
Design and Analysis of
Algorithms

Thomas Rothvoss

CSE 521 — Fall 2024

ck

P

Ek+1

aT
k

x ≤ aT
k

ck

Last changes: November 3, 2024

2

Contents

1 Randomized algorithms 7

1.1 Karger’s algorithm . 7
1.2 The Karger-Stein algorithm . 11
1.3 Probability Theory . 12

1.3.1 Markov’s inequality . 13
1.3.2 Union bound . 13
1.3.3 Application: Fix points of permutations 14
1.3.4 Chebyshev’s Inequality . 14
1.3.5 Polling . 16
1.3.6 The birthday paradox . 17
1.3.7 Hoeffding Inequality . 18
1.3.8 Polling . 20
1.3.9 Random walk on a line . 21

1.4 Discrepancy theory . 21
1.5 Hashing . 22
1.6 Limited independence . 24

1.6.1 The birthday paradox revisited 25
1.6.2 Double Hashing . 26
1.6.3 Construction of pairwise independent hash functions 27

1.7 Unbiased estimators . 29
1.8 Streaming . 32

2 The curse of dimensionality and dimension reduction 37

2.1 The nearest neighbor problem . 37
2.1.1 Locally sensitive hash functions 39

2.2 Volume in higher dimensions . 42
2.3 Nearly orthogonal vectors . 44
2.4 Introductions to Gaussians . 45
2.5 More on rotationally invariant distributions 46
2.6 Concentration of measure for Gaussians 47

3

4 CONTENTS

2.7 Dimension reduction . 49

3 Algebraic algorithms 53

3.1 Matrix Identity testing . 55
3.2 The Schwarz Zippel Lemma . 56
3.3 Bipartite matchings . 57
3.4 Perfect matchings in general graphs 61

4 Linear algebra 63

4.1 Eigenvalues . 63
4.1.1 The Spectral Theorem . 64
4.1.2 Positive semidefinite matrices 64
4.1.3 A geometric interpretation . 65
4.1.4 Applying functions to matrices 66
4.1.5 Trace, determinant and rank 67
4.1.6 Raleigh Quotient . 69

4.2 The Singular Value Decomposition . 70
4.3 Matrix norms . 71
4.4 Best low rank approximation . 72
4.5 Hidden Partition . 75
4.6 Additive approximations for MaxCut 77

5 Spectral graph theory 83

5.1 Graph partitioning . 85
5.2 Cheeger’s Inequality . 86
5.3 The power method . 91

6 Linear programming 95

6.1 Convexity, polyhedra and linear programs 95
6.2 An overview over algorithms for linear programs 96
6.3 The ellipsoid method . 98

6.3.1 The ellipsoid method with a separation oracle 102
6.4 Convex programming . 105
6.5 Semidefinite programming . 108
6.6 Rounding linear programs and SDPs 109

6.6.1 Vertex Cover . 109
6.6.2 Set Cover . 111
6.6.3 MaxCut . 113

6.7 LP duality . 115
6.8 An application to Nash Equilibria in Zero Sum Games 117

CONTENTS 5

7 Submodular functions 121

7.1 Maximizing a monotone submodular functions with a cardinality constraint122
7.2 Application to the Target Set Selection Problem 124

A Notation and useful facts 131

6 CONTENTS

Chapter 1

Randomized algorithms

These course notes are mainly based on the excellent lecture notes by Shayan
Oveis Gharan from previous iterations of the same course. We will otherwise
give references to the original work in place.

A deterministic algorithm takes an input instance and produces an output.

deterministic
algorithm

input output

In contrast, a randomized algorithm depends on an input and random bits and
produces an output.

randomized
algorithm

input

random bits

output

In particular the same algorithm given the same instance might produce dif-
ferent outputs dependent on the random bits. It may seem that a deterministic
algorithm is always preferable but in many cases the best known randomized
algorithm is faster and/or simpler than the deterministic counterpart1.

1.1 Karger’s algorithm

The first algorithm that we discuss is due to Karger [Kar93]. For an undirected
graph G = (V ,E) and S ⊆ V we write δ(S) := {e ∈ E | |e ∩ S| = 1} as all the edges

1From a complexity-theoretic point of view it is unclear whether there is more than a polyno-
mial factor difference between the running time of the best deterministic and the best random-
ized algorithm for any problem. In particular it is open whether the complexity classes BPP and
P are identical or not. See CSE 531 for more background.

7

8 CHAPTER 1. RANDOMIZED ALGORITHMS

that have one endpoint in S and one endpoint in the complement V \ S. For the
purpose of this section we allow that G is a multigraph, that means there may be
several parallel edges between the same two vertices. But we disallow self-loops.
We abbreviate n := |V | as the number of vertices.

We are interested in the fundamental graph problem of finding the mincut,
i.e. a set S with ;⊂ S ⊂ V that minimizes |δ(S)|. In other words, we want to find
a cut that separates as few edges as possible. Formally speaking the edge set δ(S)
is the cut but we will be sloppy and also talk about S as the cut.

e

S∗
v

u

mincut S∗ in a graph

First a formal definition:

Definition 1.1. Given an undirected (multi) graph G = (V ,E) and an edge e =
{u, v} ∈ E . Contracting the edge e results in a graph where the vertices u, v are
replaced by a new super-node uv and all edges previously incident to either u or
v are incident to uv . We remove the created self-loop arising from e.

Note that contraction can create parallel edges. For example contracting the
edge e in the graph depicted above gives:

uv

Fix a set S∗ s.t. δ(S∗) is a mincut. The idea of Karger’s algorithm is as follows: the
set δ(S∗) is the mincut and hence has few edges. So if we draw a uniform random
edge e ∼ E then most likely e ∉ δ(S∗). In that case we can contract the edge, and
obtain a graph that is smaller by one node and still has the same mincut. So we
made progress by doing very little work.

Lemma 1.2. Let G = (V ,E) be an undirected graph and let S∗ be a mincut. Let
e ∼ E be a uniform random edge. Then Pr[e ∈ δ(S∗)] ≤ 2

n
.

Proof. Let k := |δ(S∗)| be the number of edges in the mincut and let d(v) :=
|δ({v})| be the degree of vertex v ∈V . Then

kn
(∗)
≤

∑

v∈V

d(v)
︸︷︷︸

≥k

(∗∗)= 2|E |

1.1. KARGER’S ALGORITHM 9

using in (∗) that also each singleton {v} is a cut. The equation in (∗∗) is also called
Handshake lemma and it follows from realizing that every edge e ∈ E contributes
2 to the left hand side and right hand side of (∗∗). Then

Pr[e ∈ δ(S∗)] =
|δ(S∗)|
|E |

≤
k

kn/2
=

2

n

The full algorithm is as follows:

KARGER’S ALGORITHM

Input: Graph G = (V ,E)
Output: Cut δ(S)

(1) FOR i = 1 TO n −2 DO

(2) Pick a uniform edge e ∼ E and contract it.

(3) Remaining V correspond to 2 supernodes. Return edges between the
supernodes.

We will now analyze the algorithm:

Fact 1.3. For any graph G = (V ,E), contracting any edge does not decrease the
size of the mincut.

We will leave this fact as homework2.

Theorem 1.4. Let G = (V ,E) be a graph and let δ(S∗) be a mincut. Then the prob-
ability that the algorithm returns δ(S∗) is at least 2

n(n−1) .

Proof. We fix a mincut δ(S∗) and abbreviate k := |δ(S∗)|. Let Ai be the event
that in step i ∈ {1, . . . ,n − 2}, the contracted edge is not in δ(S∗). Consider the
situation in iteration i assuming the algorithm has not made a mistake so far,
i.e. we condition on A1, . . . , Ai−1 to have happened. Then δ(S∗) still exists in the
graph and by Fact 1.3 it still is a mincut. The graph at the beginning of the i th
iteration has n − i +1 vertices. Then applying Lemma 1.2 we have

Pr
[

Ai | A1, . . . , Ai−1
]

≥ 1−
2

n − i +1

2In mathematics, a “fact” is the terminology for a theorem that the author is too lazy to prove.

10 CHAPTER 1. RANDOMIZED ALGORITHMS

Then the probability that the algorithm never makes a mistake is

Pr[A1, . . . , An−2] =
n−2∏

i=1
Pr[Ai | A1, . . . , Ai−1]

≥
n−2∏

i=1

(

1−
2

n − i +1

)

=
n−2∏

i=1

n − i −1

n − i +1

=
✘✘✘n −2

n
·
✘✘✘n −3

n −1
·
✘✘✘n −4

✘✘✘n −2
· . . . · ✁

3

✁5
·

2

✁4
·

1

✁3
=

2

n(n −1)

where we use Bayes’ rule in the first step. In the last step we use that almost all
products cancel out.

The algorithm by Karger has a very important combinatorial consequence:

Corollary 1.5. The number of different mincuts in a graph G = (V ,E) is at most
(n

2

)

.

Proof. Let us reconsider the claim of Theorem 1.4. It does not just say that the
probability to return some mincut is 2

n(n−1) but it says that the probability to
return the particular mincut δ(S∗) is that high. Hence there can be at most
n(n−1)

2 = 1
(n

2) many mincuts.

This bound is tight. For example if G is a cycle on n vertices, then any selection
of 2 edges forms a mincut.

S

one of
(n

2

)

many mincuts in an n-node cycle

So the success probability of Karger’s algorithm is only Θ(1
n2). But we could

repeat the algorithm O(n2 log(n)) times and return the best found cut and boost
the probability to find a mincut to at least 1− 1

n
. We can formulate this in more

general terms:

Lemma 1.6. Consider a randomized algorithm A that has success probability at
least 0 < p < 1. Repeating the algorithm ln(1

δ
)/p times, the probability that the

algorithm has success at least once is at least 1−δ.

1.2. THE KARGER-STEIN ALGORITHM 11

Proof. Set k := ln(1
δ

)/p. Then

Pr[no success in k repetitions] ≤ (1−p)k ≤ exp(−pk) = exp
(

− ln
(1

δ

))

= δ

Here we use that 1+x ≤ ex for all x ∈R.

One can run one iteration of Karger’s algorithm in time O(n2). Then with
O(n2 log(n)) repetitions we have an running time of O(n4 log(n)) to reach a suc-
cess probability of 1− 1

n
. However, we can improve that running time significantly

which is a result due to Karger and Stein [KS93].

1.2 The Karger-Stein algorithm

The crucial insight in order to improve the running time is the following: Karger’s
algorithm is much more likely to make a mistake at the end when only few nodes
are left than at the beginning when we still have many nodes. So one only needs
to boost the success probability towards the end of the algorithm. We turn this
into a recursive algorithm where we contract (1−α)n edges at random, then re-
curse twice. Here 0 <α< 1 is a constant parameter that we determine later.

KARGER-STEIN ALGORITHM

Input: Graph G = (V ,E)
Output: Cut δ(S)

(1) If n := |V | = 2 then return the unique cut
(2) FOR i = 1 TO (1−α)n DO

(3) Pick a uniform edge e ∼ E and contract it.

(4) Let G ′ be the contracted graph.
(5) Call KARGERSTEIN(G ′) twice and return the best of both cuts.

It remains to analyze the running time and the success probability.

Lemma 1.7. For any constant 0 <α≤ 1p
2

the algorithm has running time of O(n2 logn).

Proof. The work done in the loop (2)+(3) takes time at most O(n2) and the graph
G ′ has αn vertices. So the running time satisfies the recursion

T (n) ≤C n2 +2 ·T (αn)

We could look up CSE 421 how to resolve such a recursion, but we give a self-
contained argument. Consider the j -th level of the recursion for j ≥ 0. There

12 CHAPTER 1. RANDOMIZED ALGORITHMS

will be 2 j calls at this recursion level and the graph at this level has size n ·α j . So
the total amount of work done at recursion level j is 2 j ·C · (n ·α j)2. So in order
to keep the work per level at O(n2) we need 2α2 ≤ 1 which means one should
choose α≤ 1p

2
. The number of levels will be3 O(logn).

We have learned that from now on we should set α := 1p
2

.

Theorem 1.8. The probability that the algorithm finds a mincut is at least 1
2log2(n) .

Proof. We fix a mincut δ(S∗). Reusing the notation from Theorem 1.4 we can
lower bound the probability of not contracting an edge inside δ(S∗) during the
loop (2)+(3) by4

Pr[A1, . . . , A(1−α)n] ≥
(1−α)n∏

i=1

n − i −1

n − i +1
=

(αn −1) ·αn

n(n −1)
≈

(αn)2

n2

α= 1p
2=

1

2

As the algorithm is recursive, it will be useful to complete the proof with an in-
duction over the number of recursions. Clearly the algorithm terminates on an n-
node instance with O(logn) recursions. Let p(r) be the minimum success proba-
bility over all instances where the algorithm takes r -levels of recursion. We prove
by induction over r ∈ Z≥0 that p(r) ≥ 1

2(r+1) . If r = 0, then the argument above

shows that p(0) ≥ 1
2 . Now suppose r ≥ 1. Then the Karger-Stein algorithm will

succeed if no edge in δ(S∗) is contracted and at least one of the recursive calls is
successful. Hence

p(r) ≥
1

2
·
(

1− (1−p(r −1))2

︸ ︷︷ ︸

Pr
[

both rec.
calls fail

]

)

= p(r −1)−
1

2
p(r −1)2 ≥

1

2r
−

1

8r 2
≥

1

2(r +1)

Here in the second inequality we use that the function x 7→ x − 1
2 x2 is monotoni-

cally increasing on the interval [0,1].

1.3 Probability Theory

Much of the work in analyzing randomized algorithms deals with understanding
how the random variables related to the algorithm behave. We will discuss some
tools to analyze random variables and provide some toy applications.

3The implicit constant will depend on α.
4Well, we cheated here. Actually the inequality goes into the wrong direction and it only gives

that Pr[A1, . . . , A(1−α)n] ≥ 1
2 −Θ(1

n
). One can still make the analysis work, but it does get more

cumbersome.

1.3. PROBABILITY THEORY 13

1.3.1 Markov’s inequality

Suppose you learn that the average home value in Seattle is $1.000.000 and you
would like to estimate what fraction of homes are worth more than $3.000.000.
Certainly that fraction can be at most 1/3 since otherwise the average would be
higher already due to those pricey homes. One might get the feeling that this
is a very loose estimate but if indeed the only information that one has on the
home values is the average, then this is the best possible estimate. This simple
argument is called Markov’s inequality.

Theorem 1.9. For any random variable X ≥ 0 and any t > 0 one has Pr[X ≥ t ·
E[X]] ≤ 1

t
.

Proof. We set s := t E[X] and prove that Pr[X ≥ s] ≤ E[X]
s

. By the law of total expec-
tation

E[X] = E[X | X ≥ s]
︸ ︷︷ ︸

≥s

·Pr[X ≥ s]+E[X | X < s]
︸ ︷︷ ︸

≥0

·Pr[X < s] ≥ s ·Pr[X ≥ s]

Rearranging gives the claim.

The bound is tight for example if

X =
{

t with probability 1
t

0 otherwise

for t ≥ 1. But Markov’s inequality is extremely useful as it only requires knowing
the expectation.

1.3.2 Union bound

Given a list of events E1, . . . ,En , the probability that at least one of them hap-
pens is at most the sum of their probabilties. This simple fact is called the union

bound:

Lemma 1.10 (Union bound). For any events E1, . . . ,Em one has Pr[E1∪ . . .∪Em] ≤
∑m

i=1 Pr[Ei].

The bound holds with equality if all the events are disjoint. Set-theoretically
this statement is even more obvious: for any family S1, . . . ,Sm of finite sets one
has

|S1 ∪ . . .∪Sm | ≤
m∑

i=1
|Si |

14 CHAPTER 1. RANDOMIZED ALGORITHMS

1.3.3 Application: Fix points of permutations

We abbreviate [n] := {1, . . . ,n} where n ∈N. A bijective map σ : [n] → [n] is called a
permutation. An element i ∈ [n] is called a fix point of permutation σ if σ(i) = i .

1

1

2

2

3

3

4

4

5

5

6

6

permutation σ with fix points at 1 and 3

Because of dependencies, analyzing the distribution of fix points of a random
permutation is not easy. But we can give the following simple estimate:

Lemma 1.11. Draw a uniform random permutation σ : [n] → [n] and let X be the
number of its fix points. Then for any t ≥ 1 one has

Pr[X ≥ t] ≤
1

t

Proof. Let Xi := 1σi=i , i.e. Xi ∈ {0,1} is the indicator random variable that tells us
whether i is a fix point. Note that X =

∑n
i=1 Xi . Clearly Pr[Xi = 1] = 1

n
. Then

E[X] = E

[n∑

i=1
Xi

]
(∗)=

n∑

i=1
E[Xi]
︸ ︷︷ ︸

=1/n

= 1

Here the rule used in (∗) is called linearity of expectation and it holds even though
the random variables X1, . . . , Xn are not independent. Then by Markov inequality
Pr[X ≥ t] ≤ 1

t
.

1.3.4 Chebyshev’s Inequality

Next we will see an inequality that (often) allows better concentration of a ran-
dom variable.

Definition 1.12. For a random variable X , the variance is

Var[X] := E
[(

X −E[X]
)2]

We prove a simple identity for the variance:

1.3. PROBABILITY THEORY 15

Lemma 1.13. For any random variable, Var[X] = E[X 2]−E[X]2.

Proof. We abbreviate µ := E[X]. Then using linearity of expectation

Var[X] = E[(X −µ)2] = E[X 2]−2µE[X]
︸︷︷︸

=µ

+µ2 = E[X 2]−µ2

By definition we know that Var[X] ≥ 0 for any random variable. Then by
Lemma 1.13 we know that5

E[X 2] ≥ E[X]2.

Theorem 1.14 (Chebyshev’s Inequality). For any random variable X and any s > 0
one has

Pr
[

|X −E[X]| ≥ s
]

≤
Var[X]

s2

Equivalently, for any t > 0 one has

Pr
[

|X −E[X]| ≥ tσ
]

≤
1

t 2

where σ :=
p

Var[X] is the standard deviation.

Proof. The proof works by just applying Markov’s inequality to the squared devi-
ation. Set Y := (X −µ)2 where µ := E[X]. Then

Pr[|X −µ| ≥ s] = Pr[Y ≥ s2] ≤ E[Y]

s2
=

Var[X]

s2

Of course in order to effectively use Chebyshev’s Inequality we would need
to be able to argue that the variance of a random variable is small. The easi-
est argument is the following. Recall that discrete6 random variables X1, . . . , Xn

are pairwise independent if for all distinct i , j ∈ [n] and any s, t one has Pr[Xi =
s, X j = t] = Pr[Xi = s] ·Pr[X j = t].

5There is a more general approach to derive why this must hold. The function f : R→ R with
f (x) := x2 is convex. Then Jensen’s inequality says that for any convex functon f and any random
variable X one has E[f (X)] ≥ f (E[X]).

6A discrete random variable is one whose support is countable. For continuous random vari-
ables one needs to use the density function rather than probability of individual values but the
spirit of the definition is the same.

16 CHAPTER 1. RANDOMIZED ALGORITHMS

Lemma 1.15. For any set X1, . . . , Xn of pairwise independent random variables
one has

Var
[n∑

i=1
X

]

=
n∑

i=1
Var[Xi]

Proof. We abbreviate µi := E[Xi]. Then multiplying out and using linearity of
expectation gives

Var
[n∑

i=1
Xi

]

= E

[(n∑

i=1
Xi

)2]

−
(n∑

i=1
µi

)2

=
n∑

i=1

(

E[X 2
i]−µ2

i

)

+
∑

i 6= j

(E[Xi X j]−µiµ j)
︸ ︷︷ ︸

=0

=
n∑

i=1
Var[Xi]

Here we use that E[Xi X j] = E[Xi]E[X j] due to pairwise independence.

1.3.5 Polling

Suppose we have an unknown distribution D over numbers R and we would like
to estimate its mean µ := Ex∼D[x]. We can draw independent random samples

X1, . . . , Xn ∼D

and be optimistic that the empirical mean Y := 1
n

∑n
i=1 Xi would be close to the

expectation µ. But how many samples do we need to be relatively certain that
the error is at most say ε > 0? By some abuse of notation we write Var[D] as the
variance of a random variable that is drawn from D.

Theorem 1.16. Let Y be the empirical mean of n samples from D. Let µ be the
mean of D.

(i) For any ε> 0 one has Pr[|Y −µ| ≥ ε] ≤ Var[D]
nε2 .

(ii) If D is a distribution over {0,1}, then Pr[|Y −µ| ≥µ] ≤ 1
4nε2 .

Proof. The variance of the empirical mean is

Var[Y] = Var
[1

n

n∑

i=1
Xi

]

=
1

n2

n∑

i=1
Var[Xi]
︸ ︷︷ ︸

=Var[D]

=
1

n
·Var[D]

Then Chebychev’s inequality gives (i). For (ii), consider a random variable X ∼D

where we know that X ∈ {0,1}. That means for some 0 ≤ p ≤ 1 one has

X =
{

1 probability p

0 probability 1−p

1.3. PROBABILITY THEORY 17

Then

Var[X] = E[X 2]−E[X]2 = 12 ·p +02 · (1−p)−p2 = p(1−p)

0

0.25

0 0.5 1.0

p(1−p)

p

One can then verify that p(1−p) ≤ 1
4 (which is attained for p = 1

2).

One could easily generalize (ii) to distributions D that are supported on [0,1]

or more generally on intervals [a,b]. It is straightforward to get a bound of |a−b|2
nε2

in the latter case and which a bit more work one can show the tight bound of
|a−b|2
4nε2 .

1.3.6 The birthday paradox

The birthday paradox is the following popular statement: how many people in

a room does one need until one could expect that at least two of them have the

same birthday? The answer is 23! This seems counterintuitive as one might have
expected the answer to be closer to 1

2 ·365; we note that instead 23 ≈
p

365 (well,
at least in terms of ballpark). The principle is important for the purpose of this
class as it corresponds to the chance that a random function has collisions.

Suppose we have a universe {1, . . . ,m} and we draw independently and uni-
formly at random X1, . . . , Xn ∼ {1, . . . ,m}. We say that there is a collision if there
are indices i 6= j so that Xi = X j . Then for the birthday paradox we have m = 365
and want to know how large n needs to be so that the probability of having a
collision exceeds 1/2. We can now prove that the threshold is roughly n ≈

p
m.

Theorem 1.17. Let X1, . . . , Xn ∼ {1, . . . ,m} independently at random. Then

(i) If n ≤
p

m, then Pr[no collision] ≥ 1
2 .

(ii) If n ≥ c
p

m for c >
p

2 then Pr[no collision] ≤ 2
c2 +o(1).

Proof. First we prove (i). For indices 1 ≤ i < j ≤ n we let Yi j := 1Xi=X j
be the

indicator random variable telling whether there is a collision for the pair i , j . Let
Y :=

∑

1≤i< j≤n Yi j be the total number of pairwise collisions. Note that we have

18 CHAPTER 1. RANDOMIZED ALGORITHMS

no collision if and only if Y = 0. Using linearity of expectation we have

E[Y] =
∑

1≤i< j≤n

E[Yi j]
︸ ︷︷ ︸

=Pr[Yi j=1]= 1
m

=
(n

2

)

m
=

n(n −1)/2

m
≤

n2

2m
≤

1

2

Then by Markov’s inequality Pr[Y ≥ 1] ≤ 1
2 and so Pr[Y = 0] ≥ 1

2 .
Now we prove (ii) and assume that n ≥ c

p
m. We could easily modify the ar-

gument above to show that E[Y] is large. But that by itself does not suffice7 to
obtain a good enough lower bound on Pr[Y ≥ 1]. So we need to use more proper-
ties of Y . Note that it is not true that the random variables Yi , j are independent
because Yi , j = 1 = Y j ,k implies already that Yi ,k = 1. But it is true that those ran-
dom variables are pairwise independent. To see this, note that if i1, j1, i2, j2 are
distinct indices then clearly Yi1, j1 ,Yi2, j2 are independent. So consider random
variables Yi , j ,Y j ,k with distinct i , j ,k. Then for any outcomes xi , x j ∈ {1, . . . ,m}
one has Pr[Y j k | Xi = xi , X j = x j] = 1

m
and so Yi j ,Y j k must be independent. Then

using Lemma 1.15 we can bound

Var[Y] =
∑

1≤i< j≤n

Var[Yi j] =
(

n

2

)

·
1

m
·
(

1−
1

m

)

≤
(n

2

)

m

Here we also use the insight from Theorem 1.16 that an indicator random vari-
able has variance of Var[Yi j] = Pr[Yi j = 1] · (1−Pr[Yi j = 1]). Then

Pr[Y = 0] ≤ Pr
[

|Y −E[Y]| ≥ E[Y]
] Chebychev

≤
Var[Y]

E[Y]2
=

(n
2

)

/m

(
(n

2

)

/m)2
=

m
(n

2

) =
m

n(n −1)/2
≤

2

c2
+o(1)

1.3.7 Hoeffding Inequality

We have seen how to use Chebychev’s inequality in a setting where we need to
control a sum of pairwise independent indicator random variables. But let us
consider the following setting: we have independent random “coins” X1, . . . , Xn ∈
{0,1} with Pr[Xi = 1] = 1

2 = Pr[Xi = 0] for all i = 1, . . . ,n. Let X :=
∑n

i=1 Xi be the
number of coins that come up “head”. Then one can easily see that Var[Xi] = 1

4
and so Var[X] = n

4 . Hence using Chebychev we can derive that the chance that
all coins come up heads is

Pr[X = n] ≤ Pr
[

|X −E[X]
︸︷︷︸

=n/2

| ≥
n

2

]

≤
Var[X]

(n/2)2
=

1

n

7If we have an integral random variable Y with 0 ≤ Y ≤ M , then one can always infer that
Pr[Y ≥ 1] ≥ E[Y]

M
but that would be too weak for the claim we are proving here.

1.3. PROBABILITY THEORY 19

But clearly we know that the probability of all coins being heads is 2−n . So Cheby-
chev’s inequality gives us a polynomially small probability where the actual prob-
ability is exponentially small. One can remedy this using a family of inequali-
ties that have names like Chernov, Hoeffding, Bernstein or Azuma. While they
slightly differ in their assumpions or statement, the mechanics of their proofs is
almost identical. We will formulate two variants and prove one of them:

Theorem 1.18 (Hoeffding Inequality). Let X1, . . . , Xn be independent random vari-
ables so that ai ≤ Xi ≤ bi for all i ∈ [n] and let X = 1

n
(X1 + . . .+ Xn). Then for any

ε> 0,

Pr[|X −E[X]| ≥ ε] ≤ 2exp
(

−
2n2ε2

∑n
i=1(bi −ai)2

)

In the example of coin tosses, X ∈ [0,1] would be the fraction of the n coins
that come up heads. Then setting ε= 1

2 we can upper bound the probability that

all coins come up heads by Pr[|X − E[X]| ≥ 1
2] ≤ 2exp(−2n2(1/2)2

n
) = 2exp(−n/2)

which is acceptably close to the actual probability of 2−n for this event. For a

vector x ∈ Rn we write its coordinates as x = (x1, . . . , xn) and ‖x‖2 =
√

∑n
i=1 x2

i
is

its Euclidean norm.

Theorem 1.19 (Azuma’s Inequality). Let X1, . . . , Xn be independent random vari-
ables with E[Xi] = 0 and |Xi | ≤ bi for all i and let X :=

∑n
i=1 Xi . Then for any λ≥ 0

one has
Pr

[

|X | ≥λ‖b‖2
]

≤ 2exp(−λ2/2)

Proof. We prove a slightly weaker constant of 1/4 instead of 1/2. By symmetry
and the union bound is suffices to show that Pr[X ≥ λ‖b‖2] ≤ exp(−λ2/4). Let
t > 0 be a parameter that we decide later. The proof strategy is to upper bound
the exponential moment E[exp(t X)]. The intuition is that if this exponential mo-
ment is small, then events where X is large should be exponentially unlikely.
Claim I. For each i one has E[exp(t Xi)] ≤ exp(t 2b2

i
).

Proof of Claim I. If t · bi > 1 then E[exp(t Xi)] ≤ exp(tbi) ≤ exp(t 2b2
i

) by mono-
tonicity of the exponential function and we are done. So suppose that t ·bi ≤ 1.
Then

E[exp(t Xi)]
(I)
≤ E[1+ t Xi + (t Xi)2] = 1+ t E[Xi]

︸ ︷︷ ︸

=0

+t 2
E[X 2

i]
︸ ︷︷ ︸

≤b2
i

≤ 1+ t 2b2
i

(I I)
≤ exp(t 2b2

i)

Here we use in (I) that ex ≤ 1+ x + x2 for −1 ≤ x ≤ 1 and in (I I) we use the fact
that 1+x ≤ ex for all x ∈R.

20 CHAPTER 1. RANDOMIZED ALGORITHMS

1

2

0 1−1

x

1+x

1+x +x2

ex

Now back to the main proof. We can bound

E[exp(t X)] = E

[n∏

i=1
exp(t Xi)

]
(I I I)=

n∏

i=1
E[exp(t Xi)]

Claim I
≤

n∏

i=1
exp(t 2b2

i) = exp(t 2‖b‖2
2)

Here we crucially use in (I I I) that for independent random variables Y and Z

one has E[Y Z] = E[Y]E[Z]. Then using Markov’s inequality on the exponential
moment we obtain

Pr[X >λ‖b‖2]
(IV)= Pr

[

e t X > e tλ‖b‖2
] Markov

≤ E[e t X]

e tλ‖b‖2
≤ e t 2‖b‖2

2−tλ‖b‖2 (V)= e−λ2/4

Here we use the monotonicity of x 7→ e t x in (IV). Finally in (V) we have mini-
mized the quadratic function t 7→ t 2‖b‖2

2 − tλ‖b‖2 by choosing t := λ
2‖b‖2

.

For convinience, we also state a version of Hoeffing’s inequality where we do
not consider X as the average but the sum of the individual random variables.

