
Lecturer: Thomas Rothvoss Due date: Friday, May 27, 2022, in class

Problem Set 7

409 - Discrete Optimization

Spring 2022

Exercise 1 (10 points)

Run the Branch & Bound algorithm to solve the following integer linear program

max 3x1 + x2

−2x1 +3x2 ≤ 6

10x1 +4x2 ≤ 27

x1 ≥ 0

x2 ≥ 1
2

x1,x2 ∈ Z

Also give the Branch & Bound tree.

Exercise 2 (10 points)

The Branch & Bound algorithm as we saw it in the lecture uses linear programming as a relaxation to

solve integer linear programs. Actually, the arguments behind the algorithm would work in different

settings where the “relaxation” is not in form of a linear program.

To keep the notation simple, we want to consider a slight variant of the TSP problem, which is

called TSP PATH. For the TSP PATH problem, the input is an undirected graph G = (V,E) (which

does not need to be a complete graph) with non-negative edge cost c : E → R≥0. The goal is to

compute a path P ⊆ E that visits each node exactly once (we allow any pair from V as end points)

while minimizing the cost c(P). Note that this problem is NP-complete. We want to design a variant of

the Branch & Bound algorithm to solve it. For a subset of edges E
′ ⊆ E, let MST (E ′) be the minimum

spanning tree in the subgraph (V,E ′). Recall that MST (E ′) can be computed in polynomial time using

Kruskal’s algorithm. For a set of edges C ⊆ E, we denote c(C) := ∑e∈C ce as the sum of its cost. The

algorithm for TSP PATH is now as follows:

(1) Set C
∗ as being undefined

(2) Initialize a stack with {E}

(3) WHILE stack is non-empty DO

(4) Take and remove an item (= an edge set) from the stack and call it E
′

(5) If the graph (V,E ′) is not connected, goto (3)

(6) Compute T := MST (E ′)

(7) IF T is a path and c(T)< c(C∗) (or C
∗ undefined) THEN update C

∗ := T and goto (3)

(8) IF c(T)≥ c(C∗) THEN goto (3)

(9) Let v ∈V be a node that is incident to at least 3 edges in T .

(10) Let {e1,e2,e3} ⊆ δ (v)∩T be 3 edges that are incident to v in T .

(11) Put the sets E
′ \{e1},E

′ \{e2},E
′ \{e3} on the stack

(12) Return C
∗

Answer the following:

a) How does the algorithm run on the following instance (edges labelled with e : c(e))

e1 : 1

e2 : 1

e3 : 1

e4 : 1

e5 : 1

e6 : 1

e7 : 2

b) Show that in general the algorithm computes an optimum solution to the TSP PATH problem.

In particular, if the optimum TSP path is still contained in E
′, then why is it also contained in

at least one of the edge sets that are added back to the stack in (11)? Also, why can we stop

searching within E
′ in step (8)?

c) Argue, why the algorithm runs at most 2 ·3m times through the WHILE loop, if m = |E| is the

number of edges in the original graph.

Hint: Give an upper bound of 3m on the number of leafs in the Branch & Bound tree.

