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Chapter 1

Introduction to Discrete Optimization

Roughly speaking, discrete optimization deals with finding the best solution out of a finite number
of possibilities in a computationally efficient way. Typically the number of possible solutions is larger
than the number of atoms in the universe, hence instead of mindlessly trying out all of them, we
have to come up with insights into the problem structure in order to succeed. In this class, we
plan to study the following classical and basic problems:

• Minimum Spanning Trees
• The Shortest Path Problem
• Maximum Flows
• Matchings
• The Knapsack Problem
• Min Cost Flows
• Integer Programming

The purpose of this class is to give a proof-based, formal introduction into the theory of discrete
optimization.

1.1 Algorithms and Complexity

In this section, we want to discuss what we formally mean by problems, algorithms and running
time. This is made best with a simple example. Consider the following problem:

Find Duplicate
Input: A list of numbers a1, . . . , an ∈ Z

Goal: Decide whether some number appears at least twice in the list.

Obviously this is not a very interesting problem, but it will serve us well as an introductory example
to bring us all on the same page. A straightforward algorithm to solve the problem is as follows:

(1) FOR i = 1 TO n DO

(2) FOR j = i+ 1 TO n DO

(3) If ai = aj then return “yes”

(4) Return “no”
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The algorithm is stated in what is called pseudo code, which means it is not actually in one of
the common programming languages like Java, C, C++, Pascal or BASIC. On the other hand, it
takes only small modifications to translate the algorithm in one of those languages. There are no
consistent rules as to what is allowed in pseudo code and what is not; the point of pseudo code is
that it does not need to be machine-readable, but it should be human-readable. A good rule of
thumb is that everything is allowed that one of the mentioned programming languages can do.

In particular, we allow any of the following operations: addition, subtraction, multiplication,
division, comparisons, etc. Moreover, we allow the algorithm an infinite amount of memory (though
our little algorithm above only needed the two variables i and j).

The next question that we should discuss in the analysis of the algorithm is its running time,
which we define as the number of elementary operations (such as adding, subtracting, compar-
ing, etc) that the algorithm makes. Since the variable i runs from 1 to n and j runs from j = i+ 1

to n, step (3) is executed
(
n
2

)
= n(n−1)

2 many times. On the other hand, should we count only step
(3) or should we also count the FOR loops? And in the 2nd FOR loop, should we only count one
operation for the comparison or should we also count the addition in i+1? We see that it might be
very tedious to determine the exact number of operations. On the other hand we probably agree
that the running time is of the form Cn2 where C is some constant that might be, say 3 or 4 or 8
depending on what exactly we count as an elementary operation. Let us agree from now on that
we only want to determine the running time up to constant factors.

As a side remark, there is a precisely defined formal computational model, which is called a
Turing machine. Interestingly, it was defined by Alan M. Turing in 1936 before the first computer
was actually built. In particular, for any algorithm in the Turing machine model one can reduce
the running time by a constant factor while increasing the state space. An implication of this fact
is that running times in the Turing machine model are actually only well defined up to constant
factors. We take this as one more reason to be content with our decision of determining running
times up to constant factors.

So, the outcome of our runtime analysis for the Find Duplicate algorithm is the following:

There is some constant C > 0 so that the Find Duplicate algorithm (1.1)

finishes after at most Cn2 many operations.

Observe that it was actually possible that the algorithm finishes much faster, namely if it finds a
match in step (3), so we are only interested in an upper bound. Note that the simple algorithm
that we found is not the most efficient one for deciding whether n numbers contain a duplicate. It
is actually possible to answer that question in time C ′n log(n) using a sorting algorithm. If we want
to compare the running times Cn2 and C ′n log(n), then we do not know which of the constants C
and C ′ is larger. So for small values of n, we don’t know which algorithm would be faster. But
limn→∞

Cn2

C′n log(n) = ∞, hence if n is large enough the C ′n log(n) algorithm would outperform the

Cn2 algorithm. Thus, we do consider the C ′n log(n) algorithm as the more efficient one1.
It is standard in computer science and operations research to abbreviate the claim from (1.1)

using the O-notation and replace it by the equivalent statement:

The Find Duplicate algorithm takes time O(n2). (1.2)

1Most constants that appear in algorithms are reasonably small anyway. However, there are fairly complicated
algorithms (for example, for matrix multiplication) which theoretically are faster than the naive algorithms, but only
if n exceeds the number of atoms in the universe.
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The formal definition of the O-notation is a little bit technical:

Definition 1. If f(s) and g(s) are two positive real valued functions on N, the set of non-negative
integers, we say that f(n) = O(g(n)) if there is a constant c > 0 such that f(n) ≤ c · g(n) for all n
greater than some finite n0.

It might suffice to just note that the statements (1.1) and (1.2) are equivalent and we will use
the latter for the sake of convenience.

Going once again back to the Find Duplicate algorithm, recall that the input are the numbers
a1, . . . , an. We say that the input length is n, which is the number of numbers in the input. For
the performance of an algorithm, we always compare the running time with respect to the input
length. In particular, the running time of O(n2) is bounded by a polynomial in the input length n,
so we say that our algorithm has polynomial running time. Such polynomial time algorithms
are considered efficient from a theoretical perspective2. Formally, we say that any running time of
the form nC is polynomial, where C > 0 is a constant and n is the length of the input. For example,
below we list a couple of possible running times and sort them according to their asymptotic
behavior:

100n ≪ n ln(n) ≪ n2 ≪ n10

︸ ︷︷ ︸

efficient

≪ 2
√
n ≪ 2n ≪ n!

︸ ︷︷ ︸

inefficient

1.1.1 Complexity Theory and NP-Hardness

We want to conclude with a brief and informal discussion on complexity theory. The complexity
class P is the class of problems that admit a polynomial time algorithm. For example, our problem
of deciding whether a list of numbers has duplicates is in P. However, not all problems seem to
admit polynomial time algorithms. For example, there is no polynomial time algorithm known for
the following classical problem:

Partition
Input: A list of numbers a1, . . . , an ∈ N

Goal: Decide whether one can partition {1, . . . , n} into I1∪̇I2 = {1, . . . , n} so that

∑

i∈I1
ai =

∑

i∈I2
ai.

To capture problems of this type, one defines a more general class: NP is the class of problems
that admit a non-deterministic polynomial time algorithm. Intuitively, this means that a problem
lies in NP if given a solution one is able to verify in polynomial time that this is indeed a solution.
For example, for Partition, if somebody claims to us that for a given input a1, . . . , an the answer
is “yes”, then (s)he could simply give us the sets I1, I2. We could then check that they are indeed a
partition of {1, . . . , n} and compute the sums

∑

i∈I1 ai and
∑

i∈I2 ai and compare them. In other
words, the partition I1, I2 is a computational proof that the answer is “yes” and the proof can
be verified in polynomial time. That is exactly what defines problems in NP. Note that trivially,
P ⊆ NP.

We say that a problem P ∈ NP is NP-complete if with a polynomial time algorithm for P , one
could solve any other problem in NP in polynomial time. Intuitively, the NP-complete problems

2This is true for theoretical considerations. For many practical applications, researchers actually try to come up
with near-linear time algorithms and consider anything of the order n2 as highly impractical.
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are the hardest problems in NP. One of the 7 Millenium problems (with a $1,000,000 award) is
to prove the conjecture that NP-complete problems do not have polynomial time algorithms (i.e.
NP 6= P). An incomplete overview over the complexity landscape (assuming that indeed NP 6= P)
is as follows:

NP

P
matching

max flow
min cut

shortest path
linear programming

NP-complete

TSPSAT
max cut

integer programming

partition

From time to time we want to make some advanced remarks that actually exceed the scope of
this lecture. Such remarks will be in gray box labeled Advanced Remark. Those comments are
not relevant for the exam, but they give some background information for the interested student.

Advanced Remark:

Now with the notation of P and NP, we want to go back to how we determine the
running time. We used what is called the arithmetic model / RAM model where any
arithmetic operation like addition, multiplication etc, counts only one unit. On the other
hand, if we implement an algorithm using a Turing machine, then we need to encode all
numbers using bits (or with a constant number of symbols, which has the same effect up to
constant factors). If the numbers are large, we might need a lot of bits per number and we
might dramatically underestimate the running time on a Turing machine if we only count
the number of arithmetic operations. To be more concrete, consider the following (useless)
algorithm

(1) Set a := 2
(2) FOR i = 1 TO n DO

(3) Update a := a2.

The algorithm only performs O(n) arithmetic operations. On the other hand, the variable
at the end is a = 22

n
. In other words, we need 2n bits to represent the result, which leaves

an exponential gap between the number of operations in the arithmetic model and the bit
model where we count each bit operation. It is even worse: One can solve NP-complete
problems using a polynomial number of arithmetic operations by creating numbers with
exponentially many bits and using them to do exponential work.
For a more formal accounting of running time, it is hence necessary to make sure that
the gap between the arithmetic model and the bit model is bounded by a polynomial in
the input length. For example it suffices to argue that all numbers are not more than
single-exponentially large in the the input. All algorithms that we consider in these lecture
notes will have that property, so we will not insist on doing that (sometimes tedious) part
of the analysis.
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1.2 Basic Graph Theory

Since most of the problems that we will study in this course are related to graphs, we want to
review the basics of graph theory first.

1.2.1 Undirected Graphs

Recall the following graph theory definitions where we follow the classical textbook of Diestel,
(Graph Theory, 2007, 5th ed.):

• An undirected graph G = (V,E) is the pair of sets V and E where V is the set of vertices
(or nodes) of G and E the set of (undirected) edges of G. An edge e ∈ E is a set {i, j} where
i, j ∈ V . We write G = (V (G), E(G)) if there are multiple graphs being considered.

1

2

3

4

5

Graph G = (V,E) with V = {1, 2, 3, 4, 5}
and E = {{1, 2}, {1, 3}, {2, 4}, {3, 4}, {3, 5}}

While it is popular to draw the nodes of graphs as dots and the edges as lines or curves
between those dots, one should keep in mind that the position of the nodes has actually no
meaning.

• The degree of a node is the number of incident edges. We write deg(v) = |{u ∈ V : {u, v} ∈
E}|.

• If the edges of G are precisely the
(|V |

2

)
pairs {i, j} for every pair i, j ∈ V then G is the

complete graph on V . The complete graph on n = |V | vertices is denoted as Kn.

• A subgraph of G = (V (G), E(G)) is a graph H = (V (H), E(H)) where V (H) ⊆ V (G) and
E(H) ⊆ E(G) with the restriction that if {i, j} ∈ E(H) then i, j ∈ V (H).

• If V ′ ⊆ V (G), then the subgraph induced by V ′ is the graph (V ′, E(V ′)) where E(V ′) is the
set of all edges in G for which both vertices are in V ′.

• A subgraph H of G is a spanning subgraph of G if V (H) = V (G).

spanning subgraph

• Given G = (V,E) we can define subgraphs obtained by deletions of vertices or edges.

– If E′ ⊆ E then G\E′ := (V,E\E′).

– If V ′ ⊆ V then G\V ′ = (V \V ′, E\{{i, j} ∈ E : i ∈ V ′ or j ∈ V ′}).
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• A path is a graph P = (V,E) where V = {v0, v1, . . . , vk} and E = {{v0, v1}, {v1, v2}, . . . , {vk−1, vk}}
and all v0, . . . , vk are distinct. The length of the path is the number of edges in the path
which equals k. We will call this a (v0, vk)-path if we want to emphasize the endpoints.

v0 v1 . . . vk

path

• A graph G = (V,E) is connected if for all u, v ∈ V , G contains a (u, v)-path (as a subgraph).

• A walk in a graph G = (V,E) is a sequence of vertices and edges v0, e1, v1, e2, v2, e3, . . . , ek, vk,
such that for i = 0, . . . , k, vi ∈ V, ei ∈ E where ei = {vi−1, vi}.

v0

v7

v1 = v6 v2 = v5

v3

v4

e1
e2 = e6

e3

e4

e5e7

a walk of length 7

If v0 = vk (i.e. startpoint = endpoint), then this is a closed walk.

v0 = v6

v1

v2 = v5
v3

v4

e1

e2

e3

e4

e5

e6

closed walk of length 6

• A cycle is a graph G = (V,E) where V = {v0, v1, . . . , vk−1} and E = {{v0, v1}, {v1, v2}, . . . , {vk−1, v0}}
where v0, . . . , vk−1 are distinct and k ≥ 3.

v0

v1 . . .

vk−1

cycle with k = 5 vertices and edges

• A graph G is acyclic if it contains no cycle as subgraphs.

• An acyclic graph is called a forest. A connected forest T = (V (T ), E(T )) is a tree.

forest

V (T )

tree T
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• A subgraph T = (V (T ), E(T )) of G is a spanning tree, if T is spanning, connected and
acyclic.

spanning tree

• A Hamiltonian circuit (also a "tour") of G is a subgraph that is a spanning cycle.

Hamiltonian circuit/tour

• A set M ⊆ E of edges with degree ≤ 1 for each vertex is called a matching.

• A set M ⊆ E of edges with degree exactly 1 for each vertex is called a perfect matching.

matching perfect matching

Convention: We defined paths / trees / spanning trees / cycles / Hamiltonian circuits as graphs,
i.e. as pairs H = (V (H), E(H)). But from the edge set E(H) we can recover the nodes. In
algorithms we will often just talk about the edges of those objects.

Advanced remark:

Looking at the literature one sees that the definitions of “path” and “cycle” are not standard-
ized. Some texts admit revisiting nodes, others do not. We have followed the definitions
in Diestel’s "Graph Theory."

1.2.2 Directed Graphs

• A directed graph G = (V,E) is the pair of sets V and E where V is the set of vertices of
G and E the set of (directed) edges of G. An edge e ∈ E is an ordered pair or a tuple (i, j)
where i, j ∈ V with i 6= j. One can imagine i as the “start node” and j as the “end node” of
the edge.

1

2

3

4

5

Graph G = (V,E) with V = {1, 2, 3, 4, 5}
and E = {(1, 2), (1, 3), (4, 2), (3, 4), (3, 5), (5, 3)}
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In the literature, directed graphs are often called digraphs and edges in a directed graph are
often called arcs.

• A directed path is a directed graph P = (V,E) with distinct vertices V = {v0, . . . , vk} and
edges E = {(v0, v1), (v1, v2), . . . , (vk−1, vk)}. By a slight abuse of this notation we will consider
the edge set E itself as the directed path.

v0 v1 . . . vk

directed path

1.3 The Traveling Salesperson Problem

We want to come to a more complex example of an algorithm. This is one of the most prominent
problems in combinatorial optimization.

Traveling Salesperson Problem (TSP)
Input: We are given a complete graph Kn = (V,E) for n ≥ 3 with edge cost cij ∈ R≥0

for each edge {i, j} ∈ E.
Goal: Find the Hamiltonian circuit (V,C), C ⊆ E that minimizes the total cost

∑

e∈C ce.

10 10

10

10

100

1

Example of a TSP with a tour in bold

Note that this problem again has an input, which defines the concrete instance (here, the
concrete set of numbers cij). Then the problem has an implicitly defined set of solutions (here, all
tours in an n-node graph). Usually, the problem also has an objective function that should be
optimized (here, minimize the sum of the edge cost in the tour).

The first trivial idea would be to simply enumerate all possible tours in the complete graph.
Then for each tour we compute the cost and always remember the cheapest one that we found so
far, which we output at the end. If we ignore the overhead needed to list all tours, certainly the
time is dominated by the number of tours. Unfortunately, the number of tours in a complete
undirected n-node graph is

1

2
(n − 1) · (n− 2) · . . . · 2 · 1 =

1

2
· (n− 1)!

If we remember Stirlings formula n! ≈
√
2πn(ne )

n, then n! ≈ en ln(n)−n. For example if n = 50, then
1
2(n − 1)! ≈ 1062 and if our computer can enumerate 109 tours per second, it would take ≈ 1043

centuries to enumerate all of them. Obviously, this approach is not very practicable. But in fact,
we can solve the problem in a slightly smarter way (though not that much smarter).
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The trick in the Held-Karp algorithm is to first compute the best subtours using dynamic
programming. For each subset S ⊆ V and points i, j ∈ S we want to compute table entries

C(S, i, j) := length of the shortest path from i to j visiting each

node in S exactly once (and no node outside of S)

Now we simply compute all entries C(S, i, j) with increasing size of S:

Held-Karp algorithm

Input: Distances cij ≥ 0 in a complete n-node graph for n ≥ 3

Output: Cost of an optimum TSP tour

(1) C({i, j}, i, j) := cij for all i 6= j

(2) FOR k = 3 TO n DO

(3) FOR ALL SETS S ⊆ V : |S| = k DO

C(S, i, j) := min
ℓ∈S\{i,j}

{C(S\{j}, i, ℓ) + cℓ,j}

(4) output the optimum cost minj 6=1{C(V, 1, j) + cj1}

We can visualize the computation in step (3) as

S

i

ℓ

j

Let us make the following observation:

Lemma 2. The algorithm computes the cost of the optimum tour.

Proof. Prove by induction on |S| that the quantity C(S, i, j) computed in the algorithm really
satisfies the definition.

Now we should discuss how we analyze the running time for the algorithm. For the TSP algo-
rithm, we have at most n22n many entries of the form C(S, i, j); for each entry, the minℓ{. . .} expres-
sion needs to be evaluated for at most n many choices of ℓ and evaluating each term C(S\{j}, i, ℓ)+
cℓ,j takes O(1) many elementary operations. The overall running time of the algorithm is thus
O(n32n). We might wonder, whether one could come up with a much more efficient algorithm for
TSP than the one that we have discussed. But in fact, it is unknown whether there is any algorithm
that solves TSP in time3 O(1.9999n). For the input length we count the number of numbers/objects,
i.e. in this case

(
n
2

)
∼ n2.

Apart from the obvious application to schedule a traveling salesperson/postman tour, the vertices
v1, . . . , vn could be holes that need to be drilled on a circuit board and cij could be the time taken

3Interestingly, there are non-trivial special cases where this is known to be true. For example in an undirected
graph with edge cost cij ∈ {1, . . . ,W } for all i, j ∈ V , Björklund showed that TSP can be solved in time O(1.66n ·W ).
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by the drill to travel from vi to vj. In this case, we are looking for the fastest way to drill all holes
on the circuit board if the drill traces a tour through the locations that need to be drilled. Yet
another application might be that v1, . . . , vn are n celestial objects that need to be imaged by a
satellite and cij is the amount of fuel needed to change the position of the satellite from vi to vj .
In this case, the optimal tour allows the satellite to complete its job with the least amount of fuel.
These and many other applications of the TSP as well as the state-of-the-art on this problem can
be found on the web page https://www.math.uwaterloo.ca/tsp/. In many cases, the distances
cij have special properties such as defining a metric or a Euclidean distance. In those cases one can
design more efficient algorithms.
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Chapter 2

Minimum Spanning Trees

In this chapter we study the problem of finding a minimum cost spanning tree in a graph.

