5.1 The Tutte-Berge Formula

In Chapter 3, we have discussed the matching problem in bipartite graphs. As it turns out matchings still have a nice structural properties in general graphs, but the extensions of theorems from bipartite graphs can be highly non-trivial. Recall that in an undirected graph $G = (V, E)$, a matching is a set of edges $M \subseteq E$ that are not incident to each other. We did denote $\nu(G)$ as the maximum cardinality of a matching in G and $\tau(G)$ is the minimum size of a vertex cover. We want to begin with an extension of König’s Theorem. Suppose we have a general graph $G = (V, E)$. How could we certify that there is no perfect matching? A trivial reason would be if $|V|$ is odd. Surprisingly this idea can be extended to an exact min-max formula.

Let us call the connected component in a graph odd if it has an odd number of vertices. We define $\text{odd}(G)$ as the number of odd components in graph G.

Consider a matching M in a graph G and fix some subset $U \subseteq V$. Suppose that C_1, \ldots, C_k with $k := \text{odd}(G \setminus U)$ are the odd components in $G \setminus U$. Then for each $i = 1, \ldots, k$, the matching M either leaves a node in C_i exposed, or it contains an edge between a node in C_i and U.

Either way, M must have $k - |U|$ many exposed nodes (just that this number does not need to be positive). We obtain that the number of covered nodes is

$$2|M| \leq |V| - (k - |U|)$$

and hence

$$|M| \leq \frac{1}{2} \cdot (|V| + |U| - k)$$
Quite surprisingly it turns out that there is always a set U that provides a tight bound.

Theorem 29 (Tutte-Berge Formula). For every graph $G = (V, E)$ one has

$$
\nu(G) = \min_{U \subseteq V} \left\{ \frac{1}{2} (|V| + |U| - \text{odd}(G \setminus U)) \right\}
$$

Let us abbreviate $\text{exposed}(G) := \min \{ \# \text{ of } M\text{-exposed nodes} \mid M \text{ matching} \}$. Note that in any graph, $2\nu(G) + \text{exposed}(G) = |V|$. Let us call a node v critical if it is covered by every maximum matching.

Lemma 30. Let $G = (V, E)$ be a connected graph with $|V| \geq 2$ and no critical node. Then $\text{exposed}(G) = 1$.

Proof. If $\text{exposed}(G) = 0$, then every node is critical. Hence suppose for the sake of contradiction that $\text{exposed}(G) \geq 2$. For two nodes $u, v \in V$, let $d(u, v)$ be the distance in G (in terms of the number of edges; note that here we use connectedness). Fix a maximal matching that minimizes $d(u, v)$ for a pair of M-exposed nodes. If $d(u, v) = 1$, then $M \cup \{u, v\}$ is a bigger matching and we have a contradiction. Hence suppose that $d(u, v) \geq 2$. Select any node $t \in V$ with $d(u, t), d(v, t) < d(u, v)$ (for example by taking a node t on the shortest path between u and v).

Consider a maximal matching N that leaves t exposed. If there are several, choose the matching that maximizes the number $|M \cap N|$ of joint edges.

Next, consider the symmetric difference $M \Delta N$. Each of the nodes u, v, t is exposed in either M or N, so they are all endpoints of some paths in $M \Delta N$. Since M and N are maximal and we maximized $|M \cap N|$ we know that $M \Delta N$ consists only of even length paths. Consider the even length path P containing u as an endpoint. If the other endpoint is t, then $M \Delta P$ has the exposed nodes v and t which contradicts the choice of M. That means P has u as one endpoint and the other one is neither v nor t. In fact, the situation looks like this:

$$
P : \quad u \quad \in N \quad \in M
\quad \quad v \quad \quad \quad \quad t
$$

Then the matching $N \Delta E(P)$ still has t exposed but has more edges in common with M, which is a contradiction. \qed

An equivalent, but perhaps more intuitive form of the Tutte-Berge Formula is that in any graph $G = (V, E)$ one has

$$
\text{exposed}(G) = \max \{ \text{odd}(G \setminus U) - |U| \mid U \subseteq V \}
$$

Proof of the Tutte-Berge Formula. We already argued the direction “≤”. We prove the other direction by induction.
• **Case: G is not connected.** Let G_1, \ldots, G_k be the connected components of G (it does not matter whether these are even or odd) with $k \geq 2$. We apply induction to find $U_i \subseteq V(G_i)$ so that $\text{exposed}(G_i) = \text{odd}(G_i \setminus U_i) - |U_i|$. Then returning $U := \bigcup_{i=1}^{k} U_i$ will satisfy the claim as

$$\text{exposed}(G) = \sum_{i=1}^{k} \text{exposed}(G_i) = \sum_{i=1}^{k} (\text{odd}(G_i \setminus U_i) - |U_i|) = \text{odd}(G \setminus U) - |U|.$$

• **Case: There is a critical node $u \in V$.** Then $\nu(G \setminus u) = \nu(G) - 1$ and $\text{exposed}(G \setminus u) = \text{exposed}(G) + 1$. We apply induction to $G \setminus u$ and obtain a subset $U \subseteq V \setminus \{u\}$ with

$$\text{exposed}(G) + 1 = \text{exposed}(G \setminus u) = \text{odd}((V/u)/U) - |U| = \text{odd}(V \setminus (U \cup \{u\})) - |U \cup \{u\}| + 1$$

which means that $U \cup \{u\}$ satisfies the claim.

