Problem Set 7

CSE 521 - Design and Analysis of Algorithms

Fall 2024

Exercise 1 (5+5+5+5=20pts)

For a vector $x \in \mathbb{R}^n$ we define supp $(x) := \{i \in [n] \mid x_i \neq 0\}$. Prove the following:

- (i) Let B ∈ ℝ^{m×n} with n > m and let x ∈ ℝⁿ be a vector with x > 0. Prove that there is a y ∈ ℝⁿ with y ≥ 0, |supp(y)| < n and By = Bx.
 Hint: First prove that there is a vector z ∈ ℝⁿ \ {0} with Bz = 0 then use that vector z to update x.
- (ii) Let $B \in \mathbb{R}^{m \times n}$ and let $x \in \mathbb{R}^n$ be a vector with $x \ge \mathbf{0}$ and $|\operatorname{supp}(x)| > m$. Then there is a $y \in \mathbb{R}^n$ with By = Bx, $y \ge \mathbf{0}$ and $\operatorname{supp}(y) \subset \operatorname{supp}(x)$ (and in particular $|\operatorname{supp}(y)| < |\operatorname{supp}(x)|$). **Hint:** Suppose for symmetry reasons that $x_1, \ldots, x_k > 0$ and $x_{k+1} = \ldots = x_n = 0$. First prove that for the matrix

$$\tilde{B} := \begin{pmatrix} B \\ e_{k+1} \\ \vdots \\ e_n \end{pmatrix}$$

there is a vector $z \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ so that $\tilde{B}z = \mathbf{0}$. Then use that vector to update *x*.

- (iii) Consider the polyhedron $P := \{x \in \mathbb{R}^n | Ax = b, x \ge \mathbf{0}\}$ where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ and assume that $P \neq \emptyset$. Fix a point $y \in P$ that minimizes $|\operatorname{supp}(y)|$. Prove that $|\operatorname{supp}(y)| \le m$.
- (iv) Let $X := \{x_1, \ldots, x_n\} \subseteq \mathbb{R}^m$. Prove that for any $y \in \operatorname{conv}(X)$, there is a subset $X' \subseteq X$ with $|X'| \leq m+1$ so that $y \in \operatorname{conv}(X')$. Here

$$\operatorname{conv}(X) := \left\{ \sum_{i=1}^n \lambda_i x_i \mid \lambda_1, \dots, \lambda_n \ge 0 \text{ and } \sum_{i=1}^n \lambda_i = 1 \right\}$$

is the *convex hull* of X (which is also the unique smallest convex set that contains all points of X).