Minimum Spanning Tree
Input: Undirected graph G = (V,E), cost cij ≥ 0 ∀{i, j} ∈ E
Goal: A spanning tree (V, T ) with T ⊆ E minimizing c(T ) :=

∑

e∈T ce.

Recall that in a graph G = (V,E) we call a subgraph (V ′, T ) a spanning tree if:

(i) (V ′, T ) is acyclic, (ii) (V ′, T ) is connected, (iii) (V ′, T ) is spanning (i.e. V ′ = V )

Throughout this section the underlying graph G = (V,E) will be fixed and so by a slight abuse of
notation we call a subset of edges T ⊆ E a spanning tree of G if this is the case for the subgraph
(V, T ). A very useful equivalent definition is:

The edges T ⊆ E form a spanning tree of G if and only if for each pair u, v ∈ V of nodes
there is exactly one path from u to v.

This is clear because if you have more than one path between two nodes u, v, then this implies a
cycle. On the other hand being connected and spanning means you have at least one path between
each pair of vertices. For example, in the graph below, we marked the minimum spanning tree with
bold edges (edges {i, j} are labelled with their cost cij):

1

3

2

3

1
1

1

4

3
2

4
4

We start by establishing some basic properties of a spanning tree. Some of those might appear
obvious, but let us be formal here.

Theorem 3. For G = (V,E) connected with |V | = n nodes. Then one has:

a) |E| ≥ n− 1

b) ∃ spanning tree T ⊆ E

15



c) G acyclic ⇔ |E| = n− 1

d) G is spanning tree ⇔ |E| = n− 1

Proof. Luckily, in all 4 cases we can use almost the same proof. We begin with finding some spanning
tree in G. To do that, we fix an arbitrary node r ∈ V and call it the root. We give each node v a
label d(v) which tells the distance (in terms of number of edges) that this node has from the root.
Since G is connected, there is a path from v to r and d(v) is well-defined. For node v ∈ V \r, we select
an arbitrary neighbor node p(v) that is closer to r, that means {v, p(v)} ∈ E and d(p(v)) = d(v)−1
(here the p stands for parent node). We now create a set T := {{v, p(v)} | v ∈ V \{r}} of all such
edges. In other words, each node v has exactly one edge {v, p(v)} ∈ T that goes to a node with a
lower d-label.

u

p(u)

∈ E\T

∈ T

r
d(v) = 0 :

d(v) = 1 :

d(v) = 2 :

d(v) = 3 :

We make a couple of observations:

i) (V, T ) is connected : This is because from each node v you can find a path to the root by
repeatedly taking the edge to its parent.

ii) |E| ≥ |T | = n− 1: That is because we have a bijective pairing between nodes v ∈ V \{r} and
edges {v, p(v)}, thus |T | = |V \{r}| = n− 1.

iii) (V, T ) is acyclic: If not, we can delete an edge in the cycle and obtain a still connected
spanning subgraph T ′ ⊆ T with only |T ′| = n − 2 edges; but if we apply ii) we obtain that
each connected spanning graph on n nodes must have ≥ n−1 edges; that gives a contradiction.

iv) T is a spanning tree in G. Follows from observations i)-iii).

v) For any edge {u, v} ∈ E\T , T ∪ {u, v} contains a cycle: This is because there was already a
path from u to v in T . That means if |E| > n− 1, then G is not acyclic, if |E| = n− 1 then
E = T and G is acyclic by iii).

vi) d) follows from c): That is because G is connected and is thus spanning by assumption.

A very useful operation to modify a spanning tree is the following:

Lemma 4. Let T ⊆ E be a spanning tree in G = (V,E). Take an edge e′ = {u, v} ∈ E\T and let
P ⊆ T be the edges on the path from u to v. Then for any edge e ∈ P , T ′ = (T\{e}) ∪ {e′} is a
spanning tree.

16



e ∈ P

e′u v

Proof. Swapping edges in a cycle P ∪{e′} leaves T connected and the number of edges is still n−1,
hence T ′ is still a spanning tree.

The operation to replace e by e′ is called an edge swap. It leads to a spanning tree of cost
c(T ′) = c(T ) − c(e) + c(e′). If T was already the minimum spanning tree, then we know that
c(e′) ≥ c(e) or in other words: if T is optimal, then any edge {u, v} ∈ E\T is at least as expensive
as all the edges on the path P ⊆ T that connects u and v (because otherwise we could swap that
edge with {u, v} and we would obtain a cheaper spanning tree).

Surprisingly it turns out that the other direction is true as well: if no edge swap would decrease
the cost, then T is optimal.

Before we show that, we need one more definition that is very useful in graph theory. For any
graph G = (V,E) we can partition the nodes into V = V1∪̇ . . . ∪̇Vk so that a pair u, v is in the
same set Vi if and only they are connected by a path. Those sets V1, . . . , Vk are called connected
components. Formally, one could define relation ∼ with u ∼ v if and only if there is a path from
u to v in G. Then one can easily check that ∼ is an equivalence relation and the equivalence classes
define the connected components, see the following example:

V1 V2

V3

connected components

Consider a partition of the vertices of a graph G = (V,E) into V = V1∪̇V2. Then the set of edges
in G that have exactly one endpoint in V1 and one endpoint in V2 are called a cut. It will be
convinient to focus one a single subset U ⊆ V and the cut δ(U) := {{u, v} ∈ E | |{u, v} ∩ U | = 1}
corresponding to the partition of V into U and V \ U .

U
bold edges form the cut δ(U)

Theorem 5. Let T be a spanning tree in graph G with edge costs ce for all e ∈ E. Then the
following statements are equivalent:

1. T is a minimum spanning tree (MST).

2. No edge swap for T decreases the cost.

17



Proof. It only remains to show (2) ⇒ (1). In other words, we fix a non-optimal spanning tree T ;
then we will find an improving edge swap. Let T ∗ be an optimum minimum spanning tree. If this
choice is not unique, then we choose a T ∗ that maximizes |T ∩ T ∗|; in other words, we pick on
optimum solution T ∗ that has as many edges as possible in common with T .

Take any edge f = {u, v} ∈ T\T ∗. The subgraph T\{f} consists of two connected components,
let us call them C ⊆ V and V \C, say with u ∈ C and v ∈ V \C.

C

f

u v

tree T

C

e ∈ P

f
u v

tree T ∗

On the other hand, there is a path P ⊆ T ∗ that connects u and v. As this path “starts” in C and
“ends” in V \C, there must be be an edge in the path that lies in the cut δ(C) ∩ T ∗. We call this
edge e ∈ δ(C) ∩ T ∗ ∩ P . Let us make 2 observations:

• T ′ = (T\{f}) ∪ {e} is a spanning tree! This is because e connects the two connected com-
ponents of T\{f}, hence it is connected and T ′ also has n − 1 edges, thus T ′ is a spanning
tree.

• T ∗∗ = (T ∗\{e}) ∪ {f} is a spanning tree as well.

Now it depends which of the edges e and f was the cheaper one:

• Case cf > ce: Then c(T ′) < c(T ) and we found an edge swap that improved T .

• Case cf < ce: Then c(T ∗∗) < c(T ∗) which contradicts the optimality of T ∗.

• Case cf = ce: Then T ∗∗ is also optimal. But T ∗∗ has one edge more in common with T than
T ∗ has. This contradicts the choice of T ∗ and the claim follows.

We want to emphasize at this point that spanning trees have a very special structure which
implies that a “local optimal solution” (that we cannot improve by edge swaps) is also a “global
optimal solution”. Most other problems like TSP do not share this property.

2.1 Kruskal’s Algorithm

In this section, we want to discuss an algorithm for finding the Minimum Spanning Tree, which is
called Kruskal’s Algorithm. Interestingly, it suffices to consider each edge only once and one can
then make an immediate decision whether or not to include that edge.

18



Kruskal’s Algorithm

Input: A connected graph G with edge costs ce ∈ R, ∀ e ∈ E(G).
Output: A MST T of G.

(1) Sort the edges such that ce1 ≤ ce2 ≤ . . . ≤ cem .
(2) Set T = ∅
(3) For i from 1 to m do

If T ∪ {ei} is acyclic then update T := T ∪ {ei}.

Theorem 6. The edge set T found by Kruskal’s algorithm is an MST of G.

Proof. Let T be the output of Kruskal’s Algorithm. We need to first show that T is a spanning tree
of G. Obviously, T will be acyclic at the end. Now suppose for the sake of contradiction that T was
not connected and that C ⊆ V is one connected component with 1 ≤ |C| < n. We assumed that
the graph G itself was connected hence G did contain some edge e = {u, v} ∈ E that was running
between C and V \C. But the algorithm considered that edge and some point and decided not to
take it. That means there was already a path in T between u and v, which gives a contradiction.

We now argue that T cannot be improved by edge swaps, which by Theorem 5 proves that T is
the cheapest spanning tree. Consider any a pair of edges ei ∈ T and ej ∈ E\T so that (T\{ei})∪{ej}
is again a spanning tree.

ei
T

ej

In particular, (T\{ei})∪{ej} is acyclic, but then at the time that ei was added, it would have been
possible to add instead ej without creating a cycle. That did not happen, hence ej was considered
later. This means i < j and c(ei) ≤ c(ej), which implies that an edge swap would not have paid
off.

It should be clear that the algorithm has polynomial running time (in the arithmetic and in the
bit model). In fact, it is very efficient:

Theorem 7. Kruskal’s Algorithm has a running time of O(m log(n)) (in the arithmetic model)
where n = |V | and m = |E|.

Here we need a running time of O(m logm) to sort the edges according to their size. Note that
since logm ≤ log

(
n
2

)
≤ 2 log n, this quantity is of the form O(m log n) (just with a higher constant

hidden in the O-notation). Moreover, the algorithm needs to repeatedly check whether two nodes
u, v ∈ V are already in the same connected component. Using a union-find data structure,
this can be done in time O(log n) per test. We refer to the corresponding computer science lecture
for more details. Finally we would like to point out that Kruskal’s Algorithm indeed works for all
ce ∈ R, that means edge cost may be negative.
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Chapter 3

Shortest Paths

To motivate the next problem that we want to study in detail, imagine that you would like to drive
home from UW and suppose you want to select a route so that you spend as little as possible on
gas. Suppose you already isolated a couple of road segments that you consider of using on your
way home and from your experience, you know how much gas your car needs on each segment. We
draw a graph with a vertex for each location/crossing and an edge for each segment that we label
with the amount of gas that is needed for it.

UW home

2

5

4

2

13

2

1

3

4

7

4

Now we are interested in a path in this graph that goes from UW to your home and that minimizes
the amount of gas. Observe that some roads are one way streets and also the amount of gas could
depend on the direction that you drive, e.g. because you need more gas to drive uphill than downhill
and because the traffic in one direction might be heavier than in the other one (at a given time
of the day). In other words, we allow the edges have directions, but so far we can assume that
ce ≥ 0. We refresh some definitions from chapter 1:

Definition 8. A directed graph (digraph) G = (V,E) consists of a vertex set V and directed
edges e = (i, j) ∈ E (also called arcs) such that i is the tail of e and j is the head of e. A directed
path is of the form (v0, v1), (v1, v2), . . . , (vk−1, vk) with (vi, vi+1) ∈ E for all i. A path is called an
s-t path if it starts at s and ends at t (s, t ∈ V ).

1 2

3

Example: directed graph G = (V,E) with

V = {1, 2, 3} and E = {(1, 2), (2, 1), (1, 3)}
Shortest Path Problem
Input: Directed graph G = (V,E), cost cij ∀(i, j) ∈ E, nodes s, t ∈ V
Goal: s-t path P ⊆ E minimizing c(P ) :=

∑

e∈P ce.
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In the following, whenever we have a cost function c : E → R, then “shortest path” means the
one minimizing the cost (not necessarily the one minimizing the number of edges). In the example
above, we depicted the shortest “UW-home path”.

Now let us go back to our introductory example where we want to find the most gas-efficient way
from UW to your home. Now imagine you just bought a hybrid car, which can charge the battery
when braking. In other words, when you drive downhill, the gas-equivalent that you spend may be
negative (while before we assumed c(e) ≥ 0). Maybe the road network with gas consumption now
looks as follows (again with the shortest path in bold):

UW home

2

5

4

−1

−23

2

1

3

4

7

4

So, we might need to drop the assumption that edge cost are non-negative (i.e. c(e) ≥ 0). But could
we allow arbitrary (possibly negative) edge cost? Well, consider the following example instance:

s t
1

−3

1

1 1

What is the length of the shortest s-t path? Observe that the length of the cycle is −1. Hence
if we allow to revisit nodes/edges, then the length of the shortest walk is −∞ and hence not well
defined. If we restrict the problem to paths (= not revisiting nodes), then one can prove that the
problem becomes NP-complete1, which we want to avoid. It seems the following two assumptions
are meaningful, where the 1st one implies the 2nd one.

• Strong assumption: ce ≥ 0 ∀e ∈ E

• Weak assumption: All cycles have cost ≥ 0.

In this chapter, we will see several algorithms; some need the stronger assumption (but are more
efficient) and others have higher running time, but work with the weaker assumption. Let us make
the following observation: If either the weak assumption or the strong assumption is true, then a
shortest s-t path in a directed graph is also a shortest s-t walk (simply because we could shortcut
a walk to a path without increasing the length).

Lemma 9 (Bellman’s principle). Let G = (V,E) be a directed, weigthed graph with no neg-
ative cost cycle. Let P = {(s, v1), (v1, v2), . . . , (vk, t)} be the shortest s-t path. Then Ps,i =
{(s, v1), (v1, v2), . . . , (vi−1, vi)} is a shortest s-vi path.

1Given an undirected graph (without costs) and nodes s,t, it is known to be NP-hard to test, whether there is a
s-t path visiting all nodes exactly once. Now put edge cost −1 on all edges. If you can find a simple s-t path of cost
n− 1, then this must be a path that visits all nodes once.
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Proof. If we have a s-vi path Q that is shorter, then replacing the s-vi part in P with Q would give
a shorter s-t path.

s v1 . . . vi . . . vk t

P

Q

3.1 Dijkstra’s Algorithm

In this lecture we see the most efficient algorithm to compute shortest paths from a given vertex s
to all vertices v in a digraph G without negative cost cycles.

Dijkstra’s Algorithm (Dijkstra 1959)

Input: A directed graph G = (V,E) with edge costs ce. A source vertex s.
Assumption: ce ≥ 0 ∀e ∈ E
Output: Length ℓ(v) of shortest s-v-paths for all v ∈ V .

(1) Set ℓ(s) = 0. R = {s} and for all v ∈ V \{s}: ℓ(v) =

{

c(s, v) if (s, v) ∈ E

∞ otherwise

(2) WHILE R 6= V DO

(3) Select v ∈ V \R attaining min{ℓ(v) | v ∈ V \R}
(4) FOR all w ∈ V \R with (v,w) ∈ E DO ℓ(w) := min{ℓ(w), ℓ(v) + c(v,w)}
(5) Set R = R ∪ {v}.

An example run for Dijkstra’s Algorithm is as follows:
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2

5

1
2

4

3

3

s

instance

R

2

5

1
2

4

3

3

ℓ(s) = 0

ℓ(v1) = 2

ℓ(v2) = 5

ℓ(v3) = ∞

ℓ(v4) = ∞

before it 1

R

2

5

1
2

4

3

3

ℓ(s) = 0

ℓ(v1) = 2

ℓ(v2) = 3

ℓ(v3) = 6

ℓ(v4) = ∞

after it. 1

R

2

5

1
2

4

3

3

ℓ(s) = 0

ℓ(v1) = 2

ℓ(v2) = 3

ℓ(v3) = 5

ℓ(v4) = 6

after it. 2

R

2

5

1
2

4

3

3

ℓ(s) = 0

ℓ(v1) = 2

ℓ(v2) = 3

ℓ(v3) = 5

ℓ(v4) = 6

after it. 3

2

5

1
2

4

3

3

ℓ(s) = 0

ℓ(v1) = 2

ℓ(v2) = 3

ℓ(v3) = 5

ℓ(v4) = 6

solution

We can easily modify the algorithm so that it also computes the shortest paths itself. For each node
v ∈ V \{s}, we pick one node p(v) so that ℓ(v) = ℓ(p(v)) + c(p(v), v). Then from each node v we
can find the shortest path from the root, by repeatedly going back to p(v). Those edges (p(v), v)
are depicted in bold in the last figure. If there is no s-v path, then we will have ℓ(v) = ∞.

Lemma 10. Let d(u,w) be the length of the shortest u-w path in graph G = (V,E). After the
termination of Dijkstra’s algorithm we have ℓ(u) = d(s, u) for all u ∈ V .

Proof. We prove that the following two invariants are satisfied after each iteration of the algorithm:

• Invariant I. For all u ∈ R one has: ℓ(u) = d(s, u).

• Invariant II. For all u ∈ V \R one has: ℓ(u) = length of the shortest path from s to u that
has all nodes in R, except of u itself.

At the end of the algorithm, we have R = V and the claim follows from invariant I. Both invariants
are true before the first iteration when R = {s}. Now consider any iteration of the algorithm;
assume that both invariants were satisfied at the beginning of the iteration and that v is the node
that was selected which means we have updated R′ = R ∪ {v}. Let ℓ denote the labels at the
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beginning of the iteration and ℓ′ denote the labels after the iteration. We verify that invariant I
and II remain true.

Claim I. For all u ∈ R′ one has ℓ′(u) = d(s, u).
Proof of Claim I. Note that for all u ∈ R′ one has ℓ′(u) = ℓ(u) since none of those labels have
changed. For u 6= v then has ℓ′(u) = ℓ(u) = d(s, u) since the invariant was true before. So it remains
to verify invariant I for node v itself. Let P be the shortest s-v path that has all nodes except of
v itself in R; the cost is c(P ) = ℓ(v) by invariant II (which holds for R). Now suppose that this
is not the shortest s-v path and that there is a cheaper s-v path Q with c(Q) < c(P ) = ℓ(v). Let
w be the first node on the s-v path Q that lies outside of R (this point must exist since Q starts
in R and ends outside; also that point cannot be v since otherwise by invariant II, we would have
c(P ) = c(Q)). Since we have only non-negative edge costs, ℓ(w) ≤ c(Q) < ℓ(v). But that means the
algorithm would have processed w instead of v. This is a contradiction. It follows that invariant I
is maintained.

R

P

Q

s
w

v

Claim II. For all u ∈ V \R′ one has: ℓ′(u) = length of the shortest path from s to u that has
all nodes in R′, except of u itself.
Proof of Claim II. Fix a vertex u ∈ V \R′ and note that u 6= v since v ∈ R′. Let Q be the
shortest s-u path that is contained in R′ ∪ {u}. Let w be the last node in Q before u (note
that w ∈ R′). There are two possibilities: In case (A) one has w = v, then the cost of the
path is c(Q) = d(s, v) + c(v, u) = ℓ(v) + c(v, u). Otherwise, in case (B), we have w 6= v and
c(Q) = d(s,w) + c(w, u) = ℓ(u). As ℓ′(u) is set to the minimum of both quantities, invariant II
remains valid.

