Problem Set 5

CSE 521 - Design and Analysis of Algorithms

Fall 2024

Exercise 1 (3+7=10pts)

- (i) Let $M \in \mathbb{R}^{n \times n}$ be a (symmetric) PSD matrix. Show that for any $P \in \mathbb{R}^{m \times n}$, $PMP^T \succeq 0$.
- (ii) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix that has k positive eigenvalues for some integer $k \ge 1$. Use Cauchy's interlacing theorem (below) to show that for any $P \in \mathbb{R}^{m \times n}$, PMP^T has at most k positive eigenvalue.

Theorem 1 (Cauchy's Interlacing Theorem). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_n \leq \cdots \leq \lambda_1$. For a vector $v \in \mathbb{R}^n$, let $\beta_n \leq \cdots \leq \beta_1$ be the eigenvalues of $M + vv^T$. Then,

$$\lambda_n \leq \beta_n \leq \lambda_{n-1} \leq \beta_{n-1} \leq \cdots \leq \lambda_1 \leq \beta_1.$$

Exercise 2 (3+3+4=10pts)

In this problem you can use the following theorem.

Theorem 2 (Hanson-Wright inequality). Let $\sigma_1, \ldots, \sigma_n \sim \{-1, 1\}$ be independent random variables (i.e., $\sigma_i = +1$ w.p. 1/2 and $\sigma_i = -1$ otherwise) and let $A \in \mathbb{R}^{n \times n}$. Then for all $t \ge 0$

$$\Pr[|\sigma^{T} A \sigma - \mathbb{E}[\sigma^{T} A \sigma]| > t] \le 2 \exp\left(-c \min\left\{\frac{t^{2}}{\|A\|_{F}^{2}}, \frac{t}{\|A\|_{op}}\right\}\right)$$

where c > 0 is a universal constant (independent of *n*).

(i) Show that for any matrix $A \in \mathbb{R}^{m \times n}$,

$$||A^T A||_F^2 \le ||A||_{op}^2 ||A||_F^2$$

- (ii) Show that for a random vector $\boldsymbol{\sigma} \sim \{-1,1\}^n$, and for any $A \in \mathbb{R}^{m \times n}$ one has $\mathbb{E}[\|A\boldsymbol{\sigma}\|_2^2] = \|A\|_F^2$.
- (iii) Show that for a random vector $\sigma \sim \{-1,1\}^n$, and for any $A \in \mathbb{R}^{m \times n}$ and $0 < \varepsilon < 1$, we have,

$$\Pr\left[\left|\frac{\|A\boldsymbol{\sigma}\|_{2}^{2}}{\|A\|_{F}^{2}}-1\right|>\varepsilon\right] \leq 2\exp\left(-c\frac{\varepsilon^{2}\|A\|_{F}^{2}}{\|A\|_{op}^{2}}\right)$$