = 1 (see

e.g. the argument at the beginning of Chapter 10).

Now suppose k is a power of 2 with k ≥ 2. We split the block indices [k] into

two parts A := {1, . . . , k
2

} and B := { k
2
+ 1, . . . ,k} so that |A| = |B | = k

2
. For a tuple

i ∈ [n]k we write i A = (i1, . . . , ik/2); similar for iB . Moreover, we split x = (xA , xB ) ∈
{−1,1}nk into the variables belonging to the corresponding blocks.

We define a matrix M that has row indices i A ∈ [n]k/2 and column indices

iB ∈ [n]k/2 where the entries are the Fourier coefficients of f , i.e.

Mi A ,iB := f̂ (i A, iB )
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Then applying Lemma 11.3 to the matrix M gives

‖̂ f ‖̂pk =
( ∑

i A∈[n]k/2

∑

iB∈[n]k/2

|Mi A ,iB |
pk

)1/pk

Lem 11.3
≤

( ∑

i A∈[n]k/2

‖Mi A‖
pk/2

2

︸ ︷︷ ︸
(∗)

)1/(2pk/2)
·
( ∑

iB∈[n]k/2

‖M (iB )‖pk/2

2

︸ ︷︷ ︸
(∗∗)

)1/(2pk/2)

Now we have broken the sum into two parts and we can bound both by the same

quantity.

Claim I. One has (∗), (∗∗) ≤ epk/2 ·C pk/2

k/2
.

Proof of Claim I. For symmetry reasons it suffices to upper bound the column

sum (∗∗). For each xA ∈ {−1,1}nk/2 we consider the function hxA : {−1,1}nk/2 →R

which is the restriction of f when fixing xA . We know that we can write

hxA (xB ) = f (xA, xB ) =
∑

iB∈[n]k/2

( ∑

i A∈[n]k/2

f̂ (i A , iB ) ·χi A (xA)
)

︸ ︷︷ ︸
=:giB (xA )

·χiB (xB ) (∗)

where we have abbreviated giB (xA) as the arising Fourier coefficients of that re-

striction.

For each iB we can bound the length of each column by

‖M (iB )‖2 =
( ∑

i A∈[n]k/2

f̂ (i A , iB )2
)1/2

(11.5)

Parsival= ‖giB‖E ,2

hypercontr.
≤

(
e

2
pk/2

−1)k/2 · ‖giB ‖pk/2

= exp
((k +2

k
−1

)
·

k

2︸ ︷︷ ︸
=1

)
· ‖giB ‖pk/2

= e · ‖giB‖pk/2

where we use hypercontractivity from Lemma 5.28 with parameter pk/2 = 2k
k+2

∈
[1,2) as. We observe that for any r ≥ 1 one has

∑

iB∈[n]k/2

‖giB‖
r
E ,r

Def ‖·‖E ,r=
∑

iB∈[n]k/2

E
xA∼{−1,1}nk/2

[|giB (xA)|r ] (11.6)

= E
xA∼{−1,1}nk/2

[ ∑

iB∈[n]k/2

|giB (xA)|r
]

Def ‖̂·‖̂r= E
xA∼{−1,1}nk/2

[‖̂hxA ‖̂
r
r ]
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using that giB (xA) are the Fourier coefficients of the restriction hxA . Then we can

bound

(∗∗) =
∑

iB∈[n]k/2

‖M (iB )‖pk/2

2

(11.5)
≤ epk/2

∑

iB∈[n]k/2

‖giB‖
pk/2
pk/2

(11.6)= epk/2 · E
xA∼{−1,1}nk/2

[‖̂hxA ‖̂
pk/2
pk/2

]

induction
≤ epk/2 ·C pk/2

k/2

using the inductive hypothesis with the fact that the restriction is also bounded,

i.e. ‖hxA‖∞ ≤ 1. That concludes the proof of Claim I.

We continue the main claim. We can bound

‖̂ f ‖̂pk/2
≤ (∗)1/(2pk/2) · (∗∗)1/(2pk/2) Claim I

≤
(
epk/2 ·C pk/2

k/2

)1/pk/2

= e ·Ck/2

Hence we obtain the recursion of Ck ≤ e ·Ck/2 which can be resolved to Ck ≤
e log2(k) = k log2(e) ≤ k1.45.

11.4 An application to the Aaronson-Ambainis Con-

jecture

We will now demonstrate that the Bohnenblust-Hille inequality implies the Aaronson-

Ambainis conjecture for a special class of functions:

Theorem 11.7. Let f : {−1,1}nk → [−1,1] be a bounded k-multilinear form where

for some α> 0 one has f̂ (i ) ∈ {−α,α} for all i ∈ [n]k . Then

Infmax[ f ] ≥
Var[ f ]2

Θ(k3)

Proof. One has Var[ f ] = nkα2 and Inf j [ f ] = nk−1α2 for each variable j as one can

easily see. Using the Bohnenblust-Hille inequality (Theorem 11.6) with p := 2k
k+1

we can bound the p-norm of the Fourier coefficients by

n(k+1)/2 ·α= (nkαp )1/p = ‖̂ f ‖̂p ≤Ck ≤O(k3/2)

We rearrange to obtain an upper bound of α ≤ O( k3/2

n(k+1)/2 ). This gives us exactly

the saving that we need and

Var[ f ]2

Infmax[ f ]
=

n2kα4

nk−1α2
= nk+1α2 ≤O(k3)
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11.5 A generalization and an application to learning

low degree functions

In Theorem 11.6 we stated the Bohnenblust-Hille inequality for k-multilinear

functions with a bound of Ck ≤ poly(k). But of course, the same inequality makes

sense for arbitrary functions on the hypercube. Here is what is known:

Theorem 11.8 (Bohnenblust-Hille Inequality III [DMoP19]). For any function f :

{−1,1}n →R of degree at most k and any p ≥ 2k
k+1

one has

‖̂ f ‖̂p =
( ∑

S⊆[n]

| f̂ (S)|p
)1/p

≤ C̃k · ‖ f ‖∞

Here one can pick C̃k ≤ exp(Θ(
p

k log(k))).