R′

R

Q

s v

u

Case (A)

R′

R Q

s v

u
w

Case (B)

We can also offer an alternative exposition of the same proof that is more formal while slightly
more technical:

Alternative Exposition. For a set of nodes U ⊆ V and s, t ∈ U , let dU (s, t) be the length of the
shortest s-t path that uses exclusively nodes in U . In particular dV (s, t) is the length of the overall
shortest s-t path in the graph. We prove that the following two invariants are satisfied after each
iteration of the algorithm2:

2For vertices u that are not reachable from s we will have ℓ(u) = ∞ at any point in the algorithm and both
invariants are trivially satisfied; hence we will ignore such vertices from now on.
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• Invariant I. ℓ(w) = dV (s,w) ∀w ∈ R

• Invariant II. ℓ(w) = dR∪{w}(s,w) ∀w ∈ V \R.

At the end of the algorithm, we have R = V and the claim follows from invariant I. Now consider any
iteration of the algorithm; assume that both invariants were satisfied at the beginning of the iteration
and that v is the node that was selected, that means in particular the update is R′ := R∪ {v}. Let
ℓ denote the labels at the beginning of the iteration and ℓ′ denote the labels after the iteration.

First we prove that invariant I is still true at the end of the iteration. Note that no labels of
nodes in R′ = R∪{v} are updated, so the only change is the fact that v is added to R′. As invariant
II was true before, we know that ℓ′(v) = ℓ(v) = dR∪{v}(s, v). So to conclude invariant I it remains
to show the following:
Claim I. One has dV (s, v) = dR∪{v}(s, v).
Proof of Claim I. Let Qsv be the overall shortest s-v path and suppose for the sake of contradiction
that c(Qsv) < dR∪{v}(s, v). Then Qsv must be visiting some node outside of R ∪ {v}; let w be the
first such node.

R

Q

s
w

v

By Qsw we denote the subpath going only from s to w. Note that each subpath must also be a
globally shortest path between the endpoints. Due to non-negative edge costs

ℓ(w)
invariant II

= dR∪{w}(s,w) = c(Qsw)
non-neg. edge cost

≤ c(Qsv) < ℓ(v),

which is a contradiction to the minimality of the picked label.
Next, we prove that invariant II is still valid at the end of the iteration. Consider a node

w ∈ V \ R′. We will consider the length of the shortest path from s to w only visiting nodes in
R′ ∪ {w}. This path has to visit some node before. Taking the minimum over all choices we can
write

dR′∪{w}(s,w) = min
{

min
u∈R

{ dR′(s, u)
︸ ︷︷ ︸

=dR(s,u) (∗)

+c(u,w)}

︸ ︷︷ ︸

=dR∪{w}(s,w)=ℓ(w) by inv. II

, dR′(s, v)
︸ ︷︷ ︸

=ℓ(v)

+c(v,w)
}

= min{ℓ(w), ℓ(v)+c(v,w)} = ℓ′(w)

Here we use in (∗) that by invariant I the globally shortest path from s to any u ∈ R runs fully
inside R dR′(s, u) = dV (s, u) = ℓ(u) because by invariant I.

Lemma 11. Dijkstra’s Algorithm runs in O(n2) time in an n-node graph.

Proof. The algorithm has n iterations and the main work is done for updating the ℓ(w)-values.
Note that one update step ℓ(w) := min{ℓ(w), ℓ(v) + c(u,w)} takes time O(1) and we perform n
such updates per iteration. In total the running time is O(n2).

Again with more sophisticated data structures (so called Fibonacci heaps), the running time
can be reduced to O(|E|+ |V | log |V |). Recall that Dijkstra’s algorithm computes the lengths of n
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shortest paths d(s, v). Interestingly, there is no known algorithm that is faster, even if we are only
interested in a single distance d(s, t).

3.2 The Moore-Bellman-Ford Algorithm

We now study a second algorithm for finding shortest paths in a directed graph. Like Dijkstra’s
algorithm it computes shortest paths from a source node to all other nodes. But in contrast to
Dijkstra’s algorithm, it can deal with negative edge cost — at the expense of a higher running time.

Moore-Bellman-Ford Algorithm

Input: a directed graph G = (V,E); edge cost c(e) ∈ R ∀e ∈ E; a source node s ∈ V .
Assumption: There are no negative cost cycles in G
Output: The length ℓ(v) of the shortest s-v path, for all v ∈ V .

(1) Set ℓ(s) := 0 and ℓ(v) = ∞ for all v ∈ V \{s}
(2) For i = 1, . . . , n− 1 do

(3) For each (v,w) ∈ E do:
If ℓ(w) > ℓ(v) + cvw then set ℓ(w) = ℓ(v) + cvw (“update edge (u,w)”)

An example run of the algorithm can be found below (after iteration 3 we already have all the
correct labels in this case):

s

d

c

b

a−1

5

−1
2

4

−2

3

instance

s

d

c

b

a−1

5

−1
2

4

−2

3

ℓ(s) = 0

ℓ(d) = −1

ℓ(c) = −2

ℓ(b) = 0

ℓ(a) = −4

labels at end
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ℓ(s) ℓ(a) ℓ(b) ℓ(c) ℓ(d)

start 0 ∞ ∞ ∞ ∞
Iteration 1 (b, a)

(c, a)
(c, b)
(d, b)
(d, c)
(s, c) 5
(s, d) -1

Iteration 2 (b, a)
(c, a) 3
(c, b) 7
(d, b) 3
(d, c) −2
(s, c)
(s, d)

Iteration 3 (b, a)
(c, a) -4
(c, b) 0
(d, b)
(d, c)
(s, c)
(s, d)

end 0 -4 0 -2 -1

Theorem 12. The Moore-Bellman-Ford Algorithm runs in O(nm)-time.

Proof. The outer loop takes O(n) time since there are n − 1 iterations. The inner loop takes
O(m) time as it checks the l-value at the head vertex of every edge in the graph. This gives an
O(nm)-algorithm.

Theorem 13. The Moore-Bellman-Ford algorithm works correctly.

Proof. Let d(u, v) be the actual length of the shortest u-v path. We want to show that indeed after
the termination of the algorithm one has ℓ(u) = d(s, u) for all u ∈ V . By induction one can easily
prove that in any iteration one has ℓ(u) ≥ d(s, u)3. To see this, suppose in some iteration we update
edge (v,w), then ℓ(w) = ℓ(v) + cvw ≥ d(s, v) + c(v,w) ≥ d(s,w) using the triangle inequality in the
last step.

In the following, we will show that after n−1 iterations of the outer loop of the algorithm, we have
ℓ(w) = d(s,w) for each node. Hence, consider a shortest path s = v0 → v1 → v2 → . . . → vk = w
from s to some node w.

s = v0 v1 . . . vi−1 vi . . . w = vk

3Note that for vertices u that are not reachable from s, the label will remain at ℓ(u) = ∞; we will ignore such
vertices from here on.
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Suppose after i−1 iterations, we have ℓ(vi−1) = d(s, vi−1). Then in the ith iteration we will consider
edge (vi−1, vi) for an update and set ℓ(vi) := ℓ(vi−1)+ c(vi−1, vi) = d(s, vi−1)+ c(vi−1, vi) = d(s, vi)
(if that was not already the case before). Note that here we have implicitly used that s → v1 →
. . . → vi−1 is also the shortest path from s to vi−1. Since all shortest paths include at most n − 1
edges, at the end we have computed all distances from s correctly.

Again, one can also extract the shortest paths itself, once we know the labels ℓ(v). Finally, we
should remark that the speed at which the values ℓ(u) propagate does depend on the order of the
edges. Suppose we had sorted the edges as e1, . . . , em so that d(s, tail(e1)) ≤ . . . ≤ d(s, tail(em)),
then already after one iteration, all the values ℓ(v) would coincide with the actual distance d(s, v).

3.3 Detecting Negative Cycles

The algorithms we saw so far compute the shortest (s, v)-paths in a digraph G from a start vertex
s to any vertex v in G. These algorithms require that G have no negative cost cycles, in which
case we say that the vector of costs, c, is conservative. In this lecture we see how one can detect
whether G has a negative cost cycle.

Definition 14. Let G be a digraph with costs ce ∈ R for all e ∈ E. Let π : V → R be a function
that assigns a real number π(v) to every vertex v ∈ V .

1. For an edge (i, j) ∈ E, define the reduced cost with respect to π to be cij + π(i)− π(j).

2. If the reduced costs of all edges of G are nonnegative, we say that π is a feasible potential
on G.

For example, below we have an example with negative edge cost (but no negative cycle) and a
feasible potential on the right:

s t
1

−1

−1

3 −2

graph with cost cij

s
t

1

0

0

1 1

edges labelled with reduced cost cij + π(i)− π(j)

nodes labelled with feasible potentials π

π(s) = 2 2

1

0

−3

Theorem 15. The directed graph G with vector of costs c has a feasible potential if and only if c
is conservative.

Proof. (⇒): Suppose π is a feasible potential on (G, c). Consider a directed cycle with edges C.
Then adding up the cost of the edges gives

∑

e∈C
c(e) =

∑

e∈C

(
c(e) + π(tail(e)) − π(head(e))

)

︸ ︷︷ ︸

≥0

≥ 0

using that each node on the cycle appears once as tail(e) and once as head(e).
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(⇐): Suppose c is conservative. Augment G to a graph G̃ by adding a new vertex s and adding
edges (s, v) with cost c(s, v) = 0. This does not create negative cost cycles because s has only
outgoing edges.

0

0

0

cij

π(i) = d(s, i)

π(j) = d(s, j)

s

G

Now let d(s, i) be the length of the shortest s-i path in G̃. Note that these values might be negative,
but they are well defined since there are no negative cost cycles and from s we can reach every node.
We claim that π(i) := d(s, i) is a feasible potential. Consider any edge (i, j) ∈ E, then its reduced
cost is

c(i, j) + d(s, i)− d(s, j) ≥ 0 ⇔ d(s, j) ≤ d(s, i) + c(i, j)

which is just the triangle inequality.

Lemma 16. Given a directed graph G = (V,E) with edge cost c : E → R, in O(|V | · |E|) time we
can find either a feasible potential on G or a negative cost cycle in G.

Proof. Let G be the given graph and add again a source node s that is connected to each node at
cost 0. For convenience we denote n as the number of vertices in the graph including s. Now run
the Moore-Bellman-Ford algorithm to compute labels ℓ(v), but run it for n iterations rather than
n−1 iterations. If no edge update is made in the last iteration, then we know that the labels satisfy
ℓ(v) ≤ ℓ(u) + cuv for all edges (u, v) ∈ E. In fact, in the last proof we implicitly argued that such
labels define a feasible potential.

Now, let us make a couple of observations concerning the behaviour of the algorithm. Where
do the labels ℓ(v) actually come from? Well, an easy inductive argument shows that at any time in
the algorithm and for any v, there is an s-v walk P so that ℓ(v) = c(P ).

Claim. Suppose a label ℓ(v) has been updated in iteration k. Then there is a s-v walk with at
least k edges so that ℓ(v) = c(P ).
Proof. If we updated ℓ(v), then we had ℓ(v) = ℓ(u) + c(u, v) at that time with (u, v) ∈ E. The
only reason why ℓ(v) was not updated earlier is that u itself was updated either in iteration k or in
iteration k − 1. The argument follows by induction.

Now suppose that a node u was updated in the nth iteration. Then we can find a walk P with
at least n edges so that ℓ(u) = c(P ). Since the walk has n edges, there must be a node, say v that
appears at least twice on this path. Say ℓ′(v) was the label at the earlier update and ℓ′′(v) < ℓ′(v)
was the label at the later update. Let Q be the part of P that goes from s to v and C be the closed
walk from v to v. Then ℓ′(v) = c(Q) white ℓ′′(v) = c(Q) + c(C) < ℓ′(v) = c(Q). Hence c(C) < 0.
Then the closed walk C must contain a cycle of negative cost.
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Intuitively, the concept of potentials to “correct” the edge cost so that they become non-negative
while not changing the shortest paths itself. This provides the following insight:

Corollary 17. Given a directed weighted graph with no negative cost cycles, |V | = n and |E| =
m. Then one can compute the lengths (d(u, v))u,v∈V of all shortest paths simultaneously in time
O(nm+ n2 log n).

Proof. Since there are no negative cost cycles, we can compute a feasible potential π in time O(nm).
Suppose that dπ(u, v) gives the length of the shortest path w.r.t. the reduced costs. Observe that
dπ(u, v) = d(u, v) + π(u) − π(v). Hence a path is a shortest path w.r.t. the original costs if and
only if it is a shortest path for the reduced costs. The advantage is that the reduced costs are
non-negative, hence we can apply Dijkstra’s algorithm n times (once with each node as source
node). Each application takes time O(m + n log n). Hence we obtain a total running time of
O(nm) + n ·O(n log(n)) which is of the claimed form.
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Chapter 4

Network Flows

In this chapter, we want to discuss network flows and in particular how to compute maximum flows
on directed graphs.

Imagine you work for an oil company that owns an oil field (at node s), a couple of pipelines
and a harbor (at node t). The pipeline network is depicted below. Each pipeline segment e has a
maximum capacity ue (say tons of oil per minute that we write on the edges). For technical reasons,
each pipeline segment has a direction and the oil can only be pumped in that direction. What is
the maximum amount of oil that you can transport from the oil field to the harbor?

soil field

a

b

c

d

t harbor

7

3

6

2

3

4 3
3

7

5

Let us make a couple of definitions that will help us to formally state the underlying mathemat-
ical problem.

Definition 18. A network (G,u, s, t) consists of the following data:

• a directed graph G = (V,E),

• edge capacities ue ∈ Z≥0 for all e ∈ E, and

• two specified nodes s (source) and t (sink) in V .

Definition 19. A s-t flow is a function f : E → R≥0 with the following properties:

• The flow respects the capacities, i.e. 0 ≤ f(e) ≤ ue ∀e ∈ E.

• It satisfies flow conservation at each vertex v ∈ V \{s, t}:
∑

e∈δ−(v)

f(e) =
∑

e∈δ+(v)

f(e)

where δ−(v) = {(w, v) ∈ E} = { edges entering v } and δ+(v) = {(v,w) ∈ E} = { edges
leaving v }.

33



The value of an s-t flow f is

value(f) :=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e)

which is the total flow leaving the source node s minus the total flow entering s.

Maximum Flow Problem
Input: A network (G,u, s, t).
Find: An s-t flow in the network of maximum value.

In our example application, it turns out that the maximum flow f has a value of value(f) = 9
and the flow f itself is depicted below label edges e with f(e); observe that indeed we respect the
capacities.

soil field

a

b

c

d

t harbor

6

3

1

2

3

4 0

0

6

0

Note that we do allow flows to be non-integral.

4.1 The Ford-Fulkerson Algorithm

For the following sections 4.1, 4.2 and 4.3 we make the assumption that we are only considering
networks (G,u, s, t) where the directed graph G does not contain “bidirected edges”.

Assumption. The directed graph G = (V,E) does not contain both edges (i, j) and
(j, i) for any pair i, j ∈ V .

This assumption is helpful for a clean presentation and is not really a restriction of the model or
the algorithms. Note that if one indeed has a graph with both edges (i, j), (j, i) one could introduce
one extra node and split one of the edges:

i j

u(i, j)

u(j, i)

⇒ i j

u(i, j)

u(j, i)u(j, i)

Then the value of the maximum s-t flow does not change.
We want to develope some intuition on what a maximum flow algorithm should do. The first,

naive approach might be as follows:

(1) Set f(e) := 0 ∀e ∈ E

(2) REPEAT

(3) Find any s-t path P ⊆ E
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(4) FOR e ∈ E set f(e) := f(e) + 1 and u(e) := u(e)− 1 (remove e if u(e) = 0)

Consider the following example instance (again, edges are labelled with capacities u(e)):

s

a

b

t

1

1

1

1

1

Obviously the maximum flow value is 2. Now let us see how our algorithm would perform on the
example. We could decide to select the path P = s → a → b → t and send a flow of 1 along it. But
after removing a capacity of 1 along P , we end up with the following remaining capacities:

s

a

b

t

1

1

That means we cannot improve the flow of value 1 anymore. The problem is that we made the
mistake of sending flow along edge (a, b) and we need a way of “correcting” such mistakes later in
the algorithm. The key idea to do that is using residual graphs. For an edge e = (i, j) ∈ E, we
abbreviate e−1 := (j, i) as the reversed edge.

Definition 20. Given a network (G = (V,E), u, s, t) with capacities u and an s-t flow f . The
residual graph Gf = (V,Ef ) has edges

Ef = {(i, j) | (i, j) ∈ E and u(i, j) − f(i, j) > 0}
︸ ︷︷ ︸

forward edges

∪{(j, i) | (i, j) ∈ E and f(i, j) > 0}
︸ ︷︷ ︸

backward edges

An edge (i, j) ∈ Ef has residual capacity

uf (i, j) =

{

u(i, j) − f(i, j) if (i, j) is forward edge

f(j, i) if (i, j) is backward edge

An s-t path in Gf is called an f augmenting path.

Given a flow f and an s-t path P in Gf , to augment f along P by γ means to do the following
for each e ∈ P : Increase f(e) by γ on all the forward edges of the path and decrease f(e−1) by γ
on all the backward edges e ∈ P .

Note that due to our assumption, every edge in the residual graph is either a forward edge or
a backward edge — but never both. On the other hand if there is an edge (i, j) ∈ E and the flow
value on it is f(i, j) with 0 < f(i, j) < u(i, j), then Gf will contain both edge (i, j) and (j, i).

We can solve our small example using the concept of residual graphs as follows:

s

a

b

t

1

1

1

1

1

capacities ue

s

a

b

t

1

0

1

0

1

flow f

s

a

b

t

1

1

1

1

1

residual graph Gf

& augmenting path
P ⊆ Ef in bold

s

a

b

t

1

1

1

1

f augmented by P
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For a flow f , we define the excess of a node as exf (v) =
∑

e∈δ+(v) f(e) −
∑

e∈δ−(v) f(e). In
particular, for an s-t flow, we have exf (v) = 0 for all v ∈ V \{s, t} and exf (s) = value(f) and
exf (t) = −value(f).

Theorem 21. Let (G,u, s, t) be a network with an s-t flow f . Let P be a f -augmenting path so
that uf (e) ≥ γ ∀e ∈ P for some γ ≥ 0. Augment f along P by γ and call the result f ′. Then f ′ is
a feasible s-t flow of value value(f ′) = value(f) + γ.

Proof. We need to verify that (i) 0 ≤ f ′(e) ≤ u(e) for all e ∈ E; (ii) f ′ is an s-t flow; (iii)
value(f ′) = value(f) + γ. We first show (i). Consider an edge e ∈ E. Since P is a path, there are
exactly three disjoint cases that may happen:

• Case e ∈ P . Then e appears as a forward edge in Gf and the new flow is

f ′(e) = f(e) + γ
γ≤uf (e)

≤ f(e) + uf (e)
e forward edge in Gf

≤ f(e) + (u(e) − f(e)) = u(e)

(also f ′(e) = f(e) + γ ≥ 0).

