Problem Set 3

CSE 531 - Computational Complexity

Winter 2024

Exercise 2.5 (slightly modified from Arora and Barak; 10pts)
Let PRIMES := \{enc(n) \mid n ∈ \mathbb{N} is prime number\} be the language of all prime numbers. Prove that PRIMES ∈ NP.

Hint. You may use the following fact without a proof.

Pratt certificate. Let n ∈ \mathbb{Z}_{≥3}. Then n is prime if and only if there exists a number a ∈ {2, . . . , n − 1} so that $2^a n^a - 1 ≡ n^1$ and for every prime factor q of n − 1 one has $a^{(n-1)/q} \not≡ n^1$.

To certify that n is prime, certify that the condition after the “if and only if” holds where you’ll need a recursive argument to certify that any q is prime too. Prove that your certificate has length that is polynomial in |enc(n)| and can be verified in time polynomial in |enc(n)|.

Remark. Actually it is true that PRIMES ∈ P, but that proof takes more work. From this exercise we can derive that PRIMES ∈ NP ∩ coNP which already is good evidence that PRIMES is not a hard problem.

Exercise 2.17 (modified from Arora and Barak; 10pts)
Define the Exactly One 3SAT problem

E1-3SAT := \{ψ \mid ψ is a CNF with at most 3 literals per clause that has an assignment x that satisfies exactly one literal per clause\}

Prove that E1-SAT is NP-complete.

Hint. Prove 3SAT ≤p E1-3SAT. To do so, replace each occurrence of a literal u_i in a clause C by a new variable $z_{i,C}$ and introduce new clauses and auxiliary variables ensuring that if u_i is TRUE, then $z_{i,C}$ is allowed to be either TRUE or FALSE, but if u_i is FALSE, then $z_{i,C}$ must be FALSE too.

1 For a number n we write enc(n) ∈ \{0, 1\}^* as the encoding of n as a 0/1-string

2 We write $a ≡ b$, if $a - b$ is an integer multiple of n.