Theorem 1.20 (Hoeffding Inequality II). Let X1, . . . , Xn be independent random
variables so that ai ≤ Xi ≤ bi for all i ∈ [n] and let X = X1 + . . .+Xn . Then for any
t > 0,

Pr[|X −E[X]| ≥ t] ≤ 2exp
(

−
2t 2

∑n
i=1(bi −ai)2

)

1.3.8 Polling

Let us revisit the polling application from earlier. We can tighten the result and
show that the empirical mean Y := 1

n

∑n
i=1 Xi is much more likely to be near its

expectation µ than we first proved in Theorem 1.16. By some abuse of notation
we write Var[D] as the variance of a random variable that is drawn from D.

Theorem 1.21. Let D be a distribution over {0,1}. Take independent random
samples X1, . . . , Xn ∼D and let Y := 1

n

∑n
i=1 Xi be the empirical mean. Then for

any ε> 0, Pr[|Y −E[Y]| ≥ ε] ≤ 2exp(−2nε2).

1.4. DISCREPANCY THEORY 21

Proof. Use Hoeffding’s Inequality with ai = 0, bi = 1.

For example this means that it takes n = ln(2/δ)
2ε2 many samples so that the

chance that Y deviates from the expectation by more than ε is at most δ.

1.3.9 Random walk on a line

A random walk is random process that produces a path where do not explicitly
describe the path but only the individual (random) steps. A random walk often
is a walk in a graph or in Euclidean space Rd . Here we describe a simple random
walk on the line.

The process starts at time 0 at position 0. In step i we do one step to the right
with probability 1/2 and one step to the left with probability 1/2, independently
of previous steps.

0 1 2 3 4−1−2−3−4

1/21/2

Let Xi ∈ {−1,1} be a random variable with Pr[Xi = 1] = 1
2 = Pr[Xi = −1], then

X :=
∑n

i=1 Xi models the position after n iterations. Then Var[Xi] = 1 for each
i and so Var[X] = n. Then the standard deviation is

p
Var[X] = E[X 2]1/2 =

p
n

meaning that on average after n steps we expect to be roughly
p

n steps away
from the origin. And we can prove that being much further away is unlikely:

Lemma 1.22. For any λ≥ 0 one has Pr[|X | ≥λ
p

n] ≤ 2e−λ2/4.

Proof. Simply apply Azuma’s Inequality with step size bi = 1.

1.4 Discrepancy theory

For a vector y ∈Rn we define

‖y‖∞ := max{|yi | : i ∈ [n]}

as the maximums norm or ℓ∞-norm and

‖y‖1 :=
n∑

i=1
|yi |

is the ℓ1-norm.

22 CHAPTER 1. RANDOMIZED ALGORITHMS

Consider a matrix A ∈ {0,1}m×n . Our goal is to find a vector x ∈ {−1,1}n so
that ‖Ax‖∞ is as small as possible. Often this is phrased as an equivalent set
problem where A is the incidence matrix of a set system with n elements and m

sets and the goal is to color the elements with +1’s and −1’s so that each set is
approximately evenly colored. While explicitly picking the colors and getting low
discrepancy is not easy, we will prove that a random choice of a coloring is a good
option.

Lemma 1.23. Let A ∈ {0,1}m×n and draw x ∼ {−1,1}n uniformly at random. Then

Pr
[

‖Ax‖∞ ≤ 2
√

ln(4m) ·
p

n
]

≥
1

2
.

Proof. Let λ > 0 be a parameter that we decide later. Consider a row i ∈ [m].
We note that the inner product 〈Ai , x〉 =

∑

j :Ai j=1 x j is the sum of ‖Ai‖1 many
independent ±1 random variables and so, following Lemma 1.22 we have

Pr
[

| 〈Ai , x〉 | ≥λ
p

n
] n≥‖Ai ‖1≤ Pr

[

| 〈Ai , x〉 | ≥λ
√

‖Ai‖1
]

≤ 2e−λ2/4

The discrepancy for different rows are not independent but we can use the union
bound (Lemma 1.10) to get

Pr
[

∃i ∈ [m] : | 〈Ai , x〉 | ≥λ
p

n
]

≤
m∑

i=1
Pr

[

| 〈Ai , x〉 | ≥λ
p

n
]

≤ 2m ·e−λ2/4 =
1

2

where the last step follows from choosing λ := 2
p

ln(4m).

We note that for m = n one can prove that there is always a vector x ∈ {−1,1}n

with ‖Ax‖∞ ≤ 6
p

n. However, this is not a uniform randomly chosen one, see
Spencer [Spe85]. But the argument above can be slightly tweaked to give a color-
ing of discrepancy 2

p
ln(4m) ·k where k := maxi ‖Ai‖1 is the maximum number

of ones per row.

1.5 Hashing

Suppose our goal is to build a data structure to store a set E of entries. For ex-
ample these entries could be files, each having a unique file name and we want
to store the files using an array. Let U be the universe (e.g. the set of all possible
file names) so that E ⊆U and let N be the predetermined length of the array. For
some function h : U → {1, . . . , N } we will store entry x ∈ U at position h(x). The

1.5. HASHING 23

function h is called a hash function and should not depend on the set E (for ex-
ample E might be unknown before the creation of the data structure or it might
be dynamically changing over time).

It can happen that there are several entries x1, x2 ∈ E with h(x1) = h(x2) —
we call this a collision. We can store all entries h−1(k)∩E at position k in a lin-
early ordered list but that means accessing any of those entries will cost us time
proportional to the number of collision |h−1(k)∩E |. Ideally one would hope to
construct a hash function h so that even for |E | ≈ N the average lookup-time for
each element is O(1).

[N]

U

h

x

h(x)

The reader may note that a deterministic construction of h is not going to be
good enough — whatever h we choose, U is in general gigantic and we could be
unlucky that the entries are precisely of the form E ⊆ h−1(k) for some k (meaning
they would all be stored in the same position).

The natural solution is to choose the hash function h at random from a family
H of hash functions. To warm up we state two observations concerning uniform
random hash functions:

Lemma 1.24. Let H be the set of all functions of the form h : U → [N]. Fix entries
E ⊆U with |E | ≤

p
N and draw h ∼H at random. Then with probability at least

1/2, the restriction h|E : E → [N] is injective (i.e. there are no collisions).

In other words, if |E | ≤
p

N then with good probability we do not have any
collisions. This is exactly what we have shown for the birthday paradox, see The-
orem 1.17. But it seems very inefficient to reserve space |E |2 to store |E | many
elements. For the case |E | = N we can prove the following:

Lemma 1.25. Let H be the set of all functions h : U → [N]. Then for any fixed
E ⊆U with |E | = N and h ∼H the following holds with probability at least 1− 1

N
:

(i) The average look-up time of an entry is Ex∼E [|h−1(h(x))∩E |] ≤O(1).

(ii) The maximum number of entries mapped to one position is maxk∈[N] |h−1(k)∩
E | ≤O(log N /loglog N).

We will leave these statements as an exercise to prove. So even though there
may be some positions k where a super constant number of entries are being

24 CHAPTER 1. RANDOMIZED ALGORITHMS

stored, the average access time is O(1) which would be sufficient for us. But stor-
ing a random function h : U → [N] would require Θ(|U | log(N)) many bits which
is prohibitive as |U | ≫ N . Then the next thought is that maybe we can limit the
randomness needed to construct the hash function.

1.6 Limited independence

If we construct a family of hash functionsH then one property seems particularly
natural: for any fixed x ∈U , as one draws a function h ∼H from the family, we
want that the index h(x) is uniformly distributed over [N].

Definition 1.26. Let H be a family of hash functions from U to [N]. We say that
H is one-way independent if

Pr
h∼H

[h(x) = k] =
1

N
∀x ∈U ∀k ∈ [N]

But this property is not enough for a useful family of hash functions. For
example let hk : U → [N] be the function with hk (x) := k for all x ∈U .

[N]

U

hk

k

Then the family of hash functions H := {h1, . . . ,hN } is indeed one-way inde-
pendent but even maximizes the number of possible collisions. So we need a
stronger property:

Definition 1.27. Let H be a family of hash functions from U to [N]. We say that
H is pair-wise independent if for all distinct x1, x2 ∈U and all k1,k2 ∈ [N] one has

Pr
h∼H

[h(x1) = k1 and h(x2) = k2] =
1

N 2

Intuitively this means that only considering two entries x1, x2, h ∼ H looks
like the uniform distribution. Later we will see that we do not need this probabil-
ity to be exactly 1

N 2 ; it suffices to have an upper bound up to some small factor
α.

1.6. LIMITED INDEPENDENCE 25

Definition 1.28. Let H be a family of hash functions from U to [N]. We say that
H is α-approximately pair-wise independent if for all distinct x1, x2 ∈ U and all
k1,k2 ∈ [N] one has

Pr
h∼H

[

h(x1) = k1 and h(x2) = k2
]

≤
α

N 2

We will later explain how O(1)-approximately pair-wise independent families
can be constructed using limited randomness. But first we explain how to use
them!

1.6.1 The birthday paradox revisited

We revisit the result from Section 1.3.6 and discuss the power of the approximate
pair-wise independence.

Theorem 1.29. Let H be a family of hash functions from h : U → [N] that are α-
approximately pair-wise independent. Then for any E ⊆U with α · |E |2 ≤ N one
has

Pr
h∼H

[no collision in h|E] ≥
1

2

Proof. We write E = {x1, . . . , xn}. We will adjust the analysis from the original
birthday paradox. For indices 1 ≤ i < j ≤ n, let Yi j ∈ {0,1} denote the indica-
tor random variable telling whether h(xi) = h(x j), meaning we have a collision
for the pair. We can estimate that

E[Yi j] = Pr
h∼H

[h(xi) = h(x j)] =
∑

k∈[N]
Pr[h(xi) = k = h(x j)]
︸ ︷︷ ︸

≤ α

N 2

≤ N ·
α

N 2
=

α

N

Now, let

Y :=
∑

1≤i< j≤n

Yi j

be the total number of colliding pairs. Then

E[Y] =
∑

1≤i< j≤n

E[Yi j] ≤
(

n

2

)

·
α

N
≤

n2

2N
≤

1

2

Then by Markov’s inequality Pr[Y ≥ 1] ≤ 1
2 and so the probability of no collision

is Pr[Y = 0] ≥ 1
2 .

26 CHAPTER 1. RANDOMIZED ALGORITHMS

1.6.2 Double Hashing

We will now discuss a result of Fredman, Komlós and Szemerédi [FKS84] which
uses two levels of hash functions to create a data structure with lookup time of
O(1) and space requirement O(|E |). Given elements E ⊆ U with n := |E | we set
N := n and let H be a family if α-approximately pairwise independent hash func-
tions. Draw a hash function h ∼ H. For k ∈ [N], let Zk := |h−1(k)∩E | be the
random variable that denotes the number of elements mapped to k. For each
k ∈ [N], let Hk be another family of α-approximate hash functions, this time
from U to [Nk] where Nk := αZ 2

k
. We draw hk ∼Hk ; if there is any collision for

hk |h−1(k)∩E then we repeat the draw of hk .

[N]

U

h

k

hk

Nk slots

Note that by Theorem 1.29 the probability that there is no collision is at least 1/2
and it can be verified in time O(Nk).

If we want to look-up the position of an element x ∈ E , then we first check
position k := h(x). Then we check position hk (x) in the sub-array located at k.
The total look-up time is clearly O(1) for every element x ∈ E .

Theorem 1.30. The expected space requirement of double hashing is O(α2n).

Proof. Again, we write E = {x1, . . . , xn}. First note that the number of elements
mapped to position k is

Zk =
n∑

i=1
1h(xi)=k

1.6. LIMITED INDEPENDENCE 27

Squaring and taking expectations gives

E[Z 2
k] = E

h∼H

[(n∑

i=1
1h(xi)=k

)2]

= E
h∼H

[n∑

i=1
1h(xi)=k

︸ ︷︷ ︸

=Zk

]

+
∑

1≤i< j≤n

E
[

1h(xi)=k=h(x j)
]

︸ ︷︷ ︸

≤α/N 2

≤ E[Zk]+
α

(n
2

)

N 2

N=n
≤ E[Zk]+

α

2

where we use the property ofα-approximately independent hash functions. Then

E

[N∑

k=1
αZ 2

k

]

≤α ·N ·
α

2
+α

N∑

k=1
E[Zk]

︸ ︷︷ ︸

=n

≤O(α2n)

1.6.3 Construction of pairwise independent hash functions

After we have seen the usefulness of the concept we also want to now show how
to actually construction pairwise independent hash functions. We fix a prime
number p. For a,b ∈ {0, . . . , p − 1} we define the function fa,b : {0, . . . , p − 1} →
{0, . . . , p −1} with

fa,b(x) := ax +b mod p

We can prove that picking the parameters a,b at random gives a pair-wise inde-
pendent hash function.

Lemma 1.31. Let x, y, s, t ∈ {0, . . . , p −1} with x 6= y . Then

Pr
a,b

[

fa,b(x) = s and fa,b(y) = t
]

=
1

p2

where we draw a,b ∼ {0, . . . , p −1} uniformly at random.

Proof. We can rewrite
[

fa,b(x) = s

fa,b(y) = t

]

⇔
[

ax +b ≡p s

ay +b ≡p t

]

⇔
[

a(x − y) ≡p s − t

b ≡p s −ax

]

Now let us consider the probability that these two equations are satisfied as we
draw a,b ∼ {0, . . . , p−1}. Since x−y 6≡p 0 and p is a prime, there is a unique a that
makes a(x − y) ≡p s − t true, hence this happens with probability 1

p
. Then once

a is fixed there is a unique b that makes b ≡p s −ax true. Together this gives the
claim.

28 CHAPTER 1. RANDOMIZED ALGORITHMS

This is almost what we need to get 2-wise independent hash functions for
our setting. There is only the minor issue that we need a function h : U → [N]
instead of f : {0, . . . , p −1} → {0, . . . , p −1}. For that purpose we fix a prime p with8

|U | ≤ p ≤ 2|U |. Then we take everything modulo N instead of p while suffering a
small constant factor error.

Lemma 1.32. For |U | ≥ 4N , let p be a prime number with |U | ≤ p ≤ 2|U | and write
U = {0, . . . , |U |−1}. Let H := {ha,b : a,b ∈ {0, . . . , p −1}} be the family of functions
ha,b : U → {0, . . . , N−1} with ha,b(x) := ax+b mod N . Then H is 2-approximately
pairwise independent.

Proof. Let x, y ∈U and k ∈ {0, . . . , N −1}. Then

Pr
a,b

[ha,b(x) = ha,b(y) = k] =
∑

s,t∈{0,...,p−1},s≡N t≡N k

Pr[fa,b(x) = s and fa,b(y) = t]
︸ ︷︷ ︸

= 1
p2

=
1

p2
· |{s ∈ {0, . . . , p −1} : s ≡N k}|2 ≤

1

p2

⌈ p

N

⌉2
≤

2

N 2

We would like to point out that by taking p ≫ N we can make the hash func-
tion (1+ε)-approximately pairwise independent for any desired ε > 0. So in ap-
plications we can for the sake of the analysis pretty much assume to have exactly
pairwise independent functions as we can make any error as small as needed.

This concludes the construction of an (approximate) pairwise independent
function. One might wonder whether one could generalize the construction to
independence of larger tuples. And indeed this is possible.

Definition 1.33. A family H of functions from U to [N] to called k-wise indepen-

dent if for all distinct x1, . . . , xk ∈U and all a1, . . . , ak ∈ [N] one has

Pr
h∼H

[h(x1) = a1, . . . ,h(xk) = ak] =
1

N k

Now, fix a prime number p and for a0, . . . , ak−1 ∈ {0, . . . , p−1} we define a func-
tion fa0,...,ak−1 : {0, . . . , p −1} → {0, . . . , . . . , p −1} with

fa0,...,ak−1 (x) :=
k−1∑

i=0
ai xi mod p

8This is actually a very nontrivial statement. But the Bertrand-Chebyshev Theorem proven in
1852 says that indeed for any n ≥ 2 there is a prime number p with n < p < 2n. In fact for large
enough n, any interval [n,n+n0.525] must contain a prime number and the (unproven) Riemann
hypothesis would imply that intervals of the form [n,n +n0.5+o(1)] contain primes.

1.7. UNBIASED ESTIMATORS 29

In other words, this is a univariate polynomial of degree k −1. We take all these
polynomials to define a hash family

H :=
{

fa0,...,ak−1 : a0, . . . , ak−1 ∈ {0, . . . , p −1}
}

Then one can prove the following:

Theorem 1.34. H is k-wise independent.

We will not prove this formally but we sketch the argument.

Sketch. Fix distinct x1, . . . , xk and fix any b1, . . . ,bk ∈ {0, . . . , p −1}. Then





fa0,...,ak−1 (x1) = b1
...

fa0,...,ak−1 (xk) = bk




 ⇔

[∑k−1
i=0 ai xi

j
≡p b j∀ j = 1, . . . ,k

]

⇔











1 1 . . . 1
x1 x2 . . . xk

x2
1 x2

2 . . . x2
k

...
...

. . .
...

xk−1
1 xk−1

2 . . . xk−1
k











︸ ︷︷ ︸

=:X








a0

a1
...

ak−1







≡p








b1

b2

. . .
bk








The matrix X is also called a Vandermonde matrix. One can prove that for distinct
x1, . . . , xk , the matrix X is invertible (over Fp). That implies that there is exactly
one solution a = (a0, . . . , ak−1) to the linear system and the probability to draw
exactly that solution is 1

pk .

1.7 Unbiased estimators

We want to extend the argument from Section 1.3.5. We say that a random vari-
able X is an unbiased estimator for a number µ> 0 if E[X] =µ. We are interested
in the question how many samples from X are needed to determine µ up to some
error ε. In Section 1.3.5 we considered the absolute error i.e. we wanted to find
an s with |µ− s| ≤ ε. Now we will ask for a relative error which means finding a
number s with (1−ε)µ≤ s ≤ (1+ε)µ which typically is more useful in particular
if the number µ is small. The following quantity will be useful for that purpose:

Definition 1.35. For a random variable X with E[X] > 0 we define the relative

variance as

t (X) :=
Var[X]

E[X]2

30 CHAPTER 1. RANDOMIZED ALGORITHMS

Theorem 1.36. Let X be an unbiased estimator of µ > 0 and let ε > 0. Then by
taking k := O(t (X)

ε2) samples from X we can determine µ up to a 1±ε factor with

probability at least 9
10 .

Proof. For k := 10t (X)
ε2 , let X1, . . . , Xk be independent samples of X and let Y :=

1
k

(X1 + . . .+ Xk) be their average. Then E[Y] = E[X] = µ and using Chebychev’s
inequality (Theorem 1.14) we have

Pr[|Y −µ| > εµ] ≤
Var[Y]

(εµ)2
=

1

ε2k

Var[X]

µ2
=

t (X)

ε2k
≤

1

10

This argument uses only Chebychev’s inequality. But the samples are inde-
pendent and one might be optimistic that using the more powerful inequality of
Hoeffding (Theorem 1.18) we could prove a lower error probability than a con-
stant such as 1

10 . For example we would like to prove that k = Θ(log(1/δ) t (X)
ε2)

samples suffices so that Pr[|Y −µ| ≤ εµ] ≥ 1−δ. But Theorems 1.18 and 1.19 re-
quire a fixed interval that contains any outcome of the random samples. And
indeed this is needed as X might have heavy tails.

Let us consider the following example. We draw Z ∼ (0,1] uniformly at ran-
dom and set X := 1

Z 1/4 . Then µ := E[X] =
∫1

0
1

x1/4 d x = 4
3 and

Var[X] ≤ E[X 2] =
∫1

0

1

x1/2
d x = 2

Now if Y is the average of k samples of X , then

Pr[|Y −µ| ≥ εµ] ≥ Pr
[

Z ≤
(1

k
·

4

3
ε
)4]

=Θ

(ε4

k4

)

because a single outlier sample might already ruin the average. The trick is to
take ℓ-batches of k-samples each. From each batch we take the average, then we
take the median of those averages.

Theorem 1.37. Let ε,µ > 0, 0 < δ < 1 and let X be an unbiased estimator of µ.
Then with Θ(t (X)

ε2 log 1
δ

) many independent samples of X one can construct a
number Z so that Pr[|Z −µ| ≤ εµ] ≥ 1−δ.

Proof. We assume log(1
δ

) ≥ 1. Let k := 10t (X)
ε2 . Recall that if Y is the average of k

samples from X , then by Theorem 1.36 we know that

Pr[(1−ε)µ≤ Y ≤ (1+ε)µ] ≥
9

10

1.7. UNBIASED ESTIMATORS 31

Now, for a parameter ℓ ∈N that we determine later, we draw ℓmany independent
samples of Y that we call Y1, . . . ,Yℓ. Then let M denote the median of Y1, . . . ,Yℓ.

b b b

bb b

Y1

bb b
Yℓ

M

⇓
(1−ε)µ (1+ε)µ

Claim. One has Pr[|M −µ| ≥ εµ] ≤ e−ℓ/8.

Proof of Claim. For i = 1, . . . ,ℓ we define the indicator random variable

Zi :=
{

1 if (1−ε)µ≤ Yi ≤ (1+ε)µ

0 otherwise

Then we know that Pr[Zi = 1] ≥ 9
10 for all i . If the median M does not lie in the

interval [(1−ε)µ, (1+ε)µ] then at least half the Yi ’s need to lie outside of it and so
∑ℓ

i=1 Zi ≤ ℓ
2 . But Hoeffding’s Inequality we have

Pr
[ℓ∑

i=1
Zi ≤

ℓ

2

]

≤ Pr
[∣
∣
∣

ℓ∑

i=1
Zi −E

[ℓ∑

i=1
Zi

]∣
∣
∣≥

ℓ

4

]

≤ e−ℓ/8

Then choosing ℓ := 8log(1/δ) gives the claim.

We want to describe one application. Suppose we have a set A ⊆ Rd and we
would like to compute its volume that we denote by Vold (A). But we assume
that the only access to A that we have is that for any given point x ∈ Rd we can
test whether x ∈ A or not. Additionally let us assume that there is a set B with
A ⊆ B ⊆Rd so that we can efficiently sample a point from B .

A

B

The we can obtain the following:

32 CHAPTER 1. RANDOMIZED ALGORITHMS

Theorem 1.38 (Monte Carlo method). Let A ⊆ B ⊆Rd . From k :=O(Vold (B)
Vold (A) ·

log(1/δ)
ε2)

many uniform samples from B one can determine Vold (A) up to a 1±ε factor with
probability 1−δ.

Proof. Let p be a uniform random point from B and let X be the indicator ran-
dom variable {

1 if p ∈ A

0 otherwise

Next, define Y := Vold (B) · X . Then E[Y] = Vold (B) · E[X] = Vold (B) · Vold (A)
Vold (B) =

Vold (A). Hence Y is an unbiased estimator of Vold (A). Using that relative vari-
ance is scaling-invariant9 we have

t (Y) = t (X) =
Var[X]

E[X]2
≤ E[X 2]

E[X]2
=

Vold (A)/Vold (B)

(Vold (A)/Vold (B))2
=

Vold (B)

Vold (A)

Then the claim follows from Theorem 1.37.

1.8 Streaming

We will see a non-trivial application of the unbiased estimator result. Suppose
we have a streaming setting where we see a stream of data but the amount of
data is so huge that we cannot hold it all in our memory and we also can see the
stream only once. The goal in streaming algorithms is to still be able to answer
certain questions about the data stream while using very limited memory.

More concretely, suppose U = {1, . . . , |U |} is a huge universe of numbers and
the data stream consists of numbers x1, . . . , xn ∈U that we see one after the other.
For i ∈U , let

fi := # of times that i appears in x1, . . . , xn

denote the frequency of element i . We also define

Fk :=
|U |∑

i=1
f k

i

where we make the convention of 00 = 0. Then Fk is the kth moment of the fre-
quency vector f = (f1, . . . , f|U |). In particular

• F0 is the number of distinct elements in the sequence.

9I.e. for any random variable X > 0 and any constant s > 0 one has t (sX) = Var[sX]
E[sX]2 = s2Var[X]

s2 E[X]2 =
t (X).

1.8. STREAMING 33

• One as F1 = n.

• F2 is the second moment vector of f .

There is a trivial algorithm to compute each Fk : we have a counter for each num-
ber fi ∈U and simply count what fi is. But that takes O(|U | log(n)) space which
is prohibitive. We will instead prove the following remarkable result

Theorem 1.39 (Alon, Matias, Szegedy [AMS96]). There is a streaming algorithm

for a sequence x1, . . . , xn ∈U that with space O(log(n|U |)
ε2 · log(1

δ
)) computes a 1±ε

approximation to F0 and F2 with probability 1−δ.

We leave the case of F0 for the homework and prove how to approximately
compute F2.

Here is an observation that is going to be the basis of out streaming algorithm:

Lemma 1.40. Let f ∈ RU . For all i ∈ U , draw h(i) ∼ {−1,1} independently and
uniformly at random for all i ∈U and set Y :=

∑

i∈U fi h(i). Then E[Y 2] =
∑

i∈U f 2
i

.

That means Y 2 is an unbiased estimator for the quantity F2. Moreover Y

can be computed by simply adding up h(x j) in each step. However there is one
issue which is that drawing a random function h and keeping it in our memory
would require O(|U |) space which again is more than we have. So the next trick
we use is that it suffices to have a function h which is O(1)-wise independent.
Combining Theorem 1.34 and Lemma 1.32 with N = 2 immediately gives that
for any fixed k one can construct a family H of functions h : U → {−1,1} that
is (1+ ε′)-approximately k-wise independent. Here one can make the error ε′

so small that it is irrelevant (in fact it can even be of the order ε′ = 1
poly(|U |,n)).

Another subtle point is that the family H constructed via Theorem 1.34 is not
just k-wise independent for a fixed k, but it is 1-wise, 2-wise, 3-wise,. . . ,k-wise
independent. We will now return to our streaming application and justify that
being O(1)-wise independent is enough for us:

Lemma 1.41. Fix any f ∈ RU and let H be a family of function h : U → {−1,1}
that is 1-wise, 2-wise and 4-wise independent. Then the random variable Y :=
∑

i∈U fi h(i) satisfies:

(i) One has E[Y 2] = ‖ f ‖2
2

(ii) One has Var[Y 2] ≤ 2‖ f ‖4
2

34 CHAPTER 1. RANDOMIZED ALGORITHMS

Proof. First we prove (i). For distinct i , j ∈U one has E[h(i)h(j)] = 0. Hence

E[Y 2] = E

[(∑

i∈U

fi h(i)
)2]

=
∑

i∈U

f 2
i E[h(i)2]

︸ ︷︷ ︸

=1

+
∑

i , j∈U :i 6= j

fi f j E[h(i)h(j)]
︸ ︷︷ ︸

=0

= ‖ f ‖2
2

Next we show (ii). We have

E[Y 4] = E

[(∑

i∈U

fi h(i)
)4]

=
∑

i1,i2,i3,i4∈U

fi1 fi2 fi3 fi4 E[h(i1)h(i2)h(i3)h(i4)]

(∗)=
(

4

2

)

∑

i , j∈U :i< j

f 2
i f 2

j +
∑

i∈U

f 4
i

where it remains to justify (∗). Since h is 4-wise independent, one has E[h(i1)h(i2)h(i3)h(i4)] =
E[g (i1)g (i2)g (i3)g (i4)], where g : U → {−1,1} is a (truly) uniform random func-
tion. If there is any index, say i1, that appears with multiplicity 1 in i1, i2, i3, i4,
then we can pull it out and E[g (i1)g (i2)g (i3)g (i4)] = E[g (i1)]·E[g (i2)g (i3)g (i4)] = 0.
So the only non-zero terms must come from the cases that 2 indices appears
twice and from the case that i1 = i2 = i3 = i4. For any ordered pair of indices
i < j there are

(4
2

)

= 6 possible permutations. We continue the estimate on the
variance:

Var[Y 2] = E[(Y 2)2]−E[Y 2]2

= 6
∑

i , j∈U :i< j

f 2
i f 2

j +
∑

i∈U

f 4
i −

(∑

i∈U

f 2
i

)2
= 4

∑

i , j∈U :i< j

f 2
i f 2

j ≤ 2
(∑

i∈U

f 2
i

)2

For an error of say δ = 1
10 the streaming algorithm that estimates F2 is as fol-

lows:

SINGLE ESTIMATE STREAMING ALGORITHM TO APPROXIMATE F2

Input: Parameter ε> 0. Data stream x1, . . . , xn ∈U

Output: Estimate on F2 with error ε and error probability 1
10

(1) For k := Θ(1
ε2), independently draw functions h1, . . . ,hk : U → {−1,1}

so that each individual hi is 1-wise, 2-wise, 4-wise independent.
(2) Set Y1 := Y2 := . . . := Yk := 0
(3) For i = 1 to n

(4) Read xi from the stream

(5) FOR j = 1 to k DO update Y j := Y j +h j (xi)

(6) Return the average of Y 2
1 , . . . ,Y 2

k

1.8. STREAMING 35

Then the error probability can be brought down by taking the median of inde-
pendent runs:

STREAMING ALGORITHM TO APPROXIMATE F2

Input: Parameters ε,δ> 0. Data stream x1, . . . , xn ∈U

Output: Estimate on F2 with error ε and error probability δ.
(1) Run SINGLE ESTIMATE independently in parallel s := 8log(1/δ) times.

Let Z (1), . . . , Z (s) be the returned values
(2) Return the median value in Z (1), . . . , Z (s).

The correctness follows from the earlier discussion. Now, let us discuss the mem-
ory requirement. Each counter takes on values in {−n|U |, . . . ,n|U |} and needs
O(log(n|U |)) bits. Each hash function needs O(log |U |) bits. We need to keep
sk =Θ(1

ε2 log 1
δ

) counters and hash functions in memory. That gives the claim.

36 CHAPTER 1. RANDOMIZED ALGORITHMS

Chapter 2

The curse of dimensionality and

dimension reduction

In this chapter, we want to discuss geometric problems and algorithms.

