Lecture 8: Proof of Loewner's Lemma and Properties of Driving Functions

Recall from April 6:

If K is a connected hull of \mathbb{H} (i.e., $K \subset \overline{\mathbb{H}}$ and $\mathbb{H} \setminus K$ is simply connected), and $g_K(z)$ is the hydrodynamically normalized conformal map from $\mathbb{H} \setminus K$ to \mathbb{H} , then we have the following lemma:

Lemma 1 (Loewner's Lemma) $0 < g'_K(x) \leq 1$ on $\mathbb{R} \setminus \overline{K}$.

We now give the proof of this lemma:

Proof: Fix $x \in \mathbb{R} \setminus \overline{K}$. Let $I \subset \mathbb{R}$ be an open interval such that $x \in I$. Recall from *April 11* that

$$|I| \sim \pi y \cdot \omega(iy, I, \mathbb{H})$$

where $\omega(iy, I, \mathbb{H})$ is the harmonic measure from iy of I with respect to the domain \mathbb{H} and "~" denotes asymptotic equivalence as $y \to \infty$. Then we get that

$$\begin{aligned} |I| &\sim \pi y \cdot \omega(iy, I, \mathbb{H}) \\ &\geq \pi y \cdot \omega(iy, I, \mathbb{H} \setminus K) \qquad \text{(use the maximum principle)} \\ &= \pi y \cdot \omega(g_K(iy), g_K(I), \mathbb{H}) \qquad \text{(conformal invariance of harmonic measure)} \\ &\sim \pi y \cdot \omega(iy, g_K(I), \mathbb{H}) \\ &\sim |g_K(I)| \end{aligned}$$

So, letting $y \to \infty$, we have $|g_K(I)| \le |I|$. Letting $|I| \to 0$, we get $|g'_K(x)| \le 1$. Noting that $g'_K(x) > 0$ (exercise), the result follows. \Box

We now move on to properties of driving functions. We have the following lemma, partially left as an exercise:

Lemma 2 If $\gamma(t) \in \mathbb{H} \cup \{\gamma(0)\}$ is driven by $\lambda(t)$ and assuming that hcap $(\gamma([0, t]) = 2t)$, then

- 1. (translation) $\gamma + x$ is driven by $\lambda_t + x$
- 2. (concatenation) $g_{t_0}(\gamma(t))|_{t \ge t_0}$ is driven by $\lambda(t+t_0)$

- 3. (reflection) If $\hat{\gamma}$ is the reflection of γ in $i\mathbb{R}$ then $\hat{\gamma}$ is driven by $-\lambda(t)$
- 4. (scaling) For r > 0, $r\gamma(t)$ is driven by $r\lambda(t)$

Proof:

- 1. If $\gamma(t) = \gamma(t) + x$, then $\hat{g}_t(z) = g(z x) + x$, so $\hat{g}_t(\hat{\gamma}(t)) = \lambda_t + x$.
- 2. This is clear when you consider that $g_t \circ g_{t_0}^{-1}(z)$ is the hypodynamically normalized conformal map that maps $\mathbb{H} \setminus g_{t_0}(\gamma([0, t]))$ to \mathbb{H} .

3.
$$\gamma(t) = -\overline{\gamma(t)}$$
, so $\hat{g}_t(z) = -\overline{g(-\overline{z})}$. Thus, $\hat{g}_t(\hat{\gamma}(t)) = -\lambda_t$ as λ_t is real-valued.

4. Exercise.

Example 1 Let $\gamma = \{te^{i\alpha} : t > 0\}$ be a ray from the origin. Let $\lambda(t)$ be the driving function of γ . Note that $r\gamma = \gamma$ for r > 0. So by the lemma, $\lambda(t) = r\lambda(\frac{t}{r^2})$ for all t, r. Setting $r = \sqrt{t}$, we get $\lambda(t) = \sqrt{t} \cdot \lambda(1)$.

Exercise: find an expression for $\lambda(1)$ in terms of α .

Recall that we defined SLE_{κ} by setting the driving function to be $\sqrt{\kappa}B(t)$ where B(t) is a standard Brownian motion. Brownian motion has the property (known as "Brownian scaling") that for r > 0, $\tilde{B}(t) = rB(\frac{t}{r^2})$ is another standard Brownian motion, i.e. $\tilde{B}(t) \stackrel{d}{=} B(t)$. Thus, by the lemma (part 4), solutions to Loewner's Differential Equation driven by Brownian motion will be scale invariant.