409 - Discrete Optimization

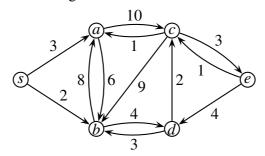
Problem Set 3

Winter 2025

Exercise 1 (4 points)

Lecturer: Thomas Rothvoss

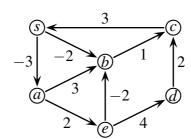
Run Dijkstra's algorithm in the following instance with source node s.



For each iteration give the set R, the node v that you use to update the labels as well as all the labels $\ell(u)$ for $u \in \{s, a, b, c, d, e\}$.

Exercise 2 (8 points)

Consider the following directed graph G = (V, E) (edges are labelled with edge cost c(e)).



- a) Use the Moore-Bellman-Ford algorithm to compute the distances from s to each other node v (call those values $\ell(v)$; you can use your favourite ordering for the edges; it suffices to give the final outcomes $\ell(v)$).
- b) Use the labels $\ell(v)$ from a) as **potentials** $\pi(v)$. In the above graph, label the nodes with their potential and label the edges with their **reduced costs**. Are the potentials feasible? Is c conservative?
- c) Let $c_{\pi}(e)$ be the reduced cost of edge e that you computed in e). Now run Dijkstra's algorithm with cost function c_{π} and source node e. Use the symbol $\ell'(v)$ to denote the computed e-e-e-distances. It suffices to give the final values of $\ell'(v)$.
- d) How do you translate the values $\ell'(v)$ from c) into the actual a-v distances w.r.t. to the original cost function c?

Exercise 3 (8 points)

In this problem, we consider the single-source shortest paths problem on an important class of directed graphs. Throughout this problem, G = (V, E) will denote a weighted directed graph containing **no directed cycles**. We say that an ordering v_1, \ldots, v_n of the vertex set V is a *topological sorted order* for G if X precedes Y in the order whenever (X, Y) is a directed edge of G.

- a) Give an O(|V| + |E|)-time algorithm for computing a topological sorted order of G. Prove that your algorithm is correct and runs in O(|V| + |E|) time. In order to attain the desired running time, you may assume that, for a node $u \in V$ of out-degree d, you can access all the outgoing edges and corresponding edge weights in total time O(d). (For example, this assumption holds when the input graph G is represented by adjacency lists.)
- b) Fix a source vertex s. Give an O(|V|+|E|)-time algorithm that computes $\ell(v)$ for all vertices $v \in V$, where $\ell(v)$ is the minimum possible total weight along a directed path from s to v. Again, prove that your algorithm is correct and has the desired running time. In order to attain the desired running time, you may assume that, for a node $u \in V$ of out-degree d, you can access all the outgoing edges and corresponding edge weights in total time O(d). Hint: Your algorithm should make "updates" similar to the updates in Moore-Bellman-Ford and Dijkstra. In order to prove that $\ell(v) = d(s, v)$, you might consider proving the two inequalities $\ell(v) \geq d(s, v)$ and $\ell(v) \leq d(s, v)$ separately, as we did in the proof of the Moore-Bellman-Ford algorithm.