2.1 The nearest neighbor problem

The nearest neighbor problem is the following: We are given a set of points P ⊆Rd

with n := |P |. We are allowed to do some preprocessing and construct a data
structure so that we can answer the following query: for an incoming query point
q ∈Rd , find a point p ∈ P that attains

min
p∈P

dist(p, q)

q

p ∈ P

Example for d = 2 and dist being Euclidean distance

Here depending on the application, the distance metric dist might be the Eu-
clidean distance, the maximums norm ‖ · ‖∞ or the Manhattan norm ‖ · ‖1. One
can imagine that this problem may appear as a frequent subproblem in applica-
tions where one has to deal with large point sets.

37

38CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

A popular data structure to such a maintain geometric point sets is a k-d tree.
This data structure is constructed as follows: we select a coordinate i ∈ [d] and a
point p∗ ∈ P . Then we split the remaining points into P \ {p∗} = P−∪P+ where
P− := {p ∈ P \ {p∗} | pi ≤ p∗

i
} and P+ = {p ∈ P \ {p∗} | pi > p∗

i
}. Then we recurse on

P− and P+. In terms of how to select that point p∗ and the coordinate, a good rule
seems to be to cycle through the coordinates i = 1, . . . ,d and pick a split point p

so that pi is the median of the coordinates pi . This naturally induces a tree with
root p∗ and it also induces a partition of Rd into cells.

p∗

P− P+

partition of Rd

p∗

P− P+

k-d tree

Assuming we use the median splitting point, the depth of the tree will be O(logn).
Then given a query point q we can find the cell containing q in time O(logn) by
going down the tree, starting at the root. There is also a heuristic algorithm to
use a k-d tree to find a nearest neighbor. The idea is that given a query point q ,
if we have already found a point p ′, then any cell whose minimum distance to q

is at least dist(q, p ′) can be pruned. To be the best of my knowledge, there is no
good worst case analysis for the query time for such an algorithm but there and
those papers that assume that the query point q is drawn random from some
distribution and even assuming randomness the query times scale proportional
to 2d .

We want to give a intuitive argument where this exponential dependence
might come from. Suppose that P ⊆ Rd with |P | ≤ 2d and our k-d tree has led
to the partition of Rd into the 2d many open cells corresponding to the quad-
rants (i.d. their boundaries are the hyperplanes xi = 0 for i = 1, . . . ,n). Now draw
a random point q ∼ [−1,1]d and suppose we want to use the k-d tree partition to
decide whether P contains a point at ‖ · ‖∞-distance at most 0.4. First note that
for every fixed p ∈ P one has Prq [‖p − q‖∞] ≤ 0.4d and so very likely there is no
point in P at distance at most 0.4 to q . On the other hand consider the indices
I := {i ∈ [d] : |qi | ≤ 0.4}. Very likely one has say |I | ≥Ω(d). Then q +0.4 · [−1,1]d

intersects 2|I | = 2Θ(d) of the cells.

2.1. THE NEAREST NEIGHBOR PROBLEM 39

[−1,1]d

q

0.4

That means any algorithm based on the k-d tree needs to search in 2Θ(d) many
cells for a nearest point in P . Similar running time blow ups appear in many ge-
ometry based problems. This is typically refered to as the curse of dimensionality.

In the following, we want to describe a clever approach for our problem that
circumvents this curse of dimensionality. First we relax the problem and only re-
quire to find an approximately closest point. We also make a concrete choice for
the distance function and restrict the points to be from {0,1}d . This will simplify
notation and we will visit extensions in the homework.

Approximate Nearest Neighbor Search AN N S(c,r). Given a set of points
P ⊆ {0,1}d , the distance metric dist(x, y) := ‖x − y‖1 and a parameter
r > 0. Build a data structure so that for an incoming query point q ∈
{0,1}d with dist(q,P) ≤ r we can produce a point p ∈ P with dist(p, q) ≤
c · r .

Here c > 1 is the error that we allow ourselves. Note that for points x, y ∈ {0,1}d ,
the quantity ‖x − y‖1 simply tells the number of coordinates in which x and y

differ.

{0,1}n

2.1.1 Locally sensitive hash functions

The idea is to use a locally sensitive hash function, which means a hash function
h where the value h(p) depends on the coordinates of the point p.

40CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

Lemma 2.1. There is a family H of functions of the form h : {0,1}d → {0,1} so that
for all p, q ∈ {0,1}d :

Pr
h∼H

[h(p) = h(q)] = 1−
‖p −q‖1

d

Proof. Let hi : {0,1}d → {0,1} be the function with hi (p) := pi , i.e. the function
returns the i th coordinate. Set H := {h1, . . . ,hd }. Then

Pr
h∼H

[h(p) = h(q)] =
|{i ∈ [d] : pi = qi }|

d
= 1−

‖p −q‖1

d

However, for points p, q , the cases ‖p−q‖1 ≤ r vs ‖p−q‖1 ≥ cr lead to at most
a constant factor gap in the probability of being mapped to the some value (and
that only if r =Θ(d)). This would not be enough to be helpful for our setting. The
next trick is to amplify this gap!

Let H be the family of d hash functions from Lemma 2.1. For parameters
k,ℓ ∈N that we decide later, we draw k ·ℓ many hash function hi , j ∼H for i ∈ [ℓ],
j ∈ [k] and we write

h(p) := (hi , j (p))i∈[ℓ], j∈[k] = (h1(p)
︸ ︷︷ ︸

∈{0,1}k

, . . . ,hℓ(p)) (2.1)

We think of each hi (p) ∈ {0,1}k as a block, i.e. we have ℓ blocks.

h(p) =

h1(p) hℓ(p)k cells

Using this combined has function h will increase the previous gap drastically:

Theorem 2.2. Let p, q ∈ {0,1}d and let cr ≤ d and c ≥ 8. Let h be a random hash
function as in (2.1) for suitable choices of k and ℓ. Then

(i) If ‖p, q‖1 ≤ r then Prh[∃ block i : hi (p) = hi (q)] ≥ 1− 1
n2

(ii) If ‖p −q‖1 ≥ cr then Prh[∃ block i : hi (p) = hi (q)] ≤ 1
n2

2.1. THE NEAREST NEIGHBOR PROBLEM 41

Proof. For a fixed block i ∈ [ℓ] the probability to have a collision is

Pr[hi (p) = hi (q)] =
∏

j∈[k]
Pr[hi j (p) = hi j (q)]

Lem 2.1=
(

1−
‖p −q‖1

d

)k







≥
(

1− r
d

)k
if ‖p −q‖1 ≤ r

≤
(

1− cr
d

)k
if ‖p −q‖1 ≥ cr

(∗)

{

≥ exp(−2kr /d) if ‖p −q‖1 ≤ r

≤ exp(−kcr /d) if ‖p −q‖1 ≥ cr

k:= 4d ln(n)
cr=

{
1

n8/c if ‖p −q‖ ≤ r
1

n4 if ‖p −q‖1 ≥ cr

In (∗) we use that 1− x ≤ e−x for all x ∈ R for the upper bound. For the lower
bound we use 1− x ≥ e−2x for 0 ≤ x ≤ 1

2 and the fact that r
d
≤ 1

2 . The reader may
note that we have increased the constant gap from Lemma 2.1 to a polynomial
gap. Unfortunately now both bounds are ≪ 1 so we need to increase the collision
probability by having many blocks.

For this purpose we set ℓ := 2ln(n) ·n8/c . For (i) we have

Pr[∃i ∈ [ℓ] : hi (p) = hi (q)] ≥ 1−
(

1−
1

n8/c

)ℓ
≥ 1−exp

(

−
ℓ

n8/c

)

= 1−
1

n2

using again 1−x ≤ e−x for all x meaning that we have boosting the collision prob-
ability to close to 1. For (ii) we get Pr[∃i ∈ [ℓ] : hi (p) = hi (q)] ≤ ℓ · 1

n4 ≤ 1
n2 using

the union bound.

Here the assumption of c ≥ 8 was arbitrary; one can make the argument work
with any c > 1 at the expense of the other parameters.

LSH ALGORITHM

Input: Points P ⊆ {0,1}d , parameters r > 0 and c > 2.
Preprocessing:

(1) Draw hash function h (consisting of k ·ℓ individual functions)
(2) For all i , sort {hi (p) : p ∈ P } (interpreting these as numbers)

Query: q ∈ {0,1}d

(1) Compute h(q)
(2) FOR all i , use binary search to find a point p ∈ P with hi (p) = hi (q).

Return the first that was found.

42CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

Theorem 2.3. The data structure answers queries correctly with high probability;
it uses memory Õ(n1+8/c) and the query time is Õ(n2/c) where Õ hides polyloga-
rithmic terms.

Proof. For correctness, suppose that there is a point p∗ ∈ P with ‖p∗− q‖1 ≤ r .
Then by Theorem 2.2.(i) with high probability there is a block i so that hi (p∗) =
hi (q). On the other hand, by Theorem 2.2.(ii) and the union bound over n points
in P , there is no p ∈ P with ‖p − q‖1 ≥ cr so that for some i one would have
hi (p) = hi (q). That means the only colliding points have distance ≤ cr and the
algorithm returns one of those.

Next, we note that the data structure has size ℓ ·k ·Θ(n) = O(d 2 ln(n)n1+8/c)
which is the amount to store the hash function values for the n points. For a
query we need to do ℓ binary searches with vectors of bit length k, so the query
time is O(log3(n) ·d ·n8/c).

2.2 Volume in higher dimensions

We want to define a few useful high dimension objects. For a point c ∈ Rd (the
center) and a radius r > 0 we define:

• The Euclidean ball B d
2 (c,r) := {x ∈Rd | ‖x − c‖2 ≤ r }

• The ℓ∞ ball (or cube) B d
∞(c,r) := {x ∈Rd | ‖x − c‖∞ ≤ r }

• The ℓ1 ball is B d
1 (c,r) := {x ∈Rd | ‖x − c‖1 ≤ r }.

We also abbreviate B d
2 := B d

2 (0,1), B d
∞ := B d

∞(0,1) and B d
1 := B d

1 (0,1) as the cor-
responding balls of radius 1 centered at the origin. For d = 2 the picture is as
follows:

0

B d
1

0

B d
2

0

B d
∞

We also define Sd−1 := {x ∈ Rd | ‖x‖2 = 1} as the sphere in Rd . Note that even
though this object lives in Rd it is (d −1)-dimensional and so for historic reasons
it is common to use d −1 as index.

2.2. VOLUME IN HIGHER DIMENSIONS 43

0

Sd−1 for d = 2

1

We define the volume or Lebesgue measure of a set D ⊆Rd as

Vold (D) :=
∫

D
1 d x

In dimension d = 2 this corresponds to the area. We note that for any center c

and any radius r one has

B d
1 (c,r) ⊆ B d

2 (c,r) ⊆ B d
∞(c,r)

By looking at a 2-dimensional or 3-dimensional picture one would get the im-
pression that while the cube B d

∞(c,r) is larger than the Euclidean ball B d
2 (c,r), it

does not seem to be much larger. But this intution is wrong in higher dimensions.
We will fill in the details:

Lemma 2.4. In dimension d , one has
Vold (B d

2)

Vold (B d
∞)

≤ e−Θ(d).

Proof. We use a Monte Carlo argument: we draw a uniform point x ∼ B d
∞ (which

means we draw x1, . . . , xd ∼ [−1,1] independently) and upper bound the probabil-
ity of landing in B d

2 , i.e. we need to prove that1 Pr[
∑n

i=1 x2
i
≤ 1] is tiny. Let Xi := x2

i
.

Then 0 ≤ Xi ≤ 1 for any outcome and E[Xi] =
∫1
−1 t 2d t = 1

3 t 3|1t=−1 = 2
3 . Hence

X := X1 + . . .+Xd has E[X] = 2
3 d . Then by Hoeffding Inequality II (Theorem 1.20)

one has

Pr[x ∈ B d
2] = Pr[X ≤ 1] ≤ Pr

[

|X −E[X]]| ≥
d

3
−1

]

Thm 1.20
≤ 2exp

(

−2 ·
(d

3 −1)2

d · (1−0)

)
d≥5
≤ 2exp

(

−2 ·
d

18

)

This bound is not actually tight. Clearly Vold (B d
∞) = 2d . Computing the vol-

ume of the Euclidean ball takes much more care, but one can prove that for even

d one has Vold (B d
2) = πd/2

(d/2)! . From this one can derive that

Vold (B d
2)

Vold (B d
∞)

≤ d−Θ(d)

1Here it will be useful to drop the
p·

44CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

For the interested reader we recommend the excellent survey by Ball [Bal97] which
covers volumes in higher dimensions in detail.

2.3 Nearly orthogonal vectors

We want to discuss a different phenomenon where the high dimensional case
behaves very differently from what one might expect from a 2-dimensional figure.
We could ask how many distinct non-zero vectors can one have in Rd that are
pairwise orthogonal? The answer is (as one might expect) d and it is attained for
example for the standard basis e1, . . . ,ed . Now we relax the problem and ask how
many vectors v (1), . . . , v (m) ∈ Rd can one have that are nearly orthogonal, say the
pairwise angles are between 89◦ and 91◦. Even though the answer seems to be
the same for say d = 2 and d = 3, in higher dimension d the answer is 2Θ(d).

Theorem 2.5. For any ε > 0, there are v (1), . . . , v (m) ∈ Sd−1 with m ≥ eΘ(d/ε2) and
| 〈v (i), v (j)〉 | ≤ ε for all i 6= j .

0 v (i)

v (j)

·
≤ ε

Proof. We choose the vectors v (1), . . . , v (m) independently and uniformly from
{− 1p

d
,+ 1p

d
}d . Note that indeed ‖v (i)‖2 = 1 for all i = 1, . . . ,m. We need to prove

that very likely, the vectors are pairwise orthogonal. It suffices to analyze a sin-
gle pair: Claim. Fix u ∈ { 1p

d
,+ 1p

d
}d . Draw v ∼ { 1p

d
, 1p

d
}d . Then Pr[| 〈u, v〉 | ≥ ε] ≤

2e−2dε2
.

Proof of Claim. Set Xk := uk vk . Then we can write X := 〈u, v〉 =
∑d

k=1 uk vk =
∑d

k=1 Xk . Note that X1, . . . , Xd are independent and each Xk attains the values − 1
d

and 1
d

with equal probability. In particular E[Xk] = 0. Then using again Hoeffding
Inequality II, we have

Pr[|X | ≥ ε] ≤ 2exp
(

−2
ε2

d · (1/d)2

)

= 2exp(−2dε2)

2.4. INTRODUCTIONS TO GAUSSIANS 45

Now back to the main argument. Let p := 2exp(−2dε2). Choose m so that m2p ≤
1
2 . Then by the union bound,

Pr[∀i 6= j : | 〈v (i), v (j)〉 | ≤ ε] = 1−Pr[∃i 6= j : | 〈v (i), v (j)〉 | > ε] ≥ 1−
(

m

2

)

·p ≥
1

2

2.4 Introductions to Gaussians

The 1-dimensional (standard) Gaussian distribution N (0,1) is the distribution
on R that has the density function 1p

2π
e−x2/2.

0.2

0.4

0.6

0 1 2 3−1−2−3

x

1p
2π

e−x2/2

Gaussian density

A d-dimensional Gaussian random vector g ∈Rd is a vector where all coordinates
are drawn independently from N (0,1). Note that the density function of such
a Gaussian random vector must be the product of the density functions of its
coordinates2. Hence the density at x ∈Rd is

d∏

i=1

1
p

2π
e−x2

i
/2 =

1

(2π)d/2
e−‖x‖2

2/2 (2.2)

We make a definition:

Definition 2.6. A distribution D over Rd is called rotationally invariant if the
distribution of 〈u, v〉 with u ∼D is the same for all v ∈ Sd−1.

We have seen in (2.2) that the Gaussian density at a point x only depends on
‖x‖2 and not on the direction of x which should mean that the distribution is
rotationally invariant. We will verify that this intuition is indeed correct. First,
recall that the sum of independent Gaussians is again Gaussian.

2This holds more generally for any product distribution, i.e. any vector whose coordinates are
independently distributed.

46CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

Lemma 2.7. Let α,β ∈ R and let g1 ∼ N (µ1,σ2
1) and g2 ∼ N (µ2,σ2

2) be two in-
dependent Gaussians. Then αg1 +βg2 has the same distribution as N (αµ1 +
βµ2,α2σ2

1 +βσ2
2).

One can prove this by inspecting the density function of the sum, which we
skip here.

Lemma 2.8. The Gaussian (standard) distribution is rotationally invariant. In
particular for any v ∈ Sd−1 and a Gaussian random vector g ∈Rd one has 〈g , v〉 ∼
N (0,1).

Proof. Recall that g = (g1, . . . , gd) where the coordinates have been independently
drawn from N (0,1). Then

〈v, g 〉 =
d∑

i=1
vi gi

Lem 2.7∼ N (0, v2
1 + . . .+ v2

d) =N (0,1)

We also would like to mention that one can define a (non-standard) Gaussian
with mean µ ∈Rd and a positive definite3 covariance matrix Σ ∈Rd×d that has the
density

1
p

det(2πΣ)
exp

(

−
1

2
(x −µ)T

Σ
−1(x −µ)

)

If X = (X1, . . . , Xd) is a random vector with that density then E[X] =µ and E[X X T] =
Σ. It is worth noting that for µ= 0 and Σ= Id we recover the standard Gaussian.
We also would like to mention that whenever Σ is not a scalar of the identity ma-
trix Id , then the (non-standard) Gaussian is not rotationally invariant.

2.5 More on rotationally invariant distributions

We can also give an alternative characterization of rotationally invariant distribu-
tions.

Definition 2.9. A matrix R ∈ Rn×n is called a rotation matrix if ‖Rx‖2 = ‖x‖2 for
all x ∈Rn .

In dimension n = 2 the matrix

R =
[

cosθ −sinθ

sinθ cosθ

]

3We will define and discuss this term later.

2.6. CONCENTRATION OF MEASURE FOR GAUSSIANS 47

can be seen to be a rotation matrix. Note that R is the matrix that rotates a point
x by degree θ (hence the name rotation matrix).

0

x

Rx

θ

One can prove that every rotation matrix in n = 2 is of this form. Note that the
columns of R have Euclidean length (cos(θ)2+sin(θ)2)1/2 = 1 and they are orthog-
onal. This observation can be generalized. We say that vectors v1, . . . , vm ∈Rd are
orthonormal if ‖vi‖2 = 1 for all i = 1, . . . ,m and 〈vi , v j 〉 = 0 for all i 6= j .

Lemma 2.10. Let R ∈Rn×n . Then the following two conditions are equivalent:

(i) R is a rotation matrix.

(ii) The columns R1, . . . ,Rn are orthonormal.

Proof. We first prove the easier direction, which is (i i) ⇒ (i). If the columns
of R are orthonormal one can see that RT R = In . Then for any x ∈ Rn one has
‖Rx‖2

2 = (Rx)T (Rx) = xT RT Rx = xT In x = ‖x‖2
2. Now we show (i) ⇒ (i i). Since R

is a rotation matrix we know that for all i ∈ [n] one has ‖R i‖2
2 = ‖Rei‖2

2 = ‖ei‖2
2 = 1.

Next, for i 6= j one has

‖R i‖2
2

︸ ︷︷ ︸

=1

+‖R j‖2
2

︸ ︷︷ ︸

=1

+2〈R i ,R j 〉 = ‖R i +R j‖2
2 = ‖R(ei +e j)‖2

2 = ‖ei +e j‖2
2 = 2

from which one derives that 〈R i ,R j 〉 = 0.

2.6 Concentration of measure for Gaussians

Random Gaussians are often used in randomized algorithms. Other than rota-
tion invariance, they have remarkable concentration properties. If we draw a ran-
dom Gaussian X = (X1, . . . , Xd), i.e. Xi ∼N (0,1), then E[‖X ‖2

2] =
∑d

i=1E[X 2
i

] = d .
Deviating much from this expectation is unlikely:

48CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

Theorem 2.11. Let X = (X1, . . . , Xd) be a standard Gaussian random vector and
let 0 < ε< 1. Then

Pr
[

|‖X ‖2
2 −d | ≥ εd

]

≤ 2exp
(

−
dε2

8

)

We skip the proof. Note that it does not directly follow from Hoeffdings In-
equality (Theorem 1.18) because there is no fixed value M with |Xi | ≤ M . But
one can modify the proof strategy of Theorem 1.19 and show that for each co-
ordinate i and each t > 0 one has E[e t Xi] = e t 2/2; the rest of the proof is then
straightforward.

We will now use Theorem 2.11 to show that in dimension d , 99% of the vol-
ume of B d

2 lie along a narrow belt of width O(1p
d

).

Theorem 2.12. Let u ∈ Rd be a vector with ‖u‖2 = 1 and let t ≥ 1. The fraction of
the volume of B d

2 that lies above the hyperplane H = {x ∈ Rd | 〈x,u〉 ≥ tp
d

} is at

most e−Θ(t 2).

tp
d

u

H

0 1

Proof. It suffices to prove the claim for a point drawn from the surface of B d
2

rather than the interior (since stretching a point until it lies on the boundary may
only increase the absolute value of the inner product with u). Since the Gaussian
is rotationally invariant, g

‖g‖2
is a uniform random point4 from Sd−1. By rotational

invariance we may also assume that u = e1. Then

Pr
[

〈u,
g

‖g‖2
〉 ≥

t
p

d

]

= Pr
[

g1 ≥
t

p
d
‖g‖2

]

≤ Pr
[

g 2
1 ≥ t 2 ‖g‖2

2

d

]

=: (∗)

The latter expression is somewhat inconvinient as it contains the two random
variables g 2

1 and ‖g‖2
2 on both sides. But then we already know from Theorem 2.11

that ‖g‖2
2 is very unlikely to be as large as say d

2 . Hence we can use the union
bound to get

(∗) ≤ Pr
[

g 2
1 ≥

t 2

2

]

+Pr
[

‖g‖2
2 ≤

d

2

]
t≥1
≤ e−Θ(t 2) +e−Θ(d)

4Well one might argue that this is not well defined if ‖g‖2 = 0. But as the Gaussian is a contin-
uous distribution and hence the probability of g = 0 is equal to 0.

2.7. DIMENSION REDUCTION 49

Here to bound the first term, we use the following fact that can be derived from
the density function of the Gaussian.
Fact. For any s > 0 and X ∼N (0,1) one has Pr[X ≥ s] ≤ 1p

2πs
e−s2/2.

The claim then follows whenever t ≤
p

d . However, if t >
p

d then the probability
of the event in question is 0 since B d

2 does not contain any point of length tp
d
> 1.

That finishes the argument.

2.7 Dimension reduction

Finally we want to give a positive result that is often used to design faster algo-
rithms when dealing with high dimensional data. Suppose we have a set of points
x1, . . . , xn ∈Rd that we need to do certain computations with. Typically any single
“atomic” computation involving vectors costs running time Θ(d). So it would be
wonderful if we could reduce the dimension of the vectors. Any embedding into
any lower dimensional space will incur some error. But if the only quantity that
needs to be preserved are Euclidean distances ‖xi − x j‖2 up to some 1±ε error

then one can reduce the dimension to O(logn

ε2).

Theorem 2.13 (Johnson Lindenstrauss Projection). Let 0 < ε ≤ 1. For any points

x1, . . . , xn ∈Rd there is a linear map T : Rd →Rk with k :=Θ(logn

ε2) so that

(1−ε)‖xi −x j‖2 ≤ ‖T (xi)−T (x j)‖2 ≤ (1+ε)‖xi −x j‖2 ∀i , j ∈ [n]

Proof. We define our map T as T (x) := Gx where G ∈ Rk×d is a matrix where all
entries are chosen independently as Gi j ∼N (0, 1

k
).

It remains to prove that this choice of T works with high probability for an ap-
propriate choice of k. First we want to understand how T (y) behaves for a fixed
vector y ∈Rd .
Claim I. For fixed y ∈ Rd , T (y) is a random vector with independent coordinates

where for each i ∈ [k], T (y)i is distributed as N (0,
‖y‖2

2
k

).

Proof of Claim I. First we note that the i th coordinate of T (y) is

T (y)i = 〈Gi , y〉 =
k∑

j=1
Gi j y j ∼N

(

0,
‖y‖2

2

k

)

by Lemma 2.7. Then the independence follows from the fact that the rows of G

are drawn independently.

In particular for any y ∈Rd one has E[‖T (y)‖2
2] =

∑k
i=1E[T (y)2

i
] = k · ‖y‖2

2
k

= ‖y‖2
2

which means that T (y) has the correct expected length. Next, we prove that the

50CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

length also concentrates well around its expectation.
Claim I. For any y ∈Rd one has Pr[|‖T (y)‖2 −‖y‖2| > ε‖y‖2] ≤ e−ε2k/8.

Proof of Claim. The claim is invariant under scaling y , hence we may assume
that ‖y‖2 = 1. Then

Pr
[

1−ε≤ ‖T (y)‖2 ≤ 1+ε
]

= Pr
[

(1−ε)2 ≤ ‖T (y)‖2
2 ≤ (1+ε)2]

≥ Pr
[

1−ε≤ ‖T (y)‖2
2 ≤ 1−ε

] Thm 2.11
≥ 1−2exp

(

−
ε2k

8

)

where we use that (1+ ε)2 ≥ 1+ ε and (1− ε)2 ≤ 1− ε for all 0 ≤ ε ≤ 1. We note
that T (y) is a 1p

k
-scaling of a standard Gaussian random vector and so the claim

follows from Theorem 2.11.
Then applying the union bound and using Claim II for all difference vectors

xi −x j we obtain

Pr
[

∃i 6= j :
∣
∣
∣

‖T (xi)−T (x j)‖2

‖xi −x j‖2
−1

∣
∣
∣> ε

]

≤
∑

1≤i< j≤n

Pr
[‖T (xi −x j)‖2

‖xi −x j‖2
> ε

]

Claim I
≤ n2 ·2exp(ε2k/8)

k:= 8ln(4n3)
ε2

=
1

2n

Note that we use linearity of T .

The reader may note that while the embedding guarantees to preserve that
for the

(n
2

)

many difference vectors one has ‖T (xi − x j)‖2 ≈ ‖xi − x j‖2, it is not
possible to preserve the length of all vectors. As long as k < d , there will always
be a non-zero vector u with Gu = 0 and so ‖T (u)‖2 = 0.

On the other hand one might wonder what other random embeddings T :
Rd → Rk one could have used. For example one could pick a set I ⊆ [d] of |T | =
k indices at random and set T (x) :=

√
d
k
· (xi)i∈I . Note that each coordinate is

selected with probability k
d

and so for any y one has E[‖T (y)‖2
2] =

∑d
i=1 Pr[i ∈ I] ·

(
√

d
k

yi)2 = ‖y‖2
2. Hence this embedding also gets the expectation correct. But the

length does not concentrate well. For example the vector e1 = (1,0, . . . ,0) has

‖T (e1)‖2
2 =

{
d
k

with probability k
d

0 otherwise

A different construction that does work however is to choose a uniform random
subspace V ⊆ Rd of dimension k := Θ(ln(n)

ε2), project the points and then scale

by
√

d
k

. That means T is defined by T (y) :=
√

d
k
·ΠV (y) where ΠV denotes the

orthogonal projection into V .

2.7. DIMENSION REDUCTION 51

0

·

xi

ΠV (xi)

√
d
k
ΠV (xi)

V

While this geometric view is more intuitive, the analysis using a random Gaussian
matrix is easier (because there all entries Gi j are independent).

52CHAPTER 2. THE CURSE OF DIMENSIONALITY AND DIMENSION REDUCTION

Chapter 3

Algebraic algorithms

In this chapter we discuss algorithms that use algebraic methods. The most im-
portant object in this regard are polynomials.

Definition 3.1. A monomial in variables x1, . . . , xn is a product of the variables
with non-negative integer exponents, times a constant coefficient. That means a
monomial is of the form

c · x
a1
1 · . . . · x

an
n

where a1, . . . , an ∈ Z≥0 and c ∈ R. The degree1 of the monomial is the sum of all
exponents, i.e. a1+. . .+an . A (multivariate) polynomial p is a finite sum of mono-
mials, i.e. it is of the form

p(x1, . . . , xn) =
∑

a

ca

n∏

i=1
x

ai

i

The degree deg(p) of a polynomial is the maximum degree of any of its monomi-
als that have non-zero coefficient.

Note that a polynomial p is in particular a function2 p : Rn →R. If n = 1, then
p is called a univariate polynomial.

Example 3.2. The polynomial p(x1, x2) := 2x2
1 +3x1x2

2 has degree deg(p) = 3. It
has two monomials, which are 2x2

1 and 3x1x2
2 .

1In the literature this is sometimes called the total degree of a monomial. In contrast the max-

imum degree is defined to be maxi=1,...,n ai . In this chapter, we will not need both quantities, so
we refrain from a distinction.

2In the most general setting one could let the coefficients ca be from any field F and then the
polynomial would be a function p : Fn → R. We do not need that generality so for the sake of
simplicity we stick to real polynomials.

53

54 CHAPTER 3. ALGEBRAIC ALGORITHMS

We mention a very important example of a polynomial that we revisit later:

Example 3.3. For a matrix A ∈ Rn×n , let us write A = (Ai j)i , j∈[n]. The Leibniz

formula then says that the determinant of the matrix is

det(A) =
∑

σ:[n]→[n]
sgn(σ) ·

n∏

i=1
Ai ,σ(i)

where the sum runs over all permutations from [n] to [n] and sgn(σ) ∈ {−1,1}
(one has sgn(σ) = +1 if σ is obtained from the identity permutation by an even
number of transpositions; but that won’t be too important for us). We can con-
clude that det(A) is a polynomial of degree at most n where the variables are the
n2 entries3.

There is a very important polynomial that we give a distinguished name:

Definition 3.4. The zero polynomial 0 is the polynomial that has no monomials
with non-zero coefficients. For two polynomials p and q we write p ≡ q if they
agree in all their monomials.

In particular we are interested in the following problem:

Polynomial identity testing. Given oracle access to a polynomial p in vari-
ables x1, . . . , xn . Decide whether p ≡ 0.