• **Case: G is connected and there is no critical node.** Then Lemma 30 applies and $\text{exposed}(G) = 1 = \text{odd}(G)$ using that $|V|$ has to be odd. Then $U = \emptyset$ satisfies the claim.

\[\square\]

Corollary 31 (Tutte’s 1-factor theorem). A graph $G = (V, E)$ has a perfect matching if and only if $\text{odd}(G \setminus U) \leq |U|$ for all $U \subseteq V$.

Proof. Clear since there is a perfect matching if and only if $0 = \text{exposed}(G) = \max\{\text{odd}(G \setminus U) - |U| : U \subseteq V\}$.

\[\square\]

5.2 Cardinality matching algorithm

In this section, we want to design a polynomial time algorithm for the **cardinality matching problem**: given a graph $G = (V, E)$, find a matching $M \subseteq E$ maximizing $|M|$. In the special case of bipartite graphs, we saw that the concept of M-augmenting paths is the right one to solve the problem. Unfortunately, M-augmenting paths are harder to find in general graphs. Recall that a **walk** in a graph $G = (V, E)$ is a sequence v_0, v_1, \ldots, v_t so that $\{v_i, v_{i+1}\} \in E$ for all $i = 0, \ldots, t - 1$. In particular in a walk one is allowed to revisit nodes and edges. A **path** is a walk where all visited nodes are distinct. We say that a walk (v_0, v_1, \ldots, v_t) is **M-alternating** if for each node v_i with $i \in \{1, \ldots, t - 1\}$ exactly one of the edges $\{v_{i-1}, v_i\}, \{v_i, v_{i+1}\}$ lies in M and the other one not. As the name suggests, edges on the walk are alternatingly in M and not in M. We have proven in a previous chapter that a matching is of maximum cardinality if and only if there is no M-augmenting path. In particular an M-augmenting path is also an M-alternating walk. For a subset $W \subseteq V$, we call a walk a **W-W walk** if start and endpoint are in W.

Lemma 32. Let $G = (V, E)$ be a graph and $M \subseteq E$ be a matching leaving $W \subseteq V$ exposed. Then a shortest M-alternating W-W walk P can be found in time $O(|V| + |E|)$.

Proof. We define a directed graph $D = (\{s\} \cup V' \cup V'', A)$ that has nodes v' and v'' for every original node v in G. We insert an edge $(u', v'') \in A$ if $\{u, v\} \in E \setminus M$. We insert $(u'', v') \in A$ if $\{u, v\} \in M$. Moreover, we insert arcs (s, v') for every M-exposed node v.

25
Then in linear time one can compute the set of nodes reachable from \(s \) using breadth first search. This also determines the shortest paths from \(s \).

Unfortunately, an \(M \)-alternating path between \(M \)-exposed nodes is not necessarily an \(M \)-augmenting path:

But if we are not finding an \(M \)-augmenting path, we can at least find a different structure: An \(M \)-blossom is an \(M \)-alternating walk \(v_0, \ldots, v_t \) in \(G \) with \(t \geq 3 \) so that (i) \(v_0, \ldots, v_{t-1} \) are distinct; (ii) \(v_0 = v_t \); (iii) and \(v_0 \) is \(M \)-exposed.

Actually, the example figure above does not contain an \(M \)-blossom. But \(M' := M \Delta (v_0, v_1, v_2) \) is a matching with \(|M'| = |M| \) and the graph contains an \(M' \)-blossom.

Lemma 33. Given a graph \(G = (V, E) \) and a matching \(M \), in time \(O(|V| + |E|) \) one can obtain one of the following:

1. Decide there is no alternating \(W \)-\(W \) walk where \(W \) are the \(M \)-exposed nodes.
2. Find an \(M \)-augmenting path.
3. Find a matching \(M' \subseteq E \) of size \(|M'| = |M| \) and an \(M' \)-blossom.

