Problem Set 4

CSE 521 - Design and Analysis of Algorithms

Fall 2024

Exercise 1 (10pts)

For $1 \leq p < \infty$ and $x \in \mathbb{R}^n$, $||x||_p := (\sum_{i=1}^n x_i)^2$ $\int_{i=1}^{n} |x_i|^p)^{1/p}$ is the $\|\cdot\|_p$ -norm which generalizes the Euclidean norm $\|\cdot\|_2$ and Manhattan norm $\|\cdot\|_1$ from the lecture. A probability distribution \mathcal{D}_p over $\mathbb R$ is said to be *p*-stable if for Z, Z_1, \ldots, Z_n independently drawn from \mathcal{D}_p and for any fixed $x \in \mathbb{R}^n$, the random variable $\sum_{i=1}^{n}$ $\int_{i=1}^{n} x_i Z_i$ is equal in distribution to $||x||_p \cdot Z$. Some examples are the standard normal distribution *N*(0,1), which is 2-stable. Another less-known example is the Cauchy distribution, which is 1-stable; it has probability density function $\Phi(x) = 1/(\pi(1+x^2))$. It is a known theorem that such distributions exist iff $p \in (0,2]$. Note that *p*-stable random variables for $p \neq 2$ cannot have bounded variance, since otherwise the sum of independent copies would have to be gaussian by central limit theorem. In fact, it is known that any *p*-stable distributions have *bounded and continuous* density function and they must have tail bounds $Pr(|Z| > \lambda) = O(1/(1 + \lambda)^p)$ for all $\lambda > 0$. This implies that such distributions cannot exist for $p > 2$ (since otherwise they would have bounded variance, violating the central limit theorem).

- i) Suppose *Z* is *p*-stable; show that for any $\alpha > 0$, αZ is also *p*-stable.
- ii) Optional (0 points). Let *Z* be a *p*-stable random variable normalized (by a constant) so that $Pr[Z \in [-1,1]] = 1/2$ (see previous part). Fix some $\varepsilon > 0$. Show that there is a constant $c > 0$ (as a function of p but not ε) such that

$$
\Pr[-1+\varepsilon < Z < 1-\varepsilon] \le 1/2 - c\varepsilon,
$$
\n
$$
\Pr[-1-\varepsilon < Z < 1+\varepsilon] \ge 1/2 + c\varepsilon.
$$

iii) Let *Z* be a *p*-stable random variable with $Pr[Z \in [-1,1]] = \frac{1}{2}$. Let $P \in \mathbb{R}^{m \times d}$ where $P_{i,j}$ is an independent sample of *Z*. Let $x \in \mathbb{R}^d$ arbitrary and $y = Px$; show that for $m = O(\log(1/\delta)/\epsilon^2)$, with probability at least $1-\delta$, the median of $|y_1|,\ldots,|y_m|$ is a $1\pm \varepsilon$ multiplicative approximation of $||x||_p$.

Hint. It might be helpful to review the argument in Theorem 1.37.

Exercise 2 (10pts)

In this problem we design a *locally sensitive hash function (LSH)* for points in \mathbb{R}^d , with the ℓ_1 distance, i.e.

$$
d(p,q) = \sum_{i=1}^{d} |p_i - q_i|.
$$

i) Let *a*, *b* be arbitrary real numbers. Fix $w > 0$ and let $s \in [0, w)$ chosen uniformly at random. Show that

$$
\Pr\left[\left\lfloor\frac{a-s}{w}\right\rfloor = \left\lfloor\frac{b-s}{w}\right\rfloor\right] = \max\left\{0, 1 - \frac{|a-b|}{w}\right\}.
$$

Recall that for any real number c , $|c|$ is the largest integer which is at most c .

Hint: Start with the case where $a = 0$.

ii) Define a class of hash functions as follows: Fix *w* larger than diameter of the space. Each hash function is defined via a choice of *d* independently selected random real numbers s_1, s_2, \ldots, s_d , each uniform in $[0, w)$. The hash function associated with this random set of choices is

$$
h(x_1,\ldots,x_d)=\left(\left\lfloor\frac{x_1-s_1}{w}\right\rfloor,\left\lfloor\frac{x_2-s_2}{w}\right\rfloor,\ldots,\left\lfloor\frac{x_d-s_d}{w}\right\rfloor\right).
$$

Let $\alpha_i = |p_i - q_i|$. What is the probability that $h(p) = h(q)$ in terms of the α_i values? Use the approximation $1 - x \approx e^{-x}$ (just ignore the error term for the sake of simplicity).