Here oracle access means that for a number of points x ∈ Rn we may query the
value p(x) ∈ R. Note that testing whether p ≡ q is the same as testing whether
p − q ≡ 0. To understand why oracle access may be a meaningful assumption,
note that for any matrix A we can compute det(A) in times O(n3). On the other
hand, considered as a polynomial, det has n! many monomials so we would not
want to write all of them out.

That brings us to the following question: If p is the zero polynomial we clearly
have p(x1, . . . , xn) = 0 for all x1, . . . , xn ∈R. But is the reverse true? In the univariate
case, the answer follows from the following classic result:

Theorem 3.5. Let p(x) =
∑d

i=0 ci xi be a univariate polynomial with c0, . . . ,cd ∈ R,
d = deg(p) ≥ 1, then p has at most d many roots.

3For n = 2 one can verify that A =
(

A11 A12

A21 A22

)

has det(A) = A11 A22 − A21 A12.

3.1. MATRIX IDENTITY TESTING 55

p(x)

x

degree-3 polynomial f over R with 3 zeros

Hence for a univariate polynomial p with degree d one can do polynomial iden-
tity testing by querying f (s1), . . . , f (sd+1) for arbitrary (distinct) points s1, . . . , sd+1 ∈
R and checking wether p(si) = 0 for all i = 1, . . . ,d + 1. But for the multivariate
case, the situation is more complicated. For example the polynomial p(x1, x2) :=
1− x1x2 has infinitely many zeroes, yet it is not the zero polynomial. But a more
careful argument will work. But first, to warm up we consider a simpler variant.

3.1 Matrix Identity testing

Suppose we have matrices A,B ,C ∈ Rn×n and we want to test if AB = C . Of
course we could compute AB in time4 O(n3) and then check directly if AB = C .
But maybe we do not need to actually compute the matrix product AB to know
whether its equal to C . Suppose we select a large enough set S ⊆ R and we draw
a vector x = (x1, . . . , xn) by drawing each coordinate xi ∼ S independently. Then
we merely test whether

A(B x) =C x

This test can be done in time O(n2) since we only need three matrix-vector mul-
tiplications. But on the other hand the test can make a mistake; it could be that
AB x =C x while AB 6=C . So it is important to prove that making such a mistake
is unlikely.

Theorem 3.6. Let A,B ,C ∈Rn×n be any matrices with AB 6=C and let S ⊆R. Then

Pr
xi∼S

[AB x =C x] ≤
1

|S|

Proof. We set D := AB ∈ Rn×n . If D 6= C , then there has to be at least one row
i so that Di 6= Ci . It suffices to show that for this fixed row one has Pr[〈Di , x〉 =

4It can be done a faster using Strassen’s algorithm in time O(n2.8074). The current record is
O(n2.371552).

56 CHAPTER 3. ALGEBRAIC ALGORITHMS

〈Ci , x〉] ≤ 1
|S| . There has to be one j ∈ [n] so that Di j 6=Ci j . Let us fix any outcome

of x1, . . . , x j−1, x j+1, . . . , xn . Then using only the randomness over x j we have

Pr
x j∼S

[〈Di , x〉 = 〈Ci , x〉] = Pr
x j∼S

[

(Di j −Ci j)x j =
∑

ℓ6= j

(Ciℓ−Diℓ)xℓ

]

Ci j 6=Di j= Pr
x j∼S

[

x j =
1

Di j −Ci j

∑

ℓ6= j

(Ciℓ−Diℓ)xℓ

︸ ︷︷ ︸

=:α

]

≤
1

|S|

In the last step we use the following crucial argument: there is only one value for
x j that makes the equation x j = α true. Hence if we draw x j ∼ S, the chance of
hitting α is at most 1

|S| .

The argument used above is a simple cases of the principle of deferred de-

cision. In a randomized algorithm it can be useful to not draw all random bits
at the beginning but rather imagine to only generate them when their value be-
comes relevant. Similarly in the probabilistic proof above we imagined to draw
the random variable x j last which makes the proof much easier.

Finally we would like to point out that the proof of Theorem 3.6 implicitly
gives an upper bound on the number of roots of p(x) := 〈Di −Ci , x〉 which is a
multivariate polynomial of degree 1.

3.2 The Schwarz Zippel Lemma

We now go back to the question of how to limit the number of zeroes of a non-
zero multivariate polynomial. The trick is to restrict to a combinatorial rectangle

which is a set of the form S ×S × . . .×S for some set S ⊆R.

Lemma 3.7 (Schwarz-Zippel 1979). Let p(x1, . . . , xn) be a polynomial that is not
the zero polynomial and let d := deg(p) be its degree. Let S ⊆ R be a finite set.
Then

Pr
a1,...,an∼S

[p(a1, . . . , an) = 0] ≤
d

|S|

Note that here a1, . . . , an are chosen independently at random from S.

Proof. We prove the claim by induction over n ≥ 1. For n = 1 we know by Theo-
rem 3.5 that p has at most d roots and the claim follows.

Now consider a polynomial p(x1, . . . , xn+1) where n ≥ 1 and let d := deg(p) be
its degree. We pull out the last variable xn+1 from each monomial of p; then we

3.3. BIPARTITE MATCHINGS 57

can write

p(x1, . . . , xn+1) =
ℓ∑

i=0

(∑

a∈Zn+1
≥0 :an+1=i

ca

n∏

j=1
x

a j

j

)

︸ ︷︷ ︸

=:pi (x1,...,xn)

·xi
n+1 =

ℓ∑

i=0
pi (x1, . . . , xn) · xi

n+1

where each pi is a polynomial with n variables and degree deg(pi) ≤ d − i . The
number ℓ is the largest power so that xℓ

n+1 appears in any non-zero monomial.
Claim I. Fix any a1, . . . , an ∈R so that pℓ(a1, . . . , an) 6= 0. Then

Pr
an+1∼S

[p(a1, . . . , an+1) = 0] ≤
ℓ

|S|
.

Proof of Claim I. Fix a1, . . . , an with pℓ(a1, . . . , an) 6= 0. Consider the univariate
polynomial q defined by q(xn+1) := p(a1, . . . , an , xn+1). Then deg(q) = ℓ and by
assumption q is not the zero-polynomial. Then q has at most ℓ roots by Theo-
rem 3.5.
We continue with the main proof. By Claim I we know that a zero is unlikely if the
highest term pℓ did not vanish. But that term pℓ is a polynomial with n variables
so by induction it is unlikely to vanish. Putting everything together we get:

Pr
a1,...,an+1∼S

[p(a1, . . . , an+1) = 0]

≤ Pr
a1,...,an∼S

[pℓ(a1, . . . , an) = 0]
︸ ︷︷ ︸

≤ deg(pℓ)
|S| by induction

+ Pr
a1...,an+1∼S

[p(a1, . . . , an+1) = 0 | pℓ(a1, . . . , an) 6= 0]
︸ ︷︷ ︸

≤ ℓ
|S| by Claim I

≤
d −ℓ

|S|
+

ℓ

|S|
=

d

|S|

This answers the question that we discussed earlier: given a polynomial p

in variables x1, . . . , xn with (total) degree d , we can select any set S ⊆ R of size
|S| ≥ 2d and query a random point x with x1, . . . , xn ∼ S. Then if p is not the zero
polynomial, we have Pr[p(x) 6= 0] ≥ 1

2 . This gives a randomized algorithm for
polynomial identity testing in the oracle model.

3.3 Bipartite matchings

We will now describe a rather magical application of polynomial identity testing.
Consider a bipartite graph G = (A∪̇B ,E) with |A| = |B | = n. Recall that “bipartite”
means that all edges e ∈ E run between A and B . It will be convinient to denote
the vertices on both sides as A = {a1, . . . , an} and B = {b1, . . . ,bn}.

58 CHAPTER 3. ALGEBRAIC ALGORITHMS

a1

a2

a3

b1

b2

b3

A B

example of a bipartite graph

We are interested in the question whether G contains a perfect matching F ⊆ E ,
which is a set of edges so that each node v ∈ A∪B is incident to exactly one edge.

a1

a2

a3

b1

b2

b3

A B

perfect matching in bold

Using the concept of augmenting paths one can construct a polynomial time
algorithm that finds a perfect matching in G if there is any [Edm65]. With some
more work the running time can even be brought down to O(|E |

p
n) [MV80, Vaz20]

(both algorithms work even in general graphs, not just bipartite ones). Our goal
here is to describe a randomized algorithm instead.

The adjacency matrix M ∈ {0,1}n×n of G is defined by

M(i , j) :=
{

1 if {ai ,b j } ∈ E

0 otherwise

Next, we take the adjacency matrix M and replace every 1 by a variable xi j and
call the new matrix Mx . That means the entries of the matrix Mx are

Mx(i , j) :=
{

xi j if {ai ,b j } ∈ E

0 otherwise

Then from Example 3.3 we know that det(Mx) is a multivariate polynomial with
|E | many variables. Let us revisit the example above. In that case we have

1 0 0

1 1 1

0 1 1

b1 b2 b3

a1

a2

a3

M =

x1,1 0 0

x2,1 x2,2 x2,3

0 x3,2 x3,3

b1 b2 b3

a1

a2

a3

Mx =

3.3. BIPARTITE MATCHINGS 59

and the determinant is

det(Mx) = x1,1 · x2,2 · x3,3 −x1,1 · x2,3 · x3,2

We observe that (at least in this example) the monomials of det(Mx) happen to
correspond to perfect matchings in G . We will prove that this is not a coinci-
dence:

Theorem 3.8. Let G = (A ∪B ,E) be a bipartite graph with |A| = |B |. Then G has a
perfect matching if and only if det(Mx) is not the zero polynomial.

Proof. First we make an observation: a permutation σ : [n] → [n] corresponds to
a perfect matching whose edges we can write as F (σ) := {{ai ,bσ(i)} : i ∈ [n]} and
vice versa. We recall the Leibniz formula for the determinant:

det(Mx) =
∑

σ:[n]→[n]
sgn(σ)

n∏

i=1
Mx(i ,σ(i))

(∗)=
∑

σ:[n]→[n]:
F (σ)⊆E

sgn(σ) ·
n∏

i=1
xi ,σ(i)

Here the first sum runs over all permutations σ : [n] → [n] and the second sum
runs only over those permutations whose edge set is in E . The argument for (∗)
is the following: for any permutation σ where F (σ) 6⊆ E , there is an index i with
{a j ,bσ(j)} ∉ E and so the product

∏n
i=1 Mx(i ,σ(i)) contains a 0. So the only terms

left are those corresponding to perfect matchings contained in the graph and for
those, one has

∏n
i=1 Mx(i ,σ(i)) =

∏n
i=1 xi ,σ(i). Now consider both directions of the

statement.
(⇒): Suppose there is a perfect matching corresponding to a permutation σ.
Then sgn(σ)

∏n
i=1 xi ,σ(i) is a non-zero monomial appearing in det(Mx); note that

no other permutation has the same product
∏n

i=1 xi ,σ(i), hence there are no can-
cellations.
(⇐): If det(Mx) has a non-zero monomial, then it has to be of the form sgn(σ) ·
∏n

i=1 xi ,σ(i) with F (σ) ⊆ E . That means F (σ) is a perfect matching in G .

Now consider the following algorithm:

PERFECT MATCHING TEST IN BIPARTITE GRAPHS

Input: Bipartite graph G .
Decide: Does G contain a perfect matching.

(1) Independently draw yi j ∼ {1, . . . ,n2} for all {ai ,b j } ∈ E

(2) IFa det(Mx)(y) 6= 0 then return “YES” else return “NO”.

aWe mean that we evaluate the polynomial p(x) := det(Mx) at point y

60 CHAPTER 3. ALGEBRAIC ALGORITHMS

Then combining the Schwarz-Zippel Lemma (Lemma 3.7) with Theorem 3.8 we
can see that the test always rejects if G does not contain a perfect matching and if
G does contain a perfect matching, then it accepts with probability at least 1− 1

n

(since det(Mx) has degree n and |S| = n2). Note that the algorithm runs in time
O(n3), so it does not actually beat the best deterministic algorithm. But the cur-
rent algorithm is parallelizable which is often desirable. Let us say that an algo-
rithm is a fast parallel algorithm if on input length n it runs in time poly(log(n))
when it is allowed to use poly(n) many processors. We will not go much into
details what that means. But we want to quote the following essential result:

Theorem 3.9 ([BvH82]). There is a (deterministic) fast parallel algorithm to com-
pute det(A) for any A ∈Qn×n .

Since testing whether the determinant of a matrix is 0 is the main work to be
done in our algorithm we may conclude:

Theorem 3.10 ([Mul86]). Given a bipartite graph G , there there is a fast (random-
ized) algorithm to test whether G contains a perfect matching.

One aspect of the algorithm that is less satisfying is that it only answers whether
or not there exists a perfect matching in a graph — it does not actually produce
that matching. However one could use the test as a black box and make it a
search algorithm as follows: Let E = {e1, . . . ,em}. Test if E contains a perfect
matching. If so, delete e1, test again. If now the answer is negative, then add
e1 back. Proceed with e2 and so on. But this gives a highly sequential algorithm
and it does not seem easy to parallelize it. For example we could test in parallel
for all i whether E \{ei } contains a perfect matching. But it can happen that each
single edge is expendable and the answer is always “YES” which would not be
very helpful.

But there is a more elegant approach. For the moment let us assume that
each edge e ∈ E has a weight 2w(e) assigned where w(e) ∈N and furthermore let
us assume that there is a unique perfect matching F∗ ⊆ E that minimizes the
weight

∑

e∈F∗ 2w(e) (we will later justify where those weights are coming from).
Then the determinant at the point y ∈RE with ye := 2w(e) has a value of

det(Mx)(y) =
∑

σ:[n]→[n]:
F (σ)⊆E

sign(σ)
∏

e∈F (σ)
2w(e)

︸ ︷︷ ︸

=2w(F (σ))

= 2w(F∗) · (±1+an even number)

where we abbreviate w(F∗) =
∑

e∈F∗ w(e). That means det(Mx)(y) is an integer
multiple of 2w(F∗) (we note that it was crucial that there was only one perfect

3.4. PERFECT MATCHINGS IN GENERAL GRAPHS 61

matching with this value). Then we can use the fast parallel algorithm from The-
orem 3.9 to compute det(Mx)(y) and then infer the value of w(F∗). That does not
immediately tell us the edge set F∗. But we can now run the algorithm in parallel
for each e ∈ E and test whether the value of the minimum matching has changed
for the edge set E \ {e}5. After this we know precisely all the edges in F∗.

That leaves us with with the question where the weights w(e) come from
in the first place. We use a remarkable result by Mulmuley, Vazirani, and Vazi-
rani which says that in basically any optimization problem, if we choose random
weights from a polynomially large range, then the minimum weight solution will
likely be unique.

Theorem 3.11 (Isolation lemma [MVV87]). LetF of any family of subsets of {1, . . . ,n}
and let W ∈ N. Draw independently random weights wi ∼ {1, . . . ,W } for each
i ∈ [n]. Then the problem

min{w(S) : S ∈F }

has a unique optimum solution with probability at least 1− n
W

.

Note thatF can have up to 2n many sets and the solutions have weight w(S) ∈
{0, . . . ,nW }. Hence by the pigeonhole principle, there always will be some value
that is attained by at least |F |

nW +1 many solutions — just that this won’t be the
minimum value.

Now back to our perfect matching problem. If we draw w(e) ∼ {1, . . . ,2|E |} for
each edge e ∈ E , then with probability at least 1/2, the minimum perfect match-
ing will be unique. That concludes the argument and we can derive:

Theorem 3.12. Given a bipartite graph G , there is a fast parallel algorithm to find
a perfect matching if there is any.

3.4 Perfect matchings in general graphs

Now, let G = (V ,E) be an arbitrary (i.e. not necessarily bipartite) undirected
graph. We write V = {a1, . . . , an}. Again we are interested in determining whether
G contains a perfect matching. It turns out that the method behind Theorem 3.8
can be generalized, but it takes a lot more care. First, we change the definition of

5There is the complication that if e ∈ F∗, then there may be many matchings of the now-
minimal value. Still we can find the minimum W ∈ Z≥0 so that det(Mx)(y) = 2W ·odd number
and test if w(F∗) =W .

62 CHAPTER 3. ALGEBRAIC ALGORITHMS

the matrix to M̃x with

M̃x(i , j) :=







xi j if {ai , a j } ∈ E and i < j

−xi j if {ai , a j } ∈ E and i > j

0 otherwise

Note that the matrix M̃x is skew-symmetric (i.e. M̃ T
x =−M̃x). Then the following

holds:

Theorem 3.13 (Tutte [Tut47]). Graph G contains a perfect matching if and only if
det(M̃x) is not the zero polynomial.

We omit the proof due to time constraints6. But we want to point out the
difficulty that arises. Consider the following example of a triangle graph:

a1 a2

a3

0 x{1,2} x{1,3}

−x{1,2} 0 x{2,3}

−x{1,3} −x{2,3} 0

a1 a2 a3

a1

a2

a3

M̃x =

Of course the triangle graph does not contain a perfect matching and indeed
det(M̃x) ≡ 0. But the product x{1,2}·x{1,3}·x{2,3} appears several times in the Leibniz
formula and only the arising cancellations lead the right result.

6The proof can be found for example in the notes by Schulman, Theorem 38 in
http://users.cms.caltech.edu/~schulman/Courses/18cs150/lec11.pdf

http://users.cms.caltech.edu/~schulman/Courses/18cs150/lec11.pdf

Chapter 4

Linear algebra

In this chapter we will review some linear algebra results and we will learn some
algorithmic applications. For more in-depth treatment of the linear algebra part
we recommend the textbook by Horn and Johnson [HJ90].

4.1 Eigenvalues

For a matrix A ∈ Rn×n we say that (λ, x) with λ ∈ R and a vector x ∈ Rn is a (real)

Eigenvalue-Eigenvector pair if

Ax =λx

In the following we write In as the n×n identity matrix. We require the following
definition:

Definition 4.1. The univariate polynomial det(xIn − A) in variable x ∈R is called
the characteristic polynomial of A ∈Rn×n .

Recall that det(xIn − A) is indeed a polynomial by the Leibniz formula. The
connection to Eigenvalues is the following:

Theorem 4.2. Let A ∈ Rn×n . The Eigenvalues of A are exactly the roots of the
characteristic polynomial det(xIn − A).

Proof. Fix λ ∈R. Then

det(λIn − A) = 0 ⇔ rank(λIn − A) < n

⇔ ∃v ∈Rn \ {0} : (λIn − A)v = 0

⇔ ∃v ∈Rn \ {0} : λv = Av

63

64 CHAPTER 4. LINEAR ALGEBRA

That means λ is a root of the characteristic polynomial if and only if it is an Eigen-
value together with some vector v .

We note that without making any assumptions on A, the matrix may not
even have any (real) Eigenvalues. We could extend the definition to complex

Eigenvalue-Eigenvector pairs (λ, v) with λ ∈ C and v ∈ Cn . In that case the Fun-
damental Theorem of Calculus (Gauss 1799) yields that there are exactly n roots
of the polynomial det(xIn − A) (if counted with multiplicity; the roots may be
complex) which provide exactly n Eigenvalue-Eigenvector pairs1.

4.1.1 The Spectral Theorem

An matrix A ∈ Rn×n is called symmetric if Ai j = A j i for all i , j . This gives a well-
behaved class of matrices that are algorithmically very relevant (for example ad-
jacency matrices of undirected graphs are symmetric) and have all Eigenvalues
real.

Theorem 4.3 (Spectral Theorem). For any symmetric matrix A ∈ Rn×n there are
Eigenvaluesλ1, . . . ,λn ∈Rwith corresponding orthonormal Eigenvectors v1, . . . , vn ∈
Rn . In particular

M =
n∑

i=1
λi vi vT

i

This gives a very useful decomposition of any symmetric matrix that is also
called the Eigen decomposition. For example for any vector x ∈Rn we have

M x =
n∑

i=1
λi vi 〈vi , x〉

which means that a matrix multiplication with M means we stretch the part of x

that goes in direction vi by a factor of λi .

4.1.2 Positive semidefinite matrices

An important class of matrices are those with non-negative Eigenvalues.

1For example A =
(

0 1
−1 0

)

has the characteristic polynomial det(xI2 − A) = x2 +1 which has

the complex roots i and −i . The corresponding (complex) Eigenvectors are

(
i

1

)

,

(
−i

1

)

.

4.1. EIGENVALUES 65

Definition 4.4. Let A ∈Rn×n be a symmetric matrix with Eigenvalues λ1, . . . ,λn ∈
R. We say that A is positive semidefinite if λi ≥ 0 for all i = 1, . . . ,n. We write
A º 0 iff A is positive semidefinite. More generally for two symmetric matrices
A,B ∈Rn×n we write A º B :⇔ A−B º 0.

Note that if we write A º 0 we always implicitly mean that A is symmetric,
too. Note that º is a partial order called the Löwner ordering. Using the spectral
Theorem it is relatively easy to derive the following:

Lemma 4.5. For a symmetric matrix A ∈Rn×n , the following is equivalent

a) A º 0
b) xT Ax ≥ 0 ∀x ∈Rn .
c) There exists a matrix U so that A =UU T .

4.1.3 A geometric interpretation

Let A ∈Rn×n be a symmetric, positive definite matrix. Consider the set

E :=
{

x ∈Rn | xT A−2x ≤ 1
}

which is also called an ellipsoid. Using the Eigen decomposition A =
∑n

i=1λi ui uT
i

we can rewrite

E =
{

x ∈Rn |
n∑

i=1

1

λ2
i

〈ui , x〉2 ≤ 1
}

In particular, the points x =λi ui satisfy the inequality with equality which means
that these points lie on the boundary of E . In fact, the directions u1, . . . ,un denote
the axis of the ellipsoid and λi is the length of the i th axis.

λ1u1

λ2u2

0
E

Example for n = 2
If we substitute y := A−1x ⇔ x = Ay then we can write alternatively

E =
{

Ay | y ∈Rn with ‖y‖2 ≤ 1
}

meaning that E is the imagine of the Euclidean ball under the map x 7→ Ax. One
can argue that

Voln(E) =
(n∏

i=1
λi

)

·Voln(B n
2) = det(A) ·Vol(B n

2)

66 CHAPTER 4. LINEAR ALGEBRA

where we will prove the second equality later.

4.1.4 Applying functions to matrices

The Eigen decomposition allows us to apply arbitrary univariate functions to ma-
trices:

Definition 4.6. Let A ∈ Rn×n be a symmetric matrix with Eigen decomposition
A =

∑n
i=1λi vi vT

i
. For any function f : R→R we define

f (A) :=
n∑

i=1
f (λi)vi vT

i

It turns out that this definition aligns with many matrix functions that we
already know. Consider a symmetric matrix A with Eigen decomposition A =
∑n

i=1λi vi vT
i

. Now, the following holds:

• For k ∈ Z≥0, let Ak = A A . . . A be the k-fold matrix product (i.e. A0 = In ,
A1 = A, A2 = A A and so on). Then Ak =

∑n
i=1λ

k
i

vi vT
i

.

• The inverse of A is A−1 =
∑n

i=1
1
λi

vi vT
i

.

We can also use this notion to define new matrix functions that are very useful:

• The matrix exponential is

exp(A) :=
n∑

i=1
exp(λi)vi vT

i

With the series representation for the 1-dimensional exponential function
one can then verify that

exp(A) =
∞∑

k=0

Ak

k !

• If A º 0, then we define the square root as

p
A = A1/2 :=

n∑

i=1

√

λi vi vT
i

Note that A1/2 A1/2 = A as one would expect.

4.1. EIGENVALUES 67

4.1.5 Trace, determinant and rank

A useful quantity for a square matrix is the sum of its diagonal entries:

Definition 4.7. For A ∈Rn×n we define the trace as Tr[A] :=
∑n

i=1 Ai i .

Typically matrix multiplication does not commute. But the trace function has
the following very useful property:

Lemma 4.8 (Cyclicity of the trace). For any matrices A1, . . . , Ak of any format so
that the matrix product A1 A2 . . . Ak is well-defined one has

Tr[A1 A2 . . . Ak] = Tr[A2 . . . Ak A1]

One can easily prove this from the definition of trace and the observation that
it suffices to prove this property for k = 2. The following is easy to see but we state
it explicitly for later reference:

Lemma 4.9 (Linearity of the trace). For any matrices A,B ∈ Rn×n and λ ∈ R one
has Tr[A+B] = Tr[A]+Tr[B] and Tr[λA] =λTr[A].

We can prove the following:

Lemma 4.10. For any symmetric A ∈Rn×n , Tr[A] equals the sum of the Eigenval-
ues.

Let A =
∑n

i=1λi vi vT
i

be the Eigen decomposition of A which exists by Theo-
rem 4.3. We note that in general the diagonal entries of A are not Eigenvalues —
just that somehow their sum equals the sum of Eigenvalues. To strengthen our
linear algebra skills, we provide two proofs for this lemma:

Proof 1. Let ei be the i th standard basis vector in Rn . Then

Tr[A] =
n∑

i=1

=Ai i
︷ ︸︸ ︷

eT
i Aei =

n∑

i=1
eT

i

(n∑

j=1
λ j v j vT

j

)

ei =
n∑

j=1
λ j

n∑

i=1
〈ei , v j 〉2

︸ ︷︷ ︸

=‖v j ‖2
2=1

=
n∑

j=1
λ j

In fact, the same proof also gives that for any orthonormal basis u1, . . . ,un ,
one has that

∑n
i=1 uT

i
Aui =

∑n
j=1λ j .

68 CHAPTER 4. LINEAR ALGEBRA

Proof 2. Using the linearity and cyclicity of the trace we get

Tr[A] = Tr
[n∑

i=1
λi vi vT

i

]
linearity

=
n∑

i=1
λi Tr[vi vT

i]
cyclicity

=
n∑

i=1
λi Tr[vT

i vi
︸ ︷︷ ︸

=‖v‖2
2=1

] =
n∑

i=1
λi

We note that for a vector v ∈Rn , v vT is n×n rank-1 matrix while vT v ∈R is just a
number. Yet their trace is the same using the cyclicity property.

We can also prove the lemma without the symmetry assumption as long as
we consider complex Eigen values2.

Lemma 4.11. Let A ∈Rn×n be a matrix with (possibly complex) Eigenvaluesλ1, . . . ,λn ∈
C. Then Tr[A] =

∑n
i=1λi .

The difficulty lies in the fact that the Spectral Theorem does not apply any-
more and we cannot use the Eigen decomposition in the proof.

Proof. As seen earlier the Eigenvalues λ1, . . . ,λn ∈ C are the roots of the charac-
teristic polynomial. Expanding that polynomial we can see that

det(xIn−A) =
n∏

i=1
(x−λi) = xn+xn−1 ·(−(λ1+. . .+λn))+(terms of order 0, . . . ,n−2)

So it suffices to justify that the coefficient of xn−1 in the characteristic polynomial
is−Tr[A]. The other polynomial representation that we know for the determinant
is the Leibniz formula. Hence

det(xIn − A) =
∑

σ:[n]→[n]
sign(σ)

n∏

i=1
(xIn − A)i ,σ(i)

We observe that those permutations σ with less than n−1 many fix points cannot
contribute any term of the form xn−1. Moreover there are no permutations with
exactly n −1 fix points and there is only one permutation with n fix points — the
identity permutation. Then for the identity permutation (which has sign 1) we
get a contribution of

n∏

i=1
(xIn−A)i ,i =

n∏

i=1
(x−Ai i) = xn+xn−1 (−A11 − A22 − . . .− Ann)

︸ ︷︷ ︸

−Tr[A]

+(terms of ord. ≤ n−2)

2The statement may seem odd as it suggests that the real number Tr[A] equals a sum of com-
plex numbers. But λ1, . . . ,λn ∈ C are the roots of a polynomial with real coefficients and so the
roots come in pairs of complex conjugates, i.e. if we have a root of the form a +bi (a,b ∈R) then
there must be another root of the form a −bi and their sum if (a +bi)+ (a −bi) = 2a, meaning
that the complex parts cancel out in the sum.

4.1. EIGENVALUES 69

to Leibniz formula. Hence the coefficient of xn−1 in the characteristic polynomial
is indeed −Tr[A] and the claim follows.

The following is useful as well (we claimed it already in Sec 4.1.3):

Lemma 4.12. For any matrix A ∈Rn×n with (possibly complex) Eigenvaluesλ1, . . . ,λn ∈
C, one has det(A) =

∏n
i=1λi .

Proof. Recall that the characteristic polynomial is det(xIn − A) =
∏n

i=1(x −λi).
Evaluating this at x := 0 gives det(−A) =

∏n
i=1(−λi). Dividing both sides by (−1)n

gives the claim.

4.1.6 Raleigh Quotient

In the following, let A ∈ Rn×n be a symmetric matrix, which in particular means
that A has n real Eigenvalues. It is common to write those Eigenvalues in ordered
form as

λ1(A) ≥λ2(A) ≥ . . . ≥λn(A)

(it is also common to write λmax(A) := λ1(A) and λmin(A) := λn(A)). There is a
useful characterization of all such Eigenvalues as an optimization problem.

Theorem 4.13 (Raleigh Quotient). For any symmetric matrix A ∈Rn×n one has

λ1(A) = max
‖x‖2=1

xT Ax = max
x∈Rn \{0}

xT Ax

xT x

Proof. Since A is symmetric, it admits an Eigen decomposition as A =
∑n

i=1λi ui uT
i

where λi :=λi (A) is the i th Eigenvalue and u1, . . . ,un are an orthonormal basis of
Rn . Then for any x with ‖x‖2 = 1 one has

xT Ax = xT
(n∑

i=1
λi ui uT

i

)

x =
n∑

i=1
λi 〈ui , x〉2

Since the ui ’s form an orthonormal basis we have
∑n

i=1 〈ui , x〉2 = ‖x‖2
2 = 1 and so

the expression
∑n

i=1λi 〈ui , x〉2 is maximized when | 〈u1, x〉 | = 1 and 〈ui , x〉 = 0 for
i 6= 1. Then the value is λ1.