Proof. Use the auxiliary directed graph \(D = (\{s\} \cup V' \cup V'', A) \) from Lemma 32 to find a shortest \(M \)-alternating \(W \)-\(W \) walk. Note that for each \(u \in V \), the shortest walk is going to visit each of the copies \(v', v'' \) at most once. If such a walk does not exist, we are in (1). If the walk is also a path, we are in (2). Otherwise, let \(v_0, \ldots, v_k \) be the beginning of the walk until we revisit the first time a node in \(v_k = v_t \) with \(0 \leq t < k \).
Then this part of the walk has 3 edges incident to \(v_k \). Exactly one of the edges \(\{v_{t-1}, v_t\}, \{v_t, v_{t-1}\} \) has to be in \(M \), the other one not. That implies \(\{v_{k-1}, v_k\} \notin M \). If \(\{v_t, v_{t+1}\} \in M \), then \(v_t \) would have been entered twice with a non-matching edge, which means that the node \(v''_t \) in \(D \) was visited twice, which is impossible. Hence \(\{v_{t-1}, v_t\} \in M \). That means the figure above is accurate and \(\{v_t, v_{t+1}, \ldots, v_k\} \) is an \(M' \)-flower where \(M' := M \Delta (v_0, \ldots, v_t) \).

It remains to be proven why finding such a blossom is useful. For a graph \(G = (V, E) \) and a subset \(C \subseteq V \) we define \(G \setminus C = ((V \setminus C) \cup \{v_C\}, E') \) as the contraction where every appearance of a node in \(C \) is replaced by \(v_C \).

Lemma 34. Let \(C = (v_0, \ldots, v_t) \) be an \(M \)-blossom in \(G \). Then \(M \) has maximum size in \(G \) if and only if \(M/C \) has maximal size in \(G \setminus C \).

Proof. We will prove the equivalent negated statement

\[
M \text{ not of maximal size in } G \iff M/C \text{ not of maximal size in } G/C
\]

"\(\Rightarrow \)". If \(M \) is not of maximal size, then there is an \(M \)-augmenting path \(P = (u_0, \ldots, u_m) \). We may assume that \(P \) contains at least one node from \(C \), otherwise there is nothing to show. Let \(k \) be the first index with \(u_k \in C \). We may assume that \(u_0 \neq v_0 \) and \(\{u_{k-1}, u_k\} \notin E \) since not both endpoints of \(P \) can be in \(C \) and \(C \) is entered at most once with a matching edge (and in that case \(v_0 \) is not an endpoint of \(P \)). Then \(u_0, \ldots, u_k \) is an \(M/C \)-augmenting path in \(G/C \).
“⇐”. Suppose M/C is not of maximal size. Let P be an M/C augmenting path in G/C. Note that C is M/C-exposed, hence we may assume C is an endpoint (or there is nothing to show). Then the path corresponds to $u_0, \ldots, u_k = v_i, v_i \pm 1, \ldots, v_0$ with $i \in \{0, \ldots, t\}$ is an M-augmenting path in G. Here we go either clockwise or counterclockwise, taking the incident matching edge (the figure from above applies again).

Finally, this gives us an algorithm to find maximum cardinality matchings.

<table>
<thead>
<tr>
<th>Edmonds Maximum Cardinality Matching Algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Set $M := \emptyset$</td>
</tr>
<tr>
<td>(2) REPEAT</td>
</tr>
<tr>
<td>(3) Call AugmentMatching(G, M) (either replacing M by larger matching or terminating).</td>
</tr>
</tbody>
</table>

AugmentMatching(G, M) :

(1) Compute a shortest M-alternating W-W walk P with $W := \{v \in V \mid v$ is M-exposed$\}$

(2) If there is none, return “M is maximal”

(3) If P is path RETURN $M \Delta P$

(4) Otherwise, extract M' with $|M| = |M'|$ and M'-blossom C

(5) Call AugmentMatching($G/C, M'/C$). If returns M'/C is maximal, then RETURN M is maximal

(6) Otherwise, construct matching M'' in G with $|M''| > |M|$ as in Lemma 34

5.3 Exercises

Exercise 5.1. Let $G = (V, E)$ be a graph and M be a matching. Suppose that there is no M-augmenting path of length less than $2k + 1$. Show that $\nu(G) \leq (1 + \frac{1}{k}) \cdot |M|$.

Exercise 5.2. Consider a graph $G = (V, E)$. Let $P := \text{conv}\{\chi^M \in \mathbb{R}^E \mid M \subseteq E \text{ is matching}\}$ be the convex hull of characteristic vectors of all matchings in G and let $P_{=k} = \text{conv}\{\chi^M \mid M \subseteq E \text{ matching with } |M| = k\}$ be the convex hull for all matchings with k edges. Prove that $P \cap \{x \in \mathbb{R}^E \mid \sum_{e \in E} x_e = k\} = P_{=k}$.

Hint. It may be useful to observe that $\chi^{M_1} + \chi^{M_2} = \chi^{M_1 \Delta P} + \chi^{M_2 \Delta P}$ where M_1, M_2 are matchings and P is a component of $M_1 \Delta M_2$.

Exercise 5.3. Let $G = (V, E)$ be a graph. Define

$$\mathcal{I} := \{U \subseteq V \mid \exists \text{ matching } M \subseteq E \text{ with } U \subseteq V(M)\}$$

(where $V(M)$ are the nodes covered by M). Prove that (V, \mathcal{I}) is a matroid.