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Abstract

We characterize the laminations that arise from conformal mappings onto those
planar John domains whose complements have empty interior. This generalizes the
well-known characterization of quasicircles via conformal welding. Our construction
of a John domain from a given lamination introduces a canonical realization of finite
laminations, and generalizes to some Hölder domains.

1 Introduction and Results

This paper deals with the question of characterizing those equivalence relations on the circle
that arise from conformal maps f of the unit disc onto simply connected plane domains,
where x and y are declared equivalent if f(x) = f(y) (assuming they exist as radial limits,
say). There are several motivations for this question, discussed at the end of this section.
While a complete characterization seems to be out of reach, this paper introduces tools that
allow for a characterization of a large and natural class of such laminations. Our approach
is heavily influenced by Chris Bishop’s approach to welding.

We define a Gehring tree T ⊂ C to be a dendrite (connected, locally connected, compact
without non-trivial simple loops) whose complement is a John-domain, see Section 2.2 for
details, equivalent definitions and properties. Prominent examples are the Julia sets of
semihyperbolic polynomials [9] such as z2 + i. Every smoothly embedded finite tree with
non-zero angles at the vertices, and every quasiconformal arc is a Gehring tree as well.
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By Caratheodory’s theorem, every compact, connected and locally connected subset T ⊂
C induces a lamination L of the disc D via the hydrodynamically normalized conformal map
fT : C \ D→ C \ T by setting

L = {(z, w) ∈ T× T : fT (z) = fT (w)}.

The term lamination will always refer to a closed and flat equivalence relation on T. Here it
closed means that the support of L, namely the set of endpoints z, w of the leaves (z, w) ∈ L,
is closed as a subset of T, and flat means that leaves do not intersect until their endpoints
are equivalent. It is maximal if there is no (z, w) /∈ L such that L∪{(z, w)} is a lamination.
and non-degenerate if all equivalence classes are totally disconnected. The main result of
this paper is the following characterization of Gehring trees in terms of their laminations, see
Figures 1.1 and 3.2, and see Section 2.1 for notation. It essentially proves an unpublished
conjecture of Chris Bishop and Peter Jones.

Theorem 1.1. A maximal, non-degenerate lamination L is the conformal lamination of a
Gehring tree if and only if it satisfies the following condition: There are constants C and
N such that for every point x ∈ T and every scale 0 < r < 1 there are pairs of disjoint
adjacent intervals Ij, I

′
j, j = 1, ..., n (possibly n = 1) with n ≤ N , uniformly perfect subsets

Aj ⊂ Ij, A
′
j ⊂ I ′j, and decreasing quasisymmetric homeomorphisms φj : Aj → A′j+1 such that

I1 ∩ I ′1 = {x}, |I1| �C r, |Ij| �C |I ′j| �C diamAj �C diamA′j for all j (A′n+1 := A′1), and
such that (t, φj(t)) ∈ L for all t ∈ Aj. This is quantitative in the sense that all constants
(C,N, quasisymmetry, uniform perfectness) are bounded by the constant of L and vice-versa.

Figure 1.1: The situation of Theorem 1.1 near a triple point, see also Figure 3.2.

It follows from P. Jones’ removability theorem [19] that the dendrite of Theorem 1.1 is
unique up to a linear map: Indeed, given any two realizations f and g of the same lamination
L, the conformal map g ◦ f−1 of the complement of the first dendrite has a homeomorphic
extension to the plane and hence is linear. By the Jones-Smirnov removability theorem [20],
this argument generalizes to dendrites whose complement is a Hölder domain.
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The strategy of the proof can be summarized as follows. John domains can be viewed
as one-sided quasidiscs (see Section 2.2) and have good localization properties, see [19] for
important examples. For the necessity of the condition, we give a geometric construction
(Proposition 3.5) of a localization that provides a decomposition of an annulus into a chain
of boundedly many topological squares as in Figure 3.2. The boundaries of two consecutive
squares are connected through a subset of the tree. Typically, the harmonic measures of
different “sides” of the tree are typically mutually singular, in other words the set of bi-
accessible points is of harmonic measure zero. This is dealt with by proving the existence
of a large set (in the sense of potential theory) of biaccessible points. Another difficulty
is that the size alone of the set of biaccessible points provides no information: Indeed, in
the classical welding problem (trees without branching) every point is biaccessible. What is
needed in addition is control over the quality of the welding. We show that there is a large
subset of the set of biaccessible points on which the welding is quasisymmetric. This relies
on a result of Väisälä that conformal maps between John domains are quasisymmetric in the
internal metric, combined with a construction of a subset of the tree where the euclidean
and the internal metric are comparable.

The proof of the sufficiency relies on the following key observation (Proposition 3.2): In
order to control the conformal modulus of the welding of two squares along an edge, it is
enough to require quasisymmetry of the glueing on a sufficiently large subset (heuristically,
this can be viewed as a generalization of the fact that glueing two Loewner spaces isomet-
rically along their boundaries yields a Loewner space). We will not use Proposition 3.2
explicitely, but its proof illustrates several features of our proof of the theorem and can be
viewed as a toy case.

Next, we construct an approximation Ln of finite laminations to the given lamination
L. Another key idea is to realize any finite lamination by a canonical domain that we call
a balloon animal, Proposition 4.1 and Figure 4.1: It is characterized by the property that
harmonic measure at ∞ and the harmonic measures of the bounded components Gi are
linearly related,

dω∞
dωi

≡ const on ∂Gi.

This provides the tool for estimating the conformal modulus of the annuli obtained from
glueing a chain of squares along (subsets of) their edges: Roughly speaking, loops surround-
ing the annulus described above correspond to loops that pass through the balloons in the
discrete approximation, and the defining property of the ballon animal allows to pass infor-
mation from the complement of a ballon (measured by ω∞) to the interior of the balloon
(measured by ωi) without distortion. It is then fairly standard to translate such modulus
estimates into analytic control.

While John domains are “tame” at every scale, the larger class of Hölder domains has
similar regularity properties but allows for more pathological behaviour (for instance bottle-
necks). For instance, domains bounded by SLE-like paths are Hölder domains but not John
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domains, almost surely. Similarly, the dendrites arising as Julia sets of quadratic polynomials
for parameters c in the boundary of the Mandelbrot set M are Hölder domains but not John
domains, almost surely with respect to harmonic measure of the complement of M. For this
reason it could be interesting to note that the proof of the sufficiency of the condition easily
generalizes to Hölder domains. Say that a lamination L has (C,N)−good glueing near x at
scale r if the condition of Theorem 1.1 is satisfied.

Corollary 1.2. If there are constants C,N and µ such that a maximal, non-degenerate
lamination L has (C,N)−good glueings with frequency µ,

#{k : 1 ≤ k ≤ m,L has (C,N)− good glueing near x at scale 2−k}
m

≥ µ for all x and m,

then L is the conformal lamination of a dendrite whose complement is a Hölder domain,
quantitatively.

It would be interesting to find a characterization of Hölder domains in terms of their lami-
nation. Another corollary is as follows:

Corollary 1.3. If L is a maximal, non-degenerate lamination and if L′ ⊂ L, then L′ is
conformal and there is a conformal map onto a John domain realizing L′.

We will now discuss some motivations and open questions.

Conformal and quasiconformal mapping:

Conformal welding of Jordan curves plays an important role in geometric function theory.
The problem of conformally realizing a given lamination is a natural generalization. Without
any regularity assumption on the lamination, an understanding seems to be out of reach,
even in the simpler classical case of Jordan curves. On the other hand, quasisymmetric
homeomorphisms of the circle form an important, natural, large and well-studied class that
admit welding. Theorem 1.1 could be viewed as identifying the most natural generalization
to laminations, at least from the quasiconformal viewpoint.

Don Marshalls zipper algorithm [25] (see also [26]) provides numerical solutions to con-
formal welding problems and is remarkably accurate, particularly in the setting of quasisym-
metric weldings. In the forthcoming [27], we describe a closely related zipper algorithm that
allows to numerically approximate conformal realizations of laminations, and give applica-
tions to Shabat polynomials. The numerical accuracy of Don Marshall’s implementation
of this algorithm is most remarkable. It seems reasonable to believe, and is supported by
the numerical computations for trees with thousands of edges discussed in [27], that the
algorithm converges at least for Gehring trees.

Complex dynamics:
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Beginning with Thurston [36] and Douady-Hubbard [11], conformal laminations of Julia sets
of quadratic polynomials have been studied and used to give combinatorial models of both
Julia sets and the Mandelbrot set. The question which laminations allow for a conformal
realization has been raised in numerous places and has been identified as difficult, see for
instance the comments in [10] and [35]. Some results about existence in a setting somewhat
dual to ours, namely that of small support of L (logarithmic capacity zero of the set of
endpoints) can be found in the Ph.D. theses [23] and [15]. In the setting of quadratic Julia
sets, it has been proved that the set of bi-accessible points is always of harmonic measure zero
[38],[35] and even of dimension less then one [28], except for the Tchebyscheff polynomial
z2 − 2. In a different direction, Carleson, Jones and Yoccoz [9] have shown that the domain
of attraction to∞ is a John-domain if and only if the polynomial is semi-hyperbolic, namely
the critical point 0 is non-recurrent (and there is no parabolic point). The most prominent
examples are the post-critically finite polynomials such as z2 + i, where the critical point
is pre-periodic. The conditions of Theorem 1.1 can be verified directly in these important
cases: With Peter Lin [24] we have given a combinatorial description of semi-hyperbolicity
and prove

Theorem 1.4. The lamination of a combinatorially semi-hyperbolic quadratic polynomial
satisfies the condition of Theorem 1.1, hence the Julia set is a Gehring tree.