More generally, the i th Eigenvalue is the maximum of xT Ax subject to ‖x‖2 =
1 and x being orthogonal to u1, . . . ,ui−1.

70 CHAPTER 4. LINEAR ALGEBRA

Theorem 4.14 (Courant Minimax Principle). Let A ∈Rn×n be a symmetric matrix
with Eigen decomposition A =

∑n
i=1λi ui uT

i
where λ1 ≥ . . . ≥ λn . Then for any

i ∈ [n] one has

λi = max
‖x‖2=1

x⊥u1,...,ui−1

xT Ax = min
v1,...,vi−1∈Rn

max
‖x‖2=1

x⊥v1,...,vi−1

xT Ax

We skip the proof which is basically an extension of the proof of Theorem 4.13.
One can also directly characterize the minimum Eigenvalue:

Theorem 4.15 (Raleigh Quotient II). For any symmetric matrix A ∈Rn×n one has

λn(A) = min
‖x‖2=1

xT Ax

From Theorem 4.15 we could also derive that a symmetric matrix A ∈ Rn×n

is positive-semidefinite if and only if xT Ax ≥ 0 for all x ∈ Rn (though we already
know this from Lemma 4.5). Again Theorem 4.15 can be extended to express any
eigenvalue:

Theorem 4.16 (Courant Minimax Principle II). Let A ∈ Rn×n be a symmetric ma-
trix with Eigen decomposition A =

∑n
i=1λi ui uT

i
where λ1 ≥ . . . ≥λn . Then for any

i ∈ [n] one has

λn+1−i = min
‖x‖2=1

x⊥un−i+2,...,un

xT Ax = max
v1,...,vi−1∈Rn

min
‖x‖2=1

x⊥v1,...,vi−1

xT Ax

4.2 The Singular Value Decomposition

As we have seen, the Eigen decomposition is very useful in proofs as well as in de-
signing algorithms. Unfortunately it only exists for symmetric matrices. It would
be very useful to have a similar type of decomposition for an arbitrary matrix
A ∈Rm×n (which may not even be a square matrix). And in fact, such a decompo-
sition exists!

Theorem 4.17 (Singular Value Decomposition (SVD)). Any matrix A ∈ Rm×n can
be written in the form

A =
r∑

i=1
σi ui vT

i

where (i) r = rank(A), (ii) σ1 ≥ . . . ≥ σr > 0 are the so-called singular values, (iii)
u1, . . . ,ur ∈Rm are orthonormal, (iv) v1, . . . , vr ∈Rn are orthonormal.

4.3. MATRIX NORMS 71

Aui

vT
i

n

m

From the singular value decomposition one can see that Avi = σi ui and uT
i

A =
σi vT

i
so one should think of the singular vectors ui and vi as a relaxed form of an

eigenvector. As a rule of thumb, if one has an arbitrary matrix and needs to prove
certain properties it is usually a good idea to study its singular value decompo-
sition. We note that the singular value decomposition can be computed in time
O(n3).

First we want to discuss the relationship of A to the matrices AT A and A AT .

Lemma 4.18. Let A ∈ Rm×n be a matrix with singular value decomposition A =
∑r

i=1σi ui vT
i

.

(i) The matrix A AT ∈Rm×m is symmetric and positive semidefinite with Eigen-
vectors u1, . . . ,ur and positive Eigenvalues σ2

1, . . . ,σ2
r . In particular A AT =

∑r
i=1σ

2
i
ui uT

i
.

(ii) The matrix AT A ∈Rn×n is symmetric and positive semidefinite with Eigen-
vectors v1, . . . , vr and positive Eigenvalues σ2

1, . . . ,σ2
r . In particular AT A =

∑r
i=1σ

2
i

vi vT
i

.

Proof. We verify (i) as (ii) is similar. Replacing A and AT with the SVD we can see
that

A AT =
(r∑

i=1
σi ui vT

i

)(r∑

j=1
σ j u j vT

j

)T
=

r∑

i=1

r∑

j=1
σiσ j ui 〈vi , v j 〉

︸ ︷︷ ︸

=0 if i 6= j ,
=1 if i= j

uT
j =

r∑

i=1
σ2

i ui uT
i

Since u1, . . . ,ur are orthonormal, σ2
1, . . . ,σ2

r must be the Eigenvalues of A AT .

4.3 Matrix norms

Recall that a norm on a (real) vector space V is a map ‖ ·‖ : V →R≥0 satisfying:

(i) Triangle inequality: ‖x + y‖ ≤ ‖x‖+‖y‖ for all x, y ∈V

72 CHAPTER 4. LINEAR ALGEBRA

(ii) Homogeinity: ‖sx‖ = |s| · ‖x‖ for all x ∈V , s ∈R

(iii) Positivity: For all x, ‖x‖ = 0 ⇔ x = 0

We note that the above properties imply that ‖x‖ ≥ 0 for all x ∈V . Some textbooks
include this explicitly but one can verify that indeed 0 = ‖x − x‖ ≤ ‖x‖+‖− x‖ =
2‖x‖ and so ‖x‖ ≥ 0.

It is often useful to define norms for matrices as well (and not just the vec-
torspace Rn). We mention the most popular ones for matrices A ∈Rm×n :

• The Frobenius norm. We set

‖A‖F :=
√

Tr[A AT] =

√
√
√
√

n∑

i=1

m∑

j=1
A2

i j

The Frobenius norm corresponds to the Euclidean norm when interpreting
A as a mn-dimensional vector. Moreover we can write

‖A‖F =
√

Tr[A AT]
Lem 4.10=

(m∑

i=1
λi (A AT)

)1/2 Lem 4.18=
(m∑

i=1
σi (A)2

)1/2

using Lemma 4.10 and Lemma 4.18. That means ‖A‖F is the Euclidean
norm of the vector of singular values.

• The Operator norm. We define

‖A‖op := max
x∈Rn :‖x‖2=1

‖Ax‖2 = max
x∈Rn \{0}

‖Ax‖2

‖x‖2

Loosely speaking this gives the maximum “stretch” of any vector. It turns
out the operator norm corresponds to a value that we already know:

‖A‖op = max
‖x‖2=1

‖Ax‖2 =
(

max
‖x‖2=1

‖Ax‖2
2

)1/2

=
(

max
‖x‖2=1

xT AT Ax
)1/2 Thm 4.13=

√

λ1(AT A)
Lem 4.18= σ1(A)

4.4 Best low rank approximation

A recurrent algorithmic problem is the following: given a matrix A ∈ Rm×n , find
the best low rank matrix B that approximates A well. If A =

∑r
i=1σi ui vT

i
is the

SVD of A, then a natural rank-k approximation (where k ≤ r) would be B =

4.4. BEST LOW RANK APPROXIMATION 73

∑k
i=1σi ui vT

i
. In other words, we simply truncate the singular value decompo-

sition after the k largest singular values. We can rigorously prove that if we mea-
sure the approximation error in terms of the operator norm ‖ · ‖op or the Frobe-
nius norm ‖ · ‖F , then this choice is optimal. For both proofs, we fix the SVD
A =

∑r
i=1σi ui vT

i
with σ1 ≥ . . . ≥σr > 0 and assume 0 ≤ k ≤ r .

Theorem 4.19. For any matrix A ∈Rm×n and any k one has

inf
B :rank(B)=k

‖A−B‖op =σk+1

In class, we will discuss the first part of the proof and skip the 2nd part.

Proof. First we prove that for the choice of B :=
∑k

i=1σi ui vT
i

one has ‖A−B‖op =
σk+1. And in fact

‖A−B‖op =
∥
∥
∥

r∑

i=k+1
σi ui vT

i

∥
∥
∥

op

Sec 4.3= σk+1

Next, let B ∈Rm×n be an arbitrary matrix with rank(B) = k; we need to prove that
‖A −B‖op ≥ σk+1. Let U := {x ∈ Rn | B x = 0} be the nullspace of B . Note that
dim(U) = n −k. Then making use of the Raleigh coefficient twice we get

‖A−B‖2
op = λmax((A−B)T (A−B))

Thm 4.13= max
‖x‖2=1

xT (A−B)T (A−B)x

≥ max
x∈U :‖x‖2=1

xT (A−B)T (A−B)x

B x=0= max
x∈U :‖x‖2=1

xT AT Ax

≥ min
V :dim(V)=n−k

max
x∈V :‖x‖2=1

xT (AT A)x
Thm 4.16= λk+1(AT A) =σk+1(A)2

Theorem 4.20. For any matrix A ∈Rm×n and any k one has

inf
B :rank(B)=k

‖A−B‖2
F =

r∑

i=k+1
σ2

i

We will not give the full proof in class and only list it for the sake of complete-
ness.

74 CHAPTER 4. LINEAR ALGEBRA

Proof. Again, we first consider B :=
∑k

i=1σi ui vT
i

. Then

‖A−B‖2
F =

∥
∥
∥

r∑

i=k+1
σi ui vT

i

∥
∥
∥

2

F

Phytagoras
=

r∑

i=k+1
‖σi ui vT

i ‖
2
F =

r∑

i=k+1
σ2

i

Here we use that the matrices u1vT
1 , . . . ,ur vT

r are orthogonal.
For the second part, we fix an arbitrary matrix B ∈ Rm×n with rank(B) = k

and prove that ‖A−B‖2
F ≥

∑r
i=k+1σ

2
i
. Let U := span{B 1, . . . ,B n} be the span of the

columns of B . Note that U is a k-dimensional subspace. The Frobenius distance
of B to A is

‖A−B‖2
F =

n∑

j=1
‖A j −B j‖2

2

We can make the following observation: after fixing the subspace U , the best
choice for the column B j so that B j ∈U must be the orthogonal projection of A j

into U , i.e. w.l.o.g. Bi =ΠU (A j).

0

·

A j

ΠU (A j)

U

Let w1, . . . , wk ∈ Rm be an orthonormal basis of the subspace U . Consider the
matrix Π :=

∑k
i=1 wi wT

i
. Then πU (x) =

∑k
i=1 〈wi , x〉wi = Πx. That means Π is

the matrix representing the linear map ΠU . Note that Π is a PSD matrix that has
Eigenvalues 0 and 1. Such matrices are called projection matrices. In particular
those matrices have the property that Π2 = Π. Continuing the argument from
above we can write

‖A−B‖2
F =

n∑

j=1
‖A j −ΠA j‖2

2 = ‖A−ΠA‖2
F

So it suffices to prove the following:
Claim I. Let A ∈ Rm×n . For any rank-k projection matrix Π one has ‖A −

ΠA‖2
F ≥

∑

i≥k+1σ
2
i

where σ1 ≥σ2 ≥ ... are the singular values of A.

4.5. HIDDEN PARTITION 75

Proof of Claim I. Again we write w1, . . . , wk as the orthonormal set of vectors
so that Π =

∑k
ℓ=1 wℓwT

ℓ
. We extend w1, . . . , wm to an orthonormal basis of Rm

and set Π
⊥ :=

∑m
ℓ=k+1 wℓwT

ℓ
= Im −Π. Note that Π

⊥ is the projection matrix
for U⊥ (which is the m − k dimensional subspace orthogonal to U). Note that
A−ΠA = A(Im−Π) = AΠ⊥. Let A =

∑m
i=1σi ui vT

i
be the SVD of A (which we “filled

up” with singular values of value 0 in case that rank(A) is less than m). Then

‖A−ΠA‖2
F = ‖AΠ⊥‖2

F

= Tr
[

(AΠ⊥)T (AΠ⊥)
]

= Tr
[

Π
⊥AT AΠ⊥]

cyclicity
= Tr

[

AT A (Π⊥)2
︸ ︷︷ ︸

=Π⊥

]

= Tr
[(m∑

i=1
σ2

i ui uT
i

)

Π
⊥
]

=
m∑

i=1
σ2

i ·uT
i Π

⊥ui ≥
m∑

i=k+1
σ2

i

In the last step we use the following argument: we know that uiΠ
⊥ui ≤ 1 for all

i and
∑m

i=1 uT
i
Π

⊥ui = Tr[Π⊥] = m −k. Hence the quantity in question must be at
least as large as the sum of m −k many σ2

i
’s.

Algorithmically it seems obvious that in order to compute the best rank-k ap-
proximation B to a matrix A, we first compute the SVD in time O(n3) and then
truncate it to k summands. But it turns out that if one is satisfied with an ap-
proximate answer then computing the matrix B can be done directly and much
faster.

Theorem 4.21 (Clarkson-Woodruff [CW13]). Given a matrix A ∈Rn×n and param-
eters ε> 0 and k ∈N one can find a rank-k matrix B ∈Rn×n so that

‖A−B‖2
F ≤ (1+ε) inf

B∗:rank(B∗)=k
‖A−B∗‖2

F

in time O(nnz(A) · (k
ε
+k ln(k)))+n ·poly(k

ε
).

Here nnz(A) denotes the number of non-zero entries of the matrix A. For ex-
ample if one thinks of ε and k as constants, then the algorithm takes O(nnz(A)+
n) which is linear in the input length,

4.5 Hidden Partition

We briefly discuss one elegant application of SVDs / Eigen decomposition. Sup-
pose we have a random graph G = ([n],E) which is generated as follows: there

76 CHAPTER 4. LINEAR ALGEBRA

is an unknown partition [n] = X ∪̇Y of the vertices where |X | = |Y | = n
2 . Let

1 > p > q > 0 be constants. Then independently for all i 6= j one has

Pr[{i , j } ∈ E] =
{

p if i , j ∈ X or i , j ∈ Y

q if |{i , j }∩X | = 1 = |{i , j }∩Y | = 1

The goal is: given such a graph G , recover the partitions X and Y . One can think
of this problem as discovering two unknown communities in the graph where an
individuals in the same community are more likely connected than individuals in
different communities. Note that each vertex i has an expected degree of n · p+q

2 ,
so one cannot directly use the degrees to infer what community i belongs to. Let
A ∈ {0,1}n×n be the symmetric random matrix that is the ajacency matrix of G .
We make the observation that in expectation the adjacency matrix is

E[A] =
p ·11T q ·11T

q ·11T p ·11T

X Y

X

Y

In particular rank(E[A]) = 2. Of course, the actual outcome A may not be of
rank 2, but with high probability, A would be close to the rank-2 matrix E[A]. This
suggests to look at the best rank-2 approximation of A. Let A =

∑n
i=1λi ui uT

i
be

the Eigen decomposition so that |λ1| ≥ |λ2| ≥ . . . ≥ |λn | ≥ 0. Then from the earlier
discussion we know that B :=

∑2
i=1λi ui uT

i
is the rank-2 approximation to use.

In fact, consider the map π : Rn → R2 with π(x) := (〈x,u1〉 ,〈x,u2〉) that gives the
coordinates of a projection into the span of B . Then consider the 2-dimensional
points π(A1), . . . ,π(An). Points of vertices in the same community will be closer
than those in different communities. This can be used to exactly recover X and
Y with high probability (assuming n is large enough depending on the distance
|p −q|). For details see the works of McSherry [McS01] and Vu [Vu14].

4.6. ADDITIVE APPROXIMATIONS FOR MAXCUT 77

1

2

3

−1

−2

−3

−4

1 2 3 4 5−1−2−3−4−5

〈x,u1〉

〈x,u2〉

Random hidden partition instance for n = 40, p = 3
4 , q = 1

4 with
points ΠU (A j) where U is the span of the 2 largest Eigenvectors of A.

b
b

b

b
b

b b

b

b b
b

b

b

b
b
b

b

b

b

b

b

b

b
b

b
bb
b

b
b

b

b
b bb

b

b

b

b

b

b

b
b b

b

b
b

b

b

b
b

b
b

b

bb
b
b

b
b

b

bb
b

b

b
b

bb

b b
b

b

b

b

b
bb

b

b

4.6 Additive approximations for MaxCut

Consider an undirected graph G = (V ,E) with n := |V | vertices. We have seen
in Chapter 1 that one can find a minimum cut in polynomial time. Now we are
interested in the opposite problem of finding a maximum cut, i.e. a set ;⊆ S ⊆V

maximizing |δ(S)|.

S

graph G with maxcut S

Somewhat surprisingly this problem turns out to be NP-hard. If we denote the
optimum value by OPT := max{|δ(S)| : ; ⊆ S ⊆ V }, then the seminal algorithm
by Goemans and Williamson [GW95] finds a cut S in polynomial time so that
|δ(S)| ≥ 0.878 ·OPT . One can also prove that if the so-called Unique Games Con-

jecture holds, then no polynomial time algorithm with a better approximation
ratio exists.

In this section we want to give a polynomial time linear algebra-based algo-
rithm to find a cut S that satisfies an additive error guarantee of |δ(S)| ≥ OPT −

78 CHAPTER 4. LINEAR ALGEBRA

εn2 for any constant ε> 0. Such algorithms are only useful if the graph is dense,
i.e. it has indeedΘ(n2) many edges as otherwise the guarantee that can be reached
in polynomial time is meaningless. But on the positive side, our method is very
flexible and applies to many other problems. First we phrase the maxcut prob-
lem as a linear algebra question. Let A ∈ {0,1}n×n be the adjacency matrix of G

where Ai j = 1 iff {i , j } ∈ E . We note that every adjacency matrix is symmetric.
Then for any S ⊆ [n] the value of the cut is

|δ(S)| =
∑

i∈S

∑

j∈S̄

Ai j = 1T
S A1S̄

where S̄ := [n] \ S is the complement of S and 1S is the characteristic vector of S.
Then MaxCut can be phrased as the quadratic optimization problem

max
{

xT A(1−x) | x ∈ {0,1}n
}

= max
{

(A1)T x +xT (−A)x | x ∈ {0,1}n
}

We prove that such quadratic optimization problems admit additive approxima-
tion algorithms.

Theorem 4.22. Let A ∈ [−1,1]n×n be a symmetric matrix and let c ∈ [−n,n]n . For
any parameter k ∈N one can approximate the problem

max
{

cT x +xT Ax | x ∈ {0,1}n
}

with an additive O(n2
p

k
) error in time nO(k).

For the specific problem of MaxCut one can reduce the running time to kk ·
poly(n) [OGT15] but here we prefer generality and simplicity over efficiency. The
first step towards Theorem 4.22 is to approximate A by a low rank matrix B and
prove that the new matrix does not change the objective function by much.

Lemma 4.23. Let B ∈ Rn×n be the best rank-k approximation to A as in Theo-
rem 4.19. Then for all x ∈ {0,1}n

∣
∣xT Ax −xT B x

∣
∣≤ n ·σk+1(A) ≤

n2

p
k +1

.

Proof. Since A is symmetric we can work with the slightly simpler Eigen decom-
position A =

∑n
i=1λi vi vT

i
instead of the SVD. We sort the Eigenvalues so that

|λ1| ≥ . . . ≥ |λn | which are the singular values of A in non-increasing order. Then

|xT (A−B)x|
(∗)
≤ ‖x‖2 · ‖(A−B)x‖2 ≤ ‖x‖2

︸︷︷︸

≤
p

n

·‖A−B‖op
︸ ︷︷ ︸

≤|λk+1|
by Thm 4.19

·‖x‖2
︸︷︷︸

≤
p

n

≤ n · |λk+1|

4.6. ADDITIVE APPROXIMATIONS FOR MAXCUT 79

where we use Cauchy-Schwarz3 in (∗) and Theorem 4.19 in the last step4. It re-
mains to prove that the (k + 1)st singular value |λk+1| is small. And indeed be-
cause |λ1| ≥ . . . ≥ |λn | we have that

λ2
k+1 ≤

λ2
1 + . . .+λ2

k+1

k +1
≤

∑n
i=1λ

2
i

k +1
=

‖A‖2
F

k +1
≤

n2

k +1

Here we use the insight from Sec 4.3 that ‖A‖2
F is the squared sum of singular

values of A together with the observation that for any matrix A ∈ [−1,1]n×n one
has ‖A‖2

F ≤ n2. Putting everything together we get

∣
∣xT (A−B)x

∣
∣≤ n|λk+1| ≤ n ·

√

n2

k +1

which is the claimed bound.

Now we describe the remainder of the proof of Theorem 4.22.

Proof of Theorem 4.22. As we have seen in Lemma 4.23, after replacing the matrix
A by the rank-k approximation B it suffices to approximate the problem

max
{

cT x +xT B x | x ∈ {0,1}n
}

where B has rank k. Note that it is not necessarily true anymore that |Bi j | ≤ 1
for all i , j , but we still know that ‖B‖F ≤ n. Let B =

∑k
i=1λi vi vT

i
be the Eigen

decomposition of B . Then the objective function is

cT x +xT B x = cT x +
k∑

i=1
λi 〈vi , x〉2

In order to make the problem even simpler we discretize the vectors. For a pa-
rameter δ > 0 that we determine later, we round all entries in vi to the nearest
multiple of δ that has a smaller absolute value and denote the new vector by ṽi .
We do the same and replace c by c̃. Then we set B̃ :=

∑k
i=1λi ṽi ṽT

i
. We can prove

that also this discretization does not incur too much of an error:
Claim I. For all x ∈ {0,1}n one has |(cT x +xT B x)− (c̃T x +xT B̃ x)| ≤O(

p
kn5/2δ).

Proof of Claim I. We bound the error of the linear part and the quadratic part
separately. For the linear part we have

|cT x − c̃T x| ≤ ‖c − c̃‖∞
︸ ︷︷ ︸

≤δ

‖x‖1
︸︷︷︸

≤n

≤ δn

3Which says that for any vectors a,b one has | 〈a,b〉 | ≤ ‖a‖2 · ‖b‖2.
4To be very precise, the SVD of A is A =

∑n
i=1σi ui vT

i
with σi := |λi | and ui := sign(λi)vi .

80 CHAPTER 4. LINEAR ALGEBRA

Next, we consider the quadratic part:

|xT B x −xT B̃ x| =
∣
∣
∣

k∑

i=1
λi (〈vi , x〉2 −〈ṽi , x〉2)

∣
∣
∣

≤
k∑

i=1
|λi | · | 〈vi , x〉+〈ṽi , x〉 | · | 〈vi − ṽi , x〉 |

≤
k∑

i=1
|λi | ·

(

‖vi‖2
︸ ︷︷ ︸

≤1

+‖ṽi‖2
︸ ︷︷ ︸

≤1

)

· ‖x‖2
︸︷︷︸

≤
p

n

·‖vi − ṽi‖∞
︸ ︷︷ ︸

≤δ

‖x‖1
︸︷︷︸

≤n

≤
p

k
(k∑

i=1
λ2

i

)1/2

︸ ︷︷ ︸

=‖B‖F≤n

·n3/2δ

≤
p

kn5/2δ

Here we use the binomial equation a2 − b2 = (a + b)(a − b) for numbers a,b ∈
R, Cauchy-Schwarz in the form | 〈a,b〉 | ≤ ‖a‖2‖b‖2 for vectors a,b as well as
| 〈a,b〉 | ≤ ‖a‖∞‖b‖1. Moreover we have used ‖a‖1 ≤

p
k‖a‖2 for any k-dimensional

vector.
After the low rank approximation and the discretization the problem that re-

mains to be solved is

max
{

c̃T x +
k∑

i=1
λi 〈ṽi , x〉2 : x ∈ {0,1}n

}

(4.1)

From the analysis we have seen that setting for example δ := 1p
kn

would suffice.

But note that the number of solutions x is still 2n so it is still not obvious how to
solve (4.1) time nO(k). For x ∈ {0,1}n consider the (k +1)-dimensional vector

φ(x) :=








c̃T x

ṽT
1 x
...

ṽT
k

x








We claim that there are at most (n/δ)O(k) many vectors φ(x) and they can be com-
puted in time (n/δ)O(k) as well. We phrase this fact in a self-contained way:

Claim II. Let U ∈ {−∆, . . . ,∆}ℓ×n where ∆ ∈ N and let F := {Ux | x ∈ {0,1}n}.

Then |F | ≤ (2∆n +1)ℓ. Moreover F can be computed in time (∆n)O(ℓ).

4.6. ADDITIVE APPROXIMATIONS FOR MAXCUT 81

U

n

Ux

x

ℓ

Proof of Claim II. First note that for x ∈ {0,1}n , Ux is an ℓ-dimensional integer
vector with entries of size ‖Ux‖∞ ≤ n∆. Then |F | ≤ |{−∆n, . . . ,∆n}ℓ| = (2∆n +1)ℓ.
We can compute F using dynamic programming. We use the table entries

T (b, j) :=
{

TRUE if ∃x ∈ {0,1} j :
∑ j

i=1U i xi = b

FALSE otherwise

for j = 0, . . . ,n and b ∈ Zℓ with ‖b‖∞ ≤ ∆n. Note that T (b, j) = 1 means that the
vector b can be generated using the first j columns of U . Then using the Bellman
equation

T (b, j) := T (b, j −1)∨T (b −U j , j −1)

we can compute all entries. The running time is dominated by the number of
entries which is (n +1) · (2∆n +1)ℓ.

In order to solve (4.1) we apply Claim II for the matrix U with ℓ = k +1 rows
of the form c̃

δ
, ṽ1
δ

, . . . , ṽk

δ
. Given a vector φ(x) we can compute the objective c̃T x +

∑k
i=1λi 〈ṽi , x〉2 without knowing x itself.

We would like to mention that we could chooseδmuch smaller without asymp-
totically affecting the running time and so really the error is dominated by the
truncation to rank k and not the discretization. For example one could restate
the result as follows:

Corollary 4.24. Let A ∈ [−1,1]n×n be a symmetric matrix and let c ∈ [−n,n]n . For
any parameter k ∈N one can approximate the problem

max
{

cT x +xT Ax | x ∈ {0,1}n
}

with an additive n ·σk+1(A)+ 1
100n

error in time nO(k).

Hence if the matrix A was already “mostly” low rank to begin with then the
approximation error might have been pretty good.

82 CHAPTER 4. LINEAR ALGEBRA

Chapter 5

Spectral graph theory

Many algorithmic problems deal with (undirected) graphs and in this chapter
we will discuss how to understand graphs using a linear-algebraic perspective.
A weighted undirected graph is of the form G = (V ,E , w) where w : E → R>0 are
positive edge weights. For a subset F ⊆ E of edges we use the notation w(F) :=
∑

e∈F we . Recall that for S ⊆V , δ(S) := {e ∈ E | |e∩S| = 1} are the edges crossing the
cut. In particular we use w(δ(i)) =

∑

j :{i , j }∈E wi j to denote the weighted degree of
a node i ∈V .

Definition 5.1. Given a weighted undirected graph G = (V ,E , w), the weighted

adjacency matrix is the symmetric matrix A ∈RV ×V with entries

Ai j := A j i :=
{

wi j if {i , j } ∈ E

0 otherwise

The degree matrix is the diagonal matrix D ∈RV ×V with the weighted degrees on
the diagonal, i.e.

Di i := w(δ(i)) ∀i ∈V

The (weighted) Laplacian LG ∈ RV ×V is the symmetric matric defined by LG :=
D − A. In other words,

(LG)i j :=







w(δ(i)) if i = j

−wi j if {i , j } ∈ E

0 otherwise

We depict an example with unit edge weights below:

83

84 CHAPTER 5. SPECTRAL GRAPH THEORY

a b c

d e

graph

A =

0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0
a b c d e

a

b
c

d
e

adjacency matrix

D =

1 0 0 0 0
0 3 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 1
a b c d e

a

b
c

d
e

degree matrix

LG =

1 −1 0 0 0
−1 3 −1−1 0
0 −1 1 0 0
0 −1 0 2 −1
0 0 0 −1 1
a b c d e

a

b
c

d
e

Laplacian
We claim that many properties of the graph can be derived from the Lapla-

cian LG . Note that for all x ∈RV one has

xT LG x = xT (D − A)x =
∑

i∈V

w(δ(i)) · x2
i −2

∑

{i , j }∈E

wi j xi x j =
∑

{i , j }∈E

wi j (xi −x j)2 ≥ 0

The map x 7→ xT LG x is also called the quadratic form of LG .

Lemma 5.2. For any weighted graph G , the Laplacian LG is positive semidefinite.
In fact, 0 ¹ LG ¹ 2D .

Proof. The first claim follows from Lemma 4.5 as xT LG x ≥ 0 for all x ∈ RV . Now
we prove that LG ¹ 2D . It will be useful to note that for all a,b ∈ R one has (a −
b)2 ≤ 2a2 +2b2. Then for each x ∈RV one has

xT LG x =
∑

{i , j }∈E

wi j (xi −x j)2 ≤
∑

{i , j }∈E

wi j · (2x2
i +2x2

j) = 2xT Dx.

Alternatively we note that a Laplacian can be written as a sum of (PSD) rank-1
matrices

LG =
∑

{i , j }∈E

wi j (ei −e j)(ei −e j)T

and hence must be PSD.

Fact 5.3. For any weighted graph G with n = |V | one has λmin(LG) = 0. In fact, 1

is an Eigenvector with Eigenvalue 0.

Proof. For any i ∈ V one has 〈(LG)i ,1〉 = w(δ(i))−w(δ(i)) = 0 which means that
LG 1 = 0 ·1.

In the following we denote λi := λi (LG) as the i th Eigenvalue of LG and sort
the indices so that1 0 ≤λ1 ≤λ2 ≤ . . . ≤λn .

1Note that previously we used the reverse ordering. But in specral graph theory it is standard
to denote λ1 as the smallest and not the largest Eigenvalue, so we follow the convention used in
the literature.

5.1. GRAPH PARTITIONING 85

Lemma 5.4. For any weighted graph G one has λ2 = 0 ⇔G is disconnected.

Proof. (⇐). We assume that G is disconnected and need to prove that there is
an Eigenvector orthogonal to 1 that also has Eigenvalue 0. First, there is a cut

;⊂ S ⊂V with δ(S) =;. Let x ∈RV be the vector with x := 1S

|S| −
1S̄

|S̄| .

+ 1
|S|+ 1

|S| − 1
|S̄| − 1

|S̄|

S S̄

Then clearly 〈1, x〉 = |S|
|S|−

|S̄|
|S̄| = 0. Moreover for any {i , j } ∈ E one has xi = x j and so

xT LG x =
∑

{i , j }∈E wi j (xi − x j)2 = 0. Hence x is indeed an Eigenvector with Eigen-
value 0.

