Problem Set 5

CSE 521 - Design and Analysis of Algorithms

Fall 2024

Exercise 1 (3+7=10pts)

- (i) Let $M \in \mathbb{R}^{n \times n}$ be a (symmetric) PSD matrix. Show that for any $P \in \mathbb{R}^{m \times n}$, $PMP^T \succeq 0$.
- (ii) Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix that has *k* positive eigenvalues for some integer $k \ge 1$. Use Cauchy's interlacing theorem (below) to show that for any $P \in \mathbb{R}^{m \times n}$, *PMP^T* has at most *k* positive eigenvalue.

Theorem 1 (Cauchy's Interlacing Theorem). Let $M \in \mathbb{R}^{n \times n}$ be a symmetric matrix with eigenvalues $\lambda_n \leq \cdots \leq \lambda_1$. For a vector $v \in \mathbb{R}^n$, let $\beta_n \leq \cdots \leq \beta_1$ be the eigenvalues of $M + vv^T$. Then,

$$
\lambda_n\leq\beta_n\leq\lambda_{n-1}\leq\beta_{n-1}\leq\cdots\leq\lambda_1\leq\beta_1.
$$

Exercise 2 (3+3+4=10pts)

In this problem you can use the following theorem.

Theorem 2 (Hanson-Wright inequality). Let $\sigma_1, \ldots, \sigma_n \sim \{-1, 1\}$ be independent random variables $(i.e., \sigma_i = +1$ w.p. 1/2 and $\sigma_i = -1$ otherwise) and let $A \in \mathbb{R}^{n \times n}$. Then for all $t \ge 0$

$$
\Pr[|\sigma^T A \sigma - \mathbb{E}[\sigma^T A \sigma]| > t] \leq 2 \exp\left(-c \min\left\{\frac{t^2}{\|A\|_F^2}, \frac{t}{\|A\|_{op}}\right\}\right)
$$

where $c > 0$ is a universal constant (independent of *n*).

(i) Show that for any matrix $A \in \mathbb{R}^{m \times n}$,

$$
||A^T A||_F^2 \le ||A||_{op}^2 ||A||_F^2
$$

- (ii) Show that for a random vector $\sigma \sim \{-1,1\}^n$, and for any $A \in \mathbb{R}^{m \times n}$ one has $\mathbb{E}[\|A\sigma\|_2^2] = \|A\|_F^2$.
- (iii) Show that for a random vector $\sigma \sim \{-1,1\}^n$, and for any $A \in \mathbb{R}^{m \times n}$ and $0 < \varepsilon < 1$, we have,

$$
\Pr\left[\left|\frac{\|A\sigma\|_2^2}{\|A\|_F^2} - 1\right| > \varepsilon\right] \le 2 \exp\left(-c \frac{\varepsilon^2 \|A\|_F^2}{\|A\|_{\text{op}}^2}\right)
$$