In fact, in this case the uniformly perfect sets can be chosen as linear Cantor sets, and
the quasisymmetric homeomorphisms are linear maps. As a corollary, we obtain a new proof
of the Carleson-Jones-Yoccoz theorem (in the quadratic setting).

In [17], Hubbard and Schleicher gave a proof of convergence of the spider-algorithm in
the periodic case of critically finite quadratics. In [24] we relate the spider-algorithm to the
balloon animals and obtain as another corollary

Corollary 1.5. The Hubbard-Schleicher spider-algorithm converges for postcritically finite
quadratic polynomials.

Probability theory

A main motivation comes from potential applications to questions related to random
maps originating in probability theory. Every finite (ordered) tree has an embedding in the
plane, unique up to linear maps, as a balanced tree in Bishop’s terminology [8]. Balanced
trees are related to Shabat polynomials and are special cases of Grothendieck dessin d’enfant:
There is a polynomial whose only finite critical values are 0 and 1 such that the preimage
p−1([0, 1]) is an embedding of the combinatorial tree. They are of interest to different groups
of mathematicians, partly because of the faithful action of the absolute Galois group of the
rationals on dessins, and partly because of the challenges posed by their computations. We
are interested in large random trees. The term balanced refers to the fact that each edge has
the same harmonic measure at infinity, and the harmonic measures on both sides of each
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edge are identical. Consequently, balanced trees realize very special laminations, namely
those that are associated with non-crossing partitions of the 2n−gon, see [8],[6] and [27].

Recent groundbreaking progress on the mathematical side of quantum gravity, partic-
ularly the convergence of scaled large random planar maps to the Brownian map as the
number of faces tends to infinity (Le Gall [22], Miermont [29]) and the work of Miller and
Sheffield on the relation of the Brownian map to Liouville Quantum Gravity (see [30] and
the references therein), suggest that conformal realizations of large or infinite random trees
are of interest, and that a conformal structure of the Brownian map can be thought of as
the conformal mating of two independent random trees. It has been asked by Le Gall (oral
communication) if the Brownian lamination is conformal, see [27] for simulations. We believe
that even more is true:

Conjecture 1.6. The Brownian lamination L is conformal, and the associated conformal
map fL is Hölder continuous with probability one. It is the distributional limit of the uniform
balanced trees on n edges as n→∞.

We hope that Theorem 1.1 is a step towards a proof of this conjecture, and believe that
the methods developed in this paper will be useful in less regular settings.
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2 Preliminaries

In this section we collect definitions and facts about John domains, quasisymmetric maps,
logarithmic capacity, conformal modulus and uniformly perfect sets, as can be found for
instance in the monographs [1], [2], [4], [12], [16], [33]. We also prove a few technical results
that will be needed later on, particularly Proposition 2.12. The expert may skip this section
and return to these results when needed.

2.1 Notation

Throughout this paper we will use the following notation:

C = C ∪ {∞} is the extended complex plane, D is the (open) unit disc, ∆ = C \D, T = ∂D
the unit circle. Dr(z) = D(z, r) is the disc of radius r centered at z, Cr(z) = ∂Dr(z), and
Cr = ∂Dr(0).

We denote line segments by [a, b], arcs (intervals) on T by (a, b), and geodesics in hyper-
bolic domains by < a, b >, and the length of a line segment or arc by |I|.

We write a � b and sometimes more explicitely a �C b to designate the existence of a constant
C such that 1/C ≤ a/b ≤ C. We sometimes say that a statement holds quantitatively if the
associated parameters (domain constants etc.) only depend on the parameters associated
with the data.

2.2 John domains, quasisymmetric maps and Gehring trees

A connected open subset D of the Riemann sphere is a John-domain if there is a point
z0 ∈ D (the John-center) and a constant C (the John-constant) such that for every z ∈ D
there is a curve γ ⊂ D from z0 to z such that

dist(γ(t), z) ≤ Cdist(γ(t), ∂D)

for all t. If ∞ ∈ D, then z0 =∞. An equivalent definition ([33]) is that

(2.1) diamD(σ) ≤ C ′ diamσ

for every crosscut σ of D, where D(σ) denotes the component of D \σ that does not contain
z0. Moreover, it is enough to consider crosscuts that are line segments.

John domains were introduced in [18] and are ubiquitous in analysis. Simply connected
planar John domains can be viewed as one-sided quasidiscs. Indeed, a Jordan curve is
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a quasicircle if and only if both complementary components are John domains. Our main
reference is the exposition [31] of Näkki and Väisälä. Important work related to John domains
can be found in [3],[19],[9],[31],[37] and a large number of references in these works. A planar
dendrite is a compact, connected, locally connected subset T of the plane C with trivial
fundamental group.

Definition 2.1. A Gehring tree is a planar dendrite such that the complement is a John-
domain.

Gehring trees are easily described as planar dendrites built from quasiconformal arcs, see [2],
[4] and [16] for basic definitions and an introduction to quasiconformal maps. A K−quasiarc
is the image of a straight line segment under a K−quasiconformal homeomorphism of the
plane. For every arc γ and all x, y ∈ γ, denote γ(x, y) the subarc with endpoints x, y.
Quasiarcs are characterized by Ahlfors’-condition

(2.2) diam γ(x, y) ≤ K|x− y| for all x, y,

see [13] for a wealth of properties and characterizations of quasiconformal arcs and discs.

Proposition 2.2. A dendrite T is a Gehring-tree if and only if there is K such that every
subarc α ⊂ T is a K−quasiarc.

This follows from the well-know fact [31] that the complement of a John disk is of bounded
turning. We give a simple direct proof:

Proof. If α ⊂ T is a subarc and x, y ∈ α, then [x, y]\T is a collection of intervals σj = [xj, yj]
that are crosscuts of D = C \ T. It is easy to see that

α ⊂ [x, y] ∪
⋃
j

D(σj)

so that α satisfies the Ahlfors condition by (2.1).

Conversely, if T is a tree consisting of K−quasiarcs, and if [x, y] is a crosscut of D = C \ T,
then the outer boundary of D([x, y]) is [x, y] ∪ T (x, y), and (2.1) follows from the quasiarc
property of T (x, y).

The notion of quasisymmetry is a generalization of quasiconformality to the setting of metric
spaces, see [16]. An embedding f : X → Y of metric spaces (X, dX) and (Y, dY ) is qua-
sisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such that dY (f(x), f(z)) ≤
η(t)dY (f(y), f(z)) whenever dX(x, z) ≤ tdX(y, z).

If D ( Ĉ is open and connected, the internal metric is defined as

δD(x, y) = inf
γ

diam(γ),
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where the infimum is over all curves γ ⊂ D with endpoints x and y. If ∂D is locally connected,
or equivalently if a conformal map f from the disc onto D has a continuous extension to
D, then the completion of (D, δD) coincides with the completion of D via the prime end
boundary, and f extends to a homeomorphism between D and this completion. For instance,
if D is a slit disc, then both sides of the slit give rise to different points in the closure of
(D, δD). John domains are characterized by the quasisymmetry of this extension:

Theorem 2.3 ([31], Section 7). A conformal disc D with ∞ ∈ D is a c−John domain if
and only if the conformal map f : ∆ → D that fixes ∞ is quasisymmetric in the internal
metric. Here η depends only on c and vice versa.

John domains are intimately related to the doubling property for harmonic measure. We will
use the following characterization. The proof in ([33], Theorem 5.2) for bounded domains
can easily be modified to cover our situation.

Theorem 2.4. Let f : ∆ → G be a conformal map fixing ∞. Then G is a John domain if
and only if there is a constant β > 0 such that

diam f(A) ≤ 1

2
diam f(I)

whenever A ⊂ I ⊂ T are arcs of length |A| ≤ β|I|.

Finally, we will need the following result of P. Jones, [19],[31].

Lemma 2.5. If D is a John domain, f : D → D a conformal map sending 0 to the John
center, and if D′ ⊂ D is a John domain, then f(D′) is a John domain, quantitatively.

2.3 Logarithmic capacity, conformal modulus and uniformly per-
fect sets

Throughout the remainder of this section, A will be a compact subset of C. If A posesses a
Green’s function gA(z), its logarithmic capacity capA can be defined by the expansion

gA(z) =

∫
A

log |z − w|dω∞(w)− log(capA) = log |z| − log(capA) +O(
1

|z|
),

where ω∞ is the harmonic measure of C \ A at ∞. Important examples are capB(x, r) = r
and cap[a, b] = |b − a|/4. The capacity of non-compact sets is defined as the supremum of
the capacities of compact subsets.

Capacity and harmonic measure are quantitatively related as follows: If A ⊂ D1/2(0) and if
|z| = 1, then

(2.3) ωz(A,D2(0) \ A) � 1/log
1

capA
,
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see Theorem 9.1 in [12].

We will also need the subadditivity property of capacity: If E = ∪En is of diameter ≤ 1,
then

1/ log
1

capE
≤
∑
n

1/ log
1

capEn
.

The conformal modulus M(Γ) of a family of curves Γ is an important conformal invariant,
see[1],[12],[33]. It is defined as

M(Γ) = inf
ρ
ρ2dxdy

where the infimum is over all admissable metrics ρ, namely all Borel measurable functions ρ
with the property that

∫
γ
ρ|dz| ≥ 1 for all γ ∈ Γ.