(⇒). Suppose for the sake of contradiction that G is connected and λ2 = 0.
Then there is an Eigenvector x with Eigenvalue 0 so that 1 ⊥ x. As

∑

i∈V xi = 0,
we know that x is not constant. As G is connected, there must be neighboring
vertices i∗, j∗ so that xi∗ 6= x j∗ . Then

0 = xT LG x
︸︷︷︸

=0

=
∑

{i , j }∈E

wi j (xi −x j)2

︸ ︷︷ ︸

>0 for i=i∗, j= j∗

> 0

This is a contradiction.

Interestingly, the second smallest Eigenvalueλ2(LG) not only determines whether
G is connected, but also how strongly G is connected. This is one of the most im-
portant results in spectral graph theory and we discuss it in the next section.

5.1 Graph partitioning

Given a graph G , a frequent algorithmic problem is to partition the graph into
two disjoint sets S and V \ S so that few edges are separated. We have seen
the polynomial-time solvable MinCut problem that minimizes the number (or
weight) of separated edges in Chapter 1. But often it is not only the weight of the
separated edges that should be small but one also would like that the sets S and
[n] \ S are both large. For example if the partition is the basis for a recursive algo-
rithm it is less effective if one of the sets is a singleton. So we want to introduce a
different objective function that takes the size of the sets into account.

86 CHAPTER 5. SPECTRAL GRAPH THEORY

Definition 5.5. For a weighted graph G = (V ,E , w) and vertices S ⊆ V we define
the volume as

vol(S) :=
∑

i∈S

w(δ(i))

which is the weighted sum of degrees of vertices in S. The conductance of S is

φ(S) :=
w(δ(S))

vol(S)

We note that φ(S) is the fraction of all the edge weight incident to S that is
separated by S. By definition we have 0 ≤ φ(S) ≤ 1. We are interesting in finding
a set S that minimizes the conductance. Note that w(δ(S)) = w(δ(V \ S)) and so
we want to use the smaller of both sets S and V \ S to count.

Definition 5.6. For a weighted graph G = (V ,E , w) we define the conductance of
the graph itself as

φ(G) := min
{

φ(S) | S ⊆V with vol(S) ≤
1

2
vol(V)

}

For example if G is a cycle of length n (with n even) and all edges have unit
weight, then φ(G) = 2

n
. So the conductance indeed gives a good definition for

how good a graph can be divided.

S
cycle with cut S attaining conductance

In contrast to finding a minimum cut in a graph, determining the conductance
is NP-hard. Thus we will discuss how φ(G) can be approximated.

5.2 Cheeger’s Inequality

We allow that vertices in our graph have different (weighted) degrees. First we
need to introduce how to rescale the Laplacian to take that into account.

Definition 5.7. Let G = (V ,E , w) be a weighted graph on n vertices with weighted
adjacency matrix A and weighted degree matrix D . Then the normalized Lapla-

cian of G is the matrix L̃G ∈RV ×V with

L̃G := D−1/2LG D−1/2 = In −D−1/2 AD−1/2

5.2. CHEEGER’S INEQUALITY 87

In the example graph from earlier, the normalized Laplacian looks as follows:

a b c

d e

graph

D =

1 0 0 0 0

0 3 0 0 0

0 0 1 0 0

0 0 0 2 0

0 0 0 0 1

a b c d e

a

b

c

d

e

degree matrix

L̃G =

1 − 1p
3 0 0 0

− 1p
3 1 − 1p

3
− 1p

6 0

0 − 1p
3 1 0 0

0 − 1p
6 0 1 − 1p

2

0 0 0 − 1p
2 1

a b c d e

a

b

c

d

e

normalized Laplacian

We note that L̃G is rescaled so that the diagonal entries are all 1. From Lemma 5.2
we can derive that 0 ¹ L̃G ¹ 2In , i.e. all Eigenvalues of the normalized Laplacian
lie in the interval [0,2]. But it is not true anymore that all row sums and column
sums are 0. Instead D1/21 is an Eigenvector with Eigenvalue 02. A bit informally
speaking one can think of L̃G as a rescaling so that all vertices are equally impor-
tant. An important insight is that the Eigenvector belonging to λ2(L̃G) can be
used to extract a set of low conductance. For this we use the following algorithm:

SPECTRAL PARTITIONING ALGORITHM

Input: Weighted graph G = (V ,E , w).
Output: Low conductance cut S ⊆V .

(1) Compute the Eigenvector x ∈ RV belonging to Eigenvalue λ2 :=
λ2(L̃G).

(2) Sort (and rename) vertices so that

x1
√

d1

≤
x2

√

d2

≤ . . . ≤
xn

√

dn

where di := w(δ(i)) is the weighted degree of node i .
(3) Return the set S := {1, . . . , i } attaining

min
{

φ({1, . . . , i }) | vol({1, . . . , i }) ≤
vol(G)

2
, i ∈ [n]

}

The algorithm will be used to prove the following fundamental result:

2One can check that indeed L̃G D1/21 = InD1/21 − D−1/2 AD−1/2D1/21 = D1/21 − D−1/2 A1 =
D−1/21−D−1/2D1 = 0

88 CHAPTER 5. SPECTRAL GRAPH THEORY

Theorem 5.8 (Cheeger’s Inequality). For any weighted graph G = (V ,E , w) one
has

λ2

2
≤φ(G) ≤

√

2λ2

where λ2 :=λ2(L̃G).

The usefulness of this result lies in the fact that while computing φ(G) is NP-
hard, the quantity λ2 can be computed in polynomial time and so the spectral
partitioning algorithm runs in polynomial time. It is a bit unfortunate that λ2

and φ(G) are not within some fixed factors of each other, but Cheeger’s inequality
is tight and neither inequality can be improved.

0

1

0 1

λ2

φ(G)

possible combinations of (λ2,φ(G))

λ2/2

√

2λ2

There are two alternative methods to approximate the conductance φ(G). Us-
ing linear programming one can find a cut S in polynomial time so that φ(S) ≤
O(logn) ·φ(G) [LR99]. Moreover using semidefinite programming one can com-
pute a cut S so that φ(S) ≤ O(

√

log(n)) ·φ(G) [ARV09]. We now give the proof of
Cheeger’s inequality where for the second part we follow the notes of Lap Chi
Lau3.

Proof of Cheeger’s Inequality. We abbreviate R(x) := xT L̃G x

‖x‖2
2

, which is the Raleigh

coefficient for a vector x ∈ RV . We recall that D1/21 is the Eigenvector of L̃G with
Eigenvalue 0. By Theorem 4.16 we then know that

λ2 = min
{

R(x) : x ⊥ D1/21
}

First we prove the easy direction which is that λ2
2 ≤ φ(G). So, let S be the cut

minimizing the conductance. We want to use S to define a vector orthogonal
to D1/21 so that its Raleigh coefficient is at most 2φ(S). For this purpose we set
y := 1S − vol(S)

vol(V) 1 and x := D1/2 y . We claim that x certifies that λ2 ≤R(x) ≤ 2φ(S).

3See https://cs.uwaterloo.ca/~lapchi/cs860/notes/04-Cheeger.pdf

https://cs.uwaterloo.ca/~lapchi/cs860/notes/04-Cheeger.pdf

5.2. CHEEGER’S INEQUALITY 89

Claim I. One has x ⊥ D1/21 and R(x) ≤ 2φ(S).

Proof of Claim I. We verify that that indeed

〈x,D1/21〉 = 〈y,D1〉 = 〈1S ,D1〉
︸ ︷︷ ︸

=vol(S)

−
vol(S)

vol(V)
〈1,D1〉
︸ ︷︷ ︸

=vol(V)

= 0

Next, we estimate the nominator and denominator of the Raleigh coefficient
R(x). First,

xT L̃G x
Def y and L̃G= yT D1/2(D−1/2

︸ ︷︷ ︸

=In

LG D−1/2)D1/2
︸ ︷︷ ︸

=In

y = yT LG y
LG 1=0= 1T

S LG 1S = w(δ(S))

Secondly

‖x‖2
2 = yT D y = 〈y,D1S〉−

vol(S)

vol(V)
〈y,D1〉
︸ ︷︷ ︸

=0

= 1T
S D1S

︸ ︷︷ ︸

=vol(S)

−
vol(S)

vol(V)
︸ ︷︷ ︸

≤1/2

1T D1S
︸ ︷︷ ︸

=vol(S)

≥
1

2
vol(S)

Finally

R(x) =
xT L̃G x

xT x
≤

w(δ(S))
1
2 vol(S)

= 2φ(S)

In the remainder, we prove the substantially harder direction of φ(G) ≤
√

2λ2.
In order to ease notation we only give the proof for the case that G is d-regular (i.e.
|δ(i)| = d for all i ∈ V) and the edges have unit weight. With this simplification
we have

L̃G =
1

d
LG and φ(G) = min

{ |δ(S)|
d |S|

: |S| ≤
n

2

}

Let x be the Eigenvector w.r.t. Eigenvalue λ2, i.e. x ⊥ 1 and R(x) = λ2. The
strategy is to use x to extract a cut S of low conductance. That would be easy if
say xi ∈ {−1,+1} for all i — but that may not be the case and we have to work a bit
harder. The first step is to replace x by a vector that is easier to use for rounding
to a cut.

We define x+ := max{x,0} as the vector where all negative entries have been
replaced by 0’s. Similarly x− := min{x,0} is the vector where all positive entries
have been replaced by zeroes. Note that x = x++ x−. We can prove that both
vectors x+ and x− must have a Raleigh coefficient that is not larger than x — just
that x+ and x− are not orthogonal to 1 anymore.
Claim II. One has R(x+),R(x−) ≤R(x) ≤λ2.

90 CHAPTER 5. SPECTRAL GRAPH THEORY

Proof of Claim II. By symmetry it suffices to prove that R(x+) ≤ λ2. In fact, the
Raleigh coefficient is of the form

R(x+) =
∑

i∈supp(x+) x+
i
〈(L̃G)i , x+〉

∑

i∈supp(x+) x+
i
· x+

i

≤ max
i∈supp(x+)

〈(L̃G)i , x+〉
x+

i

Hence it suffices to prove that for every index i ∈ supp(x+) one has 〈(L̃G)i , x+〉 ≤
λ2x+

i
. And indeed

〈(L̃G)i , x+〉 = x+
i

︸︷︷︸

=xi

−
1

d
x+(δ(i))

x+≥x
≤ xi −x(δ(i)) = 〈(L̃G)i , x〉 (∗)= λ2xi =λ2x+

i

where we crucially use in (∗) that x is an Eigenvector and so L̃G x =λ2x.
Now by picking the choice of y ∈ { x+

‖x+‖∞ ,− x−

‖x−‖∞ } with the smaller support
we obtain a vector satisfying (i) y ≥ 0, (ii) 1 ≤ |supp(y)| ≤ n

2 , (iii) R(y) ≤ λ2, (iv)
‖y‖∞ = 1. We will use this vector y to generate a cut S. Now we come to the actual
rounding step.
Claim III. There is a threshold 0 < t ≤ 1 so that St := {i ∈ V | y2

i
≥ t } is non-empty

and φ(St) ≤
√

2R(y).

Proof of Claim III. We draw t ∼ (0,1] uniformly at random and study how good
of a choice the random cut St is. First we bound the expected number of edges
that are separated:

E[|δ(St)|] =
∑

{i , j }∈E

Pr[{i , j } ∈ St]
︸ ︷︷ ︸

=|y2
i
−y2

j
|

=
∑

{i , j }∈E

|yi − y j | · |yi + y j |

Cauchy-Schwarz
≤

√
∑

{i , j }∈E

|yi − y j |2 ·
√

∑

{i , j }∈E

|yi + y j |2

(a+b)2≤2a2+2b2

≤
√

yT LG y ·
√

2d
∑

i∈V

y2
i

Next, we consider the average number of nodes in the cut:

E[|St |] =
∑

i∈V

Pr[i ∈ St] =
∑

i∈V

y2
i

Then the ratio of those averages is

E[|δ(St)|]
E[d |St |]

≤

√

yT LG y ·
√

2d
∑

i∈V y2
i

d
∑

i∈V y2
i

=

√
√
√
√2

yT L̃G y

‖y‖2
2

=
√

2R(y)

5.3. THE POWER METHOD 91

Then there has to be some outcome of t where this inequality holds4.
Finally, inspecting Claim II and Claim III we note that the cut St that is pro-

duced is indeed of the form S = {1, . . . , i } for some i , assuming we have sorted the
vertices so that x1 ≤ x2 ≤ . . . ≤ xn (for regular graphs). Hence (at least for regular
graphs) this confirms that the cut S produced by the spectral rounding algorithm
satisfies the claimed guarantee of φ(S) ≤

√

2λ2.

5.3 The power method

In many algorithms that depend on linear algebra it is more important that the
linear algebra part works fast than it is that the answer is exact. For example
computing the singular value decomposition (SVD) takes time O(n3) for an n×n

matrix, which often is prohibitively slow. We want to show case one example
where a linear algebraic quantity can be approximated with a very fast algorithm.
Suppose M ∈Rn×n is a positive semidefinite matrix with Eigenvalues λi :=λi (M)
sorted so that λ1 ≥ . . . ≥ λn ≥ 0. We are interested in approximately computing
λ1 and the corresponding Eigenvector. Consider the following randomized algo-
rithm:

POWER METHOD

Input: Matrix M ∈Rn×n with M º 0 and parameter k

Output: Approximate Eigenvector x and Eigenvalue.
(1) Choose a random Gaussian x ∈Rn , i.e. x1, . . . , xn ∼N (0,1)
(2) FOR i = 1 TO k DO

(3) Update x ′ := M x

(4) Return x and xT M x
‖x‖2

2

In terms of running times, the algorithm only needs k many matrix-vector mul-
tiplications which are particularly effective in the important case where M is
sparse. Hence, let nnz(M) denote the number of non-zero entries in M . Then
one matrix-vector multiplication takes time O(nnz(M)) hence the total running
time is O(k ·nnz(M)). Before we come to the formal analysis, we want to give
an intuitive explanation why the algorithm works. Any PSD matrix has an Eigen

4This claim takes a bit more care than it seems. Suppose we have a distribution D over some
parameter t and two positive functions f (t), g (t) that depend on that parameter. Say we know

that E[f (t)]
E[g (t)] ≤ ρ. Then rearranging and using linearity of expectation gives that E[f (t)−ρg (t)] ≤ 0.

Hence there must be some outcome t∗ so that indeed f (t∗)−ρg (t∗) ≤ 0. Again rearranging gives

that f (t∗)
g (t∗) ≤ ρ. But it may not be true that Et∼D[f (t)

g (t)] ≤ ρ.

92 CHAPTER 5. SPECTRAL GRAPH THEORY

decomposition M =
∑n

i=1λi ui uT
i

where u1, . . . ,un is an orthonormal basis. Then
x =

∑n
i=1 〈ui , x〉ui where 〈ui , x〉 is the coordinate of x in that orthonormal basis.

Then after one multiplication with M we have

M x =
n∑

i=1
λi 〈ui , x〉ui

What this means is that the i th coordinate is amplified by a factor of λi . So re-
peating this procedure will make the coordinates of the (approximately) largest
Eigenvalue dominate. The randomization of the initial x is only needed so that
we do not accidentially start with an x that is mostly orthogonal to the Eigenvec-
tor of the largest Eigenvalue. We will prove the following:

Theorem 5.9. Let M be a PSD matrix with Eigenvaluesλ1 ≥ . . . ≥λn ≥ 0 and let 0 <
ε ≤ 1

2 . With constant probability one has that after k := O(ln(n)
ε

) many iterations,
the returned vector y satisfies

yT M y

‖y‖2
2

≥ (1−ε)λ1

Proof. For ℓ ∈ {0, . . . ,k}, let x(ℓ) as the vector after the ℓ-th iteration. It will be
convinient to write x = x(0) which is the random Gaussian and y = x(k) which is
the returned vector. Let ui be the Eigenvector of M for the i th Eigenvalue. By
induction one can easily verify that

y = M M . . . M
︸ ︷︷ ︸

k times

x = M k x.

Note that the Eigen decompositon of M k is simply M k =
∑n

i=1λ
k
i

ui uT
i

. We say
that the starting vector x was good if (i) | 〈u1, x〉 | ≥ 1

2 and (ii) ‖x‖2
2 ≤ 4n.

Claim I. The starting point x is good with constant probability.

Proof of Claim I. We have Pr[| 〈u1, x〉 | ≥ 1
2] = 1− 1p

2π

∫1/2
−1/2 e−t 2/2d t ≥ 0.6 and E[‖x‖2

2] =
n which means Pr[‖x‖2

2 ≥ 4n] ≤ 1
4 by Markov’s inequality5. The claim follows by

the union bound as 1−0.4− 1
4 = 0.35.

Now we do the main analysis where we may assume that x is good whenever
needed. First, note that

yT M y = (M k x)T M(M k x) = xT M 2k+1x and yT y = (M k x)T (M k x) = xT M 2k x

Hence we have
yT M y

‖y‖2
2

=
xT M 2k+1x

xT M 2k x
(5.1)

5In fact one can prove much stronger concentration such as Pr[‖x‖2
2 ≥ 4n] ≤ e−Θ(n).

5.3. THE POWER METHOD 93

We will need to lower bound the nominator xT M 2k+1x and upper bound the de-
nominator xT M 2k x. It is possible that there are several Eigenvalues very close to
λ1 in which case we could not expect that y is a scalar of u1, but y would be close
to the span of the Eigenvectors of those Eigenvalues close to λ1. To analyze this,
let j be the index so that λ1 ≥ λ2 ≥ . . . ≥ λ j ≥ (1− ε

2)λ1 > λ j+1 ≥ . . . ≥ λn ≥ 0. In
other words, the first j Eigenvalues are very close to λ1 and the remaining Eigen-
values are far enough below λ1.

We can lower bound

xT M 2k+1x =
n∑

i=1
λ2k+1

i 〈ui , x〉2 ≥λ1(1−
ε

2
)

j∑

i=1
λ2k

i 〈ui , x〉2

by only taking the contribution from large Eigenvalues. Then we upper bound

xT M 2k x =
j∑

i=1
λ2k

i 〈ui , x〉2 +
n∑

i= j+1
〈ui , x〉2

︸ ︷︷ ︸

≤‖x‖2
2≤4n

· λ2k
i

︸︷︷︸

≤(1− ε
2)2kλ2k

1

(∗)
≤

j∑

i=1
λ2k

i 〈ui , x〉2 +4n · (1−
ε

2
)2k

︸ ︷︷ ︸

≤(1
2)2 ε

2

λ2k
1

(∗∗)
≤ (1+

ε

2
)

j∑

i=1
λ2k

i 〈ui , x〉2

where we use in (∗) that ‖x‖2
2 ≤ 4n and in (∗∗) that | 〈u1, x〉 | ≥ 1

2 ; both hold if we
assume that x is good. In (∗∗) we also use that (1− ε

2)k ≤ exp(−k ε
2) ≤ ε

32n
if we

choose k =Θ(ln(n)
ε

) with a suitable constant. Then we can lower bound the ratio
from (5.1) as

xT M 2k+1x

xT M 2k x
≥

λ1(1− ε
2)

∑ j

i=1λ
2k
i

〈ui , x〉2

(1+ ε
2)

∑ j

i=1λ
2k
i

〈ui , x〉2
≥λ1(1−ε)

We note that indeed
1− z

2
1+ z

2
≥ 1− z for all z ≥ 0.

We conclude this chapter with a few comments on the power method:

• For numerical stability one typically replaces the update x ′ := M x by x ′ :=
M x

‖M x‖2
(otherwise the length of the vector might grow/shrink enourmously).

94 CHAPTER 5. SPECTRAL GRAPH THEORY

• For a non-symmetric matrix A ∈ Rm×n one can find approximate left- or
right-singular vectors corresponding to the largest singular value by apply-
ing the power method to A AT or AT A (which are positive semidefinite ma-
trices).

• The problem that we were interested in in Section 5.2 was to compute the
second smallest Eigenvalue of the normalized Laplacian L̃G , rather than
the largest one. But this can be done with the following trick. Recall that
0 ¹ L̃G ¹ 2In . Hence 2In − L̃G is a positive semidefinite matrix and the sec-

ond largest Eigenvector is the one that is relevant. But we know that D1/21

is the Eigenvector of 2In − L̃G belonging to the largest Eigenvalue which
is 2. Hence we can simply apply the power method to M := 2In − L̃G −
2 D1/211T D1/2

‖D1/21‖2
2

.

• On first thought one might be tempted to believe that the power method
also works in case that M is symmetric but not PSD. But that is not quite
true. Suppose λ1, . . . ,λn are the Eigenvalues, sorted so that |λ1| ≥ |λ2| ≥
. . . ≥ |λn | ≥ 0. If |λ1| ≥ (1− ε)|λ2|, then indeed the method will converge
with the same rate against the Eigenvector u1, regardless of the sign of λ1.
But if say |λ1| = |λ2| ≥ (1−ε)|λ3| where λ1 and λ2 have different signs, then
the method will not converge (the produced vector will lie approximately
in span{u1,u2} but not approach ±u1 or ±u2).

Chapter 6

Linear programming

6.1 Convexity, polyhedra and linear programs

A set K ⊆ Rn is convex if for all x, y ∈ K and 0 ≤ λ ≤ 1 one has λx + (1−λ)y ∈
K . Intuitively, for any pair of points x, y ∈ K in a convex set, the line segment
connecting them must lie inside K .

K
x y

convex

K

x y

not convex

The point λx + (1−λ)y is called a convex combination of x and y .

Definition 6.1. For a matrix A ∈Rm×n and b ∈Rm , the set

P =
{

x ∈Rn | Ax ≤ b
}

=







x ∈Rn |

AT
1 x ≤ b1

AT
2 x ≤ b2

...
AT

m x ≤ bm







is called a polyhedron.

That means P is the solution to a system of finitely many linear inequalities.

P

polyhedron P ⊆R2

95

96 CHAPTER 6. LINEAR PROGRAMMING

Note that every polyhedron is convex. If P is bounded (i.e. for some r > 0, P ⊆
B n

2 (0,r)), then P is called a polytope. The optimization problem

max
{

cT x | Ax ≤ b
}

is called a linear program (LP). In other words, a linear program is the problem
of optimizing a linear function over a polyhedron.

P
x∗ = optimum

c

·

LPs are fundamental problems in theoretical computer science and optimization.
For example flow problems are LPs and LPs are the building block for most ap-
proximation algorithms. Linear programs have a rich structure including duality

theory which we discuss later. For now we will focus on the question how to solve
LPs algorithmically.

6.2 An overview over algorithms for linear programs

There are 3 main classes of algorithms to solve linear programs. We give a brief
overview and then discuss one method in detail.

• The simplex method. Pioneered by Dantzig in 1947 (see [Dan90] for an
historic account), the idea of the simplex method is to iteratively move
from a vertex1 x ∈ P to another vertex x ′ ∈ P with better (or equal) objec-
tive function, i.e. cT x ′ ≥ cT x. Often there is some flexibility how to pick
the next vertex and the selection rule is called the pivot rule. The sim-
plex method performs excellently in practice, but to this day it is unclear
how to make it provably work in polynomial time in the worst case. For
most pivot rules one can construct some pathological instance (often a de-
formed cube) that makes the simplex method visit exponentially many ver-
tices. Kalai [Kal92] proved that a random pivot rule works in subexponen-
tial time of mO(

p
n). Spielman and Teng [ST04] proved that for certain ran-

dom instances, the simplex method indeed takes polynomial time which

1Formally a vertex x of P is a point in P that is not a convex combination of two distinct points
that are also in P . Note that not every non-empty polyhedron P = {x ∈ Rn | Ax ≤ b} has vertices
(the condition needed is that rank(A) = n). But for example each non-empty polyhedron of the
form P = {x ∈Rn | Ax = b, x ≥ 0} does have vertices.

6.2. AN OVERVIEW OVER ALGORITHMS FOR LINEAR PROGRAMS 97

might be the best explanation for the observed excellent practical perfor-
mance.

b

b

b

b

b

b

b

b

c

• The Ellipsoid method. The Ellipsoid method was developed by Shor, Yudin,
Nemirovski (1970) for nonlinear optimization; later Khachyian (1979; [Kha79])
turned it into the first polynomial time algorithm for solving linear pro-
grams. Actually the method does not optimize a linear function, it merely
finds a feasible point in a convex set K . It does so by constructing a se-
quence E0 ⊇ E1 ⊇ . . . ⊇ ET of smaller and smaller ellipsoids that all con-
tain K until a point in K is found. Then in order to actually solve the op-
timization question max{cT x | x ∈ K }, we can define Kβ := {x ∈ Rn | x ∈
K and cT x ≥ β} for β ∈ R. Then using binary search one finds the maximal
β so that Kβ 6= ;. The Ellipsoid method never became relevant in practice
but it arguably is the cleanest and most general algorithm for LPs and con-
vex programs. Hence we will discuss it further down in detail.

• Interior point methods. Interior point methods (IPMs) are a family of al-
gorithms, first developed by Karmarkar (1984; [Kar84]). IPMs also provide
a polynomial time algorithm for solving linear programs, but they are com-
petitive in practice with the simplex method (better on some classes of
problems, worse on others).

We consider a polyhedron P = {x ∈ Rn | Ax ≤ b} and consider the problem
of maximizing cT x over P . For a parameter λ > 0, consider the log barrier

function

Fλ(x) = cT x +λ
m∑

i=1
ln(bi −aT

i x)

which is defined on the interior of P and is concave. Note that the func-
tion approaches −∞ if x approaches the boundary of P . Let x∗(λ) be the
unique point in P maximizing Fλ(x). Then the smaller λ is, the smaller is
the contribution of the barrier term and the optimum will approach the
optimum of the LP.

98 CHAPTER 6. LINEAR PROGRAMMING

c

x∗(λ)
P

level curves for Fλ(x)
for large λ

c

x∗(λ)P

level curves for Fλ(x)
for small λ

The central path is the curve C := {x∗(λ) |λ> 0}.

c

x∗(∞)
P x∗(0) = optimum LP solution

C

The IPM then follows the path from the analytic center x∗(∞) towards x∗(0)
in small steps (adjusting λ by a small factor in each step).

6.3 The ellipsoid method

In this section, we give some details on the Ellipsoid method, following the expo-
sition of Korte and Vygen [KV12].

For a symmetric matrix B ∈ Rn×n we write B ≻ 0 (i.e. B is positive definite) if
all Eigenvalues are strictly positive. There are several equivalent ways to define
an ellipsoid. For this section it will be convinient to set

E(B ,c) :=
{

x ∈Rn | (x − c)T B−1(x − c) ≤ 1
}

where B ∈ Rn×n is a matrix with B ≻ 0 and c ∈ Rn is the center of the ellipsoid.
In this notation one has B n

2 (c,r) := E(r 2In ,c). Consider the Eigen decomposition

of B in the form B =
∑n

i=1λi ui uT
i

where λ1, . . . ,λn > 0 are the Eigenvalues and
u1, . . . ,un are the orthonormal Eigenvectors. Then the ellipsoid can be alterna-
tively written as

E(B ,c) =
{

x ∈Rn |
n∑

i=1

〈x − c,ui 〉2

λi
≤ 1

}

In particular ui is the i -th axis that has a length of
√

λi .

6.3. THE ELLIPSOID METHOD 99

√

λ1u1

√

λ2u2

c
E(B ,c)

We can also see that the volume of this ellipsoid is

Voln(E(B ,c))

Voln(B n
2)

=
n∏

i=1

√

λi = det(B 1/2) =
√

det(B)

The idea behind the ellipsoid method is quite simple: say we have a target
polytope P ⊆ Rn and we know that it is contained in some large ellipsoid E0 =
E(A0,c0). Then we check whether c0 ∈ P — if yes, we are done. Otherwise, by tak-
ing an inequality aT x ≤ b of P that is violated by c0 we learn that P is contained
in a half-ellipsoid E0 ∩H with H := {x ∈ Rn | aT x ≤ aT c0}. Then we can explicitly
compute an ellipsoid E1 that contains E0 ∩ H but has a smaller volume that E0.
Then we iterate.

Ellipsoid method

Input: A ∈ Qm×n ,b ∈ Qm and R > 0 so that P := {x ∈ Rn | Ax ≤ b} is con-
tained in B n

2 (0,R).
Output: Point x ∈ P .

(1) Set B0 := R2In , c0 := 0 so that E0 := E(B0,c0) = B n
2 (0,R).

(2) FOR k = 0 TO ∞
(3) If ck ∈ P THEN return ck

(4) Select an inequality aT
k

x ≤ βk from system Ax ≤ b with aT
k

ck >
βk

(5) Set

dk :=
1

√

aT
k

Bk ak

Bk ak

and update

ck+1 := ck −
1

n +1
dk , Bk+1 :=

n2

n2 −1

(

Bk −
2

n +1
dk d T

k

)

and Ek+1 := E(Bk+1,ck+1).

We note that the new ellipsoid Ek+1 is obtained by moving the center of Ek

into direction −dk , squeezing Ek in direction dk and slightly expanding it in di-
rections orthogonal to dk . The figure for the case that Ek is a ball is as follows:

100 CHAPTER 6. LINEAR PROGRAMMING

ck

P

Ek

aT
k

x ≤ aT
k

ck

aT
k

x ≤ bk
ak

ck

P

Ek+1

aT
k

x ≤ aT
k

ck

We will prove correctness of the ellipsoid method in form of the following theo-
rem:

Theorem 6.2. Suppose P = {x ∈ Rn | Ax ≤ b} is contained in B n
2 (0,R) and P con-

tains some ball of radius r > 0. Then the ellipsoid method finds a point in P in at
most O(n2 log R

r
) many iterations.

It suffices to prove the following two properties:

(i) For all k ≥ 0 one has Ek+1 ⊇ Ek ∩ {x ∈Rn | aT
k

x ≤ aT
k

ck }

(ii) For all k ≥ 0 one has Voln (Ek+1)
Voln (Ek) ≤ exp(− 1

2n+2).