• Case e−1 ∈ P . Then e−1 is a backward edge in Gf and

f ′(e) = f(e)− γ
γ≤uf (e

−1)

≥ f(e)− uf (e
−1)

e−1 backward edge in Gf

≥ f(e)− f(e) = 0.

(also f ′(e) = f(e)− γ ≤ u(e)).

• Neither. Then the flow value is not changed, i.e. f ′(e) = f(e).

This shows (i). Next we prove (ii). Suppose the path P is of the form s = v0, v1, . . . , vk = t where
ei = (vi−1, vi) ∈ Ef for i ∈ {1, . . . , k}.

path P in Gf :
s = v0 vi vk = t

ei ei+1

For a vertex v that does not appear on the path P , the incoming and outgoing flow is not
changed and there is nothing to show. Next, fix any vertex vi with 1 ≤ i < k (the end points s and
t are treated separately). Note that the edges ei and ei+1 that are incident to vi might be either
forward edges or backward edges; we visualize the possible cases below

vi

ei ei+1

forward/forward
vi

ei e−1
i+1

forward/backward
vi

e−1
i ei+1

backward/forward
vi

e−1
i

e−1
i+1

backward/backward

The flow outgoing of vi will be

∑

e∈δ+(vi)

f ′(e) =
∑

e∈δ+(vi)

f(e) +

{

γ if ei+1 ∈ E

0 otherwise
+

{

−γ if e−1
i ∈ E

0 otherwise
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Hence the outgoing for leaving vi might be changed by a number in {−γ, 0,+γ}. The new incoming
flow is

∑

e∈δ−(vi)

f ′(e) =
∑

e∈δ−(vi)

f(e) +

{

−γ if e−1
i+1 ∈ E

0 otherwise
+

{

γ if ei ∈ E

0 otherwise

Again, the incoming flow might be changed by a number in {−γ, 0, γ}. However the difference is
still

exf ′(vi) = exf (vi)
︸ ︷︷ ︸

=0

+

{

γ if ei+1 ∈ E

0 otherwise
−
{

−γ if e−1
i+1 ∈ E

0 otherwise
︸ ︷︷ ︸

=+γ

+

{

−γ if e−1
i ∈ E

0 otherwise
−
{

γ if ei ∈ E

0 otherwise
︸ ︷︷ ︸

=−γ

= 0

This shows (ii). For (iii) one can distinguish the case whether e1 is a forward or backward edge.
We skip this here to avoid repetitiveness.

Ford and Fulkerson’s algorithm for Max Flows

Input: A network (G,u, s, t).
Output: A max (s, t)-flow in the network.

(1) Set f(e) = 0 for all e ∈ E.
(2) REPEAT

(3) Find an f -augmenting path P . If none exist then stop.
(4) Compute γ := min{uf (e) | e ∈ P}.
(5) Augment f along P by γ.
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Example: Ford-Fulkerson Algorithm

s

a

b

c

d

t

0/7

0/3

0/6
0/2

0/3

0/4
0/3

0/3

0/7

0/5

flow f

step 1:

value(f) = 0

γ = 4

s

a

b

c

d

t

7

3

6

2

3

4 3
3

7

5

residual graph Gf

s

a

b

c

d

t

4/7

0/3

4/6
0/2

0/3

4/4
0/3

0/3

4/7

0/5

step 2:

value(f) = 4

γ = 3

s

a

b

c

d

t

3

4

3

2 4

2

3

4
3

3

3

4

5

s

a

b

c

d

t

7/7

0/3

4/6
0/2

3/3

4/4
0/3

0/3

4/7

0/5

step 3:

value(f) = 7

γ = 2

s

a

b

c

d

t

7

3

2 4

2

3

4
3

3

3

4

5

s

a

b

c

d

t

7/7

2/3

2/6
2/2

3/3

4/4
0/3

0/3

6/7

0/5

step 4:

value(f) = 9

f optimal

s

a

b

c

d

t

7

1

2

4 2

2

3

4
3

3

1

6

5

Edges on left hand side are labelled with f(e)/u(e). Edges on right hand side are labelled with
residual capacities uf (e). The augmenting path P ⊆ Ef that is selected is drawn in Gf in bold. The

value γ = min{uf (e) | e ∈ P} gives the minimum capacity on any edge on P .

The natural question is: does this algorithm actually find the optimum solution? We will find
out that the answer is yes. Before we proceed with proving that, we want to introduce some more
concepts.
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4.2 Min Cut Problem

Next, we want to introduce a problem that will turn out to be the dual to the Max Flow problem.

s-t Min Cut Problem
Input: A network (G,u, s, t).
Find: A set S ⊆ V with s ∈ S, t /∈ S (i.e. an s-t cut) minimizing u(δ+(S)) =
∑

(i,j)∈E:i∈S,j /∈S u(i, j).

In our example application, the minimum s-t cut would look as follows (the bold edges are in
the cut δ+(S).

s

a

b

c

d

t

7

3

6

2

3

4 3
3

7

5S

An s-t cut of value 2 + 4 + 3 = 9.

Recall that u(δ+(S)) =
∑

(i,j)∈E:i∈S,j /∈S u(i, j) denotes the capacity of the edges leaving S. Let
us now show a kind of “weak duality theorem” for MinCut/MaxFlow:

Lemma 22. Let (G,u, s, t) be a network with an s-t flow f and an s-t cut S ⊆ V . Then value(f) ≤
u(δ+(S)).

Proof. The claim itself is not surprising: if the flow goes from s to t, then at some point it has to
“leave” S. Mathematically, we argue as follows:

value(f)
def. of flow

=
∑

e∈δ+(s)

f(e)−
∑

e∈δ−(s)

f(e) =
∑

v∈S

( ∑

e∈δ+(v)

f(e)−
∑

e∈δ−(v)

f(e)

︸ ︷︷ ︸

=0 if v 6=s

)

(∗)
=

∑

e∈δ+(S)

f(e)
︸︷︷︸

≤u(e)

−
∑

e∈δ−(S)

f(e)
︸︷︷︸

≥0

≤ u(δ+(S))

In (∗), we drop edges e that run inside S from the sums. The reason is that they appear twice in
the summation: once with a “+” and once with a “−”, so their contribution is 0 anyway.

Actually, the last proof gives us an insight for free by simply inspecting when the inequality
would be an equality:

Corollary 23. In the last proof we have value(f) = u(δ+(S)) if and only if both conditions are
satisfied:
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• All outgoing edges from S are saturated: f(e) = u(e) ∀e ∈ δ+(S)
• All incoming edges into S have 0 flow: f(e) = 0 ∀e ∈ δ−(S).

Now we can show that if the Ford-Fulkerson stops, then it has found an optimum flow.

Theorem 24. An (s, t)-flow f is optimal if and only if there does not exist an f -augmenting path
in Gf .

Proof. (⇒): This is clear, because we already discussed that if there exists an f -augmenting path
in Gf , then f is not maximal (simply because the augmented flow will have a higher value).
(⇐): Now suppose that we have an s-t flow f and there is no augmenting path in Gf anymore. We
need to argue that this flow is optimal. The proof is surprisingly simple: Choose

S := {v ∈ V | ∃s-v path in Gf}

Note that s ∈ S and t /∈ S, hence S is an s-t cut. We claim that value(f) = u(δ+(S)), which by
Lemma 22 shows that the flow is optimal. We verify the conditions from Cor. 23:

• An outgoing edge e = (i, j) ∈ δ+(S) has f(e) = u(e). That is true because if f(i, j) < u(i, j),
then (i, j) is an edge in the residual network Gf and j would be reachable from s via i. That’s
a contradiction.

• An incoming edge e = (j, i) ∈ δ−(S) has f(e) = 0. Similarly, if f(j, i) > 0, then the edge (i, j)
exists in the residual network Gf and again j would be reachable via i.

Combining Lemma 22, Cor. 23 and Theorem 24 we conclude the max flow min cut theorem:

Theorem 25 (MaxFlow = MinCut (Ford-Fulkerson 1956)). The max value of an s-t flow in the
network (G,u, s, t) equals the min capacity of a s-t cut in the network.

s

a

b

c

d

t

6/7

3/3

1/6

2/2

3/3

4/4 0/3
0/3

6/7

0/5

maximum flow; edges labelled with f(e)/u(e)

S

s

a

b

c

d

t

1
6

3

5 1

2

3

4 3
3

1

6

5

residual graph Gf with cap uf

Remark 1. Note that the Ford-Fulkerson algorithm not only finds a max flow but also the min cut
in the network.

Lemma 26. For the network (G,u, s, t), let U := max{u(e) | e ∈ E} be the maximum capacity.
Then the Ford-Fulkerson algorithm runs in time O(n ·m · U).
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Proof. Since s has at most n edges of capacity at most U outgoing, any flow has value(f) ≤ n · U .
In each iteration of the algorithm, the value of the flow increases by at least 1. Hence, the algorithm
needs at most n ·U iterations. Each iteration (i.e. constructing Ef and finding an augmenting path)
can be done in time O(m).

Note that the quantity U is exponential in the bit encoding length of the input, hence O(n·m·U)
is not in polynomial running time. Moreover, we cannot improve the analysis by much. Consider
the following example where we always augment along the bold paths P = s → a → b → t or
P = s → b → a → t.

s

a

b

t

M

M

1

M

M

G with cap u

s

a

b

t

M − 1

1

M

1

M

M − 1

1

Gf1 with cap uf1
value(f1) = 1

s

a

b

t

M − 1

1

M − 1

1
1

M − 1

1

M − 1

1

Gf2 with cap uf2
value(f2) = 2

We see that in each iteration, we indeed gain only one flow unit. Thus it takes 2M iterations to find
the optimum. It seems that the problem was that Ford Fulkerson chooses an arbitrary augmenting
path instead of making a smarter choice, a choice the Edmonds-Karp Algoirthm makes.

4.3 The Edmonds-Karp Algorithm

So, we want to modify the Ford-Fulkerson algorithm by selecting an augmenting path in a more
clever way — it turns out that it suffices to always pick the shortest path in the residual graph Gf !

Edmonds-Karp algorithm for Max Flows

Input: A network (G,u, s, t).
Output: A max s-t flow in the network.

(1) Set f(e) = 0 for all e ∈ E.

(2) WHILE ∃ s-t path in Gf DO

(3) Find a shortest f -augmenting path P .

(4) γ := min{uf (e) | e ∈ P} (e attaining minimum is “bottleneck edge”)

(5) Augment f along P by γ

Theorem 27. The Edmonds-Karp Algorithm requires at most 2m · n iterations and has running
time O(m2n).

Proof. Each iteration can be done in time O(m) using breadth first search. For bounding the
number of iterations it suffices to show that each edge e appears at most n times as bottleneck
edge1. Let f0, f1, . . . , fT be the sequence of flows with 0 = value(f0) < value(f1) < . . . < value(fT )

1To be precise, if m = |E| is the number of edges in the original graph G = (V, E), then there are 2m edges that
may appear in the residual graphs of G. Each such edge may appear at most n times.
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that the algorithm produces. Let di(s, v) be the length of a shortest s-v path in the residual graph
Gfi w.r.t. the number of edges. Note that the flow f changes from iteration to iteration and with
it possibly di(s, v). We make the important observation that the distances from s never decrease:
Claim: For all v ∈ V , d0(s, v) ≤ d1(s, v) ≤ . . . ≤ dT (s, v).
Proof. Consider a fixed node v∗ and some iteration i. We want to argue that di(s, v

∗) ≤ di+1(s, v
∗).

We partition the nodes into blocks Vj := {w | di(s,w) = j} of nodes that have distance j to the
source. Note that the augmenting path P that is used in iteration i will have exactly one node
in each block Vj and it will only use edges that go from Vj to Vj+1 (since P is the shortest path
possible).

s

u

w v∗

t

P

V1 V2 Vj∗

graph Gfi with augm. path P

s

u

w v∗

t

Q

V1 V2 Vj∗

graph Gfi+1
with s-v path Q

Suppose that v∗ ∈ Vj∗. The only edges that are in Efi+1
\Efi are edges on P reversed, hence the

only new edges in Efi+1
\Efi run from Vj+1 to Vj for some j. Hence an s-v∗ path Q in Gfi+1

can
never “skip” one of the blocks Vj , hence di+1(s, v

∗) ≥ j∗. That shows the claim.

Claim: Suppose that (u,w) was the bottleneck in two iterations i and i′ > i. Then di′(s, u) >
di(s, u).
Proof: Consider the situation after iteration i: the edge (u,w) has been the bottleneck and now it
exists only as (w, u) edge in the residual graph. The edge (u,w) can only reappear in the residual
graph if at some point (w, u) lies on the shortest path. In particular, it must be the case that
di′′(s,w) = di′′(s, u)−1 for some iteration i < i′′ < i′. But since di(s,w) = di(s, u)+1 and distances
never decrease, we must have di′(s, u) ≥ di′′(s, u) = di′′(s,w) + 1 ≥ di(s,w) + 1 ≥ di(s, u) + 2.

Since di(s, u) ∈ {1, . . . , n − 1,∞} for all u ∈ V \ {s}, the last claim implies that each edge can
be bottleneck edge at most n times.

There are many more Max Flow algorithms. The so-called Push-Relabel algorithm needs
running time O(n3). Orlin’s algorithm from 2012 solves MaxFlow even in time O(n · m) (where
again n = |V | and m = |E|).

4.3.1 Some Remarks

We want to conclude this algorithmic section with two facts that we already proved implicitly:

Corollary 28. In a network (G,u, s, t) one can find an optimum s-t MinCut in time O(m2n).

Proof. Run the Edmonds-Karp algorithm to compute a maximum flow f . As in the MaxCut=MinCut
Theorem, we know that the set S of nodes that are reachable from s in the residual graph Gf will
be a MinCut!

Corollary 29. In a network (G,u, s, t) with integral capacities (i.e. u(e) ∈ Z≥0 ∀e ∈ E) there is
always a maximum flow f that is integral.
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Proof. If the capacities u(e) are integral, then the increment γ that is used in either Ford-Fulkerson
or in Edmonds-Karp is integral as well. Then also the resulting flow is integral.

4.4 Application to bipartite matching

Recall that matching M ⊆ E in an undirected graph G = (V,E) is a set of edges so that each
node is incident to at most one those edges. A maximum matching is a matching that maximizes
the number |M | of edges. Here we want to show that Max Flow algorithms can also be used to
compute maximum matchings.

Let G = (V1 ∪ V2, E) be a bipartite graph, like the one below.

V1 V2

Now, make all the edges directed from V1 to V2 and add new nodes s, t. We set capacities u as

u(i, j) =

{

1 i = s or j = t

∞ (i, j) ∈ V1 × V2

V1 V2

s t

1

1

1

∞
∞

∞
∞

∞

1

1

1

We claim the following

Lemma 30. Let G = (V1 ∪ V2, E) be a bipartite graph and (G′, u, s, t) be the network constructed
as above. Then

max{|M | : M ⊆ E matching } = max{value(f) | f is s-t flow in G′}

Proof. Suppose that M is a matching. Then for any edge (u, v) ∈ M we can put 1 unit of flow
on the path s → u → v → t. Hence there is also a flow of value |M |. Now suppose that the
maximum flow value is k. The Ford-Fulkerson algorithm shows that there is always an integral
flow f achieving this value, i.e. f(e) ∈ Z. In our example, we would have a bijection between the
bold matching and the depicted flow (edges labelled with f(e)/u(e)):
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V1 V2

s t

1/1

1/1

0/1

0/∞
1/∞

0/∞

1/∞

0/∞

0/1

1/1

1/1

Then
M = {(u, v) ∈ E | f(u, v) = 1}

is a matching of value k as well.

Actually we can argue the following:

Lemma 31. Maximum matching in bipartite graphs can be solved in time O(n · m) (|V | = n,
|E| = m).

Proof. Remember that in a network with integral capacities and maximum flow value of k, the
Ford-Fulkerson algorithm has a running time of at most O(m · k). In this case, we have k ≤ n and
the claim follows.

4.4.1 Kőnig’s Theorem

The Maximum Flows technique not only provides us with a more efficient algorithm for maximum
matching in bipartite graphs — it also gives us a proof of a very nice structural result. Recall that
a vertex cover in an undirected graph, is a set of nodes U ⊆ V so that |{u, v} ∩ U | ≥ 1 for each
edge {u, v} ∈ E.

Theorem 32 (Kőnig 1931). For a bipartite graph G = (V = V1 ∪ V2, E) one has

max{|M | : M ⊆ E is matching} = min{|U | : U ⊆ V1 ∪ V2 is vertex cover}

Proof. We will see in the homework, that in every graph (not just in bipartite ones), one has
|M | ≤ |U | for each matching M and each vertex cover U . Now suppose that the size of the
maximum matching is k. We need to argue that there is a vertex cover U with |U | = k nodes. Since
the maximum matching in G has size k, also the maximum flow in the network G′ = (V ∪{s, t}, E′)
as constructed above has value k. By the MaxFlow=MinCut Theorem, we know that this
implies that there is an s-t cut S ⊆ V (i.e. s ∈ S, t /∈ S) of cost k. It remains to show:
Claim: U := (V1\S) ∪ (V2 ∩ S) is a vertex cover for G of size k.
Proof. Observe that the nodes in the vertex cover can be written as

V1\S = {u ∈ V1 : (s, u) ∈ δ+(S)} and V2 ∩ S = {v ∈ V2 | (v, t) ∈ δ+(S)}

Since exactly k edges of the form (s, u) or (v, t) are cut, we have |U | = k. It remains to show that
U is a vertex cover. Consider any edge (u, v) ∈ E. If (u, v) is not covered by U , then this means
that u ∈ S and v /∈ S. But then (u, v) ∈ δ+(S) which is impossible because it means that the cut
cuts an edge of infinite capacity.
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In our little example, we draw a maximum flow (of value 2) together with the mincut S (also of
value 2): the two filled nodes in the vertex cover.

V1 V2

S s t

1

1

1

∞
∞

∞
∞

∞

1

1

1

For a general graph G, let M be the largest matching and U be the smallest vertex cover. Then it
is possible that |M | < |U |. On the other hand, one can show that |M | ≤ |U | ≤ 2|M |, which means
both quantities are within a factor of 2 of each other. Interestingly, finding the maximum matching
in a general graph is solvable in polynomial time (with a non-trivial algorithm), while vertex cover
in general graphs is NP-hard and hence there won’t be a polynomial time algorithm.

4.4.2 Hall’s Theorem

Using our theory of MaxFlows and the developed Kőnig’s Theorem we get anothher beautiful
theorem in graph theory almost for free. For a bipartite graph G = (V1 ∪ V2, E) and nodes U ⊆ V1,
let N(U) = {v ∈ V2 | ∃(u, v) ∈ E} be the neighborhood of U .

