Problem Set 3

CSE 521 - Design and Analysis of Algorithms

Fall 2024

Exercise 1 (10pts)

Suppose we have a universe *U* of elements. For $A, B \subseteq U$, the *Jaccard distance* of A, B is defined as

$$
J(A,B) = \frac{|A \cap B|}{|A \cup B|}.
$$

This definition is used in practice to calculate a notion of similarity of documents, webpages, etc. For example, suppose *U* is the set of English words, and any set *A* represents a document considered as a bag of words. Note that for any two $A, B \subseteq U$, $0 \leq J(A, B) \leq 1$. If $J(A, B)$ is close to 1, then we can say $A \approx B$.

Let $h: U \to [0,1]$ where for each $i \in U$, $h(i)$ is chosen uniformly and independently at random from [0, 1]. For a set $S \subseteq U$, let $h_S := \min_{i \in S} h(i)$. Show that

$$
Pr[h_A = h_B] = J(A, B).
$$

Exercise 2 (Optional 0 points!)

Let X_1, \ldots, X_n be independent random variables uniformly distributed in [0, 1] and let $Y = \min\{X_1, \ldots, X_n\}$. Show that $\mathbb{E}[Y] = \frac{1}{n+1}$ and $\text{Var}(Y) \leq \frac{1}{(n+1)^2}$.

Comment. This homework problem is optional. You do not need to solve it for points; only if you are interested. However the claim itself might be useful in Exercise 3 and may be used there without proof.

Exercise 3 (10pts)

Consider the following algorithm for estimating F_0 , the number of distinct elements in a sequence x_1, \ldots, x_m in the set $\{0, 1, \ldots, n-1\}$. Let $h : \{0, 1, \ldots, n-1\} \rightarrow [0, 1]$ s.t., $h(i)$ is chosen uniformly and independently at random in [0, 1] for each *i*. We start with $Y = 1$. After reading each element x_i in the sequence we let $Y = \min\{Y, h(x_i)\}.$

- i) Show that by the end of the stream $\frac{1}{\mathbb{E}[Y]} 1$ is equal to F_0 .
- ii) Use the above idea to design a streaming algorithm to estimate the number of distinct elements in the sequence with multiplicative error $1 \pm \varepsilon$. For the analysis you can assume that you have access to *k* independent hash functions as described above. Show that $k \le O(1/\varepsilon^2)$ many such hash functions is enough to estimate the number of distinct elements within $1 + \varepsilon$ factor with probability at least $9/10$ (where $0 < \varepsilon < 1$).

Hint. There is a fact that may come in handy that you are allowed to use without proof: For any $\alpha > 0$ and any $0 < \beta \leq \frac{1}{2}$ $\frac{1}{2}$ and $0 < \varepsilon \leq \frac{1}{10}$ one has

$$
\left((1-\varepsilon)\alpha \leq \beta \leq (1+\varepsilon)\alpha\right) \Longrightarrow \left((1-4\varepsilon)\left(\frac{1}{\alpha}-1\right) \leq \frac{1}{\beta}-1 \leq (1+4\varepsilon)\left(\frac{1}{\alpha}-1\right)\right)
$$