By (i) we have P ⊆ Ek for all k. Moreover, as P contains a radius r -ball, we know
that in each iteration k we have

r nVoln(B n
2) = Voln(B n

2 (0,r))

≤ Voln(Ek)
(i i)
≤ exp

(

−
k

2n +2

)

·Voln(E0)

= exp
(

−
k

2n +2

)

·RnVoln(B n
2)

Rearranging gives

k ≤ n · (2n +2)ln
(R

r

)

which establishes the upper bound on the number of iterations in Theorem 6.2.
It remains to prove (i) and (ii). We fix some iteration k. Note that applying

an affine linear transformation does not change the properties (i) and (ii). If we
transform the space so that Ek = B n

2 (i.e. Bk = In and ck = 0) and ‖ak‖2 = 1 then
the update formula simplifies to

ck+1 =−
1

n +1
ak and Bk+1 =

n2

n2 −1

(

In −
2

n +1
ak aT

k

)

6.3. THE ELLIPSOID METHOD 101

This means that in direction ak we shrink the axis length to
√

n2

n2−1
(1− 2

n+1) =
1− 1

n
±O(1

n2) while in directions orthogonal to ak we expand the axis length to
√

n2

n2−1
= 1+ 1

2n2 ±O(1
n4). Note that one can prove that the update formula for

the ellipsoid are chosen so that Ek+1 is precisely the ellipsoid satisfying (i) that
minimizes the volume. That ellipsoid is also called the Löwner-John ellipsoid

with respect to the convex body Ek ∩ {x ∈ Rn | aT
k

x ≤ aT
k

ck }. However, in order to
have a cleaner proof we will instead analyze a different ellipsoid that is slightly
larger along the ak direction so that proving (i) is easier. Without loss of gener-
ality we may also assume that ak = −e1, hence it suffices to proof the following
standalone lemma:

Lemma 6.3. For n ≥ 2, define B ∈Rn×n

B = diag
((n

n +1

)2
,

n2

n2 −1
, . . . ,

n2

n2 −1
︸ ︷︷ ︸

n−1 entries

)

and c :=
1

n +1
e1

Then E0 := B n
2 and E1 := E(B ,c) satisfy

(i) One has E1 ⊇ E0 ∩ {x ∈Rn | x1 ≥ 0}

(ii) One has Voln (E1)
Voln (E0) ≤ exp(− 1

2n+2).

E0 E1

0
c

e1

x1

Proof. First note that the ellipsoid E1 is of the form

E1 = {x ∈Rn | (x − c)T B−1(x − c) ≤ 1}

=
{

x ∈Rn |
(n +1

n

)2(

x1 −
1

n +1

)2
+

n2 −1

n2

n∑

i=2
x2

i ≤ 1

}

102 CHAPTER 6. LINEAR PROGRAMMING

To show (i), we prove that for x ∈Rn with ‖x‖2 ≤ 1 and x1 ≥ 0 one has x ∈ E1. And
indeed

(n +1

n

)2(

x1 −
1

n +1

)2
+

n2 −1

n2

n∑

i=2
x2

i

︸ ︷︷ ︸

≤1−x2
1

≤
((n +1

n

)2
−

n2 −1

n2

)

x2
1 −2

1

n +1

(n +1

n

)2
x1 +

((n +1

n

)2 1

(n +1)2
+

n2 −1

n2

)

=
2n +2

n2
· (x2

1 −x1)
︸ ︷︷ ︸

≤0

+1 ≤ 1

using that 0 ≤ x1 ≤ 1. To verify claim (ii) we estimate that

Voln(E1)

Voln(E0)
=

√

det(B) =
n∏

i=1

√

Bi i

=
n

n +1
·
(n2

n2 −1

)(n−1)/2
=

(

1−
1

n +1

)

·
(

1+
1

n2 −1

)(n−1)/2

≤ exp
(

−
1

n +1

)

·exp
(1

n2 −1
·

n −1

2

)

= exp
(

−
1

2(n +1)

)

Here we use that B is diagonal and the fact that 1+ y ≤ e y for all y ∈R.

There are some further technical issues that need to be resolved in order to
make the Ellipsoid method work:

(a) Make P bounded and find an enclosing ball.

(b) Make P full-dimensional and find a lower bound on a ball inside P .

(c) The algorithm contains square roots; round them to rational numbers and
incorporate the error.

We refer again to the book of Korte and Vygen [KV12] for details. We conclude:

Theorem 6.4. Let A ∈Qm×n , b ∈Qm , c ∈Qn . Then the LP max{cT x | Ax ≤ b} can
be solved in time polynomial in the bit encoding length of A,b,c.

6.3.1 The ellipsoid method with a separation oracle

Consider again a polytope P = {x ∈ Rn | Ax ≤ b} with A ∈Qm×n and b ∈Qm with
B n

2 (c∗,r) ⊆ P ⊆ B n
2 (0,R) for some unknown point c∗ ∈ Rn and r ≤ R. In Theo-

rem 6.2 we have seen that the ellipsoid method takes O(n2 log R
r

) many iterations

6.3. THE ELLIPSOID METHOD 103

to find a feasible point. That means the number of iterations does not depend
on the number m of inequalities. Instead of maintaining an explicit list of all m

inequalities in the system Ax ≤ b, it would suffice if in every iteration, the algo-
rithm could determine one inequality violated by the current center ck . This is
called the separation problem for P .

SEPARATION PROBLEM FOR POLYHEDRON P ⊆Rn

Input: Point y ∈Qn

Goal: Find a a ∈Qn with aT y > aT x ∀x ∈ P or assert y ∈ P .

y

a

P

Hence, if for a polytope P (or more generally a convex set) we can solve the sepa-
ration problem in polynomial time, then we can also find a point in it. We want
to demonstrate this using an example.

The Travelling salesperson problem (TSP) is the following: given an undirected
graph G = (V ,E) and a cost function c : E → R≥0, find the minimum cost tour /

Hamiltonian circuit F ⊆ E . Here a tour is an edge set that is a connected cycle
visiting all nodes exactly once.

graph G tour

The problem is NP-hard. But the problem has a very useful linear programming
relaxation which is called the subtour elimination LP.

min
∑

e∈E

ce xe (LP)

x(δ(v)) = 2 ∀v ∈V

x(δ(S)) ≥ 2 ∀;⊂ S ⊂V

xe ≥ 0 ∀e ∈ E

For every tour F , the characteristic vector 1F is a feasible solution to the LP.
But in reverse the LP might have solutions that are cheaper than any actual tour
even in a complete graph where c is a metric. Here is a well known construction
that gives a gap of 4/3.

104 CHAPTER 6. LINEAR PROGRAMMING

k edges

graph H

1
2

1

fractional solution x of cost (3±o(1))k

best integral solution has cost (4±o(1))k

in (G ,c) where c(i , j) := shortest path in H

between i and j .

But in that important case the LP is not too far off:

Theorem 6.5 (Karlin, Klein, Oveis Gharan [KKG21, KKG22]). If G is a complete
graph and c is a metric (i.e. the cost satisfy the triangle inequality), then there is
a tour of value at most (3

2 −10−36) times the value of the LP.

This work2 improved a longstanding bound of 3/2 due to Christofides [Chr76].
Note that there are roughly 2|V | many constraints in the LP so it is not obvious in
the first place that one could even solve the LP efficiently. That is the aspect that
we want to explain in more detail.

Theorem 6.6. The subtour elimination LP can be solved in polynomial time.

Proof. Let Pβ be the set of solutions x ∈ RE to (LP) so that cT x ≤ β. By the Ellip-
soid method it suffices to show that the separation problem for Pβ can be solved
efficiently. Let x∗ ∈ RE be a point for which we need to decide whether x∗ ∈ Pβ

and if not, we need to produce a violated inequality. First we check whether
cT x∗ ≤β, x∗(δ(v)) = 2 and x∗

e ≥ 0 by going explicitly through all such inequalities.
Suppose these are all satisfied. Then the remaining problem is: Given x∗ ∈ RE

≥0,
find the set ; ⊂ S ⊂ V that minimizes x∗(δ(S)). This is exactly the MinCut prob-
lem which we know from Chapter 1 can be solved in polynomial time!

2See also the nicely written Quanta article under
https://www.quantamagazine.org/computer-scientists-break-traveling-salesperson-record-20201008/.

https://www.quantamagazine.org/computer-scientists-break-traveling-salesperson-record-20201008/

6.4. CONVEX PROGRAMMING 105

6.4 Convex programming

A function f : Rn →R is convex if

f ((1−λ)x +λy) ≤ (1−λ) f (x)+λ f (y) ∀x, y ∈Rn ∀0 ≤λ≤ 1.

In other words, for every x and y , the line segment between (x, f (x)) and (y, f (y))
lies above the graph of f .

x ∈Rn

R

x y

f (x)

If f is convex, then for all β ∈R, the level set {x ∈Rn | f (x) ≤β} is convex.

x ∈Rn

R
f (x)

β

{x | f (x) ≤β}

For example every linear function f (x) = 〈a, x〉 (with a ∈ Rn) is convex. Here
is another example:

Lemma 6.7. Let ‖ ·‖ : Rn →R≥0 be a norm. Then ‖ ·‖ is convex.

Proof. Let x, y ∈Rn and 0 ≤λ≤ 1. Then we verify that

‖λx + (1−λ)y‖
triangle ineq.

≤ ‖λx‖+‖(1−λ)y‖
homog.
= λ‖x‖+ (1−λ)‖y‖

The reader may recall the following fact from the 1-dimensional setting: if
f : R → R is twice differentiable then f is convex if and only if f ′′(x) ≥ 0 for all
x ∈ R. This fact generalizes to the multivariate case. For f : Rn → R we write

106 CHAPTER 6. LINEAR PROGRAMMING

∇ f (x) ∈Rn as the gradient and ∇2 f (x) ∈Rn×n is the Hessian3. Note that if all 2nd
partial derivatives are continuous then ∇2 f (x) is symmetric.

Theorem 6.8. Let f : Rn → R be a function with continuous 2nd derivatives ev-
erywhere. Then f is convex if and only if

∇2 f (x) º 0 ∀x ∈Rn

We leave the proof as an exercise.

Example 6.9. Let A ∈ Rn×n be a symmetric matrix and let f (x) := xT Ax. Then
∇ f (x) = 2Ax and ∇2 f (x) = 2A. Hence the function f is convex if and only if
A º 0.

A (general) convex program is of the form

min f0(x) (C P)

f1(x) ≤ b1

...

fm(x) ≤ bm

where f0, f1, . . . , fm : Rn →R are convex functions.

Example 6.10. Here is an example convex program from graph drawing. Con-
sider an undirected graph G = (V ,E) for which we want to construct a good 2-
dimensional drawing based on the following physics-inspired interpretation: we
select a subset U ⊆V of vertices that we “nail” to a board. Then we install springs
along the edges of the graph and wait until the system reaches a minimum en-

ergy state. This can be modelled as a convex program. Let b(v) ∈ R2 be the fixed
coordinates for v ∈U . We use variables x(v) ∈R2 for all v ∈V . Then

min
{ ∑

{u,v}∈E

‖x(u)−x(v)‖2
2 | x(v) = b(v) ∀v ∈U

}

is the convex program4 that provides the minimum energy state.

3Formally, the gradient is the vector of partial (first) derivates, i.e. ∇ f (x∗) :=
(
∂ f
∂x1

(x∗), . . . , ∂ f
∂xn

(x∗)
)

. The Hessian (matrix) is the n ×n matrix with all the second partial deriva-

tives, i.e. ∇2 f (x∗) :=
(∂2 f
∂xi ∂x j

(x∗)
)

i , j∈[n].
4One can think of the constraints as the convex constraints x(v)i ≤ b(v)i and −x(v)i ≤−b(v)i

for i ∈ {1,2}.

6.4. CONVEX PROGRAMMING 107

graph G Minimum energy state
fixing the 4 corners

The name “convex program” is justified because of the following:

Lemma 6.11. For any b0 ∈ R, the set K = {x ∈ Rn | f0(x) ≤ b0, fi (x) ≤ bi∀i =
1, . . . ,m} of solutions to (C P) that have value b0 is convex.

Proof. We already know that the sets Si := {x ∈ Rn | fi (x) ≤ bi } are convex. Then
K = S0 ∩S1 ∩ . . .∩Sm . Since the intersection of convex sets is convex, the claim
follows.

In particular the set of optimum solutions is convex. Note that in (C P) if one
replaces min with max or ≤ with ≥ or = then this convexity property may be lost.
We will show that convex programs can be solved in polynomial time — modulo
some technicalities that we skip here5.

Theorem 6.13 (Informal). One can solve any convex program (C P) in polynomial
time as long as for every x ∈ Rn and i ∈ {0, . . . ,m} one can compute fi (x) and
∇ fi (x) efficiently.

Proof. Using binary search on the function value it suffices to find a feasible
point in

K :=
{

x ∈Rn | fi (x) ≤ bi∀i = 0, . . . ,m
}

or assert that K is empty. We use the Ellipsoid method to do this, starting with an
ball of large enough radius. From Section 6.3.1 we know that it suffices to solve
the Separating Hyperplane Oracle for K at some given point y . By assumption

5The precise statement that one could prove is the following:

Theorem 6.12. Consider a convex program (CP) so that (i) all feasible solutions are contained in
B n

2 (0,R) and the functions fi are R-Lipschitz continuous, (ii) the functions fi have continuous
2nd derivatives, and (iii) for all x ∈ Rn and i ∈ {0, . . . ,m} we can compute fi (x) and ∇ fi (x) in
polynomial time. Then in time poly(n,m, log(R), log(1

ε)) one can compute an x∗ with fi (x∗) ≤
bi +ε for i ∈ [m] and f0(x∗) ≤ opt+ε.

108 CHAPTER 6. LINEAR PROGRAMMING

we can evaluation fi (y) at any i and hence we can decide whether y ∈ K or not.
Suppose that y ∉ K and let i be a constraint with fi (y) > bi .

Claim I. ∇ fi (y) is the normal vector separating y from K .

Proof of Claim I. Fix a point x ∈ K . We need to prove that 〈∇ fi (y), y〉 > 〈∇ fi (y), x〉.

K x
z y

∇ fi (y)
{x | fi (x) ≤ bi }

By (a variant of) Taylor’s Theorem, there is a point z on the line segment between
x and y so that

fi (x)
Taylor
= fi (y)+ (x − y)T∇ fi (y)+ (x − y)T ∇2 fi (z)

︸ ︷︷ ︸

º0

(x − y)

︸ ︷︷ ︸

≥0

≥ fi (y)+〈∇ fi (y), x − y〉

Here we use that because fi is convex, the Hessian ∇2 fi (z) is PSD. Rearranging
gives

〈∇ fi (y), y〉 ≥ 〈∇ fi (y), x〉+ fi (y)
︸ ︷︷ ︸

>bi

− fi (x)
︸ ︷︷ ︸

≤bi

> 〈∇ fi (y), x〉

As the gradient ∇ fi (y) can be computed efficiently, the claim follows.

To understand why there may be technical issues and in particular some er-
ror term ε > 0 may be needed, consider for example the 1-dimensional convex
program min{−x : x ∈ R and x2 ≤ 2}. Then the optimum solution is

p
2 (i.e. irra-

tional) even though the input data is rational.

6.5 Semidefinite programming

A semidefinite program is of the form:

min〈C , X 〉
〈Ak , X 〉 ≤ bk ∀k = 1, . . . ,m

X º 0

6.6. ROUNDING LINEAR PROGRAMS AND SDPS 109

where C , A1, . . . , Am ∈ Rn×n . In other words, we do not optimize over vectors but
over n ×n PSD matrices. Note that by Lemma 4.5.(b), the set of PSD matrices is
of the form

C := {X ∈Rn×n | X º 0}

=
{

X ∈Rn×n | X symmetric and 〈X ,uuT 〉 ≥ 0 ∀u ∈Rn
}

and hence it is convex. In particular the separation problem for a matrix X ∗ ∉ C
can be solved by computing the Eigenvector v for the smallest Eigenvalue of X ∗.
Then 〈X ∗, v vT 〉 < 0 while 〈X , v vT 〉 ≥ 0 for all X ∈ C. Consequently semidefinite
programs can be solved in polynomial time (again modulo technicalities and up
to some numerical error).

Recall that Y º 0 is equivalent to Yi j = 〈vi , v j 〉 for some vectors vi . Making
that substitution in an SDP results in an equivalent program that is called vector

program.

SDP:

max
∑

i , j

Ci j Yi j

∑

i , j

Ak
i j ·Yi j ≤ bk ∀k

Y sym.

Y º 0

Vector program:

max
∑

i , j

Ci j 〈vi , v j 〉

∑

i , j

Ak
i j · 〈vi , v j 〉 ≤ bk ∀k

vi ∈ Rr ∀i

Curiously, the right hand side vector program is not convex, but rather is equiva-
lent to a convex program (the SDP) and hence can be solved in polynomial time.
Also note that one cannot choose the dimension r of the vectors. In fact, solving
a vector program subject to the rank restriction r = 1 is again NP-hard.

6.6 Rounding linear programs and SDPs

We want to demonstrate the usefulness of linear programs and convex programs
to solve inherently discrete problems approximately.

6.6.1 Vertex Cover

Consider an undirected graph G = (V ,E) with vertex weights w : V → R≥0. A set
U ⊆V is a vertex cover if e ∩U 6= ; for all e ∈ E .

110 CHAPTER 6. LINEAR PROGRAMMING

U

vertex cover U

The minimum vertex cover problem is the problem of finding the vertex cover U

that minimizes the weight w(U) :=
∑

i∈U w(i). We can prove the following:

Theorem 6.14. One can find a vertex cover U of weight w(U) ≤ 2OPT in polyno-
mial time where OPT is the value of the optimum solution.

Proof. We want to write down an integer linear program (ILP) that captures the
vertex cover problem. It seems natural to introduce variables xi ∈ {0,1} with the
interpretation

xi =
{

1 if i is included in the vertex cover

0 otherwise

Then we can write the vertex cover problem as

OPT := min
{ ∑

i∈V

wi xi | xi +x j ≥ 1 ∀{i , j } ∈ E ; xi ∈ {0,1} ∀i ∈V
}

(∗)

where it was important that the constraints and objective function where linear6

in x. But solving an ILP is NP-hard in general so we cannot actually solve (∗). But
we can relax the constraint xi ∈ {0,1} to 0 ≤ xi ≤ 1 and make it a linear program:

LP := min
{ ∑

i∈V

wi xi | xi +x j ≥ 1 ∀{i , j } ∈ E ; 0 ≤ xi ≤ 1 ∀i ∈V
}

(∗∗)

We can solve this LP and denote its optimum solution by x∗ ∈ [0,1]V . Since the
LP is a relaxation we know that LP ≤ OPT . But on the other hand the vector x∗

is (in general) fractional and we still need to extract a vertex cover. We set

U :=
{

i ∈V | x∗
i ≥

1

2

}

as our solution. Clearly U is a vertex cover because for every edge {i , j } ∈ E we
have x∗

i
+x∗

j
≥ 1 and so max{x∗

i
, x∗

j
} ≥ 1

2 . The cost of that solution U is

∑

i∈U

wi ≤
∑

i∈U

2x∗
i

︸︷︷︸

≥1

wi = 2LP ≤ 2OPT

6We could have gotten away with convex constraints, but linear is easier.

6.6. ROUNDING LINEAR PROGRAMS AND SDPS 111

We want to give a few comments. The algorithm above is called a 2-approximation

algorithm for minimum vertex cover. Many approximation algorithms in the lit-
erature follow the same scheme as above:

(1) Solve the LP and let x∗ denote the optimum fractional solution.

(2) Somehow round x∗ to a feasible solution that is not much more costly.

When designing an approximation algorithm the main questions are: What LP
relaxation to use (sometimes there is an obvious one; sometimes not)? How to
round the fractional solution?

For a general minimization problem and a fixed LP relaxation, the integrality

gap is the ratio

sup
instances I

optimum of I

LP value of I

The integrality gap is usually a natural barrier for those types of algorithms. For
example the argument above shows that the integrality gap for the LP (∗∗) is
at most 2. But one can prove that the integrality gap is also not smaller than 2.
For example let G be the complete graph on n vertices with unit vertex weights.
Then setting x∗

i
:= 1

2 gives a fractional solution of value n
2 . But any actual vertex

cover must include all but one vertex. Hence the integrality gap is at least n−1
n/2 →

2. Moreover, assuming the Unique Games Conjecture of Khot [Kho02] there is
no polynomial time (2− ε)-approximation for any constant ε > 0 [KR08]. That
means, the simple approximation algorithm from above is likely optimal.

6.6.2 Set Cover

Next, we consider the (weighted) Set Cover problem where we are a given a family
of sets S1, . . . ,Sm ⊆ [n] with weights w1, . . . , wm ≥ 0. The goal is to select a min-
imum cost subfamily whose union is the universe [n], i.e. the goal is to solve
min{

∑

i∈I wi |
⋃

i∈I Si = [n]}. Similar to the vertex cover case we want to develop
an LP-based approximation algorithm. We use decision variables

xi =
{

1 if i ∈ I

0 otherwise

Then we use the LP

min
m∑

i=1
wi xi (LP)

∑

i : j∈Si

xi ≥ 1 ∀ j ∈ [n]

0 ≤ xi ≤ 1 ∀i ∈ [m]

112 CHAPTER 6. LINEAR PROGRAMMING

Note that the constraint says that of all sets covering an element j , we must take
at least one. Again we can optimally solve the LP and denote x∗ as the optimum
solution and we denote LP :=

∑m
i=1 wi x∗

i
as its value. The interesting part is how

to extract an actual covering from x∗. We use a technique that is called random-

ized rounding. More precisely, for a parameter α> 0 that we determine later we
do the following:

(1) Sampling: FOR i = 1, . . . ,m DO Pick Si with probability min{α · x∗
i

,1}

(2) Reparing: FOR every not covered element j ∈ [n] pick the cheapest set con-
taining j

That means in (1) we randomly sample each set Si proportional to its fractional
value x∗

i
. After that it may be that some elements are uncovered and we simply

cover each (pessimistically using one set per remaining element).

Theorem 6.15. For a suitable choice of α, the expected cost of the solution is at
most (ln(n)+1) ·LP .

Proof. The expected cost that we pay for sets included in (1) is
∑m

i=1 min{αx∗
i

,1}wi ≤
α ·LP . Next we analyze the probability that elements are covered:
Claim I. Fix an element j ∈ U . Then j is covered in (1) with probability at least

1−e−α.

Proof of Claim I. If there is an index i with j ∈ Si and αx∗
i
≥ 1, then the probabil-

ity in question is even 1. So suppose otherwise. Then

Pr[j not covered in (1)] =
∏

i : j∈Si

Pr[Si not picked in (1)]

≤
∏

i : j∈Si

(1−α · x∗
i)

1+y≤e y

≤
∏

i : j∈Si

e−α·x∗
i = exp

(

−α ·
∑

i : j∈Si

x∗
i

︸ ︷︷ ︸

≥1

)

≤ e−α

Then in the unlikely case that j is not covered in (1) we cover it in (2) by a set that
has cost at most LP . Summing over the n elements we get that the

E[cost of solution] ≤ E[cost in (1)]+E[cost in (2)]

≤ αLP +n ·e−αLP =α:=ln(n)= (ln(n)+1) ·LP

That concludes the argument.

6.6. ROUNDING LINEAR PROGRAMS AND SDPS 113

Again, the algorithm is mostly optimal. Feige [Fei98] proved that assuming
NP 6⊆ DTIME(nO(loglogn))7, there is no (1− ε) ln(n)-approximation algorithm for
set cover for any constant ε> 0. However if all sets have a bounded size of |Si | ≤ k,
then the ratio from above can be improved to ln(k)+1.

6.6.3 MaxCut

Recall that for the MaxCut problem we are given an undirected graph G = (V ,E)
with edge weights w : E → R≥0 and the goal is to find a cut S ⊆V that maximizes
the weights w(δ(S)) of the separated edges. We have seen an additive approxi-
mation algorithm in Section 4.6. Here we will discuss the seminal algorithm of
Goemans and Williamson [GW95] that provides a multiplicative approximation
factor.

We consider the following semidefinite program with equivalent vector pro-
gram:

SDP:

max
1

2

∑

{i , j }∈E

wi j · (1−Xi j)

X º 0

Xi i = 1 ∀i ∈V

X ∈ Rn×n

Vector program:

max
1

2

∑

{i , j }∈E

wi j · (1−〈ui ,u j 〉)

‖ui‖2 = 1 ∀i ∈V

ui ∈ Rr

We verify that these programs indeed provide a relaxation.

Lemma 6.16. If S∗ ⊆V is optimum solution for MaxCut, then SDP ≥ w(δ(S∗)).

Proof. We choose vectors in dimension r := 1 and define ui ∈R1 by

ui :=
{

1 if i ∈ S∗

−1 if i ∈V \ S∗

Of course the SDP relaxation is not exact. But it is a lot less obvious how to
come up with integrality gap constructions.

Example 6.17. Consider the graph G which is a cycle on 5 nodes and unit weights
w(e) = 1. The optimum MaxCut is 4. On the other hand, choosing ui ∈ R2

with ui := (cos(4iπ
5),sin(4iπ

5)) we get a vector program solution of value 5 · 1
2 (1−

cos(4
5π)) ≈ 4.522.

7This assumption is slightly stronger than NP 6= P but widely believed.

114 CHAPTER 6. LINEAR PROGRAMMING

graph G

1

2

3

4

5

SDP solution:

0 u1

u2

u3

u4

u5

We need an algorithm that can transform a MaxCut SDP solution into an ac-
tual cut δ(S) while being close in terms of the objective function value. The al-
gorithm is quite simple: randomly partition Rr into two halfspaces; then let S be
the vertices whose vectors ui lie in one of those halfspaces.

Hyperplane Rounding algorithm

Input: Graph G = (V ,E) and edge weights w : E →R≥0

Output: Set S ⊆V

(1) Solve the MaxCut SDP
(2) Sample a random standard Gaussian a ∈Rr

(3) Define S := {i ∈V | 〈a,ui 〉 ≥ 0}

Note that the algorithm that we will analyze is randomized and we will prove that
the expected value of the produced cut is good.

b

a

ui

u j

Lemma 6.18. For {i , j } ∈ E one has Pr[{i , j } ∈ δ(S)] = 1
π

arccos(〈ui ,u j 〉).

Proof. First note that the angle between vectors ui and u j is exactly θ := arccos(〈ui ,u j 〉)
(as 〈ui ,u j 〉 = cos(θ)). Next, note that considering only the edge {i , j } the random
experiment is equivalent to drawing a random unit vector a in the 2-dimensional8

space U := span{ui ,u j }. Then we can verify that indeed Pr[ui ,u j separated] = 2θ
2π .

8The case that ui =±u j is obvious.

6.7. LP DUALITY 115

0
ui

u j

θ

a⊥

Theorem 6.19. One has E[w(δ(S))] ≥ 0.878 ·SDP .

Proof. Fix an edge e = {i , j } ∈ E and abbreviate t := 〈ui ,u j 〉. Then the contri-
bution of that edge to the SDP objective function is wi j · 1

2 (1− t). On the other
hand, the expected contribution of e to the cut value is wi j ·Pr[{i , j } ∈ δ(S)] =
wi j · 1

π
arccos(t). We can numerically verify that the ratio is indeed

1
π

arccos(t)
1
2 (1− t)

≥ 0.878 ∀t ∈ [−1,1]

0.2
0.4
0.6
0.8
1.0

0 0.2 0.4 0.6 0.8 1.0−0.2−0.4−0.6−0.8−1.0

0.878

t

1
πarccos(t)

1
2 (1−t)

The claim then follows by linearity of expectation.

Assuming the Unique Games Conjecture, there is no polynomial time algo-
rithm that improves the ≈ 0.878 ratio for MaxCut, see [KKMO07].

6.7 LP duality

The key structural concept in linear optimization is duality. We want to motivate
this with an example. Consider the linear program

max{x1 +x2 | x1 +2x2 ≤ 6, x1 ≤ 2, x1 −x2 ≤ 1}

(which is of the form max{cT x | Ax ≤ b}). First, let us make the following observa-
tion: if we add up non-negative multiples of feasible inequalities, then we again
obtain an inequality that is valid for each solution x of the LP. For example we
can add up the inequalities in the following way:

116 CHAPTER 6. LINEAR PROGRAMMING

x1 +2x2 ≤ 6

x1 −x2 ≤ 1
x1 ≤ 2

x∗

c
x1 +x2 ≤ 13

3

P

2
3 · (x1 +2x2 ≤ 6)
0 · (x1 ≤ 2)
1
3 · (x1 −x2 ≤ 1)

x1 +x2 ≤ 13
3 ≈ 4.33

Accidentially, the feasible inequality x1 +x2 ≤ 13
3 that we obtain has the objective

function as normal vector. Hence for each (x1, x2) ∈ P we must have cT x ≤ 13
3 ,

which provides an upper bound on the value of the LP. Inspecting the picture, we
quickly see that optimum solution is x∗ = (2,2) with objective function cT x∗ =
4. Now, let’s generalize our observations. Consider the following pair of linear
programs

primal (P) : max{cT x | Ax ≤ b}

dual (D) : min{bT y | AT y = c, y ≥ 0}

The dual LP is searching for inequalities (yT A)x ≤ yT b that are feasible for any
primal solution x; moreover it is looking for a feasible inequality so that the nor-
mal vector yT A = cT (which is the same as AT y = c) is the objective function,
so that yT b is an upper bound on the primal LP. In other words: the dual LP is
searching for the best upper bound for the primal LP.

Theorem 6.20 (Weak duality Theorem). One has (P) ≤ (D).

Proof. Fix a pair (x, y) with Ax ≤ b, AT y = c and y ≥ 0. Then one has

cT
︸︷︷︸

=yT A

x = yT

︸︷︷︸

≥0

Ax
︸︷︷︸

≤b

≤ yT b.

