
Lecturer: Thomas Rothvoss Due date: Friday, April 22, 2022, on GradeScope

Problem Set 3

409 - Discrete Optimization

Spring 2022

Exercise 1 (8 points)

Consider the following directed graph G = (V,E) (edges are labelled with edge cost c(e)).

s

a

b

c

d

e

−3 −2 1

2

3

4

2

3 −2

a) Use the Moore-Bellman-Ford algorithm to compute the distances from s to each other node v

(call those values ℓ(v); you can use your favourite ordering for the edges; it suffices to give the

final outcomes ℓ(v)).

b) Use the labels ℓ(v) from a) as potentials π(v). In the above graph, label the nodes with their

potential and label the edges with their reduced costs. Are the potentials feasible? Is c conser-

vative?

c) Let cπ(e) be the reduced cost of edge e that you computed in b). Now run Dijkstra’s algorithm

with cost function cπ and source node a. Use the symbol ℓ′(v) to denote the computed a-v

distances. It suffices to give the final values of ℓ′(v).

d) How do you translate the values ℓ′(v) from c) into the actual a-v distances w.r.t. to the original

cost function c?

Exercise 2 (5 points)

Consider the following network (G,u,s, t) (edges e are labelled with capacities u(e)):

s

a

b

c

d

e

f

g

t

10

12

9

8

3

1

7

3

6

5

8

9

2

11

a) Run the Ford-Fulkerson algorithm to compute a maximum s-t flow. After each iteration draw

the current flow f and the corresponding residual graph G f . What is the optimum flow value?

b) For the optimum flow f that you computed, define S := {v ∈ V | v is reachable from s in G f }.

Which are the nodes in S and what is the value u(δ+(S)) of the cut?

Exercise 3 (7 points)

In this problem, we consider the single-source shortest paths problem on an important class of directed

graphs. Throughout this problem, G = (V,E) will denote a weighted directed graph containing no

directed cycles. We say that an ordering v1, . . . ,vn of the vertex set V is a topological sorted order for

G if x precedes y in the order whenever (x,y) is a directed edge of G.

a) Give an O(|V |+ |E|)-time algorithm for computing a topological sorted order of G. Prove that

your algorithm is correct and runs in O(|V |+ |E|) time. In order to attain the desired running

time, you may assume that, for a node u ∈ V of out-degree d, you can access all the outgoing

edges and corresponding edge weights in total time O(d). (For example, this assumption holds

when the input graph G is represented by adjacency lists.)

b) Fix a source vertex s. Give an O(|V |+ |E|)-time algorithm that computes ℓ(v) for all vertices

v ∈ V , where ℓ(v) is the minimum possible total weight along a directed path from s to v.

Again, prove that your algorithm is correct and has the desired running time. In order to attain

the desired running time, you may assume that, for a node u∈V of out-degree d, you can access

all the outgoing edges and corresponding edge weights in total time O(d). Hint: Your algorithm

should make “updates” similar to the updates in Moore-Bellman-Ford and Dijkstra. In order to

prove that ℓ(v) = d(s,v), you might consider proving the two inequalities ℓ(v) ≥ d(s,v) and

ℓ(v)≤ d(s,v) separately, as we did in the proof of the Moore-Bellman-Ford algorithm.

http://en.wikipedia.org/wiki/Adjacency_list