V1 V2

U N(U)

Theorem 33 (Hall’s Theorem). A bipartite graph G = (V1 ∪ V2, E) with |V1| = |V2| = n has a
perfect matching if and only if |N(U)| ≥ |U | for all U ⊆ V1.

Proof. If there is a set U ⊆ V1 with |N(U)| < |U |, then obviously there cannot be a perfect matching,
simply because the nodes in U cannot all be matched. For the other direction, assume that the
maximum size matching has size at most n− 1. Then by Kőnig’s Theorem, there is a vertex cover
S ⊆ V1 ∪ V2 of size |S| ≤ n− 1. We make the choice of U := V1\S.

V1 V2

U

V1 ∩ S

V2 ∩ S ⊇ N(U)
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In particular, S being a vertex cover means that U is only incident to nodes in V2 ∩ S, thus
N(U) ⊆ V2 ∩ S. But since |V1 ∩ S| + |U | = n and |V1 ∩ S| + |V2 ∩ S| ≤ n − 1, we must have
|N(U)| ≤ |V2 ∩ S| < |U |.
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Chapter 5

Linear Programming

One of the main tools in combinatorial optimization is linear programming. We want to quickly
review the key concepts and results. Since most statements and proofs are known from course 407,
from time to time we will be satisfied with informal proof sketches.

Recall that a vector c ∈ R
n can be used to define a linear function f : Rn → R by setting

f(x) := cTx = c1x1 + . . . + cnxn. In this text, we always consider a vector c ∈ R
n as a column

vector and so cT is a row vector.

A polyhedron P ⊆ R
n is the set of all points x ∈ R

n that satisfy a finite set of linear inequalities.
Mathematically,

P = {x ∈ R
n : Ax ≤ b}

for some matrix A ∈ R
m×n and a vector b ∈ R

m. A polyhedron can be presented in many different
ways such as P = {x ∈ R

n : Ax = b, x ≥ 0} or P = {x ∈ R
n : Ax ≥ b}. Both formulations are

equivalent. A polyhedron is called a polytope if it is bounded, i.e., can be enclosed in a ball of
finite radius.

P

(0, 0)

(0, 2)

(3, 0)

x1 ≥ 0

x2 ≥ 0

2x1 + 3x2 ≤ 6

polytope/polyhedron

vertex
P

polyhedron

P

polyhedron

Definition 34. A set Q ⊆ R
n is convex if for any two points x and y in Q, the line segment joining

them is also in Q. Mathematically, for every pair of points x, y ∈ Q, the convex combination
λx+ (1− λ)y ∈ Q for every λ such that 0 ≤ λ ≤ 1.

Q
x y

convex

Q

x y

not convex

Obviously, polyhedra are convex.
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Definition 35. A convex combination of a finite set of points v1, . . . , vt in R
n, is any vector of

the form
∑t

i=1 λivi such that 0 ≤ λi ≤ 1 for all i = 1, . . . , t and
∑t

i=1 λi = 1. The set of all convex
combinations of v1, . . . , vt is called the convex hull of v1, . . . , vt. We denote it by

conv{v1, . . . , vt} =
{ t∑

i=1

λivi | λ1 + . . .+ λt = 1;λi ≥ 0 ∀i = 1, . . . , t
}

v1

v2

v3

v4

v5

conv{v1, . . . , v5}

Theorem 36. Every polytope P is the convex hull of a finite number of points (and vice versa).

For a convex set P ⊆ R
n (such as polytopes or polyhedra) we call a point x ∈ P an extreme

point / vertex of P if there is no vector y ∈ R
n\{0} with both x+ y ∈ P and x− y ∈ P .

P x

x is extreme point

P

x
x− y

x+ y

x is NOT extreme point

A linear program is the problem of maximizing or minimizing a linear function of the form
∑n

i=1 cixi over all x = (x1, . . . , xn) in a polyhedron P . Mathematically, it is the problem

max
{ n∑

i=1

cixi | Ax ≤ b
}

for some matrix A and vector b (alternatively min instead of max). It turns out that extreme points
are quite useful in linear optimization.

Lemma 37. Suppose P = {x ∈ R
n | Ax ≤ b} is bounded with A ∈ R

m×n, b ∈ R
m and let c ∈ R

n.
Then LP max{cTx | x ∈ P} is maximized at an extreme point x∗ and moreover, x∗ is the unique
solution to the system of linear equations AT

i x = bi ∀i ∈ I where I ⊆ [m] with |I| = n.

P
x∗I

c

set of opt. sol.

Proof. Note that the optimum solution might not be unique; the claim is just that there is an
optimum point that is an extreme point where n linearly independent constraints are tight. Let
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x∗ be an optimum solution that maximizes the number of indices i ∈ [m] with AT
i x

∗ = bi. Let
J := {i ∈ [m] | AT

i x
∗ = bi} be the set of those indices. Let AJ be the submatrix of A consisting of

rows indexed by i ∈ J .

Claim. One has rank(AJ) = n.

Proof of claim. If not, then rank(AJ) < n and there is a direction y ∈ ker(AJ) \{0} (meaning
AJy = 0). Define

δ+ := max{δ | AT
i (x

∗ + δy) ≤ bi ∀i ∈ [m]} and δ− := min{δ | AT
i (x

∗ + δy) ≤ bi ∀i ∈ [m]}

Then δ− < 0 < δ+ as AT
i y = 0 for i ∈ J . That means x∗ + δy ∈ P for all δ− ≤ δ ≤ δ+. By

optimality of x∗ one has y ⊥ c. Moreover, x∗ + δ+y has at least one more tight constraint. That is
a contradiction.

P

x∗

x∗ + δ+y

x∗ + δ−y

y

J

Next we argue that x∗ is an extreme point. If not, then by definition x∗+ y ∈ P and x∗− y ∈ P
for some y 6= 0. Then y ⊥ Ai for i ∈ J and so y ∈ ker(AJ ) which implies that rank(AJ ) < n. That
is a contradiction to the claim proven above. Hence x∗ is an extreme point. Finally we select a
maximal linear independent set of rows from {Ai}i∈J and let I ⊆ J be the indices of those rows.
Then |I| = rank(AJ ) = n.

In fact with slightly more care one can prove this lemma for any (potentially unbounded) poly-
hedron P = {x ∈ R

n | Ax ≤ b} as long as rank(A) = n. Note that while linear programs are
continuous optimization problems, the previous Lemma 37 tells us that optimum solutions are
always taken from a finite set of extreme points.

5.1 Separation, Duality and Farkas’ Lemma

The key concept in linear optimization is duality. We want to motivate this with an example.
Consider the linear program

max{x1 + x2 | x1 + 2x2 ≤ 6, x1 ≤ 2, x1 − x2 ≤ 1}

(which is of the form max{cTx | Ax ≤ b}). First, let us make the following observation: if we add
up non-negative multiples of feasible inequalities, then we again obtain an inequality that is valid
for each solution x of the LP. For example we can add up the inequalities in the following way:

49



x1 + 2x2 ≤ 6

x1 − x2 ≤ 1
x1 ≤ 2

x∗

c
x1 + x2 ≤ 13

3

P

2
3 · ( x1 +2x2 ≤ 6)
0 · ( x1 ≤ 2)
1
3 · ( x1 −x2 ≤ 1)

x1 +x2 ≤ 13
3 ≈ 4.33

Accidentially, the feasible inequality x1 + x2 ≤ 13
3 that we obtain has the objective function as

normal vector. Hence for each (x1, x2) ∈ P we must have cTx ≤ 13
3 , which provides an upper

bound on the value of the LP. Inspecting the picture, we quickly see that optimum solution is
x∗ = (2, 2) with objective function cTx∗ = 4. Now, let’s generalize our observations. Consider the
following pair of linear programs

primal (P ) : max{cTx | Ax ≤ b}
dual (D) : min{bT y | yTA = cT , y ≥ 0}

The dual LP is searching for inequalities (yTA)x ≤ yT b that are feasible for any primal solution x;
moreover it is looking for a feasible inequality so that the normal vector yTA = cT is the objective
function, so that yT b is an upper bound on the primal LP. In other words: the dual LP is searching
for the best upper bound for the primal LP.

Theorem 38 (Weak duality Theorem). One has (P ) ≤ (D). More precisely if we have (x, y) with
Ax ≤ b, yTA = cT and y ≥ 0, then cTx ≤ bT y.

Proof. One has
cT
︸︷︷︸

=yTA

x = yT
︸︷︷︸

≥0

Ax
︸︷︷︸

≤b

≤ yT b.

In the remainder of this subsection we will show that always (P ) = (D), that means we can
always combine a feasible inequality that gives a tight upper bound. But first, some tools:

Theorem 39 (Hyperplane separation Theorem). Let P,Q ⊆ R
n be convex, closed and disjoint sets

with at least one of them bounded. Then there exists a hyperplane cTx = β with

cTx < β < cT y ∀x ∈ P ∀y ∈ Q

Proof. Let (x∗, y∗) ∈ P × Q be the pair minimizing the distance ‖x∗ − y∗‖2 (this must exist for
the following reason: suppose that P is bounded; then P is compact. Then the distance function
d(x) := min{‖y − x‖2 | y ∈ Q} is well-defined and continuous, hence a minimum is attained on P ).
Then the hyperplane through 1

2(x
∗ + y∗) with normal vector c = y∗ − x∗ separates P and Q.

x∗
y∗

cTx = β

P

Q
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To see this, suppose for the sake of contradiction that Q contains a point y with cT y < cT y∗.
Consider the interpolated point y(λ) := (1− λ)y∗ + λy = x∗ + c+ λ(y − y∗). By convexity of Q we
know that y(λ) ∈ Q for all 0 ≤ λ ≤ 1. We claim that for some small enough λ > 0, the point y(λ)
is closer to x∗ than y∗ which would give a contradiction. And indeed

‖y(λ)− x∗‖22 = ‖c+ λ(y − y∗)‖22 = ‖c‖22 + 2λ cT (y − y∗)
︸ ︷︷ ︸

<0

+λ2‖y − y∗‖22
!
< ‖c‖22 = ‖y∗ − x∗‖22

if we pick λ > 0 small enough since the coefficient in front of the linear λ term is negative. That is
a contradiction.

P

Q

x∗
y∗

y

c

y(λ)

This theorem is the finite dimensional version of the Hahn-Banach separation theorem from
functional analysis.

The separation theorem quickly provides us the very useful Farkas’ Lemma which is like a
duality theorem without objective function. The lemma tells us that out of two particular linear
systems, precisely one is going to be feasible.

Lemma 40 (Farkas Lemma). One has1
(
∃x ≥ 0 : Ax = b

)
∨̇

(
∃y : yTA ≥ 0 and yT b < 0

)
.

Proof. First let us check that it is impossible that such x, y exist at the same time since

0 ≤ yTA
︸︷︷︸

≥0

x
︸︷︷︸

≥0

= yT b
︸︷︷︸

=Ax

< 0

For the other direction, assume that there is no x ≥ 0 with Ax = b. We need to show that there
is a proper y. Consider the cone K := {Ax | x ≥ 0} = {∑n

i=1 aixi | x1, . . . , xn ≥ 0} of valid right
hand sides, where a1, . . . , an are the columns of A. By assumption we know that b /∈ K.

K

0

a1

a2 a3

y

b

1The symbol ∨̇ denotes the exclusive or and it means that exactly one of the two statements (∃x ≥ 0 : Ax = b)
and (∃y : yTA ≥ 0 and yT b < 0) is true.
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But K is a closed convex set, hence there is a hyperplane yT c = γ that separates K and {b}, i.e.

∀a ∈ K : yTa > γ > yT b

As 0 ∈ K we must have γ < 0. Moreover all non-negative multiples of columns are in K, that
means aixi ∈ K for all xi ≥ 0, thus yT (xi)ai > γ for each i ∈ [n], which implies that even yTai ≥ 0
for each i. This can be be written more compactly as yTA ≥ 0.

Theorem 41. One has (P ) = (D). More precisely, one has

max{cTx : Ax ≤ b} = min{bT y : yTA = cT , y ≥ 0}

given that both systems have a solution.

Proof sketch. Suppose that (P ) is feasible. Let x∗ be an optimum solution2. Let a1, . . . , am be rows
of A and let I := {i | aTi x∗ = bi} be the tight inequalities.

x∗

ai1

ai2

C

cλ

aTi1x ≤ bi1

aTi2x ≤ bi2

b

b

(P )

Suppose for the sake of contradiction that c /∈ {∑i∈I aiyi | yi ≥ 0 ∀i ∈ I} =: C. Then there is a
direction λ ∈ R

n with cTλ > 0, aTi λ ≤ 0 ∀i ∈ I. Walking in direction λ improves the objective
function while we do not walk into the direction of constraints that are already tight. In other
words, there is a small enough ε > 0 so that x∗ + ελ is feasible for (P ) and has a better objective
function value — but x∗ was optimal. That is a contradiction!

Hence we know that indeed c ∈ C, hence there is a y ≥ 0 with yTA = cT and yi = 0 ∀i /∈ I
(that means we only use tight inequalities in y).

x∗

ai1

ai2

Cc

aTi1x ≤ bi1

aTi2x ≤ bi2

b

b

(P )

2That’s why this is only a proof sketch. For a polytope it is easy to argue that P is compact and hence there
must be an optimum solution. If P is unbounded, but the objective function value is bounded, then one needs more
technical arguments that we skip here.
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Now we can calculate, that the duality gap is 0:

yT b− cTx∗ = yT b− yTA
︸︷︷︸

=cT

x∗ = yT (b−Ax∗) =
m∑

i=1

yi
︸︷︷︸

=0 if i/∈I

· (bi − aTi x
∗)

︸ ︷︷ ︸

=0 if i∈I

= 0

Note that moreover, if (P ) is unbounded, then (D) is infeasible. If (D) is unbounded then (P )
is infeasible. On the other hand, it is possible that (P ) and (D) are both infeasible.

Theorem 42 (Complementary slackness). Let (x∗, y∗) be feasible solutions for

(P ) : max{cTx | Ax ≤ b} and (D) : min{bT y | yTA = cT ; y ≥ 0}

Then (x∗, y∗) are both optimal if and only if

(AT
i x

∗ = bi ∨ y∗i = 0) ∀i

Proof. We already proved this in the last line of the duality theorem!

5.2 Algorithms for Linear Programming

In this section, we want to briefly discuss the different methods that are known to solve linear
programs.

5.2.1 The Simplex Method

The oldest and most popular one is the simplex method. Suppose the linear program is of the
form

max{cTx | Ax ≤ b}.

We may assume that the underlying polyhedron P = {x ∈ R
n | Ax ≤ b} has vertices3. For a set

of row indices I ⊆ [m], let AI be the submatrix of A that contains all the rows with index in I. A
compact way of stating the simplex algorithm is as follows:

3This is equivalent to saying that the ker(A) = {0}. A simple way to obtain this property is to substitute a
variable xi ∈ R by xi = x+

i − x−
i and then add the constraints x+

i , x
−
i ≥ 0 to the constraint system. Now the kernel

of the constraint matrix is empty.
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Simplex Algorithm

Input: A ∈ R
m×n, b ∈ R

m, c ∈ R
n and a starting

basis I ∈
([m]

n

)

Output: opt. solution x attaining max{cTx | Ax ≤ b}

(1) x = A−1
I bI

(2) IF yTI := cTA−1
I ≥ 0 THEN RETURN x is optimal

(3) select j ∈ I and j′ /∈ I so that for I ′ := I\{j}∪{j′}
the following 3 conditions are satisfied

(i) rank(AI′) = n

(ii) the point x′ = A−1
I′ bI′ lies in P

(iii) cTx′ ≥ cTx

(4) UPDATE I := I ′ and GOTO (1)

P

x = A−1
I bI

x′ = A−1
I′ bI′

j

j′

c

one simplex step

I

I ′

The maintained set I of indices is usually called a basis and the maintained solution x is
always a vertex of P . In other words, the simplex method moves from one vertex to the next one
so that the objective function always improves (or at least does not get worse). If the condition
yTI := cTA−1

I ≥ 0 in step (3) is satisfied, then we have a dual solution y ≥ 0 with cT = yTA that
uses only constraints that are tight for x; from our section on duality we know that then x must be
an optimal solution.

One might object that the algorithm needs a basis I so that x = A−1
I bI is a feasible solution.

But one can also find a feasible solution using a linear program. For example, the linear program
min{λ | Ax ≤ b+λ1} has a feasible solution (0, λ) for λ large enough and an optimum solution will
be feasible for Ax ≤ b (given that there is any feasible solution).

Typically the simplex method is stated in a tableau form from which can easily determine
for which choice of j one can pick a j′ so that the conditions (i),(ii),(iii) are satisfied. Also, the
tableau form allows the inverted matrix A−1

I′ to be computed with only O(n2) operations since
A−1

I is already known (in comparison, computing A−1
I′ from scratch takes O(n3) if using Gauss

elimination and O(n2.373) if more advanced techniques are used).

Unfortunately the simplex algorithm is still not a polynomial time algorithm because the number
of iterations may be exponentially large for some instances.
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Advanced Remark:

The first known pathological instance for the simplex method was found by Klee and Minty
in 1973. (As a side remark, Victor Klee was on the UW faculty for many years). If one
solves the linear program

max
{ n∑

j=1

10n−jxj |
(

2

i−1∑

j=1

10i−jxj

)

+ xi ≤ 100i−1 ∀i ∈ [n]; xj ≥ 0 ∀j ∈ [n]
}

with the largest coefficient rule starting at x = (0, . . . , 0), then the simplex will take
2n − 1 iterations. The underlying polytope P of this LP is a skewed hypercube with
2n vertices and the simplex algorithm would go through all of them. We will not give
the proof here, but want to give a visualization for n = 3. In that case, the LP and the
polytope looks as follows:

max 100x1 + 10x2 + x3

x1 ≤ 1

20x1 + x2 ≤ 100

200x1 + 20x2 + x3 ≤ 10000

x1, x2, x3 ≥ 0

x1

x2

x3

b

b

b

b

b

b

b

b

objective fct

(0, 0, 0) (1, 0, 0)

(0, 0, 10000)

The bold arrows denote the path that is taken by the simplex algorithm if the largest
coefficient pivoting rule is used. Note that the axes are skewed.

Despite the above result, the simplex method works extremely well in practice. Thus the measure
of complexity we are studying has its limitations and may not give a good feel for how an algorithm
behaves on the average (on most problems). It is a worst case model that computes the complexity
of an algorithm by considering its performance on all instances of a fixed size. A few pathological
examples can skew the running time function considerably. Yet, we still get a pretty good indication
of the efficiency of an algorithm using this idea.

It is a major open question in discrete optimization whether there is some pivot rule for which
the simplex method runs in time polynomial in the input size.