Interestingly, one can always finds a combination of primal inequalities to
certify the optimum value:

Theorem 6.21 (Strong Duality Theorem). One has (P) = (D). More precisely, one
has

max{cT x : Ax ≤ b} = min{bT y : AT y = c, y ≥ 0}

given that both systems have a solution.

6.8. AN APPLICATION TO NASH EQUILIBRIA IN ZERO SUM GAMES 117

Note that moreover, if (P) is unbounded, then (D) is infeasible. If (D) is un-
bounded then (P) is infeasible. On the other hand, it is possible that (P) and (D)
are both infeasible.

One observation is that in order to certify optimality for a solution x∗ for (P)
one can only use constraints in the dual solution y∗ that are tight for y∗:

Theorem 6.22 (Complementary slackness). Let (x∗, y∗) be feasible solutions for

(P) : max{cT x | Ax ≤ b} and (D) : min{bT y | AT y = c; y ≥ 0}

Then (x∗, y∗) are both optimal if and only if

(AT
i x∗ = bi ∨ y∗

i = 0) ∀i

We should note that one can write down LPs in many different forms with
min or max objective, equalities or inequalities, non-negativity or not. Each LP
will have a dual and its value will coincide with the primal. For convinience we
state a very general version from which most desired forms can be easily derived.

maxcT x +d T u (P ′)
Ax +Bu ≤ a (→ y)
C x +Du = b (→ z)

x ≥ 0

min aT y +bT z (D ′)
AT y +C T z ≥ c

B T y +DT z = d

y ≥ 0

Theorem 6.23 (Strong Duality II). One has (P ′) = (D ′) assuming both systems are
feasible.

This can be proven by bringing (P ′) into the inequality form of (P) and then ap-
plying Theorem 6.21.

6.8 An application to Nash Equilibria in Zero Sum Games

Finally, we want to study a beautiful application of LP duality. We consider a 2-

person game with profit matrices A,B ∈ Rm×n . A pure strategy of player 1 is to
pick a row index i ∈ [m] and a pure strategy of player 2 is to pick a column index
j ∈ [n]. Then the payout for player 1 is Ai j = eT

i
Ae j and the payout for player 2 is

Bi j = eT
i

Be j . The game is called a zero sum game if B =−A. That means in a zero
sum game, the gain of player 1 is the loss of player 2 and the other way around.

Example 6.24. Consider the rock-paper-scissor game where the winner gets $1.
Then the profit matrix A is the following

118 CHAPTER 6. LINEAR PROGRAMMING

A =

rock

paper

scissor

ro
ck

p
ap

er

sc
is

so
r

0 −1 +1

+1 0 −1

−1 +1 0

Note that rock-paper-scissor is a zero sum game.

Definition 6.25. A pair (i∗, j∗) ∈ [m]× [n] is called an pure Nash equilibrium if

Ai∗, j∗ ≥ max
i∈[m]

Ai , j∗ and Bi∗, j∗ ≥ max
j∈[n]

Bi∗, j

(in the zero sum case the latter condition is Ai∗, j∗ ≤ min j∈[n] Ai∗, j).

In other words, in a pure Nash equilibrium, even knowing the opponents
strategy there is no incentive to change ones own strategy. Observe that rock-
paper-scissor does not have a pure Nash equilibrium.

Now, let us generalize the strategies and allow both players to have distribu-

tions of the rows and columns. That means the row player may select a so called
mixed strategy x ∈Rm

≥0 with
∑m

i=1 xi = 1 and the column player may select a mixed
strategy y ∈Rn

≥0 with
∑n

j=1 y j = 1. Then the (expected) payout for player 1 is

E[payout for player 1] =
m∑

i=1

n∑

j=1
Pr[P1 plays i ,P2 plays j]
︸ ︷︷ ︸

xi ·y j

·Ai j = xT Ay

Similarly, the (expected) payout for player 2 is xT B y . Let∆m := {x ∈Rm
≥0 |

∑m
i=1 xi =

1} be the simplex in m dimensions. That means ∆m is the set of mixed strategies
for player 1 and ∆n are the mixed strategies for player 2.

Definition 6.26. A pair (x∗, y∗) with x∗ ∈∆m and y∗ ∈∆n is called a mixed Nash

equilibrium if

(x∗)T Ay∗ ≥ max
x∈∆m

xT Ay∗ and (x∗)T B y∗ ≥ max
y∈∆n

(x∗)T B y

(again in the zero sum case, the second condition is equivalent to (x∗)T A∗y∗ ≤
miny∈∆n (x∗)T Ay .

Back to the rock-paper-scissor game, we can see that choosing the uniform
distribution (1

3 , 1
3 , 1

3) for both players forms a mixed Nash equilibrium. We can
prove that such a mixed Nash equilibrium always exists:

6.8. AN APPLICATION TO NASH EQUILIBRIA IN ZERO SUM GAMES 119

Theorem 6.27. For any 2-person zero sum game, there is a mixed Nash equilib-
rium which can be found in polynomial time.

Proof. We will prove that

max
x∈∆m

min
y∈∆n

xT Ay = min
y∈∆n

max
x∈∆m

xT Ay (∗)

then the “outer” x and y will form the mixed Nash equilibrium as for them the
order of the max and min does not matter. In order to prove (∗) we will express
the LHS of (∗) as an LP and then apply LP duality. First we make a useful obser-
vation:
Fact. Let c ∈ Rn . Then min{cT y | y ∈∆n} is attained by a vertex of the simplex, i.e.

y ∈ {e1, . . . ,en}.
That means for us that once the opponent has fixed a strategy, a player can w.l.o.g.
pick a pure strategy rather than a mixed strategy. We use this to rewrite the LHS
of (∗) as

max
x∈∆m

min
y∈∆n

xT Ay = max
x∈∆m

min
j∈[n]

xT Ae j
︸︷︷︸

=A j

= max
{

t | 〈A j , x〉 ≥ t ∀ j ∈ [n], x ∈∆m

}

(∗∗)

The RHS of (∗∗) is a linear program. For convinience, we write it in standard
form and construct the dual:

max t (P)
∑m

i=1 xi = 1 (→ s)
t −

∑m
i=1 xi Ai j ≤ 0 ∀ j ∈ [n] (→ y j)

xi ≥ 0 ∀i ∈ [m]

min s (D)
∑n

j=1 y j = 1 ∀ j ∈ [n]

s −
∑n

j=1 y j Ai j ≥ 0 ∀i ∈ [m]

y j ≥ 0 ∀ j ∈ [n]

Then rewriting (D) gives that

min
{

s | 〈Ai , y〉 ≤ s ∀i ∈ [m]; y ∈∆n

}

= min
y∈∆n

max
i∈[m]

eT
i Ay = min

y∈∆n

max
x∈∆m

xT Ay

We would like to briefly comment that swapping the order of maxx and miny

can be done in much more generality.

Theorem 6.28 (Sion’s Minimax Theorem). Let X ⊆ Rm and Y ⊆ Rn two compact,
convex sets and let f : X ×Y → R be a continuous function so that (i) for each
x ∈ X , the function f (x, ·) : Y → R is convex and (ii) for each y ∈ Y the function
f (·, y) : X →R is concave. Then

max
x∈X

min
y∈Y

f (x, y) = min
y∈Y

max
y∈X

f (x, y)

120 CHAPTER 6. LINEAR PROGRAMMING

Nash proved more generally that mixed Nash equilibria exist even in games
that are not zero sum. In fact, he proved it for an arbitrary finite number of play-
ers.

Theorem 6.29 (Nash 1951 [Nas51]). Let k ∈ Z≥2. Every k-person game (with a
finite number of pure strategies per player) has a mixed Nash equilibrium.

However Nash’s proof is based on a fix point theorem and is non-constructive,
hence no polynomial time algorithm is known to compute the Nash equilibrium9.
In fact there is good evidence that there is no efficient algorithm as finding a Nash
equilibrium even in a 2-person game can be shown to be PPAD-complete.

9 The original argument by Nash uses the following result:

Theorem 6.30 (Kakutani 1941). Let X ⊆Rn be non-empty compact convex set and let Φ : X → 2X

be a function satisfying: (i) Φ(x) ⊆ X is a non-empty convex set for all x ∈ X ; (ii) the graph {(x, y) :
x ∈ X , y ∈Φ(x)} is closed. Then Φ has a fix-point, i.e. there is an x∗ ∈ X so that x∗ ∈Φ(x∗).

Now to Nash’s argument: consider k players and for the sake of simplicity assume each player
has m pure strategies denoted by the standard basis vectors e1, . . . ,em . If x := (x(1), . . . , x(k))
with x(i) ∈ {e1, . . . ,em} is a vector of pure strategies chosen by the players, then we denote
Ai (x) as the payout for player i . Note that ∆m is then the set of mixed strategies for each
player. For x ∈ X := ∆

k
m being a vector of mixed strategies we also write Ai (x) as the

(expected) payout for player i if each player independently picks a pure strategy according
to x. We note that the set X is non-empty, compact (= bounded + closed) and convex.
We also write BRi (x) := {(x(1), . . . , x(i−1), y, x(i+1), . . . , x(k)) | Ai (x(1), . . . , x(i−1), y, x(i+1), . . . , x(k)) ≥
(x(1), . . . , x(i−1), z, x(i+1), . . . , x(k))∀z ∈ ∆m} as the set of best responses of player i assuming the
other players keep their strategies as in x. Then for each x, the set BRi (x) is convex. Next, we
define a map Φ : X → 2X as follows: for x = (x(1), . . . , x(k)) ∈ X define Φ(x) := BR1(x)× . . .×BRk (x)
as the set of best responses that the players have. Then Φ(x) is a non-empty convex set. We leave
it to the reader to verify that the graph of Φ is indeed closed. Hence Kakutani’s Theorem applies
and there is a fix point x∗ with x∗ ∈ Φ(x∗). That means for each player i , the strategy (x∗)(i) is
already a best response to x∗. Hence x∗ is a Nash equilibrium.

Chapter 7

Submodular functions

Numerous optimization problems from machine learning over approximation
algorithms to combinatorial optimization share a diminishing returns property.
Instead of problem-specific approaches one can capture many such problems
with the framework of submodular functions.

Definition 7.1. Let n ∈N. A function f : 2[n] →R is called submodular if

f (A∪ { j })− f (A) ≥ f (B ∪ { j })− f (B) ∀A ⊆ B ⊆ [n] ∀ j ∈ [n] \ B

In other words: a set function is submodular if adding a new element j to a
smaller set A causes greater (or equal) increase than adding it to a larger set B .
Additional desirable properties or subclasses of submodular functions are:

• Non-negativity, i.e. f (S) ≥ 0 ∀S ⊆ [n]
• Monotonicity, i.e. f (A) ≤ f (B) ∀A ⊆ B ⊆ [n]
• Symmetry, i.e. f (S) = f ([n] \ S) ∀S ⊆ [n]

We want to give a two examples of submodular functions.

• Coverage functions. Let S1, . . . ,Sn ⊆ U be a set family over a ground set

U . Then the number of covered elements given by f (I) := |
⋃

i∈I Si | is a
monotone submodular function. Similarly this is holds for the volume of
sets and the probability of the union of events.

• Cut functions in graphs. Let G = (V ,E) be an undirected graph with edge
weights w : E →R≥0. Then the function f (S) := w(δ(S)) =

∑

{i , j }∈E :|{i , j }∩S|=1 w(i , j)
giving the value of the cut S is a symmetric submodular function (though it
is not monotone!). Similar for directed graphs D = (V , A), the value w(δ+(S))
of a directed cut is submodular (though neither symmetric nor monotone).

121

122 CHAPTER 7. SUBMODULAR FUNCTIONS

Often one can find an alternative definition of submodularity in the litera-
ture:

Lemma 7.2 (Equivalent Characterization of Submodularity). Let f : 2[n] →R. Then
the following is equivalent

(i) f is submodular.
(ii) One has f (A)+ f (B) ≥ f (A∩B)+ f (A∪B) ∀A,B ⊆ [n]

We also make an observation that is often useful:

Lemma 7.3. Let f , g : 2[n] →R be two submodular functions and let λ≥ 0. Then

(i) f + g is submodular

(ii) λ f is submodular

For algorithms dealing with submodular functions, typically the assumption
is that one has oracle access to the function f , that means the algorithms only
need to be able to evaluate the function value f (S) for any given set S. Here
provide a few comments over known results:

• The MinCut problem is a special case of minimizing a submodular func-

tion and we have seen in Chapter 1 that this special case can be done in
polynomial time. In fact, for any submodular function one can solve the
problem min{ f (S) : S ⊆ V } in polynomial time [GLS88]. The algorithm is
based on the ellipsoid method and is beyond the scope of this class. We
recommend Chapter 44 of Schrijver [Sch03] for a readable exposition.

• The MaxCut problem is a special case of maximizing a non-negative sub-

modular function which implies that the latter problem must be NP-hard.
One can prove that the latter problem has a polynomial time 1

2 approxi-
mation [BFNS15]. One can also prove that finding a (1

2 +ε)-approximation
would require an exponential number of queries to f [FMV11].

7.1 Maximizing a monotone submodular functions with

a cardinality constraint

In this section, we present a classical result due to Nemhauser, Wolsey, Fisher [NWF78]
while we follow the exposition of the recent survey of Buchbinder and Feldman [BF18].
We study the following problem of maximizing a submodular function subject to

7.1. MAXIMIZING A MONOTONE SUBMODULAR FUNCTIONS WITH A CARDINALITY CONSTRAINT123

a cardinality constraint: Given oracle access to a non-negative monotone sub-
modular function f : 2[n] → R≥0 and a parameter k ∈ N. The goal is to solve (or
approximate)

max{ f (S) : S ⊆ [n] and |S| ≤ k}

Without the cardinality constraint |S| ≤ k, the optimum would simply be at-
tained by S = [n]. Note that this problem already captures the maximum set cov-
erage problem max{|

⋃

i∈I Si | : |I | ≤ k} which is known to be NP-hard to approxi-
mate within a factor of 1− 1

e
−ε for any ε> 0. We denote f (A | B) := f (A∪B)− f (A)

as the marginal increase when adding A to B . In particular for single elements
i ∈ [n] we will write f (i | A) = f (A∪ {i })− f (A). We consider the following simple
algorithm:

The Submodular Greedy Algorithm
Input: A monotone submodular function f : 2[n] →R≥0 and k ∈Z≥0

Output: A set (1− 1
e

)-approximation to max{ f (S) | |S| = k}.
(1) Set S0 :=;
(2) FOR i = 1 TO k DO

(3) Let xi ∈ [n] \ Si−1 be the element maximizing f (xi | Si−1)
(4) Set Si := Si−1 ∪ {xi }

(5) Return Sk

We begin with useful inequality which says that the gain of a whole set B must
be at least as the gain of all its elements:

Lemma 7.4. Let f : 2[n] → R be a submodular function. Then for any A,B ⊆ [n]
one has

∑

i∈B f (i | A) ≥ f (B | A).

Proof. W.l.o.g. suppose B = {1, . . . ,ℓ}. Then

f (B | A) =
ℓ∑

i=1
f (i | A∪ {1, . . . , i −1})

f submod.
≤

ℓ∑

i=1
f (i | A).

Now we can analyze the algorithm:

Theorem 7.5 (Nemhauser, Wolsey, Fisher [NWF78]). The greedy algorithm gives
a (1− 1

e
)-approximation for maximizing a non-negative monotone submodular

function subject to a cardinality constraint.

124 CHAPTER 7. SUBMODULAR FUNCTIONS

Proof. Let S∗ := argmax{ f (S) | S ⊆ [n], |S| = k} be the optimum solution. We will
prove that f (Sk) ≥ (1− 1

e
) f (S∗) where Sk is the last iterate in the algorithm. Let

i ∈ {1, . . . ,k}. The crucial argument is that the marginal increase f (xi | Si−1) is at
least as large as if we were adding an average element from S∗. More precisely,

f (Si)− f (Si−1) = f (xi | Si−1)

≥ E
x∼S∗

[

f (x | Si−1)
]

f subm.+Lem 7.4
≥

1

k

(

f (S∗∪Si−1)− f (Si−1)
)

f monotone
≥

1

k

(

f (S∗)− f (Si−1)
)

In other words, in every iteration we close at least a 1
k

-fraction of the remaining
gap to the optimum value. This can be rearranged to

f (S∗)− f (Si) ≤
(

1−
1

k

)

· (f (S∗)− f (Si−1)).

Iterating this inequality k times gives

f (S∗)− f (Sk) ≤
(

1−
1

k

)k

︸ ︷︷ ︸

≤1/e

·
(

f (S∗)− f (S0)
︸ ︷︷ ︸

≥0

)

≤
1

e
· f (S∗)

which means that f (Sk) ≥ (1− 1
e

) · f (S∗) as claimed.

We would also like to note that the greedy algorithm makes at most nk queries
to the function f .

7.2 Application to the Target Set Selection Problem

When working on a problem it is extremely useful if one is able to realize that
the problem has indeed a submodular behavior. We demonstrate this with an
application that is due to Kempe, Kleinberg and Tardos [KKT05].

Suppose you work for a company that has a new product. In order to market
it you want to give it out for free to a certain number of influencers to stimulate
others to buy the product. We model this as follows: We have a population of n

and we have a matrix P = (Pi j)i j ∈ [0,1]n×n of probabilites with the interpretation
that if i has the new product then with probability Pi j person j will influenced
to buy the product as well (if j does not already have it). We assume that the
events/decisions are independent. Moreover we have a budget of k units that

7.2. APPLICATION TO THE TARGET SET SELECTION PROBLEM 125

we want to give out for free. The objective is to select a subset S ⊆ [n] of |S| ≤
k persons so that the expected number of persons that aquire1 the product is
maximized. We denote that expected number by f (S). We claim that

Lemma 7.6. The objective f : 2[n] →R≥0 is a monotone submodular function.

Proof. We write E ∼ P to indicate that E is a set of independently and randomly
sampled directed edges where (i , j) is included with probability Pi j . We note that
a person i ∈ [n] \ S will buy the new product if and only if there is a directed path
from S to i in the directed graph ([n],E). For edges E and S ⊆ [n] we write RE (S)
as the subset of vertices of the graph ([n],E) that are reachable from S.

RE (S)

S

Then
f (S) = E

E∼P
[|RE (S)|] = E

E∼P

[∣
∣
∣

⋃

i∈S

RE (i)
∣
∣
∣

︸ ︷︷ ︸

=: fE (S)

]

(7.1)

We note that the inner function fE is a coverage function which we know is sub-
modular. Then f is the average of coverage functions and hence by Lemma 7.3, f

is also submodular. From (∗) we see that f is monotone (because RE (S) is mono-
tone).

So we could apply the algorithm from Section 7.1 to find a (1−1
e

)-approximation.
The only technicality is that we would need to be able to evaluate f (S) for every
S. There does not seem to be a good direct way to compute f (S). But using the
interpretation from Eq (7.1) we know that we can use repeated sampling to esti-
mate f (S) (see Section 1.7), because for a fixed S and E we can compute |RE (S)|
in polynomial time using e.g. breadth-first-search..

1I.e. either get it for free or buy it.

126 CHAPTER 7. SUBMODULAR FUNCTIONS

Bibliography

[AMS96] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of
approximating the frequency moments. In STOC, pages 20–29. ACM,
1996.

[ARV09] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geo-
metric embeddings and graph partitioning. J. ACM, 56(2), apr 2009.

[Bal97] Keith Ball. An elementary introduction to modern convex geometry.
In Flavors of geometry, volume 31 of Math. Sci. Res. Inst. Publ., pages
1–58. Cambridge Univ. Press, Cambridge, 1997.

[BF18] Niv Buchbinder and Moran Feldman. Submodular functions maxi-
mization problems. In Teofilo F. Gonzalez, editor, Handbook of Ap-

proximation Algorithms and Metaheuristics, Second Edition, Volume

1: Methologies and Traditional Applications, pages 753–788. Chap-
man and Hall/CRC, 2018.

[BFNS15] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A
tight linear time (1/2)-approximation for unconstrained submodular
maximization. SIAM J. Comput., 44(5):1384–1402, 2015.

[BvH82] Allan Borodin, Joachim von zur Gathen, and John Hopcroft. Fast
parallel matrix and gcd computations. Information and Control,
52(3):241–256, 1982.

[Chr76] Nicos Christofides. Worst-case analysis of a new heuristic for the trav-
elling salesman problem. Operations Research Forum, 3, 1976.

[CW13] Kenneth L. Clarkson and David P. Woodruff. Low rank approximation
and regression in input sparsity time. In STOC, pages 81–90. ACM,
2013.

[Dan90] George B. Dantzig. Origins of the simplex method, pages 141–151. As-
sociation for Computing Machinery, New York, NY, USA, 1990.

127

128 BIBLIOGRAPHY

[Edm65] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of Math-

ematics, 17:449–467, 1965.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,
45(4):634–652, jul 1998.

[FKS84] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a
sparse table with 0(1) worst case access time. J. ACM, 31(3):538–544,
jun 1984.

[FMV11] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-
monotone submodular functions. SIAM Journal on Computing,
40(4):1133–1153, 2011.

[GLS88] Martin Grötschel, Lászlo Lovász, and Alexander Schrijver. Geometric

Algorithms and Combinatorial Optimization, volume 2. 1988.

[GW95] Michel X. Goemans and David P. Williamson. Improved approxima-
tion algorithms for maximum cut and satisfiability problems using
semidefinite programming. J. ACM, 42(6):1115–1145, 1995.

[HJ90] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge
University Press, 1990.

[Kal92] Gil Kalai. A subexponential randomized simplex algorithm (extended
abstract). In Proceedings of the Twenty-Fourth Annual ACM Sympo-

sium on Theory of Computing, STOC ’92, pages 475–482, New York,
NY, USA, 1992. Association for Computing Machinery.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear program-
ming. In Proceedings of the Sixteenth Annual ACM Symposium on

Theory of Computing, STOC ’84, pages 302–311, New York, NY, USA,
1984. Association for Computing Machinery.

[Kar93] David R. Karger. Global min-cuts in rnc, and other ramifications of a
simple min-cut algorithm. In SODA, pages 21–30. ACM/SIAM, 1993.

[Kha79] L. G. Khachyian. A polynomial algorithm in linear programming.
Dokl. Akad. Nauk SSSR, 244(5):1093–1096, 1979.

[Kho02] Subhash Khot. On the power of unique 2-prover 1-round games. In
STOC, pages 767–775. ACM, 2002.

BIBLIOGRAPHY 129

[KKG21] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly)
improved approximation algorithm for metric TSP. In STOC, pages
32–45. ACM, 2021.

[KKG22] Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly)
improved bound on the integrality gap of the subtour LP for TSP. In
FOCS, pages 832–843. IEEE, 2022.

[KKMO07] Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell.
Optimal inapproximability results for max-cut and other 2-variable
csps? SIAM Journal on Computing, 37(1):319–357, 2007.

[KKT05] David Kempe, Jon M. Kleinberg, and Éva Tardos. Influential nodes
in a diffusion model for social networks. In ICALP, volume 3580 of
Lecture Notes in Computer Science, pages 1127–1138. Springer, 2005.

[KR08] Subhash Khot and Oded Regev. Vertex cover might be hard to ap-
proximate to within 2− Îµ. Journal of Computer and System Sciences,
74(3):335–349, 2008. Computational Complexity 2003.

[KS93] David R. Karger and Clifford Stein. An o~(n2) algorithm for minimum
cuts. In STOC, pages 757–765. ACM, 1993.

[KV12] B. H. Korte and Jens Vygen. Combinatorial Optimization: Theory and

Algorithms. Springer-Verlag, New York, NY, 2012.

[LR99] Tom Leighton and Satish Rao. Multicommodity max-flow min-cut
theorems and their use in designing approximation algorithms. J.

ACM, 46(6):787–832, nov 1999.

[McS01] F. McSherry. Spectral partitioning of random graphs. In Proceedings

42nd IEEE Symposium on Foundations of Computer Science, pages
529–537, 2001.

[Mul86] Ketan Mulmuley. A fast parallel algorithm to compute the rank of a
matrix over an arbitrary field. In STOC, pages 338–339. ACM, 1986.

[MV80] Silvio Micali and Vijay V. Vazirani. An o(v|v| c |e|) algoithm for finding
maximum matching in general graphs. In 21st Annual Symposium

on Foundations of Computer Science (sfcs 1980), pages 17–27, 1980.

[MVV87] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching
is as easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

130 BIBLIOGRAPHY

[Nas51] John Nash. Non-cooperative games. Annals of Mathematics,
54(2):286–295, 1951.

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An
analysis of approximations for maximizing submodular set functions
- I. Math. Program., 14(1):265–294, 1978.

[OGT15] Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma
and faster approximation algorithms for low threshold rank graphs.
Theory of Computing, 11(9):241–256, 2015.

[Sch03] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency.
Springer, 2003.

[Spe85] Joel Spencer. Six standard deviations suffice. Transactions of the

American Mathematical Society, 289(2):679–706, 1985.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algo-
rithms: Why the simplex algorithm usually takes polynomial time. J.

ACM, 51(3):385–463, 2004.

[Tut47] W. T. Tutte. The factorization of linear graphs. Journal of the London

Mathematical Society, s1-22(2):107–111, 1947.

[Vaz20] Vijay V. Vazirani. A proof of the MV matching algorithm. CoRR,
abs/2012.03582, 2020.

[Vu14] Van Vu. A simple svd algorithm for finding hidden partitions, 2014.

Appendix A

Notation and useful facts

Here we list some of the notation and auxiliary results that have been used through-
out these notes to have them in one place.

General notation. For n ∈ N we write [n] = {1, . . . ,n}. For S ⊆ [n] we denote 1S

as the characteristic vector of S, i.e. 1S ∈ {0,1}n is a vector with entries 1S(i) = 1 if
and only if i ∈ S.

Functions. Let A and B two sets. A function f : A → B is called injective if for
all a, a′ ∈ A with a 6= a′ one has f (a) 6= f (a′). The function f is called surjective

if for all b ∈ B there is an a ∈ A with f (a) = b. The function f is bijective if it is
both injective and surjective. In case that A and B are finite sets and f is bijective
we know that |A| = |B |. For b ∈ B we write f −1(b) := {a ∈ A : f (a) = b}. For a
subset A′ ⊆ A we write f|A′ as the restriction of f to A′. Then f|A′ : A′ → B with
f|A′(a) = f (a) for all a ∈ A′.

Matrices and vectors. For a matrix A ∈Rm×n we denote the columns as A1, . . . , An ∈
Rm and the row vectors as A1, . . . , Am ∈Rn . The entry at position (i , j) is denoted
as Ai j . For vectors x, y ∈ Rn we write the standard inner product as 〈x, y〉 :=
∑n

i=1 xi yi . By convention, for us a vector is always a column vector.

Norms and geometry. For a vector x ∈ Rn and 1 ≤ p < ∞ one defines the ℓp -
norm as ‖x‖p := (

∑n
i=1 |xi |p)1/p , though in these notes we have only used the

cases p ∈ {1,2} where are ‖x‖1 =
∑n

i=1 |xi | and ‖x‖2 = (
∑n

i=1 |xi |2)1/2. The case
p =∞ is defined as ‖x‖∞ = max{|xi | : i = 1, . . . ,n}.

Theorem A.1 (Cauchy-Schwarz Inequality I). For any x, y ∈ Rn one has | 〈x, y〉 | ≤
‖x‖2 · ‖y‖2.

131

132 APPENDIX A. NOTATION AND USEFUL FACTS

This inequality represents the fact that the inner product between two vectors
is maximized when they are colinear. In fact, the inequality can be generalized
to certain pairs of ℓp -norms. We state one useful case:

Theorem A.2 (Cauchy-Schwarz Inequality II). For any x, y ∈Rn one has | 〈x, y〉 | ≤
‖x‖1 · ‖y‖∞.

Another useful fact is that for x ∈ Rn one has ‖x‖∞ ≤ ‖x‖2 ≤
p

n‖x‖∞ as well
as ‖x‖2 ≤ ‖x‖1 ≤

p
n‖x‖2.

Probability theory. If S is a set then we write X ∼ S to indicate that X is a ran-
dom variable that is chosen uniformly from S. That means if S is finite, then
Pr[X = i] = 1

|S| for all i ∈ S.

	Randomized algorithms
	Karger's algorithm
	The Karger-Stein algorithm
	Probability Theory
	Markov's inequality
	Union bound
	Application: Fix points of permutations
	Chebyshev's Inequality
	Polling
	The birthday paradox
	Hoeffding Inequality
	Polling
	Random walk on a line

	Discrepancy theory
	Hashing
	Limited independence
	The birthday paradox revisited
	Double Hashing
	Construction of pairwise independent hash functions

	Unbiased estimators
	Streaming

	The curse of dimensionality and dimension reduction
	The nearest neighbor problem
	Locally sensitive hash functions

	Volume in higher dimensions
	Nearly orthogonal vectors
	Introductions to Gaussians
	More on rotationally invariant distributions
	Concentration of measure for Gaussians
	Dimension reduction

	Algebraic algorithms
	Matrix Identity testing
	The Schwarz Zippel Lemma
	Bipartite matchings
	Perfect matchings in general graphs

	Linear algebra
	Eigenvalues
	The Spectral Theorem
	Positive semidefinite matrices
	A geometric interpretation
	Applying functions to matrices
	Trace, determinant and rank
	Raleigh Quotient

	The Singular Value Decomposition
	Matrix norms
	Best low rank approximation
	Hidden Partition
	Additive approximations for MaxCut

	Spectral graph theory
	Graph partitioning
	Cheeger's Inequality
	The power method

	Linear programming
	Convexity, polyhedra and linear programs
	An overview over algorithms for linear programs
	The ellipsoid method
	The ellipsoid method with a separation oracle

	Convex programming
	Semidefinite programming
	Rounding linear programs and SDPs
	Vertex Cover
	Set Cover
	MaxCut

	LP duality
	An application to Nash Equilibria in Zero Sum Games

	Submodular functions
	Maximizing a monotone submodular functions with a cardinality constraint
	Application to the Target Set Selection Problem

	Notation and useful facts