It is unknown if the bound of C̃k can be improved, possibly to a poly(k). In

a talk on the work [EI22], Ivanisvili even mentions that there is no known con-

struction proving that C̃k needs to grow with k1. But just the fact that there is

such a constant independent of n already has interesting consequences. We will

show case this with an application to learning low degree functions which is due

to Eskenazis and Ivanisvili [EI22].

Suppose we are given random query access to a bounded function f : {−1,1}n →
[−1,1] of degree at most d and from the queries, we want to learn f up to an er-

ror of ε. More precisely, for some number N , we may draw uniform independent

points x(1), . . . , x(N) ∼ {−1,1}n and are then being informed of the function values

f (x(1)), . . . , f (x(N)) ∈ [−1,1]. From those values we have to construct a function

h : {−1,1}n → R so that ‖ f −h‖E ,2 ≤ ε. We note that this is a variant of the ques-

tion that we studied in Chapter 3.

To warm up, we discuss a classical result:

Theorem 11.9 (Linial, Mansour, Nisan [LMN93]). Let ε> 0. Given N :=Θ( d
ε2 nd log(n))

many random samples from a degree-d function f : {−1,1}n → [−1,1], with high

probability one can construct a function h so that ‖ f −h‖E ,2 ≤ ε.

Proof. Let δ> 0 and N ∈N be parameters that we determine later. We draw sam-

ples x(1), . . . , x(N) ∼ {−1,1}n and use those samples to create an estimate αS :=
1
N

∑N
i=1 f (x(i )) ·χS (x(i )) for the Fourier coefficient f̂ (S).

1See https://www.ipam.ucla.edu/abstract/?tid=17275&pcode=CV2022

https://www.ipam.ucla.edu/abstract/?tid=17275&pcode=CV2022
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We have proven in Lemma 3.1 that for a choice of N =Θ( s
δ2 ) one has

Pr[| f̂ (S)−αS | ≤ δ] ≥ 1−e−s

for each fixed set S. Then taking the union bound over the O(nd ) many sets S
with |S| ≤ d and letting s :=Θ(log(nd )), we know that

Pr[| f̂ (S)−αS | ≤ δ∀|S| ≤ d ] ≥ 1−
1

poly(n)

for N :=Θ( d
δ2 log(n)). Condition on this event to happen. We set h :=

∑
|S|≤d αSχS

as the approximation to f . Then the error satisfies

‖ f −h‖2
E ,2 =

∑

|S|≤d

( f̂ (S)−αS︸ ︷︷ ︸
≤δ

)2 ≤O(nd ) ·δ2 ≤ ε2

if we make a choice of δ :=Θ( ε
nd/2 ).

If we think of ε and d as constants then this bound is of the form Oε,d(nd log(n)).

Surprisingly, one can reduce the number of samples down to only Θε,d (logn)

with almost the same choice of h.

Theorem 11.10 (Eskenazis, Ivanisvili [EI22]). For any degree-d function f : {−1,1}n →
[−1,1], N := epoly(d )

εΘ(d ) log(n) =Θε,d (logn) many random samples suffice to construct

a function h with ‖ f −h‖E ,2 ≤ ε.

Proof. As before, we may assume to know estimates αS so that | f̂ (S)−αS | ≤ δ for

all |S| ≤ d . Again, we know that N :=Θ( d
δ2 log(n)) samples suffice. So the surpris-

ing part is to argue that we can choose δ> 0 independent of n. Let L := {S ⊆ [n] |
|S| ≤ d and |αS | ≥ 2δ} be the large Fourier coefficients. Then we define a function

h according to our estimates — but only on the large Fourier coefficients. That

means we set

h(x) :=
∑

S∈L
αS ·χS (x)

The error in the approximation is

‖ f −h‖2
E ,2 =

∑

S∈L
( f̂ (S)−αS)2

︸ ︷︷ ︸
(∗)

+
∑

|S|≤d :S∉L
f̂ (S)2

︸ ︷︷ ︸
(∗∗)

We will analyze the parts (∗) and (∗∗) separately.
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• Error (∗) on the large Fourier coefficients. The number of large Fourier co-

efficients is

|L| ≤
∑

S∈L

( | f̂ (S)|
δ

) 2d
d+1 Thm 11.8

≤
(C̃d

δ

) 2d
d+1

using the Bohnenblust-Hille inequality III (Theorem 11.8). Here we use

that for each S ∈ L one has
| f̂ (S)|
δ ≥ 1. The error coming from the large

Fourier coefficients can then be bounded by

(∗) =
∑

S∈L
( f̂ (S)−αS)2 ≤ |L|δ2 ≤

(C̃d

δ

)2d/(d+1)
δ2 = δ2/(d+1) ·C 2d/(d+1)

d ≤
ε

2

for a choice of δ≤ εΘ(d )

epoly(d ) .

• Error (∗∗) on the small Fourier coefficients. We have

(∗∗) =
∑

S∉L
f̂ (S)2 ≤ (3δ)2/(d+1)

∑

S∉L
f̂ (S)2d/(d+1) Thm 11.8

≤ (3δ)2/(d+1)C̃ 2d/(d+1)
d ≤

ε

2

for the same choice of δ. Here we use that f̂ (S)2 ≤ (3δ)2/(d+1) f̂ (S)2d/(d+1)

since for each S ∉L we know that | f̂ (S)| ≤ 3δ.

This concludes the claim.
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