5.2.2 Interior Point Methods and the Ellipsoid Method

On the other hand, linear programs can be solved in polynomial time using algorithms such as
interior point methods and the ellipsoid method. Both these algorithms were discovered around
1980 and use non-linear mathematics. They are quite complicated to explain compared to the
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simplex method. We can compare their characterisics as follows4

practical worst case works for
performance running time

Simplex very fast exponential LPs

Interior Point fast O(n3.5L) arithmetic operations LPs+SDPs

Ellipsoid method slow O(n6L) arithmetic operations any convex set

Here L is the number of bits necessary to represent the input. For example we can write the
number 5 as bit sequence 101 (since 1 · 22 + 0 · 21 + 1 · 20 = 6). Note that in general it takes
1 + ⌈log2(|a|) + 1⌉ ≈ log2 |a| bits to encode an integer number a (we use the extra 1 to encode the
sign of a and ⌈log2(|a|) + 1⌉ to encode |a|).

Both algorithms, the Interior point method and the Ellipsoid method need more time if the
numbers in the input are larger, which is a contrast to the other algorithms that we encountered
so far. It is a major open problem whether there is an algorithm for solving linear problems, say of
the form max{cTx | Ax ≤ b}, so that that the running time is polynomial in the number of rows
and columns of A.

5.2.3 Solving Linear Programs Via Gradient Descent

We want to present at least one algorithm in more detail for which we can prove something. Suppose
that we try to find a feasible point in a non-empty polytope of the form P = {x ∈ R

n | Ax ≤ b} ⊆
[0, 1]n with A ∈ R

m×n and b ∈ R
m. Unfortunately, our algorithm cannot guarantee to find a

feasible point, but it will quickly find an almost feasible point in the slightly enlarged polytope
Pε := {x ∈ R

n | AT
i x ≤ bi + ε · ‖Ai‖2 ∀i = 1, . . . ,m}. The basic idea is to define a convex function

that guides us towards feasible points and then use a gradient descent approach to optimize that
convex function. A naive choice would be Φ(x) = max{AT

i x − bi | i = 1, . . . ,m}, meaning that
Φ(x) is the maximum violation that x has with any of the constraints. Then Φ is a piece-wise linear
convex function and x ∈ P ⇔ Φ(x) ≤ 0. The problem is that the function is not smooth, so gradient
descent does not necessarily make any improvement.

[0, 1]n

P

x̄

Aix ≤ bi + ε

Aix ≤ bi

Hence, we will use a “softer” version of the max-function. Let us rescale the rows of A so that
‖Ai‖2 = 1. Let λ > 0 be a parameter that we will determine later and define the potential function

Φ(x) :=
m∑

i=1

exp(λ · (AT
i x− bi))

︸ ︷︷ ︸

=:wi(x)

4To be precise, the running times are for LPs with O(n) constraints. In particular the running time for the Interior
Point Method listed here is outdated. More recent work has brought the running time down to essentially the time
that it takes to solve a system of linear equations.
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where wi(x) > 0 will be the weight of the ith constraint. Intuitively, the weight will be growing
exponentially in the violation. Now the function Φ has a smoothly changing derivative everywhere.
We can show that the minimizer of Φ is at least almost feasible for P .

Lemma 43. Let x ∈ R
n. Then the following holds:

a) If x ∈ P then Φ(x) ≤ m.

b) If λ ≥ ln(2m)
ε and Φ(x) ≤ 2m then x ∈ Pε.

Proof. If x ∈ P , then

Φ(x) =

m∑

i=1

exp(λ · (AT
i x− bi)

︸ ︷︷ ︸

≤0

)

︸ ︷︷ ︸

≤1

≤ m

and a) follows. Now suppose that x /∈ Pε. That means there is an index i∗ with AT
i∗x > bi∗ + ε.

Then Φ(x) ≥ exp(λ · (AT
i∗x− bi∗)) > exp(λ · ε) ≥ exp(ln(2m)) = 2m.

It remains to show how one can improve the value of Φ(x). By taking the derivative, we see
that the gradient of the function is

∇Φ(x) = λ

m∑

i=1

Ai · exp(λ · (AT
i x− bi)) = λ

m∑

i=1

wi(x) · Ai

For this purpose, recall the one dimensional derivative d
dx exp(αx) = α · exp(αx). We will use the

following gradient descent approach, where we determine the step size α > 0 later.

(1) Set x := 0

(2) WHILE x /∈ Pε DO

(3) Update x′ := x− α · ∇Φ(x).

First we will show that the potential function can decrease — if the length of the gradient is
sufficiently long:

Lemma 44 (One Gradient Dscent Step). One has Φ(x−α ·∇Φ(x)) ≤ Φ(x) · (1+λ2α2‖∇Φ(x)‖22)−
α · ‖∇Φ(x)‖22.

Proof. Let us abbreviate y := −α · ∇Φ(x). We can estimate that

Φ(x+ y) =

m∑

i=1

exp(λ(Ai(x+ y)− bi)) =

m∑

i=1

wi(x) · exp(λ · 〈Ai, y〉)

(∗)
≤

m∑

i=1

wi(x) ·
(

1 + λ · 〈Ai, y〉+ λ2 · 〈Ai, y〉2
︸ ︷︷ ︸

≤α2‖∇Φ(x)‖22

)

(∗∗)
≤ Φ(x) ·

(

1 + α2λ2‖∇Φ(x)‖22
)

+
〈

λ

m∑

i=1

wi(x)Ai

︸ ︷︷ ︸

=∇Φ(x)

, y
〉

= Φ(x) · (1 + α2λ2‖∇Φ(x)‖22)− α‖∇Φ(x)‖22
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In (∗) we use the inequality exp(z) ≤ 1 + z + z2 for all −1 ≤ z ≤ 1. In (∗∗) we use that
| 〈Ai, y〉 | ≤ ‖Ai‖2 · ‖y‖2 ≤ α‖∇Φ(x)‖2.

Lemma 45. Suppose that x /∈ Pε. Then ‖∇Φ(x)‖2 ≥ 1
2
√
n
· Φ(x).

Proof. The function Φ is convex. One property of convex functions is that the function lies above
the linear approximation, meaning that for every x, y ∈ R

n one has Φ(y) ≥ Φ(x) + 〈∇Φ(x), y − x〉.
Recall that Φ(x∗) ≤ m for x∗ ∈ P and Φ(x) ≥ 2m for x /∈ Pε. Then

1

2
Φ(x) ≤ |Φ(x)− Φ(x∗)|

convexity

≤ | 〈∇Φ(x), x− x∗〉 | ≤ ‖x− x∗‖2 · ‖∇Φ(x)‖2 ≤ √
n · ‖∇Φ(x)‖2.

Rearranging gives the claim.

Lemma 46. For α := 1
2λ2·Φ(x)

one has Φ(x′) ≤ Φ(x) · (1− 1
16nλ2 ).

Proof. We claim that x

Φ(x′) ≤ Φ(x)·(1+α2λ2‖∇Φ(x)‖22)−α‖∇Φ(x)‖22 = Φ(x)+
‖∇Φ(x)‖22
4λ2Φ(x)

−‖∇Φ(x)‖22
2λ2Φ(x)

≤ Φ(x)− Φ(x)

4λ2 · 4n.

Now we can finish the analysis:

Theorem 47. The gradient descent approach finds a vector x ∈ Pε after at most O( ln(m)3

ε3
n3/2).

Proof. At the beginning Φ(x) ≤ m · exp(λ√n) and the algorithm terminates are the latest when
Φ(x) < 1. Moreover in each iteration, the potential function drops by a factor of (1− 1

16λ2n
). This

means the algorithm takes at most O(λ2n · log(m · exp(λ√n)) many iterations which is of the form

O(λ2n · (ln(m) + λ
√
n). Inserting λ = Θ( ln(m)

ε ) we get O( ln(m)3

ε3
n3/2).

The analysis here is not optimized for running time. First of all, one could replace the system
Ax ≤ b by the n + 1 dimensional system {Ax ≤ x0b, x0 ≤ 1, x0 ≥ 1}. Then the starting point
x̃ = (x, x0) = 0 has a starting potential of only Φ(x) ≤ m + 2. Secondly, the lower bound on
‖∇Φ(x)‖2 in Lemma 45 is suboptimal and could be improved to Θ(λ) · Φ(x).

5.3 Connection to Discrete Optimization

Now that we have seen that there are very efficient algorithms for linear programming, we wonder
whether we could use those to solve our discrete optimization problems. We want to motivate that
approach using a case study with the Perfect Matching Problem:

Max Weight Perfect Matching
Input: Undirected graph G = (V,E), weights cij ≥ 0
Goal: A perfect matching M ⊆ E maximizing

∑

e∈M ce.

Recall that a perfect matching M ⊆ E is a set of edges that has degree exactly 1 for each node in
the graph. For example in the instance below we mark the only perfect matching in the graph:
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Obviously not all graphs have perfect matchings. We try a bit naively to set up a linear program that
is supposed to solve our matching problem. It appears to be natural be have a variable xe ∈ [0, 1]
that tells us whether or not the edge e should be contained in our matching. A perfect matching is
defined by requiring that the degree of a node is 1.

max
∑

e∈E
cexe

∑

e∈δ(v)
xe = 1 ∀v ∈ V

xe ≥ 0 ∀e ∈ E

Observe that for each matching M , the vector x ∈ R
E with

xe =

{

1 e ∈ M

0 e /∈ M

is a feasible LP solution. We want to try out our LP with a small example instance. Already finding
a perfect matching itself is not a trivial problem, hence let us consider the following instance with
ce = 0 for each edge:

We run an LP solver and it might return a solution like this one:

xe = 0.3 0.3

0.7

0.7

The graph indeed has perfect matchings, but the fractional numbers on the edges are not very
useful. Observe that the vector x = (0.3, 0.3, 0.7, 0.7) is not an extreme point of the underlying
polyhedron. This can be easily seen because we can write it as a convex combination of two feasible
LP solutions:

0.3 0.3

0.7

0.7

= 0.7· 0 0

1

1

+ 0.3· 1 1

0

0

But we know that the simplex algorithm always returns an extreme point. Similarly, the interior
point method and the ellipsoid method can each compute an optimum extreme point solution in
polynomial time (the polyhedron has extreme points). So, what happens if we always compute an
extreme point?

For example for the double triangle graph
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there is no perfect matching, yet the linear program has the extreme point solution

1/2

1/2

1/2

1/2

1/2

1/2

So, the whole approach does not look very promising for matching. But it turns out that for graphs
G = (V,E) that are bipartite, this approach does work. Recall that we call a graph G = (V,E)
bipartite, if the node set V can be partitioned into V = V1∪̇V2 so that all edges are running between
V1 and V2.

V1 V2

bipartite graph

We want to remark that bipartite graphs already cover a large fraction of applications for
matching.

Lemma 48. Let G = (V,E) be a bipartite graph and x be an optimum extreme point solution to
the matching LP. Then x is integral and M = {e ∈ E | xe = 1} is an optimum perfect matching.

Proof. Suppose for the sake of contradiction that x is an extreme point, but it is not completely
integral. This leads to a contradiction because there are two other feasible LP solutions y and z
with x = 1

2(y + z).

Let Ef = {e ∈ E | 0 < xe < 1} be the fractional edges and let Vf = {v ∈ V | |δ(v)∩Ef | > 0} be
the nodes that are incident to fractional edges. Observe that if a node v is incident to one fractional
edge {u, v}, then it must be incident to at least another fractional edge (since 1 − xuv ∈ ]0, 1[).
In other words, in the subgraph (Vf , Ef ), each node has degree at least 2. Each such graph must
contain at least one cycle C ⊆ Ef (simply start an arbitrary walk through Ef until you hit a node
that you have previously visited; this will close a cycle). Since the graph is bipartite, any cycle must
have even length. Denote the edges of the cycle with e1, . . . , e2k and let ε := min{xe | e ∈ C} > 0.
Now we define y ∈ R

E and z ∈ R
E by
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xe1

xe2

xe3

xe4

1

vector x

xe1 + ε

xe2 − ε

xe3 + ε

xe4 − ε

1

vector y

ze =







xei + ε e = ei and i odd

xei − ε e = ei and i even

xe if e /∈ C

xe1 − ε

xe2 + ε

xe3 − ε

xe4 + ε

1

vector z

ye =







xei − ε e = ei and i odd

xei + ε e = ei and i even

xe if e /∈ C

(the bold edges are in C). Then both y and z are feasible LP solutions since each node on the cycle
C is in one odd edge and one even edge, the

∑

e∈δ(v) ye =
∑

e∈δ(v) xe + ε− ε = 1 (same for z). Also

we have chosen ε > 0 small enough so that ye, ze ≥ 0. Moreover x = 1
2(y + z), hence x is not an

extreme point. The contradiction shows that x is indeed integral, that means xe ∈ {0, 1} for each
edge e ∈ E.

5.4 Integer Programs and Integer Hull

We want to better understand, what was going on with the linear program in the matching case
and what it means to have integral vertices. For the sake of a better visualization, we consider a
2-dimensional linear program

max 3x1 + 4x2

2x1 + 6x2 ≤ 21

6x1 − x2 ≤ 15.5

x1 + x2 ≥ 1

2
x1, x2 ≥ 0 0

1

2

3

0 1 2

x1

x2

P

c = (3, 4)x∗

with optimum x∗ = (3, 2.5) and objective function value cTx∗ = 3 · 3 + 2.5 · 4 = 19. The integer
program associated to the above linear program is

max 3x1 + 4x2

2x1 + 6x2 ≤ 21

6x1 − x2 ≤ 15.5

x1 + x2 ≥ 1

2
x1, x2 ≥ 0

x1, x2 ∈ Z

0

1

2

3

0 1 2

x1

x2

P

c = (3, 4)x∗∗

b b

b b b

b b b

b b
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and the optimum solution is x∗∗ = (1, 3) with objective function value cTx∗∗ = 15. In general,
for any polyhedron P ⊆ R

n, the linear program max{cTx | x ∈ P} is associated with the integer
program max{cTx | x ∈ P ∩ Z

n}. The LP is also called an LP relaxation of its integer program.
Obviously, the value of the linear program and the integer program can be very different. It is also
not difficult to construct an example where the linear program is feasible, while the integer program
is infeasible. Note that always

max{cTx | x ∈ P} ≥ max{cTx | x ∈ P ∩ Z
n}

(given that both systems have a finite value), simply because the left hand maximum is over a larger
set. Note also that the same integer program could have several different LP relaxations.

Definition 49. For a polyhedron P ⊆ R
n, we call

PI = conv(P ∩ Z
n)

the integer hull.

Phrased differently, the integer hull PI is the smallest polyhedron that contains all the integral
points in P . That means PI is the “perfect” relaxation for the integer program. The integer hull is
particularly useful since optimizing any function over it gives the same value as the integer program.

0

1

2

3

0 1 2

x1

x2

P

c = (3, 4)x∗∗

b b

b b b

b b b

b b

PI

P

Lemma 50. Let P ⊆ R
n be a polytope. Then the following conditions are equivalent

(a) P = PI

(b) For each c ∈ R
n, max{cTx | x ∈ P} = max{cTx | x ∈ P ∩ Z

n}

Proof. For (a) ⇒ (b), just observe that a linear function over conv(P ∩ Z
n) is maximized at one

of the “spanning” points, i.e. for x ∈ P ∩ Z
n. For the 2nd direction we show that ¬(a) ⇒ ¬(b).

In words, we assume that P 6= PI . Let x ∈ P\PI . Recall that PI is a convex set, hence there is
a hyperplane separating x from PI and that hyperplane has cTx > cT y ∀y ∈ PI which gives the
claim.

b

b b

bb
PI

c

x

P
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The claim is actually true for unbounded polyhedra.
What we ideally would like to solve are integer programs. The reason is that those are powerful

enough to model every discrete optimization problem that we will encounter in this lecture. For
example, the max weight perfect matching problem can be stated as

max
{∑

e∈E
cexe |

∑

e∈δ(v)
xe = 1 ∀v ∈ V ; xe ≥ 0 ∀e ∈ E xe ∈ Z ∀e ∈ E

}

(in arbitrary graphs). The issue is that integer programming is NP-hard, which means that assum-
ing NP 6= P, there is no polynomial time algorithm for such problems in general. Instead we want
to solve the underlying LP relaxation; for many problems we will be able to argue that P = PI and
hence a computed extreme point is always integral.
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Chapter 6

Total Unimodularity

In this chapter we want to investigate which type of integer programs

max{cTx | Ax ≤ b; x ∈ Z
n}

we can solve in polynomial time simply by computing an extreme point solution to the corresponding
linear relaxation

max{cTx | Ax ≤ b}.
In other words, we wonder when all the extreme points of P = {x ∈ R

n | Ax ≤ b} are integral like
in this figure:

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

P

Remember the following fact that we know from the previous chapter:

Lemma 51. Let P = {x ∈ R
n | Ax ≤ b} be a polyhedron with A ∈ R

m×n. For each extreme point
x of P , there are row indices I ⊆ {1, . . . ,m} so that AI is an n× n matrix of full rank and x is the
unique solution to AIx = bI .

Here AI denotes the rows of A that have their index in I. We wonder: when can we guarantee
that the solution to AIx = bI is integral? Recall the following lemma from linear algebra:

Lemma 52 (Cramer’s rule). Let B = (bij)i,j∈{1,...,n} be an n× n square matrix of full rank. Then
the system Bx = b has exactly one solution x∗ where

x∗i =
det(Bi)

det(B)

Here Bi is the matrix B where the ith column is replaced by b.

Cramer’s rule suggests that we should ask for the following property:
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Definition 53. A matrix A is totally unimodular (TU) if every square submatrix of A has
determinant 0,1 or −1.

Note that A itself does not have to be square. We just need all the square submatrices of A to
have their determinants equal to 0 or ±1. Note that if A is totally unimodular, then every entry of
A has to be 0 or ±1 since every entry is a 1× 1 submatrix of A.

Lemma 54. Let P = {x ∈ R
n | Ax ≤ b}. If A is TU and b ∈ Z

m, then all extreme points of P are
integral.

Proof. Let x be an extreme point of P and let AI be the submatrix so that x is the unique solution
to AIx = bI . Then by Cramers rule

xi =
det(Ai

I)

det(AI)

Since A is TU we know that det(AI) ∈ {±1} (det(AI) = 0 is not possible since AI has full rank).
Since A and b are integral, Ai

I has only integral entries, and thus det(Ai
I) ∈ Z. This shows that

xi ∈ Z.

The TU property is somewhat robust under changes as we will see in the following:

Lemma 55. Let A ∈ {−1, 0, 1}m×n. Then the following operations do not change whether or not
A is TU:

a) Multiplying a row or column by −1

b) Permuting rows or columns

c) Adding of removing a row or column that has at most one ±1 entry and zeros otherwise

d) Duplicating rows or columns

e) Transposing the matrix

Proof. We can study the effect of those operations on a square submatrix B = (bij)i,j∈{1,...,n} of A.