The proof of Theorem 1.1 relies on estimates of the modulus of continuity of some conformal
maps. We will employ a standard technique to obtain such estimates. It is based on the
following relation between the conformal modulus of an annulus and its euclidean dimensions.
Consider a topological annulus A ⊂ C with boundary components A1, A2 and set r(A) =
min(diamA1, diamA2), R(A) = dist(A1, A2). The conformal modulus M(A) is defined as
the modulus of the family of all closed curves γ ⊂ A that separate A1 and A2. For example,
M(A(x, r, R)) = log(R/r)/2π.

Lemma 2.6. There is a constant C such that

|M(A)− 1

2π
log(1 +

R(A)

r(A)
)| ≤ C.

See for instance ([34], Lemma 2.1) for a discussion and references. We will use it in combi-
nation with the subadditivity property of the modulus:

Lemma 2.7. If Aj are disjoint annuli that separate the boundary components of an annulus
A, then M(A) ≥

∑
jM(Aj).

We will also use Pfluger’s theorem which quantifies a close connection between capacity and
modulus:

Theorem 2.8. If E ⊂ ∂D is a Borel set and if ΓE is the set of all curves γ ⊂ D joining the
circle Cr to the set E, then

capE � e−π/M(ΓE)

with constants only depending on 0 < r < 1.

Specifically, we will use the following variant whose proof we leave as an exercise: If D =
[0, X] × [0, 1] is a rectangle, if E ⊂ {X} × [0, 1] is Borel, and if ΓE is the family of curves
that join {0} × [0, 1] to E in D, then

(2.4) capE ≤ C(X)e−π/M(ΓE).
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The compact set A is called uniformly perfect if there is a constant c > 0 such that no
annulus A(x, cr, r) with r < diamA separates A : If A ∩ A(x, cr, r) = ∅, then A ⊂ B(x, cr)
or A∩B(x, r) = ∅. An equivalent definition is the existence of a different but quantitatively
related constant c > 0 such that

capA ∩B(x, r) ≥ cr for all x ∈ A and r < diamA.

See Exercise IX.3 in [12] for 13 other equivalent definitions.

We will only deal with uniformly perfect subsets of the real line. There is an interesting
connection between uniformly perfect sets and John domains due to Andrievskii [3]: If
A ⊂ [−1, 1] has positive capacity, then f = egA+ig∗ is a conformal map of C \ [−1, 1], where
g∗ is a harmonic conjugate of gA, chosen to be real on [1,∞) such that f(z) = f(z). The
complement of D = f(C \ [−1, 1]) consists of the closed unit disc, together with a collection
of pairs of radial segments [eitj , rje

itj ]∪ [e−itj , rje
−itj ]. Each pair corresponds to a component

interval of [−1, 1] \ A. With this setup, Andrievskii has shown

Theorem 2.9 (Andrievskii, [3]). The set A ⊂ [−1, 1] is uniformly perfect if and only if the
domain f(C \ [−1, 1]) is a John domain.

His proof shows that this is quantitative, namely the uniform perfectness constant and the
John constant depend only on each other.

In Section 4 we will need the technical Proposition 2.12. We place it here because it fits
logically, would disrupt the main proof later, and also because a simple proof can be based
on Andrievskii’s theorem. But since our proof uses the Lemma 3.9 below (only the special
case N = 1 is needed here), the cautious reader could skip ahead and read Section 3 first. Or
even better just skip ahead to Section 3, and return later. The first lemma roughly says that
no matter how a uniformly perfect set U is partitioned by disjoint intervals, the capacity
density is large “in many places”.

Lemma 2.10. For every c there exist c′, γ such that the following holds: If A ⊂ [a, b] is
c-uniformly perfect with a ∈ A and b ∈ A, if [a, b] = ∪jIj is a partition into intervals with
disjoint interiors, and if

J = {j : cap(Ij ∩ A) ≥ γ|Ij|},
then

A ∩
⋃
j∈J

Ij

contains a c′−uniformly perfect set of diameter ≥ c′|b − a|, and consequently is of capacity
comparable to |b− a|.

The sets An = ∪nj=1[j/n, j/n + 1/n2] and the partitions Ij,n = [j/n, j + 1/n] show that the
assumption of uniform perfectness is essential: Indeed, the capacity of An is bounded away
from zero, while the capacity density in each Ij,n is 1/n.
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Proof. We may assume that [a, b] = [−1, 1] and consider the conformal map f and domain D
of Andrievskii’s theorem. Denote rIj the interval with same center as Ij and length |rIj| =
r|Ij|. If (1 − ε)Ij ∩ A 6= ∅, then cap(Ij ∩ A) ≥ c ε

2
|Ij|. Consequently, if cap(Ij ∩ A) < c ε

2
|Ij|,

then (1 − ε)Ij is contained in a component Îj of [−1, 1] \ A, and by quasisymmetry of f
in the internal metric, Theorem 2.3, we have diam f(Ij) ∩ T < δ(rj − 1). Thus f(Ij) ∩ T is
contained in the “shadow” of size δ(rj − 1) cast by the “trees” [eitj , rje

itj ] and [e−itj , rje
−itj ].

Since D is a John-domain, the set S = {(tj, rj − 1)} satisfies the assumptions of the “sunny
Lemma” 3.9, and for ε small enough there is a ĉ−uniformly perfect set F ⊂ T contained in

T \
⋃
j

[e±tj−δ`j , e±tj+δ`j ] , `j = rj − 1.

The internal distance of D and the euclidean distance are comparable on F (this is easy to
prove directly using the special form of D, but can also be proven in the same way as Lemma
3.10 below). Thus the preimage f−1(F ) is uniformly perfect and of large diameter, hence of
capacity bounded away from 0.

The next lemma goes in the opposite direction. It says that if a set of small capacity is
enlarged by replacing regions of relatively large density with intervals, then the capacity
remains small.

Lemma 2.11. For every ε > 0 and η > 0 there is δ such that the following is true: If
E ⊂ [0, 1] has

capE ≤ δ

and if
J = {j : cap(Ij ∩ E) ≥ η|Ij|},

then
cap
(⋃
j∈J

Ij ∪ E
)
≤ ε.

Proof. Approximate E by a compact subset A such that Aj = Ij ∩ A satisfies capAj ≥
η/2|Ij| for j ∈ J . If Dj denotes the disc of radius |Ij| centered at the midpoint of Ij, then
ωz(Aj, 2Dj \ Aj) & 1/ log(1/c) for z ∈ ∂Dj by (2.3) and hence ωz(Aj, D2(0) \ Aj) ≥ c′ for
z ∈ ∂Dj by the maximum principle. It follows that

1

c′
ωz(A, D2(0) \ A) ≥ 1 ≥ ωz(I, D2(0) \ I),

for z ∈ ∪j∈J ∂Dj, where A = ∪j∈JAj and I = ∪j∈J Ij. By the maximum principle, the same
inequality holds for |z| = 1, and the lemma follows from (2.3) together with the subadditivity
of 1/ log(1/ cap).
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The conclusion of Lemma 2.10 regarding capacity remains true if a set of small capacity
E is removed from U . The following generalization is taylored to our application in the
proof of Theorem 1.1. Roughly speaking, we show that there is always a large capacity
density simultaneously somewhere in the domain and the range of a quasisymmetric map of
a uniformly perfect set.

Proposition 2.12. For every c > 0 and K > 0 there are µ, ν > 0 such that the follow-
ing holds: If U,U ′ ⊂ [0, 1] are c−uniformly perfect sets of diameter ≥ c, if φ is a K−
quasisymmetric automorphism of [0, 1], if

[0, 1] =
⋃
r

Jr =
⋃
r

J ′r

are two partitions into disjoint intervals such that

φ(U ∩ Jr) = U ′ ∩ J ′r

for all r, and if E,E ′ ⊂ [0, 1] have capE < µ, capE ′ < µ, then there is an index r such that

cap(Jr ∩ U \ (E ∪ φ−1(E ′)) ≥ ν|Jr|

and
cap(J ′r ∩ U ′ \ (E ′ ∪ φ(E)) ≥ ν|J ′r|.

Notice that we do not assume the endpoints of the intervals Jr to be in U or to be mapped
to the endpoints of J ′r. Under such an assumption, the capacity density of U in Jr would be
large if and only if the density of U ′ in J ′r is large and the proof would simplify.

Proof. At the expense of different constants we may assume 0, 1 ∈ U∩U ′. Apply Lemma 2.10
with A = U and obtain constants c′, γ′ and a c′−uniformly perfect set Û ⊂ U of diameter
≥ c′ such that with

J = {r : cap(Jr ∩ U) ≥ γ′|Jr|}

we have
Û ⊂ U ∩

⋃
r∈J

Jr.

Since φ is quasisymmetric, φ(Û) is uniformly perfect and of large diameter as well. Again
by Lemma 2.10 there are c′′ and γ′′ depending only on c and K such that with

Ĵ = {r : cap(J ′r ∩ φ(Û)) ≥ γ′|J ′r|}

the sets
Û ′ = φ(Û) ∩

⋃
r∈Ĵ

J ′r and φ−1(Û ′)
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have large capacity too, min(cap Û ′, cap Û , capφ−1(Û ′)) ≥ c′′. Here we have used the fact
that quasiconformal maps quasi-preserve capacity [1]. Notice Ĵ ⊂ J and for every r ∈ Ĵ ,
both U and U ′ have large capacity density

≥ γ = min(γ′, γ′′)

in Jr and J ′r. To deal with the exceptional sets E and E ′, let

I = {r : cap(Jr ∩ (E ∪ φ−1(E ′))) >
γ

2
|Jr|}, I ′ = {r : cap(J ′r ∩ (E ′ ∪ φ(E))) >

γ

2
|J ′r|}

and consider
E = E ∪ φ−1(E ′) ∪

⋃
r∈I

Jr , E
′
= E ′ ∪ φ(E) ∪

⋃
r∈I′

J ′r.

