Problem Set 8

409 - Discrete Optimization

Spring 2022

Exercise 1 (10 points)
Let $G = (V,E)$ be an undirected graph. For $U \subseteq V$, let odd(U) be the number of connected components in $G \setminus U$ that have an odd number of vertices. Below is a schematic picture.

![Schematic picture of a graph](image)

a) In the example graph below, find a node set U so that odd$(U) > |U|$.

![Example graph](image)

Remark: Note that together with b), this proves that this particular graph does not contain a perfect matching.

b) Now consider an arbitrary graph $G = (V,E)$. Prove that if there is a set $U \subseteq V$ with odd$(U) > |U|$, then G does not contain a perfect matching.

Exercise 2 (10 points)
Let $G = (V,E)$ be a directed graph with non-negative edge cost $c : E \to \mathbb{R}_{\geq 0}$ and let $s,t \in V$ be two distinguished nodes. Moreover edges are labelled with one of three colors, i.e. we have a function $f : E \to \{ \text{red}, \text{green}, \text{blue} \}$. A red-green-blue walk is a sequence of edges $e_1, \ldots, e_k \in E$ with $e_i = (v_{i-1}, v_i)$ for $i \in \{1, \ldots, k\}$ so that the colors of the visited edges are red-green-blue-red-green-blue-red-... (more formally $f(e_{3j+1}) = \text{red}, f(e_{3j+2}) = \text{green}, f(e_{3j+3}) = \text{blue}$ for integers j). The cost of such a walk is $\sum_{i=1}^{k} c(e_i)$.
a) What is the minimum cost red-green-blue walk from \(s \) to \(t \) in the depicted instance? Here we label each edge \(e \) with the cost \(c(e) \) and the color \(f(e) \).

Hint: The cost should be 19.

b) Design a polynomial time algorithm for finding the minimum cost red-green-blue walk from \(s \) to \(t \) in a general graph \(G = (V,E) \). Explain the running time bound that you get. Argue why the algorithm is correct.

Hint: It might be worth reading again the algorithm to find \(M \)-alternating walks in Section 8 of the lecture notes.