The claims follow quickly from linear algebra facts such as (I) det(B) = det(BT ); (II) multiplying a
row/column by λ changes the determinant by λ; (III) permuting rows/columns only changes the sign
of the determinant. For (c), we can use the Laplace expansion: Let Mij be the (n− 1)× (n− 1)
matrix that we obtain by removing the ith row and jth column from B. Then for all i ∈ {1, . . . , n},

det(B) =

n∑

j=1

(−1)i+j · bij · det(Mij).

We get:

Corollary 56. Let A ∈ {−1, 0, 1}m×n be a TU matrix with b ∈ Z
m and ℓ, u ∈ Z

n. Then

a) All extreme points of {x ∈ R
n | Ax ≤ b;x ≥ 0} are integral.
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b) All extreme points of {x ∈ R
n | Ax = b;x ≥ 0} are integral.

c) All extreme points of {x ∈ R
n | Ax ≤ b; ℓ ≤ x ≤ u} are integral.

Proof. From Lemma 55 we know that the matrices

(
A
−I

)

and





A
−A
−I



 and





A
−I
I





that define the 3 systems are also TU. Then all the claims follow.

As a technical subtlety, remember that not all polyhedra have extreme points and the statement
of Lemma 54 would be useless in such a case. But remember from 407 that all polyhedra that have
non-negativity constraints must have extreme points.

Verifying that all submatrices of A have determinant in {0,±1} sounds like a very tedious and
complicated approach. Luckily, there is a sufficient condition that is very easy to check and that
suffices in many applications:

Lemma 57. A matrix A ∈ {−1, 0, 1}m×n is TU if it can be written in the form

A =

(

B
C1

C2

)

so that the the following conditions hold:

• B has at most one non-zero entry per column

• C1 has exactly one +1 entry per column

• C2 has exactly one −1 entry per column

Proof. Consider a matrix A which is of the given form and suppose for the sake of contradiction that
A is not TU. Let A′ be a minimal square submatrix so that det(A′) /∈ {−1, 0, 1}. We can assume
that for any proper submatrix A′′ of A′ one still has det(A′′) ∈ {−1, 0, 1}. If A′ has any column
that has only 0 entries, then det(A′) = 0. If A′ has any column that has exactly one non-zero
entry then det(A′) = (±1) · det(A′′) where A′′ is a strict submatrix of A′ which by assumption has
det(A′′) ∈ {−1, 0, 1}. The only remaining case is that A′ has at least 2 non-zero entries in every

column. So it does not have a B. Then A′ must indeed be of the form A′ =

(
C ′
1

C ′
2

)

where C ′
1 is a

submatrix of C1 and C ′
2 is a submatrix of C2. Moreover A′ must have exactly one +1 and exactly

one −1 per column. But then, adding up all rows of A′ gives the 0-vector, and thus det(A′) = 0.

Here is an example of a matrix for which this lemma proves total unimodularity:

A =










0 0 0 0 1 0 0
0 0 0 1 0 1 0
0 −1 1 0 0 0 1

0 0 0 −1 0 0 −1
1 0 0 0 −1 −1 0










B C1

C2
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Before we list some applications, we want to mention one more insight. Remember that going
to the dual LP essentially means we transpose the constraint matrix. Since transposing a matrix
does not destroy the TU property we immediately get:

Lemma 58. Suppose A is TU and both b and c are integral. Then there are optimum integral
solutions x∗, y∗ to

max{cTx | Ax ≤ b;x ≥ 0} and min{bT y | AT y ≥ c; y ≥ 0}

with cTx∗ = bT y∗, assuming the LPs are both feasible.

A very surprising fact is the following:

Theorem 59 (Seymour ’80, Truemper ’82). For a matrix A ∈ {0,±1}m×n one can test in polyno-
mial time whether A is TU.

We will generously skip the 50+ page proof.

6.1 Application to Bipartite Matching

Let G = (V,E) be an undirected graph and consider the oerfect matching polytope

PM =
{

x ∈ R
E |

∑

e∈δ(v)
xe = 1 ∀v ∈ V ;xe ≥ 0 ∀e ∈ E

}

.

We already know from Section 5.3 that for bipartite graphs all extreme points of PM are integral,
while this is not necessarily the case for non-bipartite graphs. Now we want to understand why!
We can now reprove Lemma 48:

Lemma 60. If G is bipartite, then all extreme points x of PM satisfy x ∈ {0, 1}E .

Proof. We can write PM = {x ∈ R
E | Ax = 1;x ≥ 0} where A ∈ {0, 1}V ×E is the node-edge

incidence matrix of graph G that is defined by

Av,e =

{

1 v incident to e

0 otherwise

We claim that A is TU. Since G is bipartite, the matrix has rows that belong to nodes in V1 and
rows that belong to V2. A column belonging to an edge (u, v) has one 1 in the V1-part and the
other 1 in the V2-part. Now flip the signs in the V2-part, then Lemma 57 applies and shows that A
is TU.

An example for a node edge incidence matrix can be found below:
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0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

V1

V2

node edge incidence matrix A

(a, u)

(a, v)

n
o
d
e
s

edges

We already showed one direction of the following consequence — we will not show the other
direction.

Lemma 61. The node-edge incidence matrix of an undirected graph G is TU if and only if G is
bipartite.

6.2 Application to Flows

In this section, we want to apply our knowledge of totally unimodularity to flows. Let (G,u, s, t)
be a network with a directed graph G, integral capacities u : E → Z≥0 a source s and a sink t.
For a number k ∈ Z≥0, the set of feasible s-t flows of value k can be described by the polytope

Pk−flow :=
{

f ∈ R
E |

∑

e∈δ−(v)

f(e)−
∑

e∈δ+(v)

f(e) = b(v) ∀v ∈ V ; 0 ≤ f(e) ≤ u(e) ∀e ∈ E
}

with

b(v) =







−k v = s

k v = t

0 otherwise.

We want to have a closer look, how the constraint matrix of this polytope looks like. And in fact,
if we write

Pk−flow = {f ∈ R
E | Af = b; 0 ≤ f ≤ u

}

then the matrix A ∈ {−1, 0, 1}V ×E is defined by

Av,e =







1 e ∈ δ−(v)

−1 e ∈ δ+(v)

0 otherwise.

This matrix is also called the node edge incidence matrix of the directed graph G.
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(s
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)
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)

(a
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)

(b
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)

(a
,t
)

(b
,t
)
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,t
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-1

1

-1

1

-1

1

-1

1 -1

1

-1

1

-1

1

-1

1

Lemma 62. The node edge incidence matrix A ∈ {−1, 0, 1}V ×E of a directed graph is TU.

Proof. Again, look at the smallest square submatrix B of A that is a counterexample. Then each
column must contain 2 non-zero entries, otherwise, we could obtain a smaller counterexample. But
then each column must contain exactly one 1 and one −1 entry. Then summing up all rows of B
gives (0, . . . , 0). That means the rows are not linearly independent and hence det(B) = 0.

Corollary 63. For any integer k, the polytope Pk−flow of value k s-t flows has only integral extreme
points.

Let us see how far we can push this method. The following is actually a very general problem.

Definition 64. Let G = (V,E) be a directed graph with capacities u : E → Z≥0. Then a
circulation in G respecting u is a function f : E → R≥0 satisfying 0 ≤ f(e) ≤ u(e) for all e ∈ E
and

∑

e∈δ−(v) f(e) =
∑

e∈δ+(v) f(e) for all v ∈ V .

Minimum Cost Integer Circulation Problem
Input: A directed graph G = (V,E) with lower bounds ℓ(e) ∈ Z≥0, upper bounds u(e) ∈
Z≥0 , cost c : E → R

Goal: Solve

min
{∑

e∈E
c(e)f(e) | f is circulation with ℓ(e) ≤ f(e) ≤ u(e) and f(e) ∈ Z ∀e ∈ E

}

Note that one can easily use this problem to solve minimum cost matchings in bipartite graphs or
minimum cost max flow problems.

Lemma 65. Minimum Cost Integer Circulation Problem can be solved in polynomial time.

Proof. Simply observe that the relaxation can be written as min{cT f | Af = 0; ℓ ≤ f ≤ u} where
the constraint matrix is the node-edge incidence matrix, which is TU. Then we can solve the LP
with the Interior point method to find an optimum extreme point f∗. This solution is going to be
integral since A is TU.

70



6.3 Application to Interval Scheduling

In this section we want to study the total unimodularity for a problem that is not related to graphs.

Interval scheduling
Input: A list of intervals I1, . . . , In ⊆ R with profits ci for interval Ii.
Goal: Select a disjoint subset of intervals that maximize the sum of profits.

Note that there are at most 2n many points that are end points of intervals let us denote those
points with t1 < t2 < . . . < tm. Then it suffices to check that we select intervals so that no point in
t1, . . . , tm lies in more than one interval. Hence we can formulate the interval scheduling problem
as the following integer program:

max
{

cTx |
∑

i:tj∈Ii
xi ≤ 1 ∀j ∈ {1, . . . ,m};xi ∈ {0, 1} ∀i ∈ {1, . . . , n}

}

We can rewrite the relaxation of this problem in matrix form as

max{cTx | Ax ≤ 1; 0 ≤ x ≤ 1} with Aji =

{

1 tj ∈ Ii

0 otherwise

Observe that the matrix A ∈ {0, 1}m×n has the consecutive-ones property, which means the
ones in each column are consecutive.

Lemma 66. A matrix A ∈ {0, 1}m×n with consecutive ones property is TU.

Proof. Again, we consider a minimal counterexample. Since any submatrix of A also has the
consecutive ones property, it suffices to show that det(A) ∈ {−1, 0, 1} assuming that A itself is a
square matrix. Let A1, . . . , An be the rows of A. For all i, in decreasing order, we subtract row
i − 1 from row i, which does not change the determinant. Formally, we define A′

i := Ai − Ai−1

and A′
1 = A1, then det(A′) = det(A) (see the example below). Now each column in A′ contains at

most one 1 and at most one −1. Then A′ is the node-edge incidence matrix of a directed graph
(plus possibly some columns with at most one non-zero entry). Hence A′ is TU and in particular
det(A′) ∈ {−1, 0, 1}.

t1
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t3
t4
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I1
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I3

I4
I5

I6

instance for interval scheduling
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0
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0
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-1

1

1
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1

-1

1 1

-1

1

transformed matrix A′

Theorem 67. The interval scheduling problem can be solved in polynomial time.

Proof. Follows, since the constraint matrix of the problem is TU.
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Chapter 7

Branch & Bound Algorithm

We already saw many problems for which we can devise an efficient, polynomial time algorithm.
On the other hand, we also discussed that for NP-complete problems like TSP, it is widely believed
that no polynomial time algorithm exists. While from a theoretical perspective we can be perfectly
happy with the non-existence of an algorithm, this is not very satisfying for practitioners.

Suppose you in fact do have an instance of an NP-complete problem and you really need a
solution! For all the problems that we discuss in this chapter and also the vast majority of problems
that appear in practical applications, it is very straightforward to formulate such a problem as an
integer linear program

max{cTx | Ax ≤ b; x ∈ Z
n} (∗)

Suppose for a moment that we have the additional restriction that x ∈ {0, 1}n. Then the naive
approach would just try out all 2n solutions and then pick the best. A quick calculation shows
that even for a very moderate instance size, say n = 200, we would obtain an astronomically high
running time.

We wonder: is there an algorithm that solves the IP (*) in many cases much faster than 2n? The
answer is “yes”! The Branch & Bound algorithm is a much more intelligent search algorithm
that usually avoids searching the whole solution space.

Branch & Bound Algorithm

Input: c ∈ R
n, A ∈ R

m×n, b ∈ R
m

Output: An optimum solution to max{cTx | Ax ≤ b; x ∈ Zn}
(1) Set x∗ := UNDEFINED (best solution found so far)
(2) Put problem P := {x | Ax ≤ b} on the stack
(3) WHILE stack is non-empty DO

(4) Select a polytope P ′ from the stack
(5) Solve max{cTx | x ∈ P ′} and denote LP solution by x̃
(6) IF P ′ = ∅ THEN goto (3) (“prune by infeasibility”)
(7) IF cTx∗ ≥ cT x̃ THEN goto (3) (“prune by bound”)
(8) IF cTx∗ < cT x̃ and x̃ ∈ Z

n THEN (let cTx∗ = −∞ if x∗ = UNDEFINED

update x∗ := x̃ and goto (3) (“prune by optimality”)
(9) Otherwise (i.e. x̃ /∈ Z

n, cTx∗ < cT x̃) do (“branch”)
(10) Select coordinate i with x̃i /∈ Z.
(11) Add problems P ′ ∩ {x | xi ≤ ⌊x̃i⌋} and P ′ ∩ {x | xi ≥ ⌈x̃i⌉} to stack

Here is an example demonstrating how the algorithm performs.
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Example: Branch & Bound. Instance: max{−x1 + 2x2 | (x1, x2) ∈ P}
with P := {x ∈ R

2 | −4x1 + 6x2 ≤ 9, x1 + x2 ≤ 4, x2 ≥ 0,−3x1 + 2x2 ≤ 3}
Iteration 1:

• x∗ = UNDEFINED

• Stack: {P}
• Select: P ′ := P
• LP opt: x̃ = (1.5, 2.5)
• Case: Branch on i = 2.

Add P ′ ∩ {x2 ≤ 2}, P ′ ∩ {x2 ≥ 3} to stack

P ′

1

2

3

0 1 2 3 4−1

c

x̃

x1

x2

Iteration 2:

• x∗ = UNDEFINED

• Stack: {P ∩ {x2 ≤ 2}, P ∩ {x2 ≥ 3}}
• Select: P ′ := P ∩ {x2 ≤ 2}
• LP opt: x̃ = (0.75, 2)
• Case: Branch on i = 1. Add P ′ ∩ {x1 ≥ 1}, P ′ ∩

{x1 ≤ 0} to stack

P ′1

2

3

0 1 2 3 4−1

c

x̃

x1

x2

Iteration 3:

• x∗ = UNDEFINED

• Stack: {P ∩ {x2 ≤ 2, x1 ≥ 1}, P ∩ {x2 ≤ 2, x1 ≤
0}, P ∩ {x2 ≥ 3}}

• Select: P ′ := P ∩ {x2 ≤ 2, x1 ≥ 1}
• LP opt: x̃ = (1, 2)
• Case: Prune by optimality. Update x∗ := x̃

P ′1

2

3

0 1 2 3 4−1

c

x̃

x1

x2

Iteration 4:

• x∗ = (1, 2)
• Stack: {P ∩ {x2 ≤ 2, x1 ≤ 0}, P ∩ {x2 ≥ 3}}
• Select: P ′ := P ∩ {x2 ≤ 2, x1 ≤ 0}
• LP opt: x̃ = (0, 1.5)
• Case: Prune by bound (cT x̃ ≤ cTx∗).

P ′
1

2

3

0 1 2 3 4−1

c

x̃ x∗

x1

x2

Iteration 5:

• x∗ = (1, 2)
• Stack: {P ∩ {x2 ≥ 3}}
• Select: P ′ := P ∩ {x2 ≥ 3}
• LP opt: UNDEFINED
• Case: Prune by infeasibility (P ′ = ∅)

1

2

3

0 1 2 3 4−1

P ′ = ∅

x∗

Iteration 6: Stack empty. Optimum solution: x∗ = (1, 2)
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We want to emphasize the three points that make the algorithm smarter than trivial enumeration
for solving max{cTx | x ∈ P ; x ∈ Z

n} with P = {x | Ax ≤ b}. In the following P ′ ⊆ P denotes a
subproblem.

• Insight 1: Suppose α /∈ Z and i ∈ {1, . . . , n}. Then all integer points in P are either in
P ∩ {x | xi ≤ ⌊α⌋} or in P ∩ {x | xi ≥ ⌈α⌉}.

P
P ∩ {x | xi ≥ ⌈α⌉}P ∩ {x | xi ≤ ⌊α⌋}

xi

⌊α⌋ ⌈α⌉

• Insight 2: If the optimal LP solution x̃ to max{cTx | x ∈ P ′} happens to be integral, then
x̃ is the optimum integral point in P ′.

PP ′

c

x̃

b

b

b

b

b

b

• Insight 3: If there is a point x∗ ∈ P ∩Z
n with cTx∗ > max{cTx | x ∈ P ′}, then the optimum

integral solution for the IP does not lie in P ′.

P
P ′

c

x∗

From the discussion above we obtain:

Theorem 68. The Branch and bound algorithm does find the optimum for max{cTx | Ax ≤ b; x ∈
Z
n}.

Observe that the branch and bound process implicitly constructs a search tree where a node
corresponds to a subproblem P ′. For our example on page ??, the Branch & Bound tree looks
as follows:
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Iteration 1:
P

Iteration 2:
P ∩ {x2 ≤ 2}

Iteration 3:
P ∩ {x2 ≤ 2, x1 ≥ 1}

Iteration 4:
P ∩ {x2 ≤ 2, x1 ≤ 0}

Iteration 5:
P ∩ {x2 ≥ 3}

prune by optimality prune by bound

prune by LP infeasibility

There are two steps in the algorithm that are “generic”. More precisely, we did not specify which
problem should be selected from the stack and which coordinate should be used to branch.

• On which variable should one branch in (10)?
A typical strategy is to branch on the most fractional variable. That means that one selects
the variable i that maximizes the distance min{x̃i − ⌊x̃i⌋, ⌈x̃i⌉ − x̃i} to the nearest integer.
For example in x̃ = (0.99, 0.5) one would rather branch on x2 instead of x1.

• Which problem P ′ should be selected from the stack? There are two popular strategies:

– Depth First Search: Always selecting the last added problem from the stack corresponds
to a depth first seach in the branch and bound tree. The hope is that this way, one
quickly finds some feasible integral solution that then can be used to prune other parts
of the tree.

– Best bound: Select the problem that has the highest LP maximum. The hope is that
there is also a good integral solution hiding.

Note that we cannot give any theoretical justification for or against one strategy. For any strategy
one could cook up a pathological instance where the strategy miserably fails while another succeeds
quickly.

7.1 A Pathological Instance

Each chapter should contain at least one proof — hence we want to show that there are nasty
integer linear programs for which all Branch & Bound approaches fail.

Lemma 69. Let n ≥ 4 be an even integer. No matter what strategies are used by B & B to solve
the following IP

max
{

x0 |
1

2
x0 +

n∑

i=1

xi =
n

2
; x ∈ {0, 1}n+1

}

the search tree has at least 2n/3 leafs.
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Proof. Observe that the IP only has integral solutions with x0 = 0. Hence the integral optimum
is 0. Since 0 ≤ xi ≤ 1, a branching step consists in fixing a variable as either 0 or 1. Hence, for
each node in the Branch & Bound tree, let I0 ⊆ {0, . . . , n} be indices of variables that are fixed to
0 and let I1 be the indices of variables that are fixed to 1. The point is that the Branch and Bound
Algorithm is not intelligent enough to realize that a sum of integers will be integral. If only few
variables are fixed, then there is still a feasible fractional solution that is much better than the best
integral solution, hence we would not yet prune the search tree at this point. More formally:

Claim: Consider a node in the search tree with fixed variables (I0, I1) and 0 /∈ I0. If |I0|+ |I1| ≤
n
3 , then there is a feasible LP solution for this node with x̃0 = 1 and hence the node could not be
pruned.
Proof. Consider the fractional vector x̃ with

x̃i =







1 i = 0

1 i ∈ I1

0 i ∈ I0

λ otherwise

where we want to choose λ uniform so that the constraint is satisfied:

1

2
x̃0 +

n∑

i=1

x̃i =
1

2
+ |I1|

︸ ︷︷ ︸

∈[0, 1
2
n] using n≥3

+(n− |I0| − |I1|)
︸ ︷︷ ︸

≥ 2
3
n

·λ !
=

n

2

We can always choose a λ ∈ [0, 1] to satisfy the equation. Hence there is always a fractional solution
of value x̃0 = 1, hence this node could not be pruned!