By subadditivity and quasiconformality, the sets E ∪ φ−1(E ′) and E ′ ∪ φ(E) have small
capacity δ controlled by µ and K. By Lemma 2.11 we can choose µ so small that capE ∪
φ−1(E

′
) < c′′/2. Consequently

capφ−1(Û ′) \ (E ∪ φ−1(E
′
)) > 0

and in particular this set is non-empty. Any r for which Jr has non-empty intersection
with this set will satisfy the conclusion of the proposition: Indeed, if Jr ∩ φ−1(Û ′) 6= ∅,
then r ∈ J \ I so that the density of U \ (E ∪ φ−1(E ′)) in Jr is bounded from below by
subadditivity, and similarly r ∈ Ĵ \ I ′ which implies that the density of U ′ \ (E ′ ∪ φ(E)) in
J ′r is bounded from below.

3 Gehring trees have quasisymmetric weldings

3.1 Conformal rectangles and Glueing along Cantor sets

In this section we will describe one of the central ideas of the paper, namely a condition on
the glueing of two rectangles under which the conformal modulus stays controlled.

Definition 3.1. A C−rectangle is a triple (D,A,B), where D = [0, X]× [0, 1] is a rectangle
with 1/C ≤ X ≤ C, where A (resp. B) is a C−uniformly perfect subset of the left (resp.
right) boundary {0}×[0, 1] (resp. {X}×[0, 1]), and where diamA ≥ 1/C and diamB ≥ 1/C.
Any conformal image onto a simply connected domain is called a conformal C−rectangle,
where now A and B have to be interpreted as sets of prime ends.

Consider two rectangles D1 = [0, X1] × [0, 1] and D2 = [0, X2] × [0, 1] together with their
left boundaries Lj = {0} × [0, 1] and their right boundaries Rj = {Xj} × [0, 1], j = 1, 2.
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It is well-known that, if ϕ is a quasisymmetric homeomorphism between R1 and L2, then
conformal welding of D1 and D2 via ϕ yields a conformal rectangle of modulus bounded
in terms of X1, X2 and the quasi-symmetry constant. More precisely, there are conformal
rectangles D′1, D

′
2 with disjoint interiors and conformal maps fj : Dj → D′j sending corners

to corners such that f1 = f2 ◦ ϕ on the right boundary R1, and such that D′1 ∪ D′2 is a
rectangle [0, X]× [0, 1] of modulus X between X1 +X2 and M(X1, X2, K), see Figure 3.1.

Figure 3.1: Conformal welding of two rectangles

The following generalization shows that one can give up knowledge of the welding homeo-
morphism, as long as one has control on a sufficiently large subset.

Proposition 3.2. If (D1, A1, B1) and (D2, A2, B2) are C−rectangles and if ϕ : B1 → A2

is an increasing K−quasisymmetric homeomorphism, then for any homeomorphic extension
Φ : R1 → L2 of ϕ that admits conformal welding, the welded region is a C ′−rectangle with
constant only depending on C and K.

Notice that the resulting modulus only depends on ϕ and not on the particular extension Φ.
The proposition serves the purpose of illustrating one of the key points of our approach, but
will not be used directly in the proof of our main result. The observant reader will notice
that we only use much weaker assumptions, namely that the capacities of B1 and A2 are
bounded away from zero, and that φ maps sets of small capacity to sets of small capacity.

Proof. Since B1 and A2 are uniformly perfect, it is easy to see that ϕ has a quasisymmetric
extension Φ0 to R1 and therefore is Hölder continuous. Let ρ be admissable for the family
of curves that join the vertical sides of the rectangle D′1 ∪D′2, and let

ρ1(z) = ρ(f1(z))|f ′1(z)| , ρ2(z) = ρ(f2(z))|f ′2(z)|

denote the pullbacks of ρ|Di . We wish to find a lower bound for∫
D′1∪D′2

ρ2dxdy =

∫
D1

ρ2
1dxdy +

∫
D2

ρ2
2dxdy.
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Let ε be small and suppose that
∫
D1
ρ2

1dxdy < ε3. Let E1 be the set of those points x ∈ R1 for
which there does not exist a curve γ of ρ1−length < ε joining L1 to x. Then ρ1/ε is admissable
for the family ΓE1 of curves joining L1 to E1 in D1, and it follows that M(ΓE1) < ε3/ε2 = ε.
By Pfluger’s theorem, capE1 . eπ/ε. By the Hölder continuity of ϕ, the capacity of ϕ(E1)
is small too. Similarly, the set E2 ⊂ L2 of points that cannot be joined to R2 by a ρ2 short
curve has small capacity if

∫
D2
ρ2

2dxdy < ε3, and again by Hölder continuity, cpϕ−1(E2)

is small too. By subadditivity of capacity, B1 \ (E1 ∪ ϕ−1(E2)) has positive capacity and
hence is non-empty if ε is small enough. If x ∈ B1 \ (E1 ∪ ϕ−1(E2)), there are curves γ1

joining L1 to x and γ2 joining R2 to ϕ(x), both of ρi−length < ε. Consequently the curve
γ = f1(γ1) ∪ f2(γ2) has ρ−length < 1 is ε < 1/2, and ρ is not admissable.

For later use, we record the following technical lemma. Roughly speaking it says that in
every conformal metric on (D,A,B) most points of A can be joined to most points of B by
a short curve. Consider a rectangle D = [0, X]× [0, 1] with 1/C ≤ X ≤ C and again denote
L = {0} × [0, 1] the left and R = {X} × [0, 1] the right boundary.

Lemma 3.3. If ρ0 ≥ 0 is a measurable function on D of ρ0−area ≤ 1,∫
D

ρ2
0dxdy ≤ 1,

then for every λ > 0 there are subsets EL ⊂ L and ER ⊂ R with

(3.1) cap(EL) ≤ C ′e−πλ
2

, cap(ER) ≤ C ′e−πλ
2

such that for every x ∈ L\EL and every y ∈ R\ER there is a curve γx,y ⊂ D with endpoints
x and y of bounded ρ-length ∫

γx,y

ρ0|dz| ≤ 2λ,

where C ′ depends only on C.

Proof. Decompose the top edge as [0, X] × {1} = TL ∪ TR with TL = [0, X/2] × {1} and
TR = [X/2, 1]×{1}. Denote EL the set of those x ∈ L for which there does not exist a single
curve γ ⊂ D of ρ−length ≤ λ joining x to TR, and similarly denote ER denote the set of
those y ∈ R without a curve of ρ−length ≤ λ joining y and TL. If Γ denotes the family of all
curves γ ⊂ D that join a point of EL to TR, then ρ0 = ρ/λ is admissable for Γ and it follows
that the modulus is bounded by

M(Γ) ≤ 1

λ2
.

By Pfluger’s theorem (2.4) we have capEL ≤ C ′e−πλ
2
, and similarly capER ≤ C ′e−πλ

2
. Now

if x ∈ L \ EL and y ∈ R \ ER, then there are curves γx from x to TR and γy from y to
TL of ρ−length bounded by λ, and since these curves have to intersect there exists a curve
γx,y ⊂ γx ∪ γy joining x and y of length ≤ 2λ.
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The same proof applies to the following variant. We leave the details to the reader.

Lemma 3.4. If ρ0 ≥ 0 is a measurable function on D of ρ0−area ≤ 1, then for every λ > 0
there are subsets E ⊂ ∂D ∩H+ and E ′ ⊂ ∂D ∩H− with

(3.2) cap(E) ≤ C ′e−C
′′λ2 , cap(E ′) ≤ C ′e−C

′′λ2

such that for every x ∈ ∂D\E and every y ∈ ∂D\E ′ there is a curve γx,y ⊂ D with endpoints
x and y of bounded ρ-length ∫

γx,y

ρ0|dz| ≤ λ,

where C ′ and C ′′ are absolute constants.

3.2 Localization of Gehring trees

The main result of this section is the following decomposition of annuli centered at a Gehring
tree into conformal rectangles that are cyclically glued as in Proposition 3.2.

Proposition 3.5. For every Gehring tree T there are constants K1, N,M and C (depending
only on K(T )) such that for every p ∈ T and every 0 < r < diamT/C there are disjoint
conformal (M,C)−rectangles (Di, Ai, Bi), i = 1, 2, ..., n where

(3.3) n ≤ N,

(3.4) Di ⊂ (C \ T ) ∩ {z : r < |z − p| < Cr},

(3.5) Ai, Bi ⊂ T, and Ai+1 = Bi

(3.6) the “horizontal sides” of the Di are geodesics of C \ T,

(3.7) The set ∪ni=1 Di separates 0 and ∞.

Moreover, for every i, if (D′i, A
′
i, B

′
i) denotes a rectangle conformally equivalent to (Di, Ai, Bi),

then

(3.8) there is a K1 − quasisymmetric homeomorphism between B′i and A′i+1.

Notice that the index i+1 in (3.5) and (3.8) has to be interpreted mod n, so that Dn glues
back to D1. In particular, if n = 1, the two vertical sides of D1 are glued together.
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Figure 3.2: The conformal rectangles Di of Proposition 3.5. The dashed boundary compo-
nents are hyperbolic geodesics of Ĉ \ T and correspond to the horizontal boundary of the
rectangles.

The proof of Proposition 3.5 requires some preparation. Assume p = 0 ∈ T , diamT > R,
and denote A(r, R) = {r < |z| < R}. Fix a connected component D of A(r, R) \ T. We say
that D crosses A(r, R) if D ∩Cr and D ∩CR contain non-trivial intervals. The boundary of
D contains two arcs ∂`D and ∂hD of T joining Cr and CR, where ` stands for “lower” and
h for “higher” in logarithmic coordinates. They can be defined formally as follows: Since
diamT > R, the closed set T ∪ Cr ∪ CR is connected and D is simply connected, so that a
continuous branch of log z is well-defined on D. There is an arc γ′ = log γ in logD joining
the lines x = log r and x = logR. The set {log r < x < logR} \ logD has two unbounded
components. Both unbounded components have boundary consisting of a crosscut σ together
with two half-infinite vertical lines. Denote σ` resp. σh the lower resp. higher of these two
crosscuts (they are disjoint because they belong to different complementary components of
γ′). Finally denote ∂`D and ∂hD the images of σ` and σh under the exponential function.
Note that they can be disjoint, identical, or neither.

The following lemma is the key to the inductive construction of the conformal rectangles.
Consider three disjoint curves γj that crosses and annulus A(r1, r2). We say that γ1 lies
between γ2 and γ3 if the endpoints of γ2, γ1, γ3 are positively oriented on the circle. Thus
γ1 either crosses between γ2 and γ3, or between γ3 and γ2, but not both. We use the same
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terminology for connected sets.

Lemma 3.6. For every M > 0 there exists a constant C = C(M,K(T )) such that the
following holds: If D1 and D2 are not necessarily distinct components of A(r, R) \ T that
cross A(r, R) and if ∂hD1∩∂`D2 does not contain an arc of diameter > Mr, then there exists
a component D3 crossing A(Cr,R) between ∂hD1 and ∂`D2.

Proof. If ∂hD1 ∩ ∂`D2 does not contain an arc of diameter > Mr, then ∂hD1 and ∂`D2

are disjoint in A(Cr,R) for sufficiently large C : Suppose not, then there would be a point
x ∈ ∂hD1 ∩ ∂`D2 ∩ A(Cr,R). Consider the points xh ∈ ∂hD1 ∩ Cr, x` ∈ ∂`D2 ∩ Cr and the
“center” x′ of the “triangle” on T with vertices x`, xh and x,

x′ = T (x`, xh) ∩ T (x`, x) ∩ T (xh, x).

Since T (x, x′) ⊂ ∂hD1 ∩ ∂`D2, it follows that diamT (x, x′) ≤ Mr, hence |x′| > (C −M)r.
Thus

diamT (x`, xh) > (C −M − 1)r ≥ C −M − 1

2
|x` − xh|,

contradicting the quasiarc property 2.2 if (C −M − 1)/2 > K.

The same argument shows that there is no curve σ ⊂ T joining ∂hD1 and ∂`D2 in ∩A(Cr,R).
Hence there is a curve γ ⊂ A(Cr,R) \ (T ∪D1 ∪D2) between ∂hD1 and ∂`D2 from CCr to
CR. The component of A(Cr,R) \ T containing γ is the required D3.

We will need the following bound on the number of components that can cross an annulus.

Lemma 3.7. If R/r ≥ 4K, then the number of components of A(r, R)\T that cross A(r, R)
is bounded above by 8Kπ.

Proof. Denote D1, ..., Dn the components that cross A(r, R). The arcs ∂`Di meet Cr resp. CR
in points a`,i resp. b`,i and similarly ∂hDi meet Cr resp. CR in points ah,i resp. bh,i. For each
i, one of the two arcs of CR \ b`,i, bh,i belongs to Di and thus is essentially disjoint from all
the other Dj. Thus there are n disjoint arcs of CR bounded by pairs b`,i, bh,i. Consequently, if
dj = |b`,j − bh,j| is minimal among di, 1 ≤ i ≤ n, then dj ≤ 2πR/n. By the Ahlfors condition
(2.2),

diamT (b`,j, bh,j) ≤ K
2πR

n
.

In particular, the arc γ ⊂ T that joins ∂`Dj and ∂hDj is of distance ≤ K 2πR
n

from CR, hence
of distance

d ≥ R− r −K 2πR

n
from Cr. Since a`,j and ah,j connect through the same arc γ, we have

diamT (a`,j, ah,j) ≥ d ≥ R

2
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if R > 4r and n > 8πK. On the other hand,

diamT (a`,j, ah,j) ≤ K|a`,j − ah,j| ≤ K2r <
R

2

if R > 4Kr, and we conclude that n ≤ 8πK whenever R/r > 4K.

Next, still assuming that 0 ∈ T we will construct a chain of domains Di that already has
most of the desired features of Proposition 3.5, namely (3.3),(3.4), (3.6) and (3.7).

Lemma 3.8. With C and M as in Lemma 3.6, there are constants N,C1, C2 such that
whenever R = C2r < diam T there are domains D1, D2, ..., Dn in A(r, R) with n ≤ N that
are all crossing A(C1r, R) and satisfy the following: Each Di is a connected component of
A(Cnir, R) \ T for some 0 ≤ ni ≤ N, each intersection ∂hDi ∩ ∂`Di+1 contains an arc αi of
diameter ≥M max(Cnir, Cni+1r), and ∪iDi separates A(r, R).

Proof. Set C1 = C8πK where C is the constant of Lemma 3.6, and C2 = 4KC1. Fix a
component D1 crossing A(r, R). If ∂hD1∩∂`D1 contains an arc of diameter ≥Mr, set N = 1
and we are done. Else, by Lemma 3.6, there is a component D2 crossing A(Cr,R) between
∂hD1 and ∂`D1. Note that D1 also crosses A(Cr,R). If the pair D1, D2 does not satisfy the
claim, repeated application of Lemma 3.6 (relabeling the domains if necessary to keep the
cyclic order) yields a sequence of disjoint domains D1, ..., Dn that all cross A(Cn−1r, R). By
Lemma 3.7, this process has to stop when n ≤ N = 8Kπ. Joining a point of ∂hDi−1 ∩ ∂`Di

with a point of ∂hDi ∩ ∂`Di+1 by a Jordan arc in Di, we obtain a Jordan curve in ∪iDi

separating Cr and CR.

Next, we slightly modify the Di to turn them into conformal rectangles of controlled
modulus with geodesic boundaries. Roughly speaking, since we have no lower bound for
the size of the “inner boundary” ∂Di ∩ Cr of Di, we just replace it by a larger arc: By
construction, each Di is a connected component of A(Cnir, R) \ T . Let D′i ⊂ Di be the
component of A((Cni + 1)r, R) \ T that joins the two boundary circles, and let I1 be the
arc on C(Cni+1)r that separates CCnir and CR. By the Ahlfors condition, the length of I1 is

comparable to Cnir. Let γ1 be the hyperbolic geodesic of C \ T joining the two endpoints
a1,i, b1,i of I1 (viewed as prime ends). Then the diameter of γ1 is comparable to Cnir (the
upper bound follows from the Gehring-Hayman inequality, the lower bound from the Ahlfors-
condition),

(3.9) diam γ1 ≤ C0C
nir.

Furthermore, the distance of γ1 to 0 is comparable to Cnir and hence greater than a
constant times r. Similarly, let I2 be the arc on SR that separates SCnir and ∞, and let γ2

be the geodesic joining the endpoints a2,i, b2,i of I2. The diameter of γ2 is comparable to R,
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again by the Gehring-Hayman inequality. Now let D′i be the connected component of C \ T
bounded by γ1 and γ2. These are the domains of Proposition 3.5. Notice that properties
(3.3),(3.4), (3.6) and (3.7) are satisfied by Lemma 3.8. Notice also that the set

αi \D(0, (Cni + 1)r)

contains an arc α′i of diameter comparable to r,

diamα′i ≥ (MCnir − 2(Cni + 1)r)/2,

and that this arc is contained in ∂hD
′
i ∩ ∂`D′i+1.

To simplify notation, from now on we will drop the prime and will simply write Di

and αi instead of D′i and α′i. Assume without loss of generality counterclockwise order-
ing of a1, b1, b2, a2, and notice that the conformal modulus of the topological rectangles
(Di, a1, b1, b2, a2) is bounded above and below : This can easily be seen using Rengel’s in-
equality

w2

areaD
≤M ≤ areaD

h2
,

where w and h are the distances between the opposite pairs of sides. Indeed, the sides (a1, b1)
and (b2, a2) trivially have distance of order R−Cnir, and the sides (b1, b2) and (a2, a1) have
distance of order Cnir again by the Ahlfors condition. The area is of order R2, since the
diameter of γ2 is of order R.

We will now turn to the construction of the setsAi, Bi. SinceDi andDi+1 connect through
the arc αi ⊂ T , we will define Bi as a subset of αi. It can be shown that (Di, αi−1, αi) is a
conformal (M,C)-rectangle for suitable constants (only the uniform perfectness of the image
of α under a conformal map onto a rectangle would require proof). But this is NOT the
appropriate choice of Bi: Indeed, every triple point on α corresponds to two prime ends on
one side and one prime end on the other side of α, so that the choice Bi = Ai+1 = α does
not even allow for a bijection between the corresponding sets in rectangular coordinates, see
Figure 3.2 . To obtain a homeomorphism, we need to stay away from the branch points of
T . Roughly speaking, to obtain a quasisymmetric homeomorphism, we need to stay away
from the branch points in the following quantitative way: If β is a branch of T branching
off a point x in the interior of α (not one of the two endpoints), then we need to remove an
interval of size proportional to diam β from α. More precisely, since α is a quasiconformal
arc, there is a global quasiconformal map F that sends α to the interval [0, 1] on the real
line. For every component β of T \ α with β ∩ α 6= ∅, the intersection consists of a single
point xβ. Denote

`β = diamF (β).

