Lecturer: Thomas Rothvoss Due date: Friday, January 31, 2025, on GradeScope

Problem Set 3
409 - Discrete Optimization
Winter 2025

Exercise 1 (4 points)
Run Dijkstra’s algorithm in the following instance with source node s.

For each iteration give the set R, the node v that you use to update the labels as well as all the labels
O(u) foru € {s,a,b,c,d,e}.

Exercise 2 (8 points)
Consider the following directed graph G = (V,E) (edges are labelled with edge cost c(e)).

S\ ©
\ /

a) Use the Moore-Bellman-Ford algorithm to compute the distances from s to each other node v
(call those values £(v); you can use your favourite ordering for the edges; it suffices to give the
final outcomes £(v)).

b) Use the labels ¢(v) from a) as potentials 7(v). In the above graph, label the nodes with their
potential and label the edges with their reduced costs. Are the potentials feasible? Is ¢ conser-
vative?

c) Let cz(e) be the reduced cost of edge e that you computed in »). Now run Dijkstra’s algorithm
with cost function ¢z and source node a. Use the symbol ¢'(v) to denote the computed a-v
distances. It suffices to give the final values of ¢/(v).

d) How do you translate the values ¢'(v) from c) into the actual a-v distances w.r.t. to the original
cost function ¢?

Exercise 3 (8 points)

In this problem, we consider the single-source shortest paths problem on an important class of directed
graphs. Throughout this problem, G = (V,E) will denote a weighted directed graph containing no
directed cycles. We say that an ordering v1, ..., v, of the vertex set V is a topological sorted order for
G if x precedes y in the order whenever (x,y) is a directed edge of G.

a)

b)

Give an O(|V|+ |E|)-time algorithm for computing a topological sorted order of G. Prove that
your algorithm is correct and runs in O(|V |+ |E|) time. In order to attain the desired running
time, you may assume that, for a node u € V of out-degree d, you can access all the outgoing
edges and corresponding edge weights in total time O(d). (For example, this assumption holds
when the input graph G is represented by adjacency lists.)

Fix a source vertex s. Give an O(|V|+ |E|)-time algorithm that computes ¢(v) for all vertices
v € V, where /(v) is the minimum possible total weight along a directed path from s to v.
Again, prove that your algorithm is correct and has the desired running time. In order to attain
the desired running time, you may assume that, for a node u € V of out-degree d, you can access
all the outgoing edges and corresponding edge weights in total time O(d). Hint: Your algorithm
should make “updates” similar to the updates in Moore-Bellman-Ford and Dijkstra. In order to
prove that ¢(v) = d(s,v), you might consider proving the two inequalities ¢(v) > d(s,v) and
¢(v) <d(s,v) separately, as we did in the proof of the Moore-Bellman-Ford algorithm.

http://en.wikipedia.org/wiki/Adjacency_list