The claim shows that all the leafs of the Branch and Bound tree are in depth at least n
3 , hence

the tree must have at least 2n/3 many leaves because it is binary1.

1Here we assumed that as long as |I0|+ |I1| ≤
n
3
, an optimum LP solution always has x̃0 = 1 and hence we would

not branch on i = 0. One could modify the Branch and Bound Algorithm so that it does branch on i = 0, but still
the number of leaves would be 2Ω(n).
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Chapter 8

Non-bipartite Matching

Apart from NP-complete problems, the only problem that we have mentioned before and for which
we have not yet seen a polynomial time algorithm is the matching problem on general, non-
bipartite graphs. We already discussed the problem with a linear programming approach and in
fact, the polynomial time algorithm is highly non-trivial and goes back to the seminal work of
Edmonds in 1965.

Recall that in an undirected graph G = (V,E), a matching is a subset of disjoint edges M ⊆ E.

Maximum Cardinality matching
Input: An undirected graph G = (V,E).
Goal: Find a matching M of maximum size |M |.

We know already a combinatorial algorithm to solve the problem in bipartite graphs: add a
source and a sink and use the Ford-Fulkerson algorithm. In other words, we know that at least for
bipartite graphs, an approach iteratively augmenting a flow/matching must work. Our idea is to
extend this to non-bipartite matching.

8.1 Augmenting Paths

If we have a matching M , then a node that is not contained in the matching is called M-exposed.
We call a walk P in the graph M-alternating if its edges are alternately in M and not in M .
Note that an M -alternating walk is allowed to revisit nodes and edges. We call the walk P M-
augmenting if it (i) is an M -alternating walk that(ii) starts and ends in different M -exposed
vertices and (iii) does not revisit any nodes or edges (in particular meaning that P is a path and
not just a walk).

exposed node

edge in M

M -augm. path

matching M with augmenting path matching after augmentation
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Theorem 70 (Augmenting Path Theorem for Matchings). A matching M in graph G = (V,E) is
maximum if and only if there is no M -augmenting path.

Proof. For edge sets M and P , let M∆P := (M\P ) ∪ (P\M) be their symmetric difference. If
we have an M -augmenting path P , then M ′ := M∆P is again a matching. Since P started and
ended with edges that are not in M , M ′ contains one edge more.

Now, let us show the more difficult direction. Assume that there is a matching M ′ that is
larger than M . We need to prove that there exists an augmenting path. Consider their symmetric
difference M∆M ′. The degrees of nodes in this difference are in 0, 1, 2. Hence M∆M ′ is a collection
of M -alternating cycles and paths.

matching M matching M ′ difference M∆M ′

Since |M ′| > |M | and alternating cycles contain the same number of M ′ and M edges, there must
be one path in M∆M ′ that has more edges from M ′ than from M . This is our M -augmenting
path.

8.2 Computing Augmenting Paths

Now, let us discuss how we can find these augmenting paths. Let G = (V,E) be our graph, then
we create a bipartite directed graph which for all v ∈ V has a node v in the left part and a mirror
node v′ in the right part. For each non-edge {u, v} ∈ E\M we create two directed edges (u, v′) and
(v, u′). For each matching edge {u, v} ∈ M we create backward edges (u′, v) and (v′, u).

a b c d

e f

graph G with matching
and augm. path

a

b

c

d

e

f

a′

b′

c′

d′

e′

f ′

bipartite graph G′

with augm. path

Observe that a path in this directed bipartite graph corresponds to an M -alternating walk.
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Lemma 71. In time O(mn + n2 log n) we can compute the shortest M -alternating walk starting
and ending in an M-exposed node.

Proof. We simply run Dijkstra’s algorithm in G′ for each node as source to compute shortest path
distances.

It sounds a bit like we are done. But there is a major problem: a shortest walk in the directed
bipartite graph G′ will indeed be a path, but that graph contains node v twice. For example in the
graph below, there is no M -augmenting path, yet the graph G′ contains a path between the two
M -exposed vertices.

In that case, for some v ∈ V we found a subpath B ⊆ P in the directed graph G′ that goes from v
to v′. In particular, that means that the length of that path is odd and it contains exactly 1

2(|B|−1)
many M -edges.

Hence, the whole walk P , in the original graph might look as follows
M -blossom

M -flower

u v

Formally we define an M-flower as an M -alternating walk in G = (V,E) that (i) starts at an M -
exposed node u (ii) revisits exactly one node v once which is the other end point of the path, (iii)
the cycle that is closed at v has an odd number of edges and (iv) the stem (the path between u and
v) has an even number of edges. That odd cycle B ⊆ E that contains exactly |M ∩B| = 1

2(|B| − 1)
edges is called an M-blossom. Note that it is possible that u and v are identical. We can always
guarantee the following:

Lemma 72. In time O(nm+ n2 log n) we can either (i) compute an M -augmenting path P or (ii)
find an M -flower or (iii) decide that there is no M -augmenting path.

Proof. Compute a shortest M -alternating walk P = (v0, v1, . . . , vk) in G between two different M -
exposed vertices v0 and vk. If there is no such walk, we are in (iii). If the walk does not revisit
any vertex we are in (i). Otherwise consider the sequence of nodes and stop at the first revisited
node vℓ which means ℓ is minimal so that there is an index 0 ≤ j < ℓ with vj = vℓ. Since P is not
revisiting nodes in G′, we know that ℓ − j is odd. Label edges e1 := {vj−1, vj}, e2 := {vj , vj+1},
e3 := {vℓ−1, vℓ} as indicated in the figure below. Since ℓ− j is odd we know that e2, e3 must be the
same “type” of edges, that means either both are matching edges or both are non-matching edges.
As we stop when finding the first revisited node we have vj+1 6= vℓ−1 and hence e2 6= e3. Since e2, e3
are both incident to the same node vj we know that they must be both non-matching edges. Note
that we also know that P is an M -alternating walk we have |M ∩ {e1, e2}| = 1 and hence e1 ∈ M ,
implying that j is even.
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v0 v1 . . . vj−1 vj

vℓ

vℓ−1

vj+1

e1
e3

e2

It remains to discuss what to do if we find an M -flower.

8.3 Contracting Odd Cycles

Edmonds’ seminal idea was to contract the blossom. Let B be the edges of the blossom, then
we write G × B as the graph that we obtain by contracting all the nodes on the odd cycle into a
single super-node.

B

graph G with blossom B

contraction
vB

contracted graph G×B

Why should we contract an odd cycle? Because the contracted graph is smaller and it suffices
to find an augmenting path in the contracted graph. Hence we have made progress.

Lemma 73. Let M be a matching and B be an M -blossom. Then M/B is a matching in G × B
and any M/B augmenting path in G×B can be extended to an M -augmenting path in G.

Proof. First, note that vB has degree at most one in M/B since there is at most one edge of M in
δ(B). Now, let P be an M/B augmenting path in G × B and let vB be the supernode that was
created by contraction.

If P does not contain vB , the claim is clear. After expansion the path P will enter B using an
M -edge e1 in a node that we call1 v1 and it will leave B with a non-M edge e2 in a node v2. From
v2 we extend P by going either clockwise or counterclockwise so that the first edge that we take
from v2 in B is an M -edge. This way we create an M -augmenting path in G.

1Or vB was an M/B-exposed node and P starts in vB ; then v1 is the unique M -exposed node in B.
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vBP

e1 e2

expansion

B
e1 e2

v1 v2

Lemma 74. Let M be a matching and B be an M -blossom. If there is an M -augmenting path in
G, then there is an M/B-augmenting path in G×B.

Proof. Let S be the stem of the M -flower belonging to the M -blossom B. Note that S is an
M -alternating path.

B

stem S

matching M with M -blossom B

Consider the matching M ′ := M∆S. Then |M ′| = |M | and |M ′/B| = |M/B|. So it suffices to
assume that there is an M ′-augmenting path P in G and show that there is an M ′/B-augmenting
path in G ×B. Note that B now contains a unique M ′-exposed vertex. If P does not include any
node in B, then there is nothing to show. Otherwise, the situation looks as follows:

B

P

matching M ′ with M ′-blossom B

Consider the beginning P ′ = (u0, u1, . . . , uj) of that path with u0 /∈ B being M ′-exposed where uj
is the first node in B.

B uj

u1 u0

P ′

matching M ′ with M ′-blossom B
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Note that M ′∩ δ(B) = ∅. That means vB is M ′/B exposed in G×B and P ′ is an augmenting path
with u0 and vB as exposed vertices.

Now we have the description of the complete algorithm:

Blossom Algorithm for Maximum Matching (Edmonds 1965)

Input: Undirected graph G = (V,E)
Output: Maximum matching M ⊆ E.

(1) M := ∅
(2) REPEAT

(3) Call Subroutine to find M -augmenting path P
(4) IF P = FAIL THEN Return M ELSE Update M := M∆P

SUBROUTINE:
Input: Undirected graph G = (V,E), matching M ⊆ E
Output: M -augmenting path.

(1) Construct bipartite graph G′ and compute shortest path P from exposed node to
exposed node

(2) IF no such path exists THEN return FAIL

(3) IF P is M -augmenting path THEN return P
(4) IF P corresponds to M -flower with blossom B THEN

(5) Call subroutine on G×B and M\B
(6) Extend the returned path by edges in B

From the discussion above we obtain:

Theorem 75. The Blossom algorithm finds a maximum cardinality matching in time O(n3m +
n4 log n).

Proof. We need to find an M -augmenting path at most n times. While we try to find an M -
augmenting path, we might contract at most n times a cycle and before contracting a cycle we need
to find a shortest path in the bipartite graph, which each time takes time O(nm+ n2 log n). Hence
the total running time that we obtain is O(n3m+ n4 log n).

A more careful implementation (with a more careful analysis) gives a running time of O(n3).
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Chapter 9

The Knapsack Problem

In this chapter we want to show additional techniques that solve NP-hard optimization problems.

To give a motivating example, suppose a burglar breaks into a house and discovers a large set
of n precious objects. Unfortunately, all objects together would be to heavy to carry for him, so he
has to make some selection. He estimates that he can carry a weight of at most W and that the
weight of the ith item is wi and that he could receive a price of ci for it.

We can formulate this mathematically as follows:

Knapsack Problem
Input: n items with weights w1, . . . , wn ≥ 0, profits c1, . . . , cn ≥ 0 and a bud-
get/capacity W
Goal: Find a subset S ⊆ {1, . . . , n} with

∑

i∈S wi ≤ W that maximizes the profit
∑

i∈S ci.

Here in an example:

i = 1 i = 2 i = 3 i = 4

weights wi 6 7 4 1

profits ci 2 3 2 1

budget: W = 9

In this case, the optimum solution is S∗ = {2, 4} and has a profit of 4.

Note that the problem can be formulated as an integer linear program in the form

n∑

i=1

cixi

n∑

i=1

wixi ≤ W

x ∈ {0, 1}n

where xi is a decision variable telling whether you want to select the ith item. In other words,
the Knapsack Integer program is an integer program with just a single constraint (apart from the
0 ≤ xi ≤ 1 constraints). Interestingly, that single constraint makes the problem already NP-hard,
hence there won’t be a polynomial time algorithm to solve it in general. We want to design an
algorithm that is smarter than just trying out all 2n possible combinations.
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9.1 A Dynamic Programming Algorithm

We want to show that the problem is efficiently solvable if the involved numbers are nice. We will
abbreviate w(S) =

∑

i∈S wi and c(S) =
∑

i∈S ci.

Lemma 76. Suppose that we have a Knapsack instance with integral profits c1, . . . , cn ∈ Z≥0. Then
one can solve Knapsack optimally in time O(n · C), where C :=

∑n
i=1 ci.

The technique that we want to use to obtain this result is dynamic programming that we
saw already at the beginning of the course. The property that makes dynamic programming work
is that the problem can be broken into independent subproblems. We want to use the following
table entries for j ∈ {0, . . . , n} and C ′ ∈ {0, . . . , C}

T (j, C ′) := smallest weight of a subset of items 1, . . . , j that gives profit exactly C ′

= min
{

w(S) | S ⊆ {1, . . . , j} : c(S) = C ′
}

If there is no set S ⊆ {1, . . . , j} with c(S) = C ′, then we set T (j, C ′) = ∞. For j = 0, it is easy to
see that T (0, 0) = 0 and T (0, C ′) = ∞ if C ′ 6= 0. Let us make an observation how the other table
entries can be computed:

Lemma 77. For j ∈ {1, . . . , n} and C ′ ∈ {0, . . . , C} one has T (j, C ′) = min{T (j − 1, C ′ − cj) +
wj , T (j − 1, C ′)}

Proof. Suppose that S∗ ⊆ {1, . . . , j} is the set with c(S∗) = C ′ and w(S∗) minimal. Then there are
two cases:

(a) j /∈ S∗: Then T (j, C ′) = T (j − 1, C ′).

(b) j ∈ S∗: Then T (j, C ′) = T (j − 1, C ′ − cj) + wj

We now write down an algorithm to compute the optimal solution of the knapsack problem.

Dynamic Programming Knapsack Algorithm

Input: Profits c1, . . . , cn ∈ Z≥0, weights w1, . . . , wn ∈ R≥0, budget W ∈ R≥0

Output: Value of optimum Knapsack solution in time O(n · C)

(1) Set C :=
∑n

j=1 cj ; T (0, 0) := 0, T (0, C ′) := ∞ ∀C ′ ∈ {1, . . . , C}
(2) FOR j = 1 TO n DO

T (j, C ′) := min{T (j − 1, C ′ − cj) + wj , T (j − 1, C ′)} for C ′ ∈ {0, . . . , C}
(3) Return the max C∗ so that T (n,C∗) ≤ W

We can use the dynamic program to solve the example from above; indeed we obtain that the
optimum solution has a value of 4. One can also “backtrack” that the corresponding solution will
be S∗ = {2, 4} (this can be done by going backwards through the entries and checking whether the
min-expression for determining the table entry was attained for the case j ∈ S or j /∈ S).
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profit C ′ = 0

profit C ′ = 1

profit C ′ = 2

profit C ′ = 3

profit C ′ = 4

profit C ′ = 5

profit C ′ = 6

profit C ′ = 7

profit C ′ = 8 ∞
∞
∞
∞
∞
∞
∞
∞
0

∞
∞
∞
∞
∞
∞
6
∞
0

∞
∞
∞
13
∞
7

6
∞
0

∞
17
∞
11

10

7

4
∞
0

18

17

12

11

8

5

4

1

0

Item 1
w1 = 6

c1 = 2

Item 2
w2 = 7

c2 = 3

Item 3
w3 = 4

c3 = 2

Item 4
w4 = 1

c4 = 1

highest feasible profit

C(0, ∗) C(1, ∗) C(2, ∗) C(3, ∗) C(4, ∗)

weights ≤ W = 9

Note that the size of the input to the knapsack problem has a number of bits that is at most
O(n(logC+ logW )), hence the running time of O(nC) is not polynomial in the size of the input.
But the running time satisfies a weaker condition and it is a so-called pseudopolynomial running
time.

More generally, suppose P is an optimization problem such that each instance consists of a list
of integers a1, . . . , an ∈ Z. An algorithm for P is called pseudopolynomial if the running time is
polynomial in n and max{|ai| : i ∈ {1, . . . , n}}.

9.2 An Approximation algorithm for Knapsack

While Knapsack in general is an NP-hard problem, we saw that a solution can be efficiently com-
puted if all the profits are integer numbers in a bounded range. In fact, a similar dynamic program
also works if instead the weights are integers in a bounded range.

Now suppose we have a Knapsack instance with arbitrary numbers. While we cannot hope to
provably find an optimum solution, we want to find a solution that is at least close to the optimum.
Intuitively, the idea is to round the profit values so that the dynamic program runs in polynomial
time. We assume here implicitly that wi ≤ W for all i ∈ {1, . . . , n}.

Approximation Algorithm for Knapsack

Input: Profits c1, . . . , cn ∈ R≥0, weights w1, . . . , wn ∈ R≥0, budget W ∈ R≥0

Output: Solution S with profit c(S) ≥ (1− ε)OPT where OPT denotes the value of the
optimum solution.

(1) Scale all profits so that maxi=1,...,n{ci} = n
ε

(2) Round c′i := ⌊ci⌋, C ′ :=
∑n

i=1 c
′
i.

(3) Compute an optimum solution S for instance ((c′i)i∈[n], (wi)i∈[n],W ) using the dy-
namic program.

(4) Return S

First, note that scaling the profits does not affect the performance of the algorithm, hence we
assume that from the beginning on, we have maxi=1,...,n{ci} = n

ε .

Theorem 78. The algorithm computes a feasible solution S with c(S) ≥ (1−ε)OPT in time O(n
3

ε ).
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Proof. First of all, we gave the correct weights to the dynamic program, but the “wrong” profits.
But at least the computed solution S will be feasible, i.e. w(S) ≤ W . Next, note that the rounded
instance has only integral profits as input and their sum is C ′ ≤ n · nε . Hence the dynamic program

has a running time of O(n · C ′) which in our case is O(n
3

ε ). It remains to show that S is a good
solution. This will follow from two claims.

In the following, let OPT ′ be the optimum value w.r.t. to the rounded weights.
Claim 1: c(S) ≥ OPT ′.

Proof: Since the dynamic program computes the optimum S for the profits c′, we know that
c′(S) = OPT ′. Since the profits c′i are obtained by rounding down ci we know that c(S) ≥ c′(S),
which gives the claim.

Claim 2: OPT ′ ≥ (1− ε)OPT .
Proof. Let S∗ be the solution with c(S∗) = OPT . We claim that c′(S∗) ≥ (1 − ε)c(S∗). And in
fact, the rounding can cost at most 1 per item hence

c′(S∗) ≥ c(S∗)− n ≥ c(S∗)− εc(S∗).

Here we used that c(S∗) ≥ max{ci | i ∈ {1, . . . , n}} = n
ε .

In fact, one can improve the running time by a factor of n. We can estimate the value of OPT
up to a factor of 2 and then scale the profits so that OPT ≈ n

ε . Then the analysis still goes through,

but we have C ≤ O(nε ) which improves the running time to O(n
2

ε ).
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