We will show that for sufficiently small δ > 0, the set

(3.10) Bi = Ai+1 = F−1
(

[0, 1] \
⋃
β

[F (xβ)− δ`β, F (xβ) + δ`β]
)
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satisfies the requirements of Proposition 3.5. We begin by describing a set of assumptions
guaranteeing that such a set it non-empty. A picturesque description of the situation is as
follows: Suppose trees (vertical line segments of length `β) grow from the forest floor (the
interval [0, 1]) in such a way that they are not too close to each other: The distance between
two trees is bounded below by a constant times the height of the smaller tree. Each tree
casts a shadow of size proportional to its height. Then there are many sunny places on the
forest floor (assuming this proportionality constant is small). More generally (corresponding
to branch points of order more than three) we need to allow for a bounded number of trees
to get close. A precise statement is the

Sunny Lemma 3.9. For every integer N ≥ 1 and real M > 0 there are δ = δ(N,M) and
c = c(N,M) such that the following holds: Suppose S = {(xn, `n)} is a collection of pairs
(x, `) ∈ [0, 1]× (0,M ] with the property that for every interval I = [a, b] ⊂ [0, 1], the number
of pairs (x, `) ∈ S with x ∈ [a, b] and ` ≥M |b− a| is ≤ N. Then

[0, 1] \
⋃

(x,`)∈S

[x− δ`, x+ δ`]

contains a c−uniformly perfect set of diameter at least 1/2.

Proof. Set

r =
1

4N + 4

and fix

δ <
1

2(4N + 4)M
.

Beginning with L0 = {[0, 1]}, inductively construct a nested collection Ln of disjoint “po-
tentially sunny intervals” of size rn as follows: Fix I ∈ Ln and subdivide I into 4N + 4
equal sized intervals of size rn+1. By assumption, there are at most N intervals (“shadows”)
[x− δ`, x+ δ`] for which x ∈ I and Mrn < ` ≤Mrn−1. By the definition of δ, each of these
shadows [x−δ`, x+δ`] will intersect at most two (adjacent) of the 4N +4 intervals. In addi-
tion, there are at most two more of the 4N+4 intervals that intersect a shadow [x−δ`, x+δ`]
with x /∈ I and Mrn < ` ≤ Mrn−1 (one on either endpoints of I). Hence there are at least
2N + 2 intervals remaining, and they constitute the collection of the intervals of Ln+1 that
are in I. In particular, it follows that

(3.11) diam
⋃

J∈Ln+1,J⊂I

≥ 1/2 diam I.

By construction

A =
⋂
n

⋃
I∈Ln

I ⊂ [0, 1] \
⋃

(x,`)∈S

[x− δ`, x+ δ`],

and it is easy to see that A is uniformly perfect: If x ∈ A and if the annulus A(x;R1, R2)
separates A where R1 < R2 ≤ 1, then consider the minimal n for which rn < 4R1, and
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denote In(x) the interval of Ln that contains x. By (3.11), the interval In−1(x) contains a
second interval J ∈ Ln of distance more than 1/4rn−1 and less than rn−1 from In(x). Thus
A(x;R1, R2) separates I ∩ A and J ∩ A, which yields an upper bound on R2/R1.

Returning to the definition (3.10) of Bi, we claim that the collection {(F (xβ), `β)} satisfies
the assumptions of Lemma 3.9, where `β = diamF (β). To this end, let us first notice that
by the quasisymmetry of F , there is an upper bound `β ≤ M that only depends on K(T ):
Indeed, all arcs β are contained in Di ∪ Di+1 so that diam β ≤ diamDi ∪ Di+1 . diamα.
Next, fix an interval [a, b] ⊂ [0, 1] and consider an arc β with F (xβ) ∈ [a, b] and `β > M |b−a|.
Then the quasisymmetry of F implies that

diam β ≥M ′ diamF−1[a, b]

where M ′ is large when M is large, and since T is a Gehring tree there is an upper bound N
on the number of such arcs. Thus the assumptions of the sunny Lemma 3.9 are satisfied, and
for sufficiently small δ the set [0, 1] \

⋃
β[F (xβ)− δ`β, F (xβ) + δ`β] is uniformly perfect and

of diameter ≥ 1/2. Consequently the image under F−1 is uniformly perfect (quasiconformal
maps distort moduli of annuli only boundedly) and of diameter comparable to diamαi. We
will also need the following

Lemma 3.10. The internal distance di of Di and the euclidean distance are comparable on
Ai ∪Bi.

Proof. Let x, y ∈ Bi, viewed as prime ends of Di. We need to show that di(x, y) . |x − y|.
Recall the bounded turning property of the John domain C \ T : By Theorem 6.3 of [31],
the smaller of the two arcs of ∂∗T between x and y has diameter comparable to the internal
distance between x and y in C \ T , which is easily seen to be comparable to the internal
distance of Di. This smaller arc is of the form

α(x, y) ∪
⋃

xβ∈α(x,y)

β,

where the union is over all components β of T \ α with β ∩ α 6= ∅ and β ⊂ Di. Since x ∈ Bi

we have
|F (x)− F (xβ)| ≥ δ diamF (β)

so that
|x− xβ| ≥ δ′ diam β

by quasisymmetry of F , and similarly for y. It follows that any arc β with xβ between x and
y has diameter bounded by a constant times |x− y|, and the Lemma follows in this case. If
both x and y are in Ai, the proof is the same. In case x ∈ Bi and y ∈ Ai, both the euclidean
and the internal distance of x and y are bounded above and below, and there is nothing to
prove.
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Conclusion of the Proof of Proposition 3.5. We have already established the existence of
constants K1, N,M,C and defined the domains Di and sets Ai, Bi ⊂ ∂Di∩T satisfying (3.3)
- (3.7). It only remains to show that the topological rectangles (Di, Ai, Bi) are conformal
(M,C)−rectangles, and to verify (3.8). Recall that we already showed that the conformal
modulus of the topological rectangle (Di, a1, b1, b2, a2) is bounded above and below, where
the four marked points (a1, b1, b2, a2) are the endpoints of αi and αi−1, namely αi = T (a1, a2)
and αi−1 = T (b1, b2). Since the diameter of Bi is comparable to the diameter of αi, and
the diameter of Ai is comparable to diamαi−1, the same argument using Rengels inequality
shows that the conformal modulus of (Di, Ai, Bi) is bounded above and below (away from
zero).

Now let gi be the conformal map of Di onto the rectangle Ri = [0, Xi] × [0, 1] that
takes the extreme points of Ai resp Bi to the left resp. right vertices. Since the modulus
Xi is bounded above and below, the rectangle is a John domain with bounded constant.
By Theorem 7.4 of [31], g is a quasisymmetric map between Di and R with respect to the
internal metric di of Di. It easily follows that gi(Ai) and gi(Bi) are uniformly perfect with
constant only depending on those of Ai and Bi, and the quasisymmetry data. Finally, the
required homeomorphism between gi(Bi) and gi+1(Ai+1) is simply given by the restriction of
gi+1 ◦ gi to Bi, which is quasisymmetric by two applications of the aforementioned Theorem
7.4 of [31], combined with the bilipschitz-continuity of the restriction to Bi of the identity
map on ∂Di ∩ ∂Di+1 with respect to the internal metrics of Di and of Di+1, again using
Lemma 3.10.

3.3 Proof of the “only if” part of Theorem 1.1

Most of the work has already been done by proving Proposition 3.5. Let L be the lamination
of a Gehring tree T and f : C \ D → C \ T a conformal map fixing ∞. Given x ∈ T and
a scale 0 < ρ < ρ0 (where ρ0 will be specified later), let I be the arc of T of length ρ with
initial point x. Applying Proposition 3.5 to p = f(x) and

r =
diam f(I)

C
,

we obtain conformal (M,C)-rectangles (Di, Ai, Bi) separating the annulus A(p; r, Cr), ar-
ranged in counter-clockwise order. We may assume the labeling is such that the prime end
boundary of D1 contains points of f(I). Recall the definition of the points a1,i, a2,i, b1,i, b2,i,

introduced during the construction of Di right after Lemma 3.8, and denote â1,i, â2,i, b̂1,i, b̂2,i

their preimages under f. The preimages

D̂i = f−1(Di)

are bounded by the two arcs [â1,i, â2,i] and [b̂1,i, b̂2,i] on T together with the hyperbolic

geodesics < â1,i, b̂1,i > and < â2,i, b̂2,i > of C \ D, see Figure 3.3.
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Figure 3.3: bla

Set p1 = p, for each i = 2, 3, ..., n fix any point pi ∈ [a1,i, b1,i] ⊂ T (for instance pi = [a1,i]),
and for i = 1, 2, ..., n let

Ii = [b2,i, pi] , I ′i = [pi, a2,i].

Since the conformal modulus of (D, a1, b1, b2, a2) is bounded above and below for each i, the
lengthes |Ii| and I ′i are comparable. Let

Âi = f−1Ai ∩ Ii , Â′i = f−1Bi ∩ I ′i

so that for each i, (D̂, Â, Â′) is a conformal image of (D,A,B) and hence a conformal (M,C)-
rectangle. In particular, Â and Â′ are uniformly perfect and

diam Âi � |Ii| � |I ′i| � ˆdiamÂ′i.

The conformal maps of (D̂, Â, Â′) onto a rectangle that send the points a1, a2, b1, b2 to the
corners is quasisymmetric (this is clear since both domains are John with bounded con-
stants, and can be verified directly since it is just a composition of a Mobius transformation
with a logarithm). It remains to notice that the quasisymmetric homeomorphisms of (3.8)
conjugates to a quasisymmetric homeomorphism between Â′i and Âi+1. Thus the sets Âi, Â

′
i

satisfy all requirements of Theorem 1.1 and we have proved that Gehring trees satisfy the
conditions of Theorem 1.1.
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4 Quasisymmetric weldings yield Gehring trees

4.1 Finite laminations and balloon animals

Given a finite lamination L, there are a large number of solutions to the realization problem
of finding a conformal map f of ∆ such that Lf = L. Koebe [21] showed that laminations
without triple points can be realized as conformal laminations of a circle domains (C \ f(∆)
is a union of discs with disjoint interiors). There is nothing really special about discs, and
it is feasible that instead of discs one could prescribe any say strictly convex shape (up
to homothety). Bishop [7] rediscovered Koebe’s theorem and used it to solve a conformal
welding problem for Jordan curves. Our approach to solving the welding problem is partly
motivated by Bishops important work. However, as we will see later, our method relies on
the existence of a realization for which the harmonic measures of complementary components
are linearly related. This fails spectacularly for circle domains, as the harmonic measure of
a disc is just normalized length measure, while the harmonic measure from the outside at
the intersection point of two discs decays exponentially. The purpose of this section is to
prove the following proposition, see also Figure 4.1.

Proposition 4.1. a) For every finite lamination L, there is a simply connected domain
G ⊂ C and a conformal map f : ∆ → G fixing ∞ such that C \ G consists of Jordan
domains Gi, and such that f(x) = f(y) if and only if x = y or (x, y) ∈ L.

b) Moreover, G can be chosen such that there are points zi ∈ Gi for which the harmonic
measures ωi of ∂Gi at zi and ω∞ of G at ∞ have the property

(4.1)
dω∞
dωi

≡ pi on ∂Gi

for all i, where pi = ω(0,D, P i ∩ ∂D) = ω∞(∂Gi).

c) More generally, given positive numbers pi,j for each boundary arc αi,j of Pi such that∑
j pi,j = pi, then G and zi can be chosen such that

(4.2)
dω∞
dωi

≡ pi,j on βi,j = f(αi,j) for all i, j.

In b) and c), the domain G and the zi are unique up to normalization by a linear map
z 7→ az + b.

Remark. The domain in part a) of the proposition is highly non-unique. It can for instance
be chosen in such a way that each Gi is a disc, and there is only one such collection of discs
up to normalization. See [21], and also Lemma 19 in [7] for a closely related circle chain.
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Figure 4.1: A finite lamination with seven pieces and two gaps, and its balloon animal G.

However, at a point of tangency of two circles, ω∞ will be highly singular with respect to
length measure, and it is easy to see that none of the Gi can be a circle in order to satisfy
b). In fact, we will see that the boundaries of the Gi are piecewise analytic arcs that make
up equal angles at the contact points.

The connected components of D \ L either have finite hyperbolic area, or meet the circle
in one or more non-degenerate intervals. The former are called gaps and correspond to
points of multiplicity at least three. The latter are in one-to-one correspondence with the
Gi, We call them the pieces of the lamination and label them Pi. The balloon animal of
L and its balloons are the domains G and Gi of Proposition 4.1, where we normalize f
hydrodynamically (f(z) = z +O(1/z) near ∞).

Proof of Proposition 4.1. The proof of b) and c) is essentially an exercise in conformal weld-
ing: Take any smoothly bounded solution to a), form an abstract Riemann surface by glueing
discs to ∂G according to the harmonic measure ω∞, and invoke the uniformization theorem.
Because there are singularities at the cut points, we will give a more detailed proof based
on the measurable Riemann mapping theorem: First, construct a domain H bounded by
C2−arcs realizing L and such that near each cut point, ∂H is a star in local coordinates,
φ(∂H) = ∪2n

k=1[0, eπi/k] : This can easily be done by starting with disjoint actual stars, induc-
tively joining their endpoints by sufficiently smooth curves (for instance hyperbolic geodesics
of the complementary domain), and finally correcting the harmonic measures at ∞ of the
boundary arcs by an appropriate smooth quasiconformal map as described below. Next, if
h : ∆ → H is a conformal map fixing ∞ and if hi : D → Hi are conformal maps to the
bounded complementary components of H, define homeomorphisms φi : T→ T by setting

|φ′i(x)| = |(h−1 ◦ hi)′(x)|/pi,j for x ∈ αi,j
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and normalizing by φi(1) = 1, say. Then the φi are smooth and admit quasiconformal
extensions Φi : D→ D. The Beltrami equation

∂F

∂F
(z) =

{
0 if z ∈ H,
∂
∂
Φi ◦ h−1

i if z ∈ Hi

has a quasiconformal solution F , and it is easy to check that G = F (H) satisfies the claim.

Example 4.2. If L consists of one chord only, say (−1, 1), then G is the unbounded compo-
nent of the lemniscate {

√
z − 1 : |z| = 1} and f is the square root of a quadratic polynomial.

Call a finite lamination L well-branched if for each piece P , P ∩T has one or two connected
components. In other words, L is well-branched if there is no balloon Gi for which ∂Gi

contains more than two cut points of G. The lamination of Figure 4.1 is well-branched.
Since we prefer to work with well-branched laminations, we will first show that every finite
lamination has a well-branched refinement.

Lemma 4.3. If L′ is a finite sub-lamination of a maximal lamination L, then there is a
finite well-branched lamination L′′ with L′ ⊂ L′′ ⊂ L.

This can easily be proved by induction over the number of pieces with more than two
cut points: In every such piece, there is a gap subdividing the piece into smaller pieces with
fewer cutpoints.

We conclude this section with a simple criterion that guarantees existence of a solution
to the realization problem. Let Ln be an increasing sequence of finite laminations converging
to a lamination L ⊃ ∪nLn in the sense that for every chord (a, b) ∈ L there is a sequence of
chords (an, bn) ∈ Ln with an → a and bn → b. Denote Pn the set of pieces of Ln, and let fn
be a hydrodynamically normalized conformal map of ∆ realizing Ln (that is, fn(a) = fn(b)
for each (a, b) ∈ Ln). Denote

(4.3) mn = max
P∈Pn

sup
k≥n

diam fk(P ∩ T)

the largest diameter amongst all images of pieces of generation n. Notice that, by our as-
sumption Ln ⊂ Ln+1, each of the sets fk(P ∩ T) is a finite union of balloons of generation
k.

Proposition 4.4. If mn → 0 as n→∞, and if f is any subsequential limit of (fn)n≥1 under
compact convergence in ∆, then f extends continously to ∆, convergence is uniform in ∆,
and f realizes L.
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Proof. Each piece of Pn intersects ∂D in finitely many arcs. Denote sn the size of the smallest
such arc amongst all pieces of Pn. Notice that sn → 0 by Beurling’s projection theorem, since
fn are normalized and mn → 0. Then every interval I ⊂ ∂D of size ≤ sn is contained in at
most two such arcs, hence

diam fk(I) ≤ 2mn for all k ≥ n.

It follows that

|fk(z)− fk(w)| ≤ m′n for all k ≥ n, z, w ∈ ∆, |z − w| < sn

for a sequence m′n → 0. By pointwise convergence, this also holds for f , so that f is uniformly
continuous and extends to ∆. It also easily follows that the compact convergence is in fact
uniform. Finally, if (a, b) ∈ L and (an, bn) ∈ L converges to (a, b), then f(a) = lim fn(an) =
lim fn(bn) = f(b) so that f realizes L.

4.2 The Modulus estimate for finite approximations to L

We inductively construct a sequence Lk of finite approximations of L as follows. Set L0 = ∅
and fix k ≥ 1. For the scale r = 2−k and the dyadic point x = x`,k = `/2k ∈ T with
1 ≤ ` ≤ 2k, consider the sets and intervals Aj = Aj(x, k) ⊂ Ij = Ij(x, k), A′j ⊂ I ′j, 1 ≤
j ≤ n = n(x, k) ≤ N of Theorem 1.1. Denote aj = aj(x, k) ∈ Aj, a

′
j ∈ A′j the point of

maximal distance from the point of intersection xj ∈ Ij ∩ I ′j. By the monotonicity of φj we
have (aj, a

′
j+1) ∈ L for each j. Next, since Aj is uniformly perfect and of size comparable

to Ij, it is easy to see that there is a point bj ∈ Aj ∩ [aj, x] with |aj − bj| � |bj − xj| such
that [aj, bj] ∩ Aj is uniformly perfect, with constants only depending on the constant of L.
For each j, set b′j = φ(bj) ∈ A′j ∩ [x, a′j] so that (bj, b

′
j+1) ∈ L, see Figure 4.2. By the

quasisymmetry of φj we have

(4.4) |aj − bj| � |bj − xj| � |b′j − xj| � |a′j − b′j|,

and [a′j, b
′
j]∩A′j is uniformly perfect as well. Now form the set L̂k of all such chords (aj, a

′
j+1)

and (bj, b
′
j+1) , namely

L̂k =
2k⋃
`=1

n(x`,k)⋃
j=1

(aj, a
′
j+1) ∪ (bj, b

′
j+1).

Applying Lemma 4.3 to the finite sub-lamination L′ = Lk−1 ∪ L̂k of the maximal lamination
L, we obtain a well-branched lamination L′ ⊂ L′′ ⊂ L and set

Lk = L′′.
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Figure 4.2: The definition of Lk and the annular neighborhood Ak(x).

Denoting Dj = Dj,k(x) the hyperbolic convex hull (with respect to ∆) of [aj, bj]∪ [a′j, b
′
j],

we set

(4.5) Ak(x) =

n(x,k)⋃
j=1

Dj,

see Figure 4.2.

We think of Ak(x) as an annular neighborhood of x at scale � 2−k, and leave the details of
the proof of the following Lemma to the reader.

Lemma 4.5. With

Aj,k = Aj ∩ [aj, bj] and A′j,k = A′j ∩ [b′1, a
′
1],

the (Dj,k, Aj,k, A
′
j,k) are conformal C−rectangles. Moreover,

Ak(x) ∩ Ak′(x) = ∅

whenever |k− k′| ≥ C ′ and |x− x′| ≤ C ′2−k. Here C and C ′ only depend on the constant of
L.

We now turn to the key modulus estimate. Form the balloon animal Gm corresponding to
Lm. More precisely, apply Proposition 4.1 c) to Lm with

pi,j = 2ω∞(βi,j)

so that

(4.6) ω(zi, βi,1, Gi) = ω(zi, βi,2, Gi) =
1

2
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Figure 4.3: Two consecutive balloon animals and annuli Am,k(x). Shaded are those Gi that
allow for a crossing from fm(Dj) to fm(Dj + 1).

for those i for which the balloon Gi has two boundary arcs (since Lm is well branched, each Gi

either has one or two boundary arcs). Denote fm : ∆→ C\Gm the corresponding conformal
map. Let k ≤ m, let x = `/2k ∈ T be a dyadic point, and consider the image fm(Ak(x)).
The hyperbolic geodesics fm(< aj, a

′
j >), 1 ≤ j ≤ n are Jordan arcs whose union forms a

Jordan curve surrounding fm(x), and similarly for the union ∪jfm(< bj, b
′
j >). Together

these Jordan curves bound a topological annulus

Am,k(x) ⊃ fm(Ak(x)).

This annulus can also be obtained from fm(Ak(x)) by adding those Gi that correspond to
the chords of Lm with endpoints in

⋃
[aj, bj] ∪

⋃
[a′j, b

′
j]. See Figure 4.3.

Proposition 4.6. The conformal modulus M(Am,k(x)) is bounded away from zero, with
bound depending only on the constant of L.

Proof. Fix k ≤ m and x. Write A = Am,k(x) and let Γ be the family of simple closed
curves γ ⊂ A that separate the two boundary components of A. Let ρ : A → [0,∞] be an
admissable metric for Γ, that is∫

γ

ρ|dz| ≥ 1 for all γ ∈ Γ.

We need to find a lower bound on
∫
ρ2dxdy. We assume that∫
A
ρ2dxdy < ε,

aiming at a contradiction by producing a large family of loops γ in A of ρ−length less
than 1 (one such curve suffices for the contradiction). Every loop γ in A has to cross each
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fm(Dj), 1 ≤ j ≤ n, as well as at least n of the balloons Gi. We will make quantitative the
statement that most curves crossing the fm(Dj) are short, and that many curves crossing
the Gi with endpoints corresponding to L are short as well, so that they can be combined
to form the desired loop γ.

Recall the definition (4.5) of Ak and Dj and set

(4.7) Ij = [aj, bj] and I ′j = [a′j, b
′
j].

By Lemma 4.5, each (Dj, Ij ∩ Aj, I ′j ∩ A′j) is a conformal C−rectangle. Denote ρj the
restriction to Dj of pullback of ρ0 under fm. For each j = 1, ..., n, apply Lemma 3.3 to the
image ρ0 of ρj/

√
ε under the conformal map ψj from Dj onto a rectangle [0, Xj]× [0, 1],

ρ0(ψj(z)|ψ′j(z)| = ρ(z)/
√
ε.

Note that ψj is a composition of a bilipschitz-map of controlled distortion (namely a compo-
sition of a Mobius transformation and a logarithm) and a linear map. We obtain exceptional
sets Ej ⊂ Ij and E ′j ⊂ I ′j such that for every x ∈ Ij \ Ej and every y ∈ I ′j \ E ′j there is a
curve γx,y;j ⊂ Dj joining x and y with∫

γx,y;j

ρj|dz| ≤ λ
√
ε.

By (3.2) and appropriate choice of the λ, the density of the logarithmic capacity of the
exceptional sets in Ij and I ′j can be made arbitrarily small,

cap(Ej) . e−πλ
2|Ij| , cap(Ej) . e−πλ

2|I ′j|.

To deal with crossings of the Gi, we will use Proposition 2.12. For each j, the endpoints of
the lamination Lm decompose the arcs Ij and I ′j into finitely many open intervals Jr,j and
J ′s,j,

Ij \ Lm =
⋃
r

Jr,j , I ′j \ Lm =
⋃
s

J ′s,j .

Those Jr,j that have non-trivial intersection with the uniformly perfect set Aj are in one-to-
one correspondence with the J ′s,j+1 that intersect A′j+1 non-trivially (they correspond to the
the two boundary arcs of the shaded Gi in Figure 4.3): If Bj = {r : Ir,j ∩ Aj 6= ∅}, then for
every r ∈ Bj and x ∈ Ir,j ∩Aj there is a unique index s and y ∈ I ′s,j+1∩A′j+1 with y = φj(x).
Conversely, with B′j = {s : Is,j ∩ A′j 6= ∅} and s ∈ B′j there is a unique r ∈ Bj, and we may
relabel such that Bj = B′j and Ir corresponds to I ′r. For j = 1, ..., n, apply Proposition 2.12 to

U = ψj(Ij ∩Aj), U ′ = ψj+1(I ′j+1 ∩A′j+1), φ = ψj+1 ◦ φj ◦ ψ−1
j , E = ψj(Ej), E

′ = ψj+1(E ′j+1)
and Jr = ψj(Jr,j), J

′
r = ψj+1(J ′r,j+1) for r ∈ Bj. We obtain an index r = rj such that

cap(Jr,j ∩ Aj \ (Ej ∪ φ−1
j (E ′j+1))) ≥ ν|Jr,j|
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and
cap(J ′r,j+1 ∩ A′j+1 \ (E ′j+1 ∪ φj(Ej))) ≥ ν|J ′r,j+1|.

By (4.2) and (4.6), the images of these two sets under the conformal map gj from Gj onto
D, normalized to send the center zj of Gj to 0, are two sets on different halves of ∂D of
capacity ≥ ν ′. This is where the special properties of the balloon animals are crucial. By
Lemma 3.4 applied to the conformal transport of ρ/

√
ε under gj, if λ is large enough so that

C ′e−C
′′λ2 ≤ ν ′/2, then there is a curve γj ⊂ Gj with endpoints fm(xj) in fm(Ij \ Ej) and

fm(yj) in fm(Ij+1 \ E ′j+1) and with ρ−length ≤ λ
√
ε. The curve

γ =
n⋃
j=1

γj ∪
n⋃
j=1

γxj ,yj−1;j ⊂ Γ

has ρ−length ≤ 2Nλ
√
ε and we obtain a contradiction to the admissability of ρ when ε is

small enough.

4.3 Proof of the “if” part of Theorem 1.1 and of Corollary 1.2

We now have all ingredients to finish the proof of our main result Theorem 1.1.

Proof. Given a maximal non-degenerate lamination L, form the approximations Lk described
in the previous Section 4.2, together with their conformal realizations fk : ∆ → C \ Gk and
annuli Am,k obtained from fm(Ak). Denote again Pn the set of pieces of Ln. Then

mn = max
P∈Pn

sup
k≥n

diam fk(P ∩ T)

tends to zero exponentially fast: Indeed, by Lemma 4.5, every piece P ∈ Pn is surrounded by
n/C ′ disjoint “annular neighborhoods” of the form A`(x) (where x ∈ P ∩T and ` = jC ′, 1 ≤
j ≤ n/C ′), so that fk(P ∩ T) is surrounded by n/C ′ nested annuli Ak,`(x). By Proposition
4.6, all of these annuli have modulus ≥ M0, and the claim follows from Lemma 2.6. Let
f = limj→∞ fkj be an arbitrary subsequential limit. By Proposition 4.4, f has a continuous

extention to ∆ and realizes L, namely L = Lf .

Notice that the exponential decay of the diameters of the balloons implies the Hölder con-
tinuity of f. The stronger John property of G = f(∆) follows from the same modulus
estimate, applied to the characterization Theorem 2.4: Indeed, if A ⊂ I ⊂ T are arcs of
length |A| ≤ β|I|, then there is a point x = `/2m ∈ A and a scale 2m ∼ |A| such that the
annular neighborhood Am(x) surrounds A. By Lemma 4.5, there are disjoint nested annular
neighborhoods Am−jC′(xj). If β . 2−nC

′
, the interval I crosses all Am−jC′(x), 1 ≤ j ≤ n

(in the sense that at least one of the two intervals I1(xj,m − jC ′), I ′1(xj,m − jC ′) defined
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in (4.7) is contained in I). Consequently, for every k, fk(I) crosses the annuli Ak,m−jC′(xj).
Since fk(A) is surrounded by these annuli, by Lemmas 2.6 and 2.7 we have that

log(1 +
diam f(I)

diam f(A)
) ≥ nM0 − c

and we obtain diam f(A) ≤ 1/2 diam f(I) if β is